]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/mmap.c
Merge tag 'mac80211-for-davem-2015-09-22' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 static void unmap_region(struct mm_struct *mm,
62                 struct vm_area_struct *vma, struct vm_area_struct *prev,
63                 unsigned long start, unsigned long end);
64
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type     prot
70  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
71  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
72  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
73  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
74  *
75  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
76  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
77  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87         return __pgprot(pgprot_val(protection_map[vm_flags &
88                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101         unsigned long vm_flags = vma->vm_flags;
102
103         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104         if (vma_wants_writenotify(vma)) {
105                 vm_flags &= ~VM_SHARED;
106                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107                                                      vm_flags);
108         }
109 }
110
111
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
132 unsigned long vm_memory_committed(void)
133 {
134         return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156         long free, allowed, reserve;
157
158         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159                         -(s64)vm_committed_as_batch * num_online_cpus(),
160                         "memory commitment underflow");
161
162         vm_acct_memory(pages);
163
164         /*
165          * Sometimes we want to use more memory than we have
166          */
167         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168                 return 0;
169
170         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171                 free = global_page_state(NR_FREE_PAGES);
172                 free += global_page_state(NR_FILE_PAGES);
173
174                 /*
175                  * shmem pages shouldn't be counted as free in this
176                  * case, they can't be purged, only swapped out, and
177                  * that won't affect the overall amount of available
178                  * memory in the system.
179                  */
180                 free -= global_page_state(NR_SHMEM);
181
182                 free += get_nr_swap_pages();
183
184                 /*
185                  * Any slabs which are created with the
186                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187                  * which are reclaimable, under pressure.  The dentry
188                  * cache and most inode caches should fall into this
189                  */
190                 free += global_page_state(NR_SLAB_RECLAIMABLE);
191
192                 /*
193                  * Leave reserved pages. The pages are not for anonymous pages.
194                  */
195                 if (free <= totalreserve_pages)
196                         goto error;
197                 else
198                         free -= totalreserve_pages;
199
200                 /*
201                  * Reserve some for root
202                  */
203                 if (!cap_sys_admin)
204                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205
206                 if (free > pages)
207                         return 0;
208
209                 goto error;
210         }
211
212         allowed = vm_commit_limit();
213         /*
214          * Reserve some for root
215          */
216         if (!cap_sys_admin)
217                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219         /*
220          * Don't let a single process grow so big a user can't recover
221          */
222         if (mm) {
223                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224                 allowed -= min_t(long, mm->total_vm / 32, reserve);
225         }
226
227         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228                 return 0;
229 error:
230         vm_unacct_memory(pages);
231
232         return -ENOMEM;
233 }
234
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239                 struct file *file, struct address_space *mapping)
240 {
241         if (vma->vm_flags & VM_DENYWRITE)
242                 atomic_inc(&file_inode(file)->i_writecount);
243         if (vma->vm_flags & VM_SHARED)
244                 mapping_unmap_writable(mapping);
245
246         flush_dcache_mmap_lock(mapping);
247         vma_interval_tree_remove(vma, &mapping->i_mmap);
248         flush_dcache_mmap_unlock(mapping);
249 }
250
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257         struct file *file = vma->vm_file;
258
259         if (file) {
260                 struct address_space *mapping = file->f_mapping;
261                 i_mmap_lock_write(mapping);
262                 __remove_shared_vm_struct(vma, file, mapping);
263                 i_mmap_unlock_write(mapping);
264         }
265 }
266
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272         struct vm_area_struct *next = vma->vm_next;
273
274         might_sleep();
275         if (vma->vm_ops && vma->vm_ops->close)
276                 vma->vm_ops->close(vma);
277         if (vma->vm_file)
278                 fput(vma->vm_file);
279         mpol_put(vma_policy(vma));
280         kmem_cache_free(vm_area_cachep, vma);
281         return next;
282 }
283
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288         unsigned long retval;
289         unsigned long newbrk, oldbrk;
290         struct mm_struct *mm = current->mm;
291         unsigned long min_brk;
292         bool populate;
293
294         down_write(&mm->mmap_sem);
295
296 #ifdef CONFIG_COMPAT_BRK
297         /*
298          * CONFIG_COMPAT_BRK can still be overridden by setting
299          * randomize_va_space to 2, which will still cause mm->start_brk
300          * to be arbitrarily shifted
301          */
302         if (current->brk_randomized)
303                 min_brk = mm->start_brk;
304         else
305                 min_brk = mm->end_data;
306 #else
307         min_brk = mm->start_brk;
308 #endif
309         if (brk < min_brk)
310                 goto out;
311
312         /*
313          * Check against rlimit here. If this check is done later after the test
314          * of oldbrk with newbrk then it can escape the test and let the data
315          * segment grow beyond its set limit the in case where the limit is
316          * not page aligned -Ram Gupta
317          */
318         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319                               mm->end_data, mm->start_data))
320                 goto out;
321
322         newbrk = PAGE_ALIGN(brk);
323         oldbrk = PAGE_ALIGN(mm->brk);
324         if (oldbrk == newbrk)
325                 goto set_brk;
326
327         /* Always allow shrinking brk. */
328         if (brk <= mm->brk) {
329                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330                         goto set_brk;
331                 goto out;
332         }
333
334         /* Check against existing mmap mappings. */
335         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336                 goto out;
337
338         /* Ok, looks good - let it rip. */
339         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340                 goto out;
341
342 set_brk:
343         mm->brk = brk;
344         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345         up_write(&mm->mmap_sem);
346         if (populate)
347                 mm_populate(oldbrk, newbrk - oldbrk);
348         return brk;
349
350 out:
351         retval = mm->brk;
352         up_write(&mm->mmap_sem);
353         return retval;
354 }
355
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358         unsigned long max, subtree_gap;
359         max = vma->vm_start;
360         if (vma->vm_prev)
361                 max -= vma->vm_prev->vm_end;
362         if (vma->vm_rb.rb_left) {
363                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365                 if (subtree_gap > max)
366                         max = subtree_gap;
367         }
368         if (vma->vm_rb.rb_right) {
369                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371                 if (subtree_gap > max)
372                         max = subtree_gap;
373         }
374         return max;
375 }
376
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380         int i = 0, j, bug = 0;
381         struct rb_node *nd, *pn = NULL;
382         unsigned long prev = 0, pend = 0;
383
384         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385                 struct vm_area_struct *vma;
386                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387                 if (vma->vm_start < prev) {
388                         pr_emerg("vm_start %lx < prev %lx\n",
389                                   vma->vm_start, prev);
390                         bug = 1;
391                 }
392                 if (vma->vm_start < pend) {
393                         pr_emerg("vm_start %lx < pend %lx\n",
394                                   vma->vm_start, pend);
395                         bug = 1;
396                 }
397                 if (vma->vm_start > vma->vm_end) {
398                         pr_emerg("vm_start %lx > vm_end %lx\n",
399                                   vma->vm_start, vma->vm_end);
400                         bug = 1;
401                 }
402                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403                         pr_emerg("free gap %lx, correct %lx\n",
404                                vma->rb_subtree_gap,
405                                vma_compute_subtree_gap(vma));
406                         bug = 1;
407                 }
408                 i++;
409                 pn = nd;
410                 prev = vma->vm_start;
411                 pend = vma->vm_end;
412         }
413         j = 0;
414         for (nd = pn; nd; nd = rb_prev(nd))
415                 j++;
416         if (i != j) {
417                 pr_emerg("backwards %d, forwards %d\n", j, i);
418                 bug = 1;
419         }
420         return bug ? -1 : i;
421 }
422
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425         struct rb_node *nd;
426
427         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428                 struct vm_area_struct *vma;
429                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430                 VM_BUG_ON_VMA(vma != ignore &&
431                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432                         vma);
433         }
434 }
435
436 static void validate_mm(struct mm_struct *mm)
437 {
438         int bug = 0;
439         int i = 0;
440         unsigned long highest_address = 0;
441         struct vm_area_struct *vma = mm->mmap;
442
443         while (vma) {
444                 struct anon_vma_chain *avc;
445
446                 vma_lock_anon_vma(vma);
447                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448                         anon_vma_interval_tree_verify(avc);
449                 vma_unlock_anon_vma(vma);
450                 highest_address = vma->vm_end;
451                 vma = vma->vm_next;
452                 i++;
453         }
454         if (i != mm->map_count) {
455                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
456                 bug = 1;
457         }
458         if (highest_address != mm->highest_vm_end) {
459                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
460                           mm->highest_vm_end, highest_address);
461                 bug = 1;
462         }
463         i = browse_rb(&mm->mm_rb);
464         if (i != mm->map_count) {
465                 if (i != -1)
466                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
467                 bug = 1;
468         }
469         VM_BUG_ON_MM(bug, mm);
470 }
471 #else
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
474 #endif
475
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
478
479 /*
480  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481  * vma->vm_prev->vm_end values changed, without modifying the vma's position
482  * in the rbtree.
483  */
484 static void vma_gap_update(struct vm_area_struct *vma)
485 {
486         /*
487          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488          * function that does exacltly what we want.
489          */
490         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
491 }
492
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494                                  struct rb_root *root)
495 {
496         /* All rb_subtree_gap values must be consistent prior to insertion */
497         validate_mm_rb(root, NULL);
498
499         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
503 {
504         /*
505          * All rb_subtree_gap values must be consistent prior to erase,
506          * with the possible exception of the vma being erased.
507          */
508         validate_mm_rb(root, vma);
509
510         /*
511          * Note rb_erase_augmented is a fairly large inline function,
512          * so make sure we instantiate it only once with our desired
513          * augmented rbtree callbacks.
514          */
515         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517
518 /*
519  * vma has some anon_vma assigned, and is already inserted on that
520  * anon_vma's interval trees.
521  *
522  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523  * vma must be removed from the anon_vma's interval trees using
524  * anon_vma_interval_tree_pre_update_vma().
525  *
526  * After the update, the vma will be reinserted using
527  * anon_vma_interval_tree_post_update_vma().
528  *
529  * The entire update must be protected by exclusive mmap_sem and by
530  * the root anon_vma's mutex.
531  */
532 static inline void
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
534 {
535         struct anon_vma_chain *avc;
536
537         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
539 }
540
541 static inline void
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
543 {
544         struct anon_vma_chain *avc;
545
546         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
548 }
549
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551                 unsigned long end, struct vm_area_struct **pprev,
552                 struct rb_node ***rb_link, struct rb_node **rb_parent)
553 {
554         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
555
556         __rb_link = &mm->mm_rb.rb_node;
557         rb_prev = __rb_parent = NULL;
558
559         while (*__rb_link) {
560                 struct vm_area_struct *vma_tmp;
561
562                 __rb_parent = *__rb_link;
563                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
564
565                 if (vma_tmp->vm_end > addr) {
566                         /* Fail if an existing vma overlaps the area */
567                         if (vma_tmp->vm_start < end)
568                                 return -ENOMEM;
569                         __rb_link = &__rb_parent->rb_left;
570                 } else {
571                         rb_prev = __rb_parent;
572                         __rb_link = &__rb_parent->rb_right;
573                 }
574         }
575
576         *pprev = NULL;
577         if (rb_prev)
578                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579         *rb_link = __rb_link;
580         *rb_parent = __rb_parent;
581         return 0;
582 }
583
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585                 unsigned long addr, unsigned long end)
586 {
587         unsigned long nr_pages = 0;
588         struct vm_area_struct *vma;
589
590         /* Find first overlaping mapping */
591         vma = find_vma_intersection(mm, addr, end);
592         if (!vma)
593                 return 0;
594
595         nr_pages = (min(end, vma->vm_end) -
596                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
597
598         /* Iterate over the rest of the overlaps */
599         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600                 unsigned long overlap_len;
601
602                 if (vma->vm_start > end)
603                         break;
604
605                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
606                 nr_pages += overlap_len >> PAGE_SHIFT;
607         }
608
609         return nr_pages;
610 }
611
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613                 struct rb_node **rb_link, struct rb_node *rb_parent)
614 {
615         WARN_ONCE(vma->vm_file && !vma->vm_ops, "missing vma->vm_ops");
616
617         /* Update tracking information for the gap following the new vma. */
618         if (vma->vm_next)
619                 vma_gap_update(vma->vm_next);
620         else
621                 mm->highest_vm_end = vma->vm_end;
622
623         /*
624          * vma->vm_prev wasn't known when we followed the rbtree to find the
625          * correct insertion point for that vma. As a result, we could not
626          * update the vma vm_rb parents rb_subtree_gap values on the way down.
627          * So, we first insert the vma with a zero rb_subtree_gap value
628          * (to be consistent with what we did on the way down), and then
629          * immediately update the gap to the correct value. Finally we
630          * rebalance the rbtree after all augmented values have been set.
631          */
632         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633         vma->rb_subtree_gap = 0;
634         vma_gap_update(vma);
635         vma_rb_insert(vma, &mm->mm_rb);
636 }
637
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640         struct file *file;
641
642         file = vma->vm_file;
643         if (file) {
644                 struct address_space *mapping = file->f_mapping;
645
646                 if (vma->vm_flags & VM_DENYWRITE)
647                         atomic_dec(&file_inode(file)->i_writecount);
648                 if (vma->vm_flags & VM_SHARED)
649                         atomic_inc(&mapping->i_mmap_writable);
650
651                 flush_dcache_mmap_lock(mapping);
652                 vma_interval_tree_insert(vma, &mapping->i_mmap);
653                 flush_dcache_mmap_unlock(mapping);
654         }
655 }
656
657 static void
658 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
659         struct vm_area_struct *prev, struct rb_node **rb_link,
660         struct rb_node *rb_parent)
661 {
662         __vma_link_list(mm, vma, prev, rb_parent);
663         __vma_link_rb(mm, vma, rb_link, rb_parent);
664 }
665
666 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
667                         struct vm_area_struct *prev, struct rb_node **rb_link,
668                         struct rb_node *rb_parent)
669 {
670         struct address_space *mapping = NULL;
671
672         if (vma->vm_file) {
673                 mapping = vma->vm_file->f_mapping;
674                 i_mmap_lock_write(mapping);
675         }
676
677         __vma_link(mm, vma, prev, rb_link, rb_parent);
678         __vma_link_file(vma);
679
680         if (mapping)
681                 i_mmap_unlock_write(mapping);
682
683         mm->map_count++;
684         validate_mm(mm);
685 }
686
687 /*
688  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
689  * mm's list and rbtree.  It has already been inserted into the interval tree.
690  */
691 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
692 {
693         struct vm_area_struct *prev;
694         struct rb_node **rb_link, *rb_parent;
695
696         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
697                            &prev, &rb_link, &rb_parent))
698                 BUG();
699         __vma_link(mm, vma, prev, rb_link, rb_parent);
700         mm->map_count++;
701 }
702
703 static inline void
704 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
705                 struct vm_area_struct *prev)
706 {
707         struct vm_area_struct *next;
708
709         vma_rb_erase(vma, &mm->mm_rb);
710         prev->vm_next = next = vma->vm_next;
711         if (next)
712                 next->vm_prev = prev;
713
714         /* Kill the cache */
715         vmacache_invalidate(mm);
716 }
717
718 /*
719  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
720  * is already present in an i_mmap tree without adjusting the tree.
721  * The following helper function should be used when such adjustments
722  * are necessary.  The "insert" vma (if any) is to be inserted
723  * before we drop the necessary locks.
724  */
725 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
726         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
727 {
728         struct mm_struct *mm = vma->vm_mm;
729         struct vm_area_struct *next = vma->vm_next;
730         struct vm_area_struct *importer = NULL;
731         struct address_space *mapping = NULL;
732         struct rb_root *root = NULL;
733         struct anon_vma *anon_vma = NULL;
734         struct file *file = vma->vm_file;
735         bool start_changed = false, end_changed = false;
736         long adjust_next = 0;
737         int remove_next = 0;
738
739         if (next && !insert) {
740                 struct vm_area_struct *exporter = NULL;
741
742                 if (end >= next->vm_end) {
743                         /*
744                          * vma expands, overlapping all the next, and
745                          * perhaps the one after too (mprotect case 6).
746                          */
747 again:                  remove_next = 1 + (end > next->vm_end);
748                         end = next->vm_end;
749                         exporter = next;
750                         importer = vma;
751                 } else if (end > next->vm_start) {
752                         /*
753                          * vma expands, overlapping part of the next:
754                          * mprotect case 5 shifting the boundary up.
755                          */
756                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
757                         exporter = next;
758                         importer = vma;
759                 } else if (end < vma->vm_end) {
760                         /*
761                          * vma shrinks, and !insert tells it's not
762                          * split_vma inserting another: so it must be
763                          * mprotect case 4 shifting the boundary down.
764                          */
765                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
766                         exporter = vma;
767                         importer = next;
768                 }
769
770                 /*
771                  * Easily overlooked: when mprotect shifts the boundary,
772                  * make sure the expanding vma has anon_vma set if the
773                  * shrinking vma had, to cover any anon pages imported.
774                  */
775                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
776                         int error;
777
778                         importer->anon_vma = exporter->anon_vma;
779                         error = anon_vma_clone(importer, exporter);
780                         if (error)
781                                 return error;
782                 }
783         }
784
785         if (file) {
786                 mapping = file->f_mapping;
787                 root = &mapping->i_mmap;
788                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
789
790                 if (adjust_next)
791                         uprobe_munmap(next, next->vm_start, next->vm_end);
792
793                 i_mmap_lock_write(mapping);
794                 if (insert) {
795                         /*
796                          * Put into interval tree now, so instantiated pages
797                          * are visible to arm/parisc __flush_dcache_page
798                          * throughout; but we cannot insert into address
799                          * space until vma start or end is updated.
800                          */
801                         __vma_link_file(insert);
802                 }
803         }
804
805         vma_adjust_trans_huge(vma, start, end, adjust_next);
806
807         anon_vma = vma->anon_vma;
808         if (!anon_vma && adjust_next)
809                 anon_vma = next->anon_vma;
810         if (anon_vma) {
811                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
812                           anon_vma != next->anon_vma, next);
813                 anon_vma_lock_write(anon_vma);
814                 anon_vma_interval_tree_pre_update_vma(vma);
815                 if (adjust_next)
816                         anon_vma_interval_tree_pre_update_vma(next);
817         }
818
819         if (root) {
820                 flush_dcache_mmap_lock(mapping);
821                 vma_interval_tree_remove(vma, root);
822                 if (adjust_next)
823                         vma_interval_tree_remove(next, root);
824         }
825
826         if (start != vma->vm_start) {
827                 vma->vm_start = start;
828                 start_changed = true;
829         }
830         if (end != vma->vm_end) {
831                 vma->vm_end = end;
832                 end_changed = true;
833         }
834         vma->vm_pgoff = pgoff;
835         if (adjust_next) {
836                 next->vm_start += adjust_next << PAGE_SHIFT;
837                 next->vm_pgoff += adjust_next;
838         }
839
840         if (root) {
841                 if (adjust_next)
842                         vma_interval_tree_insert(next, root);
843                 vma_interval_tree_insert(vma, root);
844                 flush_dcache_mmap_unlock(mapping);
845         }
846
847         if (remove_next) {
848                 /*
849                  * vma_merge has merged next into vma, and needs
850                  * us to remove next before dropping the locks.
851                  */
852                 __vma_unlink(mm, next, vma);
853                 if (file)
854                         __remove_shared_vm_struct(next, file, mapping);
855         } else if (insert) {
856                 /*
857                  * split_vma has split insert from vma, and needs
858                  * us to insert it before dropping the locks
859                  * (it may either follow vma or precede it).
860                  */
861                 __insert_vm_struct(mm, insert);
862         } else {
863                 if (start_changed)
864                         vma_gap_update(vma);
865                 if (end_changed) {
866                         if (!next)
867                                 mm->highest_vm_end = end;
868                         else if (!adjust_next)
869                                 vma_gap_update(next);
870                 }
871         }
872
873         if (anon_vma) {
874                 anon_vma_interval_tree_post_update_vma(vma);
875                 if (adjust_next)
876                         anon_vma_interval_tree_post_update_vma(next);
877                 anon_vma_unlock_write(anon_vma);
878         }
879         if (mapping)
880                 i_mmap_unlock_write(mapping);
881
882         if (root) {
883                 uprobe_mmap(vma);
884
885                 if (adjust_next)
886                         uprobe_mmap(next);
887         }
888
889         if (remove_next) {
890                 if (file) {
891                         uprobe_munmap(next, next->vm_start, next->vm_end);
892                         fput(file);
893                 }
894                 if (next->anon_vma)
895                         anon_vma_merge(vma, next);
896                 mm->map_count--;
897                 mpol_put(vma_policy(next));
898                 kmem_cache_free(vm_area_cachep, next);
899                 /*
900                  * In mprotect's case 6 (see comments on vma_merge),
901                  * we must remove another next too. It would clutter
902                  * up the code too much to do both in one go.
903                  */
904                 next = vma->vm_next;
905                 if (remove_next == 2)
906                         goto again;
907                 else if (next)
908                         vma_gap_update(next);
909                 else
910                         mm->highest_vm_end = end;
911         }
912         if (insert && file)
913                 uprobe_mmap(insert);
914
915         validate_mm(mm);
916
917         return 0;
918 }
919
920 /*
921  * If the vma has a ->close operation then the driver probably needs to release
922  * per-vma resources, so we don't attempt to merge those.
923  */
924 static inline int is_mergeable_vma(struct vm_area_struct *vma,
925                                 struct file *file, unsigned long vm_flags,
926                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
927 {
928         /*
929          * VM_SOFTDIRTY should not prevent from VMA merging, if we
930          * match the flags but dirty bit -- the caller should mark
931          * merged VMA as dirty. If dirty bit won't be excluded from
932          * comparison, we increase pressue on the memory system forcing
933          * the kernel to generate new VMAs when old one could be
934          * extended instead.
935          */
936         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
937                 return 0;
938         if (vma->vm_file != file)
939                 return 0;
940         if (vma->vm_ops && vma->vm_ops->close)
941                 return 0;
942         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
943                 return 0;
944         return 1;
945 }
946
947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
948                                         struct anon_vma *anon_vma2,
949                                         struct vm_area_struct *vma)
950 {
951         /*
952          * The list_is_singular() test is to avoid merging VMA cloned from
953          * parents. This can improve scalability caused by anon_vma lock.
954          */
955         if ((!anon_vma1 || !anon_vma2) && (!vma ||
956                 list_is_singular(&vma->anon_vma_chain)))
957                 return 1;
958         return anon_vma1 == anon_vma2;
959 }
960
961 /*
962  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
963  * in front of (at a lower virtual address and file offset than) the vma.
964  *
965  * We cannot merge two vmas if they have differently assigned (non-NULL)
966  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
967  *
968  * We don't check here for the merged mmap wrapping around the end of pagecache
969  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
970  * wrap, nor mmaps which cover the final page at index -1UL.
971  */
972 static int
973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
974                      struct anon_vma *anon_vma, struct file *file,
975                      pgoff_t vm_pgoff,
976                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
977 {
978         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
979             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
980                 if (vma->vm_pgoff == vm_pgoff)
981                         return 1;
982         }
983         return 0;
984 }
985
986 /*
987  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
988  * beyond (at a higher virtual address and file offset than) the vma.
989  *
990  * We cannot merge two vmas if they have differently assigned (non-NULL)
991  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
992  */
993 static int
994 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
995                     struct anon_vma *anon_vma, struct file *file,
996                     pgoff_t vm_pgoff,
997                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
998 {
999         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1000             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1001                 pgoff_t vm_pglen;
1002                 vm_pglen = vma_pages(vma);
1003                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1004                         return 1;
1005         }
1006         return 0;
1007 }
1008
1009 /*
1010  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1011  * whether that can be merged with its predecessor or its successor.
1012  * Or both (it neatly fills a hole).
1013  *
1014  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1015  * certain not to be mapped by the time vma_merge is called; but when
1016  * called for mprotect, it is certain to be already mapped (either at
1017  * an offset within prev, or at the start of next), and the flags of
1018  * this area are about to be changed to vm_flags - and the no-change
1019  * case has already been eliminated.
1020  *
1021  * The following mprotect cases have to be considered, where AAAA is
1022  * the area passed down from mprotect_fixup, never extending beyond one
1023  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1024  *
1025  *     AAAA             AAAA                AAAA          AAAA
1026  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1027  *    cannot merge    might become    might become    might become
1028  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1029  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1030  *    mremap move:                                    PPPPNNNNNNNN 8
1031  *        AAAA
1032  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1033  *    might become    case 1 below    case 2 below    case 3 below
1034  *
1035  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1036  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1037  */
1038 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1039                         struct vm_area_struct *prev, unsigned long addr,
1040                         unsigned long end, unsigned long vm_flags,
1041                         struct anon_vma *anon_vma, struct file *file,
1042                         pgoff_t pgoff, struct mempolicy *policy,
1043                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1044 {
1045         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1046         struct vm_area_struct *area, *next;
1047         int err;
1048
1049         /*
1050          * We later require that vma->vm_flags == vm_flags,
1051          * so this tests vma->vm_flags & VM_SPECIAL, too.
1052          */
1053         if (vm_flags & VM_SPECIAL)
1054                 return NULL;
1055
1056         if (prev)
1057                 next = prev->vm_next;
1058         else
1059                 next = mm->mmap;
1060         area = next;
1061         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1062                 next = next->vm_next;
1063
1064         /*
1065          * Can it merge with the predecessor?
1066          */
1067         if (prev && prev->vm_end == addr &&
1068                         mpol_equal(vma_policy(prev), policy) &&
1069                         can_vma_merge_after(prev, vm_flags,
1070                                             anon_vma, file, pgoff,
1071                                             vm_userfaultfd_ctx)) {
1072                 /*
1073                  * OK, it can.  Can we now merge in the successor as well?
1074                  */
1075                 if (next && end == next->vm_start &&
1076                                 mpol_equal(policy, vma_policy(next)) &&
1077                                 can_vma_merge_before(next, vm_flags,
1078                                                      anon_vma, file,
1079                                                      pgoff+pglen,
1080                                                      vm_userfaultfd_ctx) &&
1081                                 is_mergeable_anon_vma(prev->anon_vma,
1082                                                       next->anon_vma, NULL)) {
1083                                                         /* cases 1, 6 */
1084                         err = vma_adjust(prev, prev->vm_start,
1085                                 next->vm_end, prev->vm_pgoff, NULL);
1086                 } else                                  /* cases 2, 5, 7 */
1087                         err = vma_adjust(prev, prev->vm_start,
1088                                 end, prev->vm_pgoff, NULL);
1089                 if (err)
1090                         return NULL;
1091                 khugepaged_enter_vma_merge(prev, vm_flags);
1092                 return prev;
1093         }
1094
1095         /*
1096          * Can this new request be merged in front of next?
1097          */
1098         if (next && end == next->vm_start &&
1099                         mpol_equal(policy, vma_policy(next)) &&
1100                         can_vma_merge_before(next, vm_flags,
1101                                              anon_vma, file, pgoff+pglen,
1102                                              vm_userfaultfd_ctx)) {
1103                 if (prev && addr < prev->vm_end)        /* case 4 */
1104                         err = vma_adjust(prev, prev->vm_start,
1105                                 addr, prev->vm_pgoff, NULL);
1106                 else                                    /* cases 3, 8 */
1107                         err = vma_adjust(area, addr, next->vm_end,
1108                                 next->vm_pgoff - pglen, NULL);
1109                 if (err)
1110                         return NULL;
1111                 khugepaged_enter_vma_merge(area, vm_flags);
1112                 return area;
1113         }
1114
1115         return NULL;
1116 }
1117
1118 /*
1119  * Rough compatbility check to quickly see if it's even worth looking
1120  * at sharing an anon_vma.
1121  *
1122  * They need to have the same vm_file, and the flags can only differ
1123  * in things that mprotect may change.
1124  *
1125  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1126  * we can merge the two vma's. For example, we refuse to merge a vma if
1127  * there is a vm_ops->close() function, because that indicates that the
1128  * driver is doing some kind of reference counting. But that doesn't
1129  * really matter for the anon_vma sharing case.
1130  */
1131 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1132 {
1133         return a->vm_end == b->vm_start &&
1134                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1135                 a->vm_file == b->vm_file &&
1136                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1137                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1138 }
1139
1140 /*
1141  * Do some basic sanity checking to see if we can re-use the anon_vma
1142  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1143  * the same as 'old', the other will be the new one that is trying
1144  * to share the anon_vma.
1145  *
1146  * NOTE! This runs with mm_sem held for reading, so it is possible that
1147  * the anon_vma of 'old' is concurrently in the process of being set up
1148  * by another page fault trying to merge _that_. But that's ok: if it
1149  * is being set up, that automatically means that it will be a singleton
1150  * acceptable for merging, so we can do all of this optimistically. But
1151  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1152  *
1153  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1154  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1155  * is to return an anon_vma that is "complex" due to having gone through
1156  * a fork).
1157  *
1158  * We also make sure that the two vma's are compatible (adjacent,
1159  * and with the same memory policies). That's all stable, even with just
1160  * a read lock on the mm_sem.
1161  */
1162 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1163 {
1164         if (anon_vma_compatible(a, b)) {
1165                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1166
1167                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1168                         return anon_vma;
1169         }
1170         return NULL;
1171 }
1172
1173 /*
1174  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1175  * neighbouring vmas for a suitable anon_vma, before it goes off
1176  * to allocate a new anon_vma.  It checks because a repetitive
1177  * sequence of mprotects and faults may otherwise lead to distinct
1178  * anon_vmas being allocated, preventing vma merge in subsequent
1179  * mprotect.
1180  */
1181 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1182 {
1183         struct anon_vma *anon_vma;
1184         struct vm_area_struct *near;
1185
1186         near = vma->vm_next;
1187         if (!near)
1188                 goto try_prev;
1189
1190         anon_vma = reusable_anon_vma(near, vma, near);
1191         if (anon_vma)
1192                 return anon_vma;
1193 try_prev:
1194         near = vma->vm_prev;
1195         if (!near)
1196                 goto none;
1197
1198         anon_vma = reusable_anon_vma(near, near, vma);
1199         if (anon_vma)
1200                 return anon_vma;
1201 none:
1202         /*
1203          * There's no absolute need to look only at touching neighbours:
1204          * we could search further afield for "compatible" anon_vmas.
1205          * But it would probably just be a waste of time searching,
1206          * or lead to too many vmas hanging off the same anon_vma.
1207          * We're trying to allow mprotect remerging later on,
1208          * not trying to minimize memory used for anon_vmas.
1209          */
1210         return NULL;
1211 }
1212
1213 #ifdef CONFIG_PROC_FS
1214 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1215                                                 struct file *file, long pages)
1216 {
1217         const unsigned long stack_flags
1218                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1219
1220         mm->total_vm += pages;
1221
1222         if (file) {
1223                 mm->shared_vm += pages;
1224                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1225                         mm->exec_vm += pages;
1226         } else if (flags & stack_flags)
1227                 mm->stack_vm += pages;
1228 }
1229 #endif /* CONFIG_PROC_FS */
1230
1231 /*
1232  * If a hint addr is less than mmap_min_addr change hint to be as
1233  * low as possible but still greater than mmap_min_addr
1234  */
1235 static inline unsigned long round_hint_to_min(unsigned long hint)
1236 {
1237         hint &= PAGE_MASK;
1238         if (((void *)hint != NULL) &&
1239             (hint < mmap_min_addr))
1240                 return PAGE_ALIGN(mmap_min_addr);
1241         return hint;
1242 }
1243
1244 static inline int mlock_future_check(struct mm_struct *mm,
1245                                      unsigned long flags,
1246                                      unsigned long len)
1247 {
1248         unsigned long locked, lock_limit;
1249
1250         /*  mlock MCL_FUTURE? */
1251         if (flags & VM_LOCKED) {
1252                 locked = len >> PAGE_SHIFT;
1253                 locked += mm->locked_vm;
1254                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1255                 lock_limit >>= PAGE_SHIFT;
1256                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1257                         return -EAGAIN;
1258         }
1259         return 0;
1260 }
1261
1262 /*
1263  * The caller must hold down_write(&current->mm->mmap_sem).
1264  */
1265 unsigned long do_mmap(struct file *file, unsigned long addr,
1266                         unsigned long len, unsigned long prot,
1267                         unsigned long flags, vm_flags_t vm_flags,
1268                         unsigned long pgoff, unsigned long *populate)
1269 {
1270         struct mm_struct *mm = current->mm;
1271
1272         *populate = 0;
1273
1274         if (!len)
1275                 return -EINVAL;
1276
1277         /*
1278          * Does the application expect PROT_READ to imply PROT_EXEC?
1279          *
1280          * (the exception is when the underlying filesystem is noexec
1281          *  mounted, in which case we dont add PROT_EXEC.)
1282          */
1283         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1284                 if (!(file && path_noexec(&file->f_path)))
1285                         prot |= PROT_EXEC;
1286
1287         if (!(flags & MAP_FIXED))
1288                 addr = round_hint_to_min(addr);
1289
1290         /* Careful about overflows.. */
1291         len = PAGE_ALIGN(len);
1292         if (!len)
1293                 return -ENOMEM;
1294
1295         /* offset overflow? */
1296         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1297                 return -EOVERFLOW;
1298
1299         /* Too many mappings? */
1300         if (mm->map_count > sysctl_max_map_count)
1301                 return -ENOMEM;
1302
1303         /* Obtain the address to map to. we verify (or select) it and ensure
1304          * that it represents a valid section of the address space.
1305          */
1306         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1307         if (addr & ~PAGE_MASK)
1308                 return addr;
1309
1310         /* Do simple checking here so the lower-level routines won't have
1311          * to. we assume access permissions have been handled by the open
1312          * of the memory object, so we don't do any here.
1313          */
1314         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1315                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1316
1317         if (flags & MAP_LOCKED)
1318                 if (!can_do_mlock())
1319                         return -EPERM;
1320
1321         if (mlock_future_check(mm, vm_flags, len))
1322                 return -EAGAIN;
1323
1324         if (file) {
1325                 struct inode *inode = file_inode(file);
1326
1327                 switch (flags & MAP_TYPE) {
1328                 case MAP_SHARED:
1329                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1330                                 return -EACCES;
1331
1332                         /*
1333                          * Make sure we don't allow writing to an append-only
1334                          * file..
1335                          */
1336                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337                                 return -EACCES;
1338
1339                         /*
1340                          * Make sure there are no mandatory locks on the file.
1341                          */
1342                         if (locks_verify_locked(file))
1343                                 return -EAGAIN;
1344
1345                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1346                         if (!(file->f_mode & FMODE_WRITE))
1347                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1348
1349                         /* fall through */
1350                 case MAP_PRIVATE:
1351                         if (!(file->f_mode & FMODE_READ))
1352                                 return -EACCES;
1353                         if (path_noexec(&file->f_path)) {
1354                                 if (vm_flags & VM_EXEC)
1355                                         return -EPERM;
1356                                 vm_flags &= ~VM_MAYEXEC;
1357                         }
1358
1359                         if (!file->f_op->mmap)
1360                                 return -ENODEV;
1361                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1362                                 return -EINVAL;
1363                         break;
1364
1365                 default:
1366                         return -EINVAL;
1367                 }
1368         } else {
1369                 switch (flags & MAP_TYPE) {
1370                 case MAP_SHARED:
1371                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372                                 return -EINVAL;
1373                         /*
1374                          * Ignore pgoff.
1375                          */
1376                         pgoff = 0;
1377                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1378                         break;
1379                 case MAP_PRIVATE:
1380                         /*
1381                          * Set pgoff according to addr for anon_vma.
1382                          */
1383                         pgoff = addr >> PAGE_SHIFT;
1384                         break;
1385                 default:
1386                         return -EINVAL;
1387                 }
1388         }
1389
1390         /*
1391          * Set 'VM_NORESERVE' if we should not account for the
1392          * memory use of this mapping.
1393          */
1394         if (flags & MAP_NORESERVE) {
1395                 /* We honor MAP_NORESERVE if allowed to overcommit */
1396                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1397                         vm_flags |= VM_NORESERVE;
1398
1399                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1400                 if (file && is_file_hugepages(file))
1401                         vm_flags |= VM_NORESERVE;
1402         }
1403
1404         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1405         if (!IS_ERR_VALUE(addr) &&
1406             ((vm_flags & VM_LOCKED) ||
1407              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1408                 *populate = len;
1409         return addr;
1410 }
1411
1412 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1413                 unsigned long, prot, unsigned long, flags,
1414                 unsigned long, fd, unsigned long, pgoff)
1415 {
1416         struct file *file = NULL;
1417         unsigned long retval = -EBADF;
1418
1419         if (!(flags & MAP_ANONYMOUS)) {
1420                 audit_mmap_fd(fd, flags);
1421                 file = fget(fd);
1422                 if (!file)
1423                         goto out;
1424                 if (is_file_hugepages(file))
1425                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1426                 retval = -EINVAL;
1427                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1428                         goto out_fput;
1429         } else if (flags & MAP_HUGETLB) {
1430                 struct user_struct *user = NULL;
1431                 struct hstate *hs;
1432
1433                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1434                 if (!hs)
1435                         return -EINVAL;
1436
1437                 len = ALIGN(len, huge_page_size(hs));
1438                 /*
1439                  * VM_NORESERVE is used because the reservations will be
1440                  * taken when vm_ops->mmap() is called
1441                  * A dummy user value is used because we are not locking
1442                  * memory so no accounting is necessary
1443                  */
1444                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1445                                 VM_NORESERVE,
1446                                 &user, HUGETLB_ANONHUGE_INODE,
1447                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1448                 if (IS_ERR(file))
1449                         return PTR_ERR(file);
1450         }
1451
1452         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1453
1454         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1455 out_fput:
1456         if (file)
1457                 fput(file);
1458 out:
1459         return retval;
1460 }
1461
1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1463 struct mmap_arg_struct {
1464         unsigned long addr;
1465         unsigned long len;
1466         unsigned long prot;
1467         unsigned long flags;
1468         unsigned long fd;
1469         unsigned long offset;
1470 };
1471
1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1473 {
1474         struct mmap_arg_struct a;
1475
1476         if (copy_from_user(&a, arg, sizeof(a)))
1477                 return -EFAULT;
1478         if (a.offset & ~PAGE_MASK)
1479                 return -EINVAL;
1480
1481         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1482                               a.offset >> PAGE_SHIFT);
1483 }
1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1485
1486 /*
1487  * Some shared mappigns will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma)
1493 {
1494         vm_flags_t vm_flags = vma->vm_flags;
1495
1496         /* If it was private or non-writable, the write bit is already clear */
1497         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1498                 return 0;
1499
1500         /* The backer wishes to know when pages are first written to? */
1501         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1502                 return 1;
1503
1504         /* The open routine did something to the protections that pgprot_modify
1505          * won't preserve? */
1506         if (pgprot_val(vma->vm_page_prot) !=
1507             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1508                 return 0;
1509
1510         /* Do we need to track softdirty? */
1511         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1512                 return 1;
1513
1514         /* Specialty mapping? */
1515         if (vm_flags & VM_PFNMAP)
1516                 return 0;
1517
1518         /* Can the mapping track the dirty pages? */
1519         return vma->vm_file && vma->vm_file->f_mapping &&
1520                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1521 }
1522
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529         /*
1530          * hugetlb has its own accounting separate from the core VM
1531          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532          */
1533         if (file && is_file_hugepages(file))
1534                 return 0;
1535
1536         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538
1539 unsigned long mmap_region(struct file *file, unsigned long addr,
1540                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1541 {
1542         struct mm_struct *mm = current->mm;
1543         struct vm_area_struct *vma, *prev;
1544         int error;
1545         struct rb_node **rb_link, *rb_parent;
1546         unsigned long charged = 0;
1547
1548         /* Check against address space limit. */
1549         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1550                 unsigned long nr_pages;
1551
1552                 /*
1553                  * MAP_FIXED may remove pages of mappings that intersects with
1554                  * requested mapping. Account for the pages it would unmap.
1555                  */
1556                 if (!(vm_flags & MAP_FIXED))
1557                         return -ENOMEM;
1558
1559                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1560
1561                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1562                         return -ENOMEM;
1563         }
1564
1565         /* Clear old maps */
1566         error = -ENOMEM;
1567         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1568                               &rb_parent)) {
1569                 if (do_munmap(mm, addr, len))
1570                         return -ENOMEM;
1571         }
1572
1573         /*
1574          * Private writable mapping: check memory availability
1575          */
1576         if (accountable_mapping(file, vm_flags)) {
1577                 charged = len >> PAGE_SHIFT;
1578                 if (security_vm_enough_memory_mm(mm, charged))
1579                         return -ENOMEM;
1580                 vm_flags |= VM_ACCOUNT;
1581         }
1582
1583         /*
1584          * Can we just expand an old mapping?
1585          */
1586         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1587                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1588         if (vma)
1589                 goto out;
1590
1591         /*
1592          * Determine the object being mapped and call the appropriate
1593          * specific mapper. the address has already been validated, but
1594          * not unmapped, but the maps are removed from the list.
1595          */
1596         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1597         if (!vma) {
1598                 error = -ENOMEM;
1599                 goto unacct_error;
1600         }
1601
1602         vma->vm_mm = mm;
1603         vma->vm_start = addr;
1604         vma->vm_end = addr + len;
1605         vma->vm_flags = vm_flags;
1606         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1607         vma->vm_pgoff = pgoff;
1608         INIT_LIST_HEAD(&vma->anon_vma_chain);
1609
1610         if (file) {
1611                 if (vm_flags & VM_DENYWRITE) {
1612                         error = deny_write_access(file);
1613                         if (error)
1614                                 goto free_vma;
1615                 }
1616                 if (vm_flags & VM_SHARED) {
1617                         error = mapping_map_writable(file->f_mapping);
1618                         if (error)
1619                                 goto allow_write_and_free_vma;
1620                 }
1621
1622                 /* ->mmap() can change vma->vm_file, but must guarantee that
1623                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1624                  * and map writably if VM_SHARED is set. This usually means the
1625                  * new file must not have been exposed to user-space, yet.
1626                  */
1627                 vma->vm_file = get_file(file);
1628                 error = file->f_op->mmap(file, vma);
1629                 if (error)
1630                         goto unmap_and_free_vma;
1631
1632                 /* Can addr have changed??
1633                  *
1634                  * Answer: Yes, several device drivers can do it in their
1635                  *         f_op->mmap method. -DaveM
1636                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1637                  *      be updated for vma_link()
1638                  */
1639                 WARN_ON_ONCE(addr != vma->vm_start);
1640
1641                 /* All file mapping must have ->vm_ops set */
1642                 if (!vma->vm_ops) {
1643                         static const struct vm_operations_struct dummy_ops = {};
1644                         vma->vm_ops = &dummy_ops;
1645                 }
1646
1647                 addr = vma->vm_start;
1648                 vm_flags = vma->vm_flags;
1649         } else if (vm_flags & VM_SHARED) {
1650                 error = shmem_zero_setup(vma);
1651                 if (error)
1652                         goto free_vma;
1653         }
1654
1655         vma_link(mm, vma, prev, rb_link, rb_parent);
1656         /* Once vma denies write, undo our temporary denial count */
1657         if (file) {
1658                 if (vm_flags & VM_SHARED)
1659                         mapping_unmap_writable(file->f_mapping);
1660                 if (vm_flags & VM_DENYWRITE)
1661                         allow_write_access(file);
1662         }
1663         file = vma->vm_file;
1664 out:
1665         perf_event_mmap(vma);
1666
1667         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1668         if (vm_flags & VM_LOCKED) {
1669                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1670                                         vma == get_gate_vma(current->mm)))
1671                         mm->locked_vm += (len >> PAGE_SHIFT);
1672                 else
1673                         vma->vm_flags &= ~VM_LOCKED;
1674         }
1675
1676         if (file)
1677                 uprobe_mmap(vma);
1678
1679         /*
1680          * New (or expanded) vma always get soft dirty status.
1681          * Otherwise user-space soft-dirty page tracker won't
1682          * be able to distinguish situation when vma area unmapped,
1683          * then new mapped in-place (which must be aimed as
1684          * a completely new data area).
1685          */
1686         vma->vm_flags |= VM_SOFTDIRTY;
1687
1688         vma_set_page_prot(vma);
1689
1690         return addr;
1691
1692 unmap_and_free_vma:
1693         vma->vm_file = NULL;
1694         fput(file);
1695
1696         /* Undo any partial mapping done by a device driver. */
1697         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1698         charged = 0;
1699         if (vm_flags & VM_SHARED)
1700                 mapping_unmap_writable(file->f_mapping);
1701 allow_write_and_free_vma:
1702         if (vm_flags & VM_DENYWRITE)
1703                 allow_write_access(file);
1704 free_vma:
1705         kmem_cache_free(vm_area_cachep, vma);
1706 unacct_error:
1707         if (charged)
1708                 vm_unacct_memory(charged);
1709         return error;
1710 }
1711
1712 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1713 {
1714         /*
1715          * We implement the search by looking for an rbtree node that
1716          * immediately follows a suitable gap. That is,
1717          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1718          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1719          * - gap_end - gap_start >= length
1720          */
1721
1722         struct mm_struct *mm = current->mm;
1723         struct vm_area_struct *vma;
1724         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1725
1726         /* Adjust search length to account for worst case alignment overhead */
1727         length = info->length + info->align_mask;
1728         if (length < info->length)
1729                 return -ENOMEM;
1730
1731         /* Adjust search limits by the desired length */
1732         if (info->high_limit < length)
1733                 return -ENOMEM;
1734         high_limit = info->high_limit - length;
1735
1736         if (info->low_limit > high_limit)
1737                 return -ENOMEM;
1738         low_limit = info->low_limit + length;
1739
1740         /* Check if rbtree root looks promising */
1741         if (RB_EMPTY_ROOT(&mm->mm_rb))
1742                 goto check_highest;
1743         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1744         if (vma->rb_subtree_gap < length)
1745                 goto check_highest;
1746
1747         while (true) {
1748                 /* Visit left subtree if it looks promising */
1749                 gap_end = vma->vm_start;
1750                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1751                         struct vm_area_struct *left =
1752                                 rb_entry(vma->vm_rb.rb_left,
1753                                          struct vm_area_struct, vm_rb);
1754                         if (left->rb_subtree_gap >= length) {
1755                                 vma = left;
1756                                 continue;
1757                         }
1758                 }
1759
1760                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1761 check_current:
1762                 /* Check if current node has a suitable gap */
1763                 if (gap_start > high_limit)
1764                         return -ENOMEM;
1765                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1766                         goto found;
1767
1768                 /* Visit right subtree if it looks promising */
1769                 if (vma->vm_rb.rb_right) {
1770                         struct vm_area_struct *right =
1771                                 rb_entry(vma->vm_rb.rb_right,
1772                                          struct vm_area_struct, vm_rb);
1773                         if (right->rb_subtree_gap >= length) {
1774                                 vma = right;
1775                                 continue;
1776                         }
1777                 }
1778
1779                 /* Go back up the rbtree to find next candidate node */
1780                 while (true) {
1781                         struct rb_node *prev = &vma->vm_rb;
1782                         if (!rb_parent(prev))
1783                                 goto check_highest;
1784                         vma = rb_entry(rb_parent(prev),
1785                                        struct vm_area_struct, vm_rb);
1786                         if (prev == vma->vm_rb.rb_left) {
1787                                 gap_start = vma->vm_prev->vm_end;
1788                                 gap_end = vma->vm_start;
1789                                 goto check_current;
1790                         }
1791                 }
1792         }
1793
1794 check_highest:
1795         /* Check highest gap, which does not precede any rbtree node */
1796         gap_start = mm->highest_vm_end;
1797         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1798         if (gap_start > high_limit)
1799                 return -ENOMEM;
1800
1801 found:
1802         /* We found a suitable gap. Clip it with the original low_limit. */
1803         if (gap_start < info->low_limit)
1804                 gap_start = info->low_limit;
1805
1806         /* Adjust gap address to the desired alignment */
1807         gap_start += (info->align_offset - gap_start) & info->align_mask;
1808
1809         VM_BUG_ON(gap_start + info->length > info->high_limit);
1810         VM_BUG_ON(gap_start + info->length > gap_end);
1811         return gap_start;
1812 }
1813
1814 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1815 {
1816         struct mm_struct *mm = current->mm;
1817         struct vm_area_struct *vma;
1818         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1819
1820         /* Adjust search length to account for worst case alignment overhead */
1821         length = info->length + info->align_mask;
1822         if (length < info->length)
1823                 return -ENOMEM;
1824
1825         /*
1826          * Adjust search limits by the desired length.
1827          * See implementation comment at top of unmapped_area().
1828          */
1829         gap_end = info->high_limit;
1830         if (gap_end < length)
1831                 return -ENOMEM;
1832         high_limit = gap_end - length;
1833
1834         if (info->low_limit > high_limit)
1835                 return -ENOMEM;
1836         low_limit = info->low_limit + length;
1837
1838         /* Check highest gap, which does not precede any rbtree node */
1839         gap_start = mm->highest_vm_end;
1840         if (gap_start <= high_limit)
1841                 goto found_highest;
1842
1843         /* Check if rbtree root looks promising */
1844         if (RB_EMPTY_ROOT(&mm->mm_rb))
1845                 return -ENOMEM;
1846         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1847         if (vma->rb_subtree_gap < length)
1848                 return -ENOMEM;
1849
1850         while (true) {
1851                 /* Visit right subtree if it looks promising */
1852                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1853                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1854                         struct vm_area_struct *right =
1855                                 rb_entry(vma->vm_rb.rb_right,
1856                                          struct vm_area_struct, vm_rb);
1857                         if (right->rb_subtree_gap >= length) {
1858                                 vma = right;
1859                                 continue;
1860                         }
1861                 }
1862
1863 check_current:
1864                 /* Check if current node has a suitable gap */
1865                 gap_end = vma->vm_start;
1866                 if (gap_end < low_limit)
1867                         return -ENOMEM;
1868                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1869                         goto found;
1870
1871                 /* Visit left subtree if it looks promising */
1872                 if (vma->vm_rb.rb_left) {
1873                         struct vm_area_struct *left =
1874                                 rb_entry(vma->vm_rb.rb_left,
1875                                          struct vm_area_struct, vm_rb);
1876                         if (left->rb_subtree_gap >= length) {
1877                                 vma = left;
1878                                 continue;
1879                         }
1880                 }
1881
1882                 /* Go back up the rbtree to find next candidate node */
1883                 while (true) {
1884                         struct rb_node *prev = &vma->vm_rb;
1885                         if (!rb_parent(prev))
1886                                 return -ENOMEM;
1887                         vma = rb_entry(rb_parent(prev),
1888                                        struct vm_area_struct, vm_rb);
1889                         if (prev == vma->vm_rb.rb_right) {
1890                                 gap_start = vma->vm_prev ?
1891                                         vma->vm_prev->vm_end : 0;
1892                                 goto check_current;
1893                         }
1894                 }
1895         }
1896
1897 found:
1898         /* We found a suitable gap. Clip it with the original high_limit. */
1899         if (gap_end > info->high_limit)
1900                 gap_end = info->high_limit;
1901
1902 found_highest:
1903         /* Compute highest gap address at the desired alignment */
1904         gap_end -= info->length;
1905         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1906
1907         VM_BUG_ON(gap_end < info->low_limit);
1908         VM_BUG_ON(gap_end < gap_start);
1909         return gap_end;
1910 }
1911
1912 /* Get an address range which is currently unmapped.
1913  * For shmat() with addr=0.
1914  *
1915  * Ugly calling convention alert:
1916  * Return value with the low bits set means error value,
1917  * ie
1918  *      if (ret & ~PAGE_MASK)
1919  *              error = ret;
1920  *
1921  * This function "knows" that -ENOMEM has the bits set.
1922  */
1923 #ifndef HAVE_ARCH_UNMAPPED_AREA
1924 unsigned long
1925 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1926                 unsigned long len, unsigned long pgoff, unsigned long flags)
1927 {
1928         struct mm_struct *mm = current->mm;
1929         struct vm_area_struct *vma;
1930         struct vm_unmapped_area_info info;
1931
1932         if (len > TASK_SIZE - mmap_min_addr)
1933                 return -ENOMEM;
1934
1935         if (flags & MAP_FIXED)
1936                 return addr;
1937
1938         if (addr) {
1939                 addr = PAGE_ALIGN(addr);
1940                 vma = find_vma(mm, addr);
1941                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1942                     (!vma || addr + len <= vma->vm_start))
1943                         return addr;
1944         }
1945
1946         info.flags = 0;
1947         info.length = len;
1948         info.low_limit = mm->mmap_base;
1949         info.high_limit = TASK_SIZE;
1950         info.align_mask = 0;
1951         return vm_unmapped_area(&info);
1952 }
1953 #endif
1954
1955 /*
1956  * This mmap-allocator allocates new areas top-down from below the
1957  * stack's low limit (the base):
1958  */
1959 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1960 unsigned long
1961 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1962                           const unsigned long len, const unsigned long pgoff,
1963                           const unsigned long flags)
1964 {
1965         struct vm_area_struct *vma;
1966         struct mm_struct *mm = current->mm;
1967         unsigned long addr = addr0;
1968         struct vm_unmapped_area_info info;
1969
1970         /* requested length too big for entire address space */
1971         if (len > TASK_SIZE - mmap_min_addr)
1972                 return -ENOMEM;
1973
1974         if (flags & MAP_FIXED)
1975                 return addr;
1976
1977         /* requesting a specific address */
1978         if (addr) {
1979                 addr = PAGE_ALIGN(addr);
1980                 vma = find_vma(mm, addr);
1981                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1982                                 (!vma || addr + len <= vma->vm_start))
1983                         return addr;
1984         }
1985
1986         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1987         info.length = len;
1988         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1989         info.high_limit = mm->mmap_base;
1990         info.align_mask = 0;
1991         addr = vm_unmapped_area(&info);
1992
1993         /*
1994          * A failed mmap() very likely causes application failure,
1995          * so fall back to the bottom-up function here. This scenario
1996          * can happen with large stack limits and large mmap()
1997          * allocations.
1998          */
1999         if (addr & ~PAGE_MASK) {
2000                 VM_BUG_ON(addr != -ENOMEM);
2001                 info.flags = 0;
2002                 info.low_limit = TASK_UNMAPPED_BASE;
2003                 info.high_limit = TASK_SIZE;
2004                 addr = vm_unmapped_area(&info);
2005         }
2006
2007         return addr;
2008 }
2009 #endif
2010
2011 unsigned long
2012 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2013                 unsigned long pgoff, unsigned long flags)
2014 {
2015         unsigned long (*get_area)(struct file *, unsigned long,
2016                                   unsigned long, unsigned long, unsigned long);
2017
2018         unsigned long error = arch_mmap_check(addr, len, flags);
2019         if (error)
2020                 return error;
2021
2022         /* Careful about overflows.. */
2023         if (len > TASK_SIZE)
2024                 return -ENOMEM;
2025
2026         get_area = current->mm->get_unmapped_area;
2027         if (file && file->f_op->get_unmapped_area)
2028                 get_area = file->f_op->get_unmapped_area;
2029         addr = get_area(file, addr, len, pgoff, flags);
2030         if (IS_ERR_VALUE(addr))
2031                 return addr;
2032
2033         if (addr > TASK_SIZE - len)
2034                 return -ENOMEM;
2035         if (addr & ~PAGE_MASK)
2036                 return -EINVAL;
2037
2038         addr = arch_rebalance_pgtables(addr, len);
2039         error = security_mmap_addr(addr);
2040         return error ? error : addr;
2041 }
2042
2043 EXPORT_SYMBOL(get_unmapped_area);
2044
2045 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2046 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2047 {
2048         struct rb_node *rb_node;
2049         struct vm_area_struct *vma;
2050
2051         /* Check the cache first. */
2052         vma = vmacache_find(mm, addr);
2053         if (likely(vma))
2054                 return vma;
2055
2056         rb_node = mm->mm_rb.rb_node;
2057         vma = NULL;
2058
2059         while (rb_node) {
2060                 struct vm_area_struct *tmp;
2061
2062                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2063
2064                 if (tmp->vm_end > addr) {
2065                         vma = tmp;
2066                         if (tmp->vm_start <= addr)
2067                                 break;
2068                         rb_node = rb_node->rb_left;
2069                 } else
2070                         rb_node = rb_node->rb_right;
2071         }
2072
2073         if (vma)
2074                 vmacache_update(addr, vma);
2075         return vma;
2076 }
2077
2078 EXPORT_SYMBOL(find_vma);
2079
2080 /*
2081  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2082  */
2083 struct vm_area_struct *
2084 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2085                         struct vm_area_struct **pprev)
2086 {
2087         struct vm_area_struct *vma;
2088
2089         vma = find_vma(mm, addr);
2090         if (vma) {
2091                 *pprev = vma->vm_prev;
2092         } else {
2093                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2094                 *pprev = NULL;
2095                 while (rb_node) {
2096                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2097                         rb_node = rb_node->rb_right;
2098                 }
2099         }
2100         return vma;
2101 }
2102
2103 /*
2104  * Verify that the stack growth is acceptable and
2105  * update accounting. This is shared with both the
2106  * grow-up and grow-down cases.
2107  */
2108 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2109 {
2110         struct mm_struct *mm = vma->vm_mm;
2111         struct rlimit *rlim = current->signal->rlim;
2112         unsigned long new_start, actual_size;
2113
2114         /* address space limit tests */
2115         if (!may_expand_vm(mm, grow))
2116                 return -ENOMEM;
2117
2118         /* Stack limit test */
2119         actual_size = size;
2120         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2121                 actual_size -= PAGE_SIZE;
2122         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2123                 return -ENOMEM;
2124
2125         /* mlock limit tests */
2126         if (vma->vm_flags & VM_LOCKED) {
2127                 unsigned long locked;
2128                 unsigned long limit;
2129                 locked = mm->locked_vm + grow;
2130                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2131                 limit >>= PAGE_SHIFT;
2132                 if (locked > limit && !capable(CAP_IPC_LOCK))
2133                         return -ENOMEM;
2134         }
2135
2136         /* Check to ensure the stack will not grow into a hugetlb-only region */
2137         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2138                         vma->vm_end - size;
2139         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2140                 return -EFAULT;
2141
2142         /*
2143          * Overcommit..  This must be the final test, as it will
2144          * update security statistics.
2145          */
2146         if (security_vm_enough_memory_mm(mm, grow))
2147                 return -ENOMEM;
2148
2149         /* Ok, everything looks good - let it rip */
2150         if (vma->vm_flags & VM_LOCKED)
2151                 mm->locked_vm += grow;
2152         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2153         return 0;
2154 }
2155
2156 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2157 /*
2158  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2159  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2160  */
2161 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2162 {
2163         int error;
2164
2165         if (!(vma->vm_flags & VM_GROWSUP))
2166                 return -EFAULT;
2167
2168         /*
2169          * We must make sure the anon_vma is allocated
2170          * so that the anon_vma locking is not a noop.
2171          */
2172         if (unlikely(anon_vma_prepare(vma)))
2173                 return -ENOMEM;
2174         vma_lock_anon_vma(vma);
2175
2176         /*
2177          * vma->vm_start/vm_end cannot change under us because the caller
2178          * is required to hold the mmap_sem in read mode.  We need the
2179          * anon_vma lock to serialize against concurrent expand_stacks.
2180          * Also guard against wrapping around to address 0.
2181          */
2182         if (address < PAGE_ALIGN(address+4))
2183                 address = PAGE_ALIGN(address+4);
2184         else {
2185                 vma_unlock_anon_vma(vma);
2186                 return -ENOMEM;
2187         }
2188         error = 0;
2189
2190         /* Somebody else might have raced and expanded it already */
2191         if (address > vma->vm_end) {
2192                 unsigned long size, grow;
2193
2194                 size = address - vma->vm_start;
2195                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2196
2197                 error = -ENOMEM;
2198                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2199                         error = acct_stack_growth(vma, size, grow);
2200                         if (!error) {
2201                                 /*
2202                                  * vma_gap_update() doesn't support concurrent
2203                                  * updates, but we only hold a shared mmap_sem
2204                                  * lock here, so we need to protect against
2205                                  * concurrent vma expansions.
2206                                  * vma_lock_anon_vma() doesn't help here, as
2207                                  * we don't guarantee that all growable vmas
2208                                  * in a mm share the same root anon vma.
2209                                  * So, we reuse mm->page_table_lock to guard
2210                                  * against concurrent vma expansions.
2211                                  */
2212                                 spin_lock(&vma->vm_mm->page_table_lock);
2213                                 anon_vma_interval_tree_pre_update_vma(vma);
2214                                 vma->vm_end = address;
2215                                 anon_vma_interval_tree_post_update_vma(vma);
2216                                 if (vma->vm_next)
2217                                         vma_gap_update(vma->vm_next);
2218                                 else
2219                                         vma->vm_mm->highest_vm_end = address;
2220                                 spin_unlock(&vma->vm_mm->page_table_lock);
2221
2222                                 perf_event_mmap(vma);
2223                         }
2224                 }
2225         }
2226         vma_unlock_anon_vma(vma);
2227         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2228         validate_mm(vma->vm_mm);
2229         return error;
2230 }
2231 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2232
2233 /*
2234  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2235  */
2236 int expand_downwards(struct vm_area_struct *vma,
2237                                    unsigned long address)
2238 {
2239         int error;
2240
2241         /*
2242          * We must make sure the anon_vma is allocated
2243          * so that the anon_vma locking is not a noop.
2244          */
2245         if (unlikely(anon_vma_prepare(vma)))
2246                 return -ENOMEM;
2247
2248         address &= PAGE_MASK;
2249         error = security_mmap_addr(address);
2250         if (error)
2251                 return error;
2252
2253         vma_lock_anon_vma(vma);
2254
2255         /*
2256          * vma->vm_start/vm_end cannot change under us because the caller
2257          * is required to hold the mmap_sem in read mode.  We need the
2258          * anon_vma lock to serialize against concurrent expand_stacks.
2259          */
2260
2261         /* Somebody else might have raced and expanded it already */
2262         if (address < vma->vm_start) {
2263                 unsigned long size, grow;
2264
2265                 size = vma->vm_end - address;
2266                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2267
2268                 error = -ENOMEM;
2269                 if (grow <= vma->vm_pgoff) {
2270                         error = acct_stack_growth(vma, size, grow);
2271                         if (!error) {
2272                                 /*
2273                                  * vma_gap_update() doesn't support concurrent
2274                                  * updates, but we only hold a shared mmap_sem
2275                                  * lock here, so we need to protect against
2276                                  * concurrent vma expansions.
2277                                  * vma_lock_anon_vma() doesn't help here, as
2278                                  * we don't guarantee that all growable vmas
2279                                  * in a mm share the same root anon vma.
2280                                  * So, we reuse mm->page_table_lock to guard
2281                                  * against concurrent vma expansions.
2282                                  */
2283                                 spin_lock(&vma->vm_mm->page_table_lock);
2284                                 anon_vma_interval_tree_pre_update_vma(vma);
2285                                 vma->vm_start = address;
2286                                 vma->vm_pgoff -= grow;
2287                                 anon_vma_interval_tree_post_update_vma(vma);
2288                                 vma_gap_update(vma);
2289                                 spin_unlock(&vma->vm_mm->page_table_lock);
2290
2291                                 perf_event_mmap(vma);
2292                         }
2293                 }
2294         }
2295         vma_unlock_anon_vma(vma);
2296         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2297         validate_mm(vma->vm_mm);
2298         return error;
2299 }
2300
2301 /*
2302  * Note how expand_stack() refuses to expand the stack all the way to
2303  * abut the next virtual mapping, *unless* that mapping itself is also
2304  * a stack mapping. We want to leave room for a guard page, after all
2305  * (the guard page itself is not added here, that is done by the
2306  * actual page faulting logic)
2307  *
2308  * This matches the behavior of the guard page logic (see mm/memory.c:
2309  * check_stack_guard_page()), which only allows the guard page to be
2310  * removed under these circumstances.
2311  */
2312 #ifdef CONFIG_STACK_GROWSUP
2313 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2314 {
2315         struct vm_area_struct *next;
2316
2317         address &= PAGE_MASK;
2318         next = vma->vm_next;
2319         if (next && next->vm_start == address + PAGE_SIZE) {
2320                 if (!(next->vm_flags & VM_GROWSUP))
2321                         return -ENOMEM;
2322         }
2323         return expand_upwards(vma, address);
2324 }
2325
2326 struct vm_area_struct *
2327 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2328 {
2329         struct vm_area_struct *vma, *prev;
2330
2331         addr &= PAGE_MASK;
2332         vma = find_vma_prev(mm, addr, &prev);
2333         if (vma && (vma->vm_start <= addr))
2334                 return vma;
2335         if (!prev || expand_stack(prev, addr))
2336                 return NULL;
2337         if (prev->vm_flags & VM_LOCKED)
2338                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2339         return prev;
2340 }
2341 #else
2342 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2343 {
2344         struct vm_area_struct *prev;
2345
2346         address &= PAGE_MASK;
2347         prev = vma->vm_prev;
2348         if (prev && prev->vm_end == address) {
2349                 if (!(prev->vm_flags & VM_GROWSDOWN))
2350                         return -ENOMEM;
2351         }
2352         return expand_downwards(vma, address);
2353 }
2354
2355 struct vm_area_struct *
2356 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2357 {
2358         struct vm_area_struct *vma;
2359         unsigned long start;
2360
2361         addr &= PAGE_MASK;
2362         vma = find_vma(mm, addr);
2363         if (!vma)
2364                 return NULL;
2365         if (vma->vm_start <= addr)
2366                 return vma;
2367         if (!(vma->vm_flags & VM_GROWSDOWN))
2368                 return NULL;
2369         start = vma->vm_start;
2370         if (expand_stack(vma, addr))
2371                 return NULL;
2372         if (vma->vm_flags & VM_LOCKED)
2373                 populate_vma_page_range(vma, addr, start, NULL);
2374         return vma;
2375 }
2376 #endif
2377
2378 EXPORT_SYMBOL_GPL(find_extend_vma);
2379
2380 /*
2381  * Ok - we have the memory areas we should free on the vma list,
2382  * so release them, and do the vma updates.
2383  *
2384  * Called with the mm semaphore held.
2385  */
2386 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2387 {
2388         unsigned long nr_accounted = 0;
2389
2390         /* Update high watermark before we lower total_vm */
2391         update_hiwater_vm(mm);
2392         do {
2393                 long nrpages = vma_pages(vma);
2394
2395                 if (vma->vm_flags & VM_ACCOUNT)
2396                         nr_accounted += nrpages;
2397                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2398                 vma = remove_vma(vma);
2399         } while (vma);
2400         vm_unacct_memory(nr_accounted);
2401         validate_mm(mm);
2402 }
2403
2404 /*
2405  * Get rid of page table information in the indicated region.
2406  *
2407  * Called with the mm semaphore held.
2408  */
2409 static void unmap_region(struct mm_struct *mm,
2410                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2411                 unsigned long start, unsigned long end)
2412 {
2413         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2414         struct mmu_gather tlb;
2415
2416         lru_add_drain();
2417         tlb_gather_mmu(&tlb, mm, start, end);
2418         update_hiwater_rss(mm);
2419         unmap_vmas(&tlb, vma, start, end);
2420         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2421                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2422         tlb_finish_mmu(&tlb, start, end);
2423 }
2424
2425 /*
2426  * Create a list of vma's touched by the unmap, removing them from the mm's
2427  * vma list as we go..
2428  */
2429 static void
2430 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2431         struct vm_area_struct *prev, unsigned long end)
2432 {
2433         struct vm_area_struct **insertion_point;
2434         struct vm_area_struct *tail_vma = NULL;
2435
2436         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2437         vma->vm_prev = NULL;
2438         do {
2439                 vma_rb_erase(vma, &mm->mm_rb);
2440                 mm->map_count--;
2441                 tail_vma = vma;
2442                 vma = vma->vm_next;
2443         } while (vma && vma->vm_start < end);
2444         *insertion_point = vma;
2445         if (vma) {
2446                 vma->vm_prev = prev;
2447                 vma_gap_update(vma);
2448         } else
2449                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2450         tail_vma->vm_next = NULL;
2451
2452         /* Kill the cache */
2453         vmacache_invalidate(mm);
2454 }
2455
2456 /*
2457  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2458  * munmap path where it doesn't make sense to fail.
2459  */
2460 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2461               unsigned long addr, int new_below)
2462 {
2463         struct vm_area_struct *new;
2464         int err;
2465
2466         if (is_vm_hugetlb_page(vma) && (addr &
2467                                         ~(huge_page_mask(hstate_vma(vma)))))
2468                 return -EINVAL;
2469
2470         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2471         if (!new)
2472                 return -ENOMEM;
2473
2474         /* most fields are the same, copy all, and then fixup */
2475         *new = *vma;
2476
2477         INIT_LIST_HEAD(&new->anon_vma_chain);
2478
2479         if (new_below)
2480                 new->vm_end = addr;
2481         else {
2482                 new->vm_start = addr;
2483                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2484         }
2485
2486         err = vma_dup_policy(vma, new);
2487         if (err)
2488                 goto out_free_vma;
2489
2490         err = anon_vma_clone(new, vma);
2491         if (err)
2492                 goto out_free_mpol;
2493
2494         if (new->vm_file)
2495                 get_file(new->vm_file);
2496
2497         if (new->vm_ops && new->vm_ops->open)
2498                 new->vm_ops->open(new);
2499
2500         if (new_below)
2501                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2502                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2503         else
2504                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2505
2506         /* Success. */
2507         if (!err)
2508                 return 0;
2509
2510         /* Clean everything up if vma_adjust failed. */
2511         if (new->vm_ops && new->vm_ops->close)
2512                 new->vm_ops->close(new);
2513         if (new->vm_file)
2514                 fput(new->vm_file);
2515         unlink_anon_vmas(new);
2516  out_free_mpol:
2517         mpol_put(vma_policy(new));
2518  out_free_vma:
2519         kmem_cache_free(vm_area_cachep, new);
2520         return err;
2521 }
2522
2523 /*
2524  * Split a vma into two pieces at address 'addr', a new vma is allocated
2525  * either for the first part or the tail.
2526  */
2527 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2528               unsigned long addr, int new_below)
2529 {
2530         if (mm->map_count >= sysctl_max_map_count)
2531                 return -ENOMEM;
2532
2533         return __split_vma(mm, vma, addr, new_below);
2534 }
2535
2536 /* Munmap is split into 2 main parts -- this part which finds
2537  * what needs doing, and the areas themselves, which do the
2538  * work.  This now handles partial unmappings.
2539  * Jeremy Fitzhardinge <jeremy@goop.org>
2540  */
2541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2542 {
2543         unsigned long end;
2544         struct vm_area_struct *vma, *prev, *last;
2545
2546         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2547                 return -EINVAL;
2548
2549         len = PAGE_ALIGN(len);
2550         if (len == 0)
2551                 return -EINVAL;
2552
2553         /* Find the first overlapping VMA */
2554         vma = find_vma(mm, start);
2555         if (!vma)
2556                 return 0;
2557         prev = vma->vm_prev;
2558         /* we have  start < vma->vm_end  */
2559
2560         /* if it doesn't overlap, we have nothing.. */
2561         end = start + len;
2562         if (vma->vm_start >= end)
2563                 return 0;
2564
2565         /*
2566          * If we need to split any vma, do it now to save pain later.
2567          *
2568          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2569          * unmapped vm_area_struct will remain in use: so lower split_vma
2570          * places tmp vma above, and higher split_vma places tmp vma below.
2571          */
2572         if (start > vma->vm_start) {
2573                 int error;
2574
2575                 /*
2576                  * Make sure that map_count on return from munmap() will
2577                  * not exceed its limit; but let map_count go just above
2578                  * its limit temporarily, to help free resources as expected.
2579                  */
2580                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2581                         return -ENOMEM;
2582
2583                 error = __split_vma(mm, vma, start, 0);
2584                 if (error)
2585                         return error;
2586                 prev = vma;
2587         }
2588
2589         /* Does it split the last one? */
2590         last = find_vma(mm, end);
2591         if (last && end > last->vm_start) {
2592                 int error = __split_vma(mm, last, end, 1);
2593                 if (error)
2594                         return error;
2595         }
2596         vma = prev ? prev->vm_next : mm->mmap;
2597
2598         /*
2599          * unlock any mlock()ed ranges before detaching vmas
2600          */
2601         if (mm->locked_vm) {
2602                 struct vm_area_struct *tmp = vma;
2603                 while (tmp && tmp->vm_start < end) {
2604                         if (tmp->vm_flags & VM_LOCKED) {
2605                                 mm->locked_vm -= vma_pages(tmp);
2606                                 munlock_vma_pages_all(tmp);
2607                         }
2608                         tmp = tmp->vm_next;
2609                 }
2610         }
2611
2612         /*
2613          * Remove the vma's, and unmap the actual pages
2614          */
2615         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2616         unmap_region(mm, vma, prev, start, end);
2617
2618         arch_unmap(mm, vma, start, end);
2619
2620         /* Fix up all other VM information */
2621         remove_vma_list(mm, vma);
2622
2623         return 0;
2624 }
2625
2626 int vm_munmap(unsigned long start, size_t len)
2627 {
2628         int ret;
2629         struct mm_struct *mm = current->mm;
2630
2631         down_write(&mm->mmap_sem);
2632         ret = do_munmap(mm, start, len);
2633         up_write(&mm->mmap_sem);
2634         return ret;
2635 }
2636 EXPORT_SYMBOL(vm_munmap);
2637
2638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2639 {
2640         profile_munmap(addr);
2641         return vm_munmap(addr, len);
2642 }
2643
2644
2645 /*
2646  * Emulation of deprecated remap_file_pages() syscall.
2647  */
2648 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2649                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2650 {
2651
2652         struct mm_struct *mm = current->mm;
2653         struct vm_area_struct *vma;
2654         unsigned long populate = 0;
2655         unsigned long ret = -EINVAL;
2656         struct file *file;
2657
2658         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2659                         "See Documentation/vm/remap_file_pages.txt.\n",
2660                         current->comm, current->pid);
2661
2662         if (prot)
2663                 return ret;
2664         start = start & PAGE_MASK;
2665         size = size & PAGE_MASK;
2666
2667         if (start + size <= start)
2668                 return ret;
2669
2670         /* Does pgoff wrap? */
2671         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2672                 return ret;
2673
2674         down_write(&mm->mmap_sem);
2675         vma = find_vma(mm, start);
2676
2677         if (!vma || !(vma->vm_flags & VM_SHARED))
2678                 goto out;
2679
2680         if (start < vma->vm_start || start + size > vma->vm_end)
2681                 goto out;
2682
2683         if (pgoff == linear_page_index(vma, start)) {
2684                 ret = 0;
2685                 goto out;
2686         }
2687
2688         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2689         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2690         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2691
2692         flags &= MAP_NONBLOCK;
2693         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2694         if (vma->vm_flags & VM_LOCKED) {
2695                 flags |= MAP_LOCKED;
2696                 /* drop PG_Mlocked flag for over-mapped range */
2697                 munlock_vma_pages_range(vma, start, start + size);
2698         }
2699
2700         file = get_file(vma->vm_file);
2701         ret = do_mmap_pgoff(vma->vm_file, start, size,
2702                         prot, flags, pgoff, &populate);
2703         fput(file);
2704 out:
2705         up_write(&mm->mmap_sem);
2706         if (populate)
2707                 mm_populate(ret, populate);
2708         if (!IS_ERR_VALUE(ret))
2709                 ret = 0;
2710         return ret;
2711 }
2712
2713 static inline void verify_mm_writelocked(struct mm_struct *mm)
2714 {
2715 #ifdef CONFIG_DEBUG_VM
2716         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2717                 WARN_ON(1);
2718                 up_read(&mm->mmap_sem);
2719         }
2720 #endif
2721 }
2722
2723 /*
2724  *  this is really a simplified "do_mmap".  it only handles
2725  *  anonymous maps.  eventually we may be able to do some
2726  *  brk-specific accounting here.
2727  */
2728 static unsigned long do_brk(unsigned long addr, unsigned long len)
2729 {
2730         struct mm_struct *mm = current->mm;
2731         struct vm_area_struct *vma, *prev;
2732         unsigned long flags;
2733         struct rb_node **rb_link, *rb_parent;
2734         pgoff_t pgoff = addr >> PAGE_SHIFT;
2735         int error;
2736
2737         len = PAGE_ALIGN(len);
2738         if (!len)
2739                 return addr;
2740
2741         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2742
2743         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2744         if (error & ~PAGE_MASK)
2745                 return error;
2746
2747         error = mlock_future_check(mm, mm->def_flags, len);
2748         if (error)
2749                 return error;
2750
2751         /*
2752          * mm->mmap_sem is required to protect against another thread
2753          * changing the mappings in case we sleep.
2754          */
2755         verify_mm_writelocked(mm);
2756
2757         /*
2758          * Clear old maps.  this also does some error checking for us
2759          */
2760         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2761                               &rb_parent)) {
2762                 if (do_munmap(mm, addr, len))
2763                         return -ENOMEM;
2764         }
2765
2766         /* Check against address space limits *after* clearing old maps... */
2767         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2768                 return -ENOMEM;
2769
2770         if (mm->map_count > sysctl_max_map_count)
2771                 return -ENOMEM;
2772
2773         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2774                 return -ENOMEM;
2775
2776         /* Can we just expand an old private anonymous mapping? */
2777         vma = vma_merge(mm, prev, addr, addr + len, flags,
2778                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2779         if (vma)
2780                 goto out;
2781
2782         /*
2783          * create a vma struct for an anonymous mapping
2784          */
2785         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2786         if (!vma) {
2787                 vm_unacct_memory(len >> PAGE_SHIFT);
2788                 return -ENOMEM;
2789         }
2790
2791         INIT_LIST_HEAD(&vma->anon_vma_chain);
2792         vma->vm_mm = mm;
2793         vma->vm_start = addr;
2794         vma->vm_end = addr + len;
2795         vma->vm_pgoff = pgoff;
2796         vma->vm_flags = flags;
2797         vma->vm_page_prot = vm_get_page_prot(flags);
2798         vma_link(mm, vma, prev, rb_link, rb_parent);
2799 out:
2800         perf_event_mmap(vma);
2801         mm->total_vm += len >> PAGE_SHIFT;
2802         if (flags & VM_LOCKED)
2803                 mm->locked_vm += (len >> PAGE_SHIFT);
2804         vma->vm_flags |= VM_SOFTDIRTY;
2805         return addr;
2806 }
2807
2808 unsigned long vm_brk(unsigned long addr, unsigned long len)
2809 {
2810         struct mm_struct *mm = current->mm;
2811         unsigned long ret;
2812         bool populate;
2813
2814         down_write(&mm->mmap_sem);
2815         ret = do_brk(addr, len);
2816         populate = ((mm->def_flags & VM_LOCKED) != 0);
2817         up_write(&mm->mmap_sem);
2818         if (populate)
2819                 mm_populate(addr, len);
2820         return ret;
2821 }
2822 EXPORT_SYMBOL(vm_brk);
2823
2824 /* Release all mmaps. */
2825 void exit_mmap(struct mm_struct *mm)
2826 {
2827         struct mmu_gather tlb;
2828         struct vm_area_struct *vma;
2829         unsigned long nr_accounted = 0;
2830
2831         /* mm's last user has gone, and its about to be pulled down */
2832         mmu_notifier_release(mm);
2833
2834         if (mm->locked_vm) {
2835                 vma = mm->mmap;
2836                 while (vma) {
2837                         if (vma->vm_flags & VM_LOCKED)
2838                                 munlock_vma_pages_all(vma);
2839                         vma = vma->vm_next;
2840                 }
2841         }
2842
2843         arch_exit_mmap(mm);
2844
2845         vma = mm->mmap;
2846         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2847                 return;
2848
2849         lru_add_drain();
2850         flush_cache_mm(mm);
2851         tlb_gather_mmu(&tlb, mm, 0, -1);
2852         /* update_hiwater_rss(mm) here? but nobody should be looking */
2853         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2854         unmap_vmas(&tlb, vma, 0, -1);
2855
2856         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2857         tlb_finish_mmu(&tlb, 0, -1);
2858
2859         /*
2860          * Walk the list again, actually closing and freeing it,
2861          * with preemption enabled, without holding any MM locks.
2862          */
2863         while (vma) {
2864                 if (vma->vm_flags & VM_ACCOUNT)
2865                         nr_accounted += vma_pages(vma);
2866                 vma = remove_vma(vma);
2867         }
2868         vm_unacct_memory(nr_accounted);
2869 }
2870
2871 /* Insert vm structure into process list sorted by address
2872  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2873  * then i_mmap_rwsem is taken here.
2874  */
2875 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2876 {
2877         struct vm_area_struct *prev;
2878         struct rb_node **rb_link, *rb_parent;
2879
2880         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2881                            &prev, &rb_link, &rb_parent))
2882                 return -ENOMEM;
2883         if ((vma->vm_flags & VM_ACCOUNT) &&
2884              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2885                 return -ENOMEM;
2886
2887         /*
2888          * The vm_pgoff of a purely anonymous vma should be irrelevant
2889          * until its first write fault, when page's anon_vma and index
2890          * are set.  But now set the vm_pgoff it will almost certainly
2891          * end up with (unless mremap moves it elsewhere before that
2892          * first wfault), so /proc/pid/maps tells a consistent story.
2893          *
2894          * By setting it to reflect the virtual start address of the
2895          * vma, merges and splits can happen in a seamless way, just
2896          * using the existing file pgoff checks and manipulations.
2897          * Similarly in do_mmap_pgoff and in do_brk.
2898          */
2899         if (vma_is_anonymous(vma)) {
2900                 BUG_ON(vma->anon_vma);
2901                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2902         }
2903
2904         vma_link(mm, vma, prev, rb_link, rb_parent);
2905         return 0;
2906 }
2907
2908 /*
2909  * Copy the vma structure to a new location in the same mm,
2910  * prior to moving page table entries, to effect an mremap move.
2911  */
2912 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2913         unsigned long addr, unsigned long len, pgoff_t pgoff,
2914         bool *need_rmap_locks)
2915 {
2916         struct vm_area_struct *vma = *vmap;
2917         unsigned long vma_start = vma->vm_start;
2918         struct mm_struct *mm = vma->vm_mm;
2919         struct vm_area_struct *new_vma, *prev;
2920         struct rb_node **rb_link, *rb_parent;
2921         bool faulted_in_anon_vma = true;
2922
2923         /*
2924          * If anonymous vma has not yet been faulted, update new pgoff
2925          * to match new location, to increase its chance of merging.
2926          */
2927         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2928                 pgoff = addr >> PAGE_SHIFT;
2929                 faulted_in_anon_vma = false;
2930         }
2931
2932         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2933                 return NULL;    /* should never get here */
2934         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2935                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2936                             vma->vm_userfaultfd_ctx);
2937         if (new_vma) {
2938                 /*
2939                  * Source vma may have been merged into new_vma
2940                  */
2941                 if (unlikely(vma_start >= new_vma->vm_start &&
2942                              vma_start < new_vma->vm_end)) {
2943                         /*
2944                          * The only way we can get a vma_merge with
2945                          * self during an mremap is if the vma hasn't
2946                          * been faulted in yet and we were allowed to
2947                          * reset the dst vma->vm_pgoff to the
2948                          * destination address of the mremap to allow
2949                          * the merge to happen. mremap must change the
2950                          * vm_pgoff linearity between src and dst vmas
2951                          * (in turn preventing a vma_merge) to be
2952                          * safe. It is only safe to keep the vm_pgoff
2953                          * linear if there are no pages mapped yet.
2954                          */
2955                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2956                         *vmap = vma = new_vma;
2957                 }
2958                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2959         } else {
2960                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2961                 if (!new_vma)
2962                         goto out;
2963                 *new_vma = *vma;
2964                 new_vma->vm_start = addr;
2965                 new_vma->vm_end = addr + len;
2966                 new_vma->vm_pgoff = pgoff;
2967                 if (vma_dup_policy(vma, new_vma))
2968                         goto out_free_vma;
2969                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2970                 if (anon_vma_clone(new_vma, vma))
2971                         goto out_free_mempol;
2972                 if (new_vma->vm_file)
2973                         get_file(new_vma->vm_file);
2974                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2975                         new_vma->vm_ops->open(new_vma);
2976                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2977                 *need_rmap_locks = false;
2978         }
2979         return new_vma;
2980
2981 out_free_mempol:
2982         mpol_put(vma_policy(new_vma));
2983 out_free_vma:
2984         kmem_cache_free(vm_area_cachep, new_vma);
2985 out:
2986         return NULL;
2987 }
2988
2989 /*
2990  * Return true if the calling process may expand its vm space by the passed
2991  * number of pages
2992  */
2993 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2994 {
2995         unsigned long cur = mm->total_vm;       /* pages */
2996         unsigned long lim;
2997
2998         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2999
3000         if (cur + npages > lim)
3001                 return 0;
3002         return 1;
3003 }
3004
3005 static int special_mapping_fault(struct vm_area_struct *vma,
3006                                  struct vm_fault *vmf);
3007
3008 /*
3009  * Having a close hook prevents vma merging regardless of flags.
3010  */
3011 static void special_mapping_close(struct vm_area_struct *vma)
3012 {
3013 }
3014
3015 static const char *special_mapping_name(struct vm_area_struct *vma)
3016 {
3017         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3018 }
3019
3020 static const struct vm_operations_struct special_mapping_vmops = {
3021         .close = special_mapping_close,
3022         .fault = special_mapping_fault,
3023         .name = special_mapping_name,
3024 };
3025
3026 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3027         .close = special_mapping_close,
3028         .fault = special_mapping_fault,
3029 };
3030
3031 static int special_mapping_fault(struct vm_area_struct *vma,
3032                                 struct vm_fault *vmf)
3033 {
3034         pgoff_t pgoff;
3035         struct page **pages;
3036
3037         if (vma->vm_ops == &legacy_special_mapping_vmops)
3038                 pages = vma->vm_private_data;
3039         else
3040                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3041                         pages;
3042
3043         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3044                 pgoff--;
3045
3046         if (*pages) {
3047                 struct page *page = *pages;
3048                 get_page(page);
3049                 vmf->page = page;
3050                 return 0;
3051         }
3052
3053         return VM_FAULT_SIGBUS;
3054 }
3055
3056 static struct vm_area_struct *__install_special_mapping(
3057         struct mm_struct *mm,
3058         unsigned long addr, unsigned long len,
3059         unsigned long vm_flags, const struct vm_operations_struct *ops,
3060         void *priv)
3061 {
3062         int ret;
3063         struct vm_area_struct *vma;
3064
3065         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3066         if (unlikely(vma == NULL))
3067                 return ERR_PTR(-ENOMEM);
3068
3069         INIT_LIST_HEAD(&vma->anon_vma_chain);
3070         vma->vm_mm = mm;
3071         vma->vm_start = addr;
3072         vma->vm_end = addr + len;
3073
3074         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3075         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3076
3077         vma->vm_ops = ops;
3078         vma->vm_private_data = priv;
3079
3080         ret = insert_vm_struct(mm, vma);
3081         if (ret)
3082                 goto out;
3083
3084         mm->total_vm += len >> PAGE_SHIFT;
3085
3086         perf_event_mmap(vma);
3087
3088         return vma;
3089
3090 out:
3091         kmem_cache_free(vm_area_cachep, vma);
3092         return ERR_PTR(ret);
3093 }
3094
3095 /*
3096  * Called with mm->mmap_sem held for writing.
3097  * Insert a new vma covering the given region, with the given flags.
3098  * Its pages are supplied by the given array of struct page *.
3099  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3100  * The region past the last page supplied will always produce SIGBUS.
3101  * The array pointer and the pages it points to are assumed to stay alive
3102  * for as long as this mapping might exist.
3103  */
3104 struct vm_area_struct *_install_special_mapping(
3105         struct mm_struct *mm,
3106         unsigned long addr, unsigned long len,
3107         unsigned long vm_flags, const struct vm_special_mapping *spec)
3108 {
3109         return __install_special_mapping(mm, addr, len, vm_flags,
3110                                          &special_mapping_vmops, (void *)spec);
3111 }
3112
3113 int install_special_mapping(struct mm_struct *mm,
3114                             unsigned long addr, unsigned long len,
3115                             unsigned long vm_flags, struct page **pages)
3116 {
3117         struct vm_area_struct *vma = __install_special_mapping(
3118                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3119                 (void *)pages);
3120
3121         return PTR_ERR_OR_ZERO(vma);
3122 }
3123
3124 static DEFINE_MUTEX(mm_all_locks_mutex);
3125
3126 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3127 {
3128         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3129                 /*
3130                  * The LSB of head.next can't change from under us
3131                  * because we hold the mm_all_locks_mutex.
3132                  */
3133                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3134                 /*
3135                  * We can safely modify head.next after taking the
3136                  * anon_vma->root->rwsem. If some other vma in this mm shares
3137                  * the same anon_vma we won't take it again.
3138                  *
3139                  * No need of atomic instructions here, head.next
3140                  * can't change from under us thanks to the
3141                  * anon_vma->root->rwsem.
3142                  */
3143                 if (__test_and_set_bit(0, (unsigned long *)
3144                                        &anon_vma->root->rb_root.rb_node))
3145                         BUG();
3146         }
3147 }
3148
3149 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3150 {
3151         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3152                 /*
3153                  * AS_MM_ALL_LOCKS can't change from under us because
3154                  * we hold the mm_all_locks_mutex.
3155                  *
3156                  * Operations on ->flags have to be atomic because
3157                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3158                  * mm_all_locks_mutex, there may be other cpus
3159                  * changing other bitflags in parallel to us.
3160                  */
3161                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3162                         BUG();
3163                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3164         }
3165 }
3166
3167 /*
3168  * This operation locks against the VM for all pte/vma/mm related
3169  * operations that could ever happen on a certain mm. This includes
3170  * vmtruncate, try_to_unmap, and all page faults.
3171  *
3172  * The caller must take the mmap_sem in write mode before calling
3173  * mm_take_all_locks(). The caller isn't allowed to release the
3174  * mmap_sem until mm_drop_all_locks() returns.
3175  *
3176  * mmap_sem in write mode is required in order to block all operations
3177  * that could modify pagetables and free pages without need of
3178  * altering the vma layout. It's also needed in write mode to avoid new
3179  * anon_vmas to be associated with existing vmas.
3180  *
3181  * A single task can't take more than one mm_take_all_locks() in a row
3182  * or it would deadlock.
3183  *
3184  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3185  * mapping->flags avoid to take the same lock twice, if more than one
3186  * vma in this mm is backed by the same anon_vma or address_space.
3187  *
3188  * We can take all the locks in random order because the VM code
3189  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3190  * takes more than one of them in a row. Secondly we're protected
3191  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3192  *
3193  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3194  * that may have to take thousand of locks.
3195  *
3196  * mm_take_all_locks() can fail if it's interrupted by signals.
3197  */
3198 int mm_take_all_locks(struct mm_struct *mm)
3199 {
3200         struct vm_area_struct *vma;
3201         struct anon_vma_chain *avc;
3202
3203         BUG_ON(down_read_trylock(&mm->mmap_sem));
3204
3205         mutex_lock(&mm_all_locks_mutex);
3206
3207         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3208                 if (signal_pending(current))
3209                         goto out_unlock;
3210                 if (vma->vm_file && vma->vm_file->f_mapping)
3211                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3212         }
3213
3214         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3215                 if (signal_pending(current))
3216                         goto out_unlock;
3217                 if (vma->anon_vma)
3218                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3219                                 vm_lock_anon_vma(mm, avc->anon_vma);
3220         }
3221
3222         return 0;
3223
3224 out_unlock:
3225         mm_drop_all_locks(mm);
3226         return -EINTR;
3227 }
3228
3229 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3230 {
3231         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3232                 /*
3233                  * The LSB of head.next can't change to 0 from under
3234                  * us because we hold the mm_all_locks_mutex.
3235                  *
3236                  * We must however clear the bitflag before unlocking
3237                  * the vma so the users using the anon_vma->rb_root will
3238                  * never see our bitflag.
3239                  *
3240                  * No need of atomic instructions here, head.next
3241                  * can't change from under us until we release the
3242                  * anon_vma->root->rwsem.
3243                  */
3244                 if (!__test_and_clear_bit(0, (unsigned long *)
3245                                           &anon_vma->root->rb_root.rb_node))
3246                         BUG();
3247                 anon_vma_unlock_write(anon_vma);
3248         }
3249 }
3250
3251 static void vm_unlock_mapping(struct address_space *mapping)
3252 {
3253         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3254                 /*
3255                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3256                  * because we hold the mm_all_locks_mutex.
3257                  */
3258                 i_mmap_unlock_write(mapping);
3259                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3260                                         &mapping->flags))
3261                         BUG();
3262         }
3263 }
3264
3265 /*
3266  * The mmap_sem cannot be released by the caller until
3267  * mm_drop_all_locks() returns.
3268  */
3269 void mm_drop_all_locks(struct mm_struct *mm)
3270 {
3271         struct vm_area_struct *vma;
3272         struct anon_vma_chain *avc;
3273
3274         BUG_ON(down_read_trylock(&mm->mmap_sem));
3275         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3276
3277         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3278                 if (vma->anon_vma)
3279                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3280                                 vm_unlock_anon_vma(avc->anon_vma);
3281                 if (vma->vm_file && vma->vm_file->f_mapping)
3282                         vm_unlock_mapping(vma->vm_file->f_mapping);
3283         }
3284
3285         mutex_unlock(&mm_all_locks_mutex);
3286 }
3287
3288 /*
3289  * initialise the VMA slab
3290  */
3291 void __init mmap_init(void)
3292 {
3293         int ret;
3294
3295         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3296         VM_BUG_ON(ret);
3297 }
3298
3299 /*
3300  * Initialise sysctl_user_reserve_kbytes.
3301  *
3302  * This is intended to prevent a user from starting a single memory hogging
3303  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3304  * mode.
3305  *
3306  * The default value is min(3% of free memory, 128MB)
3307  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3308  */
3309 static int init_user_reserve(void)
3310 {
3311         unsigned long free_kbytes;
3312
3313         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3314
3315         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3316         return 0;
3317 }
3318 subsys_initcall(init_user_reserve);
3319
3320 /*
3321  * Initialise sysctl_admin_reserve_kbytes.
3322  *
3323  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3324  * to log in and kill a memory hogging process.
3325  *
3326  * Systems with more than 256MB will reserve 8MB, enough to recover
3327  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3328  * only reserve 3% of free pages by default.
3329  */
3330 static int init_admin_reserve(void)
3331 {
3332         unsigned long free_kbytes;
3333
3334         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3335
3336         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3337         return 0;
3338 }
3339 subsys_initcall(init_admin_reserve);
3340
3341 /*
3342  * Reinititalise user and admin reserves if memory is added or removed.
3343  *
3344  * The default user reserve max is 128MB, and the default max for the
3345  * admin reserve is 8MB. These are usually, but not always, enough to
3346  * enable recovery from a memory hogging process using login/sshd, a shell,
3347  * and tools like top. It may make sense to increase or even disable the
3348  * reserve depending on the existence of swap or variations in the recovery
3349  * tools. So, the admin may have changed them.
3350  *
3351  * If memory is added and the reserves have been eliminated or increased above
3352  * the default max, then we'll trust the admin.
3353  *
3354  * If memory is removed and there isn't enough free memory, then we
3355  * need to reset the reserves.
3356  *
3357  * Otherwise keep the reserve set by the admin.
3358  */
3359 static int reserve_mem_notifier(struct notifier_block *nb,
3360                              unsigned long action, void *data)
3361 {
3362         unsigned long tmp, free_kbytes;
3363
3364         switch (action) {
3365         case MEM_ONLINE:
3366                 /* Default max is 128MB. Leave alone if modified by operator. */
3367                 tmp = sysctl_user_reserve_kbytes;
3368                 if (0 < tmp && tmp < (1UL << 17))
3369                         init_user_reserve();
3370
3371                 /* Default max is 8MB.  Leave alone if modified by operator. */
3372                 tmp = sysctl_admin_reserve_kbytes;
3373                 if (0 < tmp && tmp < (1UL << 13))
3374                         init_admin_reserve();
3375
3376                 break;
3377         case MEM_OFFLINE:
3378                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3379
3380                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3381                         init_user_reserve();
3382                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3383                                 sysctl_user_reserve_kbytes);
3384                 }
3385
3386                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3387                         init_admin_reserve();
3388                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3389                                 sysctl_admin_reserve_kbytes);
3390                 }
3391                 break;
3392         default:
3393                 break;
3394         }
3395         return NOTIFY_OK;
3396 }
3397
3398 static struct notifier_block reserve_mem_nb = {
3399         .notifier_call = reserve_mem_notifier,
3400 };
3401
3402 static int __meminit init_reserve_notifier(void)
3403 {
3404         if (register_hotmemory_notifier(&reserve_mem_nb))
3405                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3406
3407         return 0;
3408 }
3409 subsys_initcall(init_reserve_notifier);