]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
Merge remote-tracking branch 'pci/next'
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92         pgoff_t start;          /* start of range currently being fallocated */
93         pgoff_t next;           /* the next page offset to be fallocated */
94         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
95         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
96 };
97
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100         SGP_READ,       /* don't exceed i_size, don't allocate page */
101         SGP_CACHE,      /* don't exceed i_size, may allocate page */
102         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
103         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
104         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110         return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121                                 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126         struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128         return shmem_getpage_gfp(inode, index, pagep, sgp,
129                         mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134         return sb->s_fs_info;
135 }
136
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145         return (flags & VM_NORESERVE) ?
146                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151         if (!(flags & VM_NORESERVE))
152                 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156                 loff_t oldsize, loff_t newsize)
157 {
158         if (!(flags & VM_NORESERVE)) {
159                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160                         return security_vm_enough_memory_mm(current->mm,
161                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
162                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164         }
165         return 0;
166 }
167
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176         return (flags & VM_NORESERVE) ?
177                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182         if (flags & VM_NORESERVE)
183                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200         if (sbinfo->max_inodes) {
201                 spin_lock(&sbinfo->stat_lock);
202                 if (!sbinfo->free_inodes) {
203                         spin_unlock(&sbinfo->stat_lock);
204                         return -ENOSPC;
205                 }
206                 sbinfo->free_inodes--;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209         return 0;
210 }
211
212 static void shmem_free_inode(struct super_block *sb)
213 {
214         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215         if (sbinfo->max_inodes) {
216                 spin_lock(&sbinfo->stat_lock);
217                 sbinfo->free_inodes++;
218                 spin_unlock(&sbinfo->stat_lock);
219         }
220 }
221
222 /**
223  * shmem_recalc_inode - recalculate the block usage of an inode
224  * @inode: inode to recalc
225  *
226  * We have to calculate the free blocks since the mm can drop
227  * undirtied hole pages behind our back.
228  *
229  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231  *
232  * It has to be called with the spinlock held.
233  */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         long freed;
238
239         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240         if (freed > 0) {
241                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242                 if (sbinfo->max_blocks)
243                         percpu_counter_add(&sbinfo->used_blocks, -freed);
244                 info->alloced -= freed;
245                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246                 shmem_unacct_blocks(info->flags, freed);
247         }
248 }
249
250 /*
251  * Replace item expected in radix tree by a new item, while holding tree lock.
252  */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254                         pgoff_t index, void *expected, void *replacement)
255 {
256         void **pslot;
257         void *item;
258
259         VM_BUG_ON(!expected);
260         VM_BUG_ON(!replacement);
261         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262         if (!pslot)
263                 return -ENOENT;
264         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265         if (item != expected)
266                 return -ENOENT;
267         radix_tree_replace_slot(pslot, replacement);
268         return 0;
269 }
270
271 /*
272  * Sometimes, before we decide whether to proceed or to fail, we must check
273  * that an entry was not already brought back from swap by a racing thread.
274  *
275  * Checking page is not enough: by the time a SwapCache page is locked, it
276  * might be reused, and again be SwapCache, using the same swap as before.
277  */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279                                pgoff_t index, swp_entry_t swap)
280 {
281         void *item;
282
283         rcu_read_lock();
284         item = radix_tree_lookup(&mapping->page_tree, index);
285         rcu_read_unlock();
286         return item == swp_to_radix_entry(swap);
287 }
288
289 /*
290  * Like add_to_page_cache_locked, but error if expected item has gone.
291  */
292 static int shmem_add_to_page_cache(struct page *page,
293                                    struct address_space *mapping,
294                                    pgoff_t index, void *expected)
295 {
296         int error;
297
298         VM_BUG_ON_PAGE(!PageLocked(page), page);
299         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300
301         page_cache_get(page);
302         page->mapping = mapping;
303         page->index = index;
304
305         spin_lock_irq(&mapping->tree_lock);
306         if (!expected)
307                 error = radix_tree_insert(&mapping->page_tree, index, page);
308         else
309                 error = shmem_radix_tree_replace(mapping, index, expected,
310                                                                  page);
311         if (!error) {
312                 mapping->nrpages++;
313                 __inc_zone_page_state(page, NR_FILE_PAGES);
314                 __inc_zone_page_state(page, NR_SHMEM);
315                 spin_unlock_irq(&mapping->tree_lock);
316         } else {
317                 page->mapping = NULL;
318                 spin_unlock_irq(&mapping->tree_lock);
319                 page_cache_release(page);
320         }
321         return error;
322 }
323
324 /*
325  * Like delete_from_page_cache, but substitutes swap for page.
326  */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329         struct address_space *mapping = page->mapping;
330         int error;
331
332         spin_lock_irq(&mapping->tree_lock);
333         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334         page->mapping = NULL;
335         mapping->nrpages--;
336         __dec_zone_page_state(page, NR_FILE_PAGES);
337         __dec_zone_page_state(page, NR_SHMEM);
338         spin_unlock_irq(&mapping->tree_lock);
339         page_cache_release(page);
340         BUG_ON(error);
341 }
342
343 /*
344  * Remove swap entry from radix tree, free the swap and its page cache.
345  */
346 static int shmem_free_swap(struct address_space *mapping,
347                            pgoff_t index, void *radswap)
348 {
349         void *old;
350
351         spin_lock_irq(&mapping->tree_lock);
352         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353         spin_unlock_irq(&mapping->tree_lock);
354         if (old != radswap)
355                 return -ENOENT;
356         free_swap_and_cache(radix_to_swp_entry(radswap));
357         return 0;
358 }
359
360 /*
361  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362  */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365         struct pagevec pvec;
366         pgoff_t indices[PAGEVEC_SIZE];
367         pgoff_t index = 0;
368
369         pagevec_init(&pvec, 0);
370         /*
371          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372          */
373         while (!mapping_unevictable(mapping)) {
374                 /*
375                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377                  */
378                 pvec.nr = find_get_entries(mapping, index,
379                                            PAGEVEC_SIZE, pvec.pages, indices);
380                 if (!pvec.nr)
381                         break;
382                 index = indices[pvec.nr - 1] + 1;
383                 pagevec_remove_exceptionals(&pvec);
384                 check_move_unevictable_pages(pvec.pages, pvec.nr);
385                 pagevec_release(&pvec);
386                 cond_resched();
387         }
388 }
389
390 /*
391  * Remove range of pages and swap entries from radix tree, and free them.
392  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393  */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395                                                                  bool unfalloc)
396 {
397         struct address_space *mapping = inode->i_mapping;
398         struct shmem_inode_info *info = SHMEM_I(inode);
399         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403         struct pagevec pvec;
404         pgoff_t indices[PAGEVEC_SIZE];
405         long nr_swaps_freed = 0;
406         pgoff_t index;
407         int i;
408
409         if (lend == -1)
410                 end = -1;       /* unsigned, so actually very big */
411
412         pagevec_init(&pvec, 0);
413         index = start;
414         while (index < end) {
415                 pvec.nr = find_get_entries(mapping, index,
416                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
417                         pvec.pages, indices);
418                 if (!pvec.nr)
419                         break;
420                 for (i = 0; i < pagevec_count(&pvec); i++) {
421                         struct page *page = pvec.pages[i];
422
423                         index = indices[i];
424                         if (index >= end)
425                                 break;
426
427                         if (radix_tree_exceptional_entry(page)) {
428                                 if (unfalloc)
429                                         continue;
430                                 nr_swaps_freed += !shmem_free_swap(mapping,
431                                                                 index, page);
432                                 continue;
433                         }
434
435                         if (!trylock_page(page))
436                                 continue;
437                         if (!unfalloc || !PageUptodate(page)) {
438                                 if (page->mapping == mapping) {
439                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
440                                         truncate_inode_page(mapping, page);
441                                 }
442                         }
443                         unlock_page(page);
444                 }
445                 pagevec_remove_exceptionals(&pvec);
446                 pagevec_release(&pvec);
447                 cond_resched();
448                 index++;
449         }
450
451         if (partial_start) {
452                 struct page *page = NULL;
453                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454                 if (page) {
455                         unsigned int top = PAGE_CACHE_SIZE;
456                         if (start > end) {
457                                 top = partial_end;
458                                 partial_end = 0;
459                         }
460                         zero_user_segment(page, partial_start, top);
461                         set_page_dirty(page);
462                         unlock_page(page);
463                         page_cache_release(page);
464                 }
465         }
466         if (partial_end) {
467                 struct page *page = NULL;
468                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
469                 if (page) {
470                         zero_user_segment(page, 0, partial_end);
471                         set_page_dirty(page);
472                         unlock_page(page);
473                         page_cache_release(page);
474                 }
475         }
476         if (start >= end)
477                 return;
478
479         index = start;
480         while (index < end) {
481                 cond_resched();
482
483                 pvec.nr = find_get_entries(mapping, index,
484                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
485                                 pvec.pages, indices);
486                 if (!pvec.nr) {
487                         /* If all gone or hole-punch or unfalloc, we're done */
488                         if (index == start || end != -1)
489                                 break;
490                         /* But if truncating, restart to make sure all gone */
491                         index = start;
492                         continue;
493                 }
494                 for (i = 0; i < pagevec_count(&pvec); i++) {
495                         struct page *page = pvec.pages[i];
496
497                         index = indices[i];
498                         if (index >= end)
499                                 break;
500
501                         if (radix_tree_exceptional_entry(page)) {
502                                 if (unfalloc)
503                                         continue;
504                                 if (shmem_free_swap(mapping, index, page)) {
505                                         /* Swap was replaced by page: retry */
506                                         index--;
507                                         break;
508                                 }
509                                 nr_swaps_freed++;
510                                 continue;
511                         }
512
513                         lock_page(page);
514                         if (!unfalloc || !PageUptodate(page)) {
515                                 if (page->mapping == mapping) {
516                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
517                                         truncate_inode_page(mapping, page);
518                                 } else {
519                                         /* Page was replaced by swap: retry */
520                                         unlock_page(page);
521                                         index--;
522                                         break;
523                                 }
524                         }
525                         unlock_page(page);
526                 }
527                 pagevec_remove_exceptionals(&pvec);
528                 pagevec_release(&pvec);
529                 index++;
530         }
531
532         spin_lock(&info->lock);
533         info->swapped -= nr_swaps_freed;
534         shmem_recalc_inode(inode);
535         spin_unlock(&info->lock);
536 }
537
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540         shmem_undo_range(inode, lstart, lend, false);
541         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544
545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
546                          struct kstat *stat)
547 {
548         struct inode *inode = dentry->d_inode;
549         struct shmem_inode_info *info = SHMEM_I(inode);
550
551         spin_lock(&info->lock);
552         shmem_recalc_inode(inode);
553         spin_unlock(&info->lock);
554
555         generic_fillattr(inode, stat);
556
557         return 0;
558 }
559
560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
561 {
562         struct inode *inode = d_inode(dentry);
563         struct shmem_inode_info *info = SHMEM_I(inode);
564         int error;
565
566         error = inode_change_ok(inode, attr);
567         if (error)
568                 return error;
569
570         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
571                 loff_t oldsize = inode->i_size;
572                 loff_t newsize = attr->ia_size;
573
574                 /* protected by i_mutex */
575                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
576                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
577                         return -EPERM;
578
579                 if (newsize != oldsize) {
580                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
581                                         oldsize, newsize);
582                         if (error)
583                                 return error;
584                         i_size_write(inode, newsize);
585                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
586                 }
587                 if (newsize <= oldsize) {
588                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
589                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
590                         shmem_truncate_range(inode, newsize, (loff_t)-1);
591                         /* unmap again to remove racily COWed private pages */
592                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
593                 }
594         }
595
596         setattr_copy(inode, attr);
597         if (attr->ia_valid & ATTR_MODE)
598                 error = posix_acl_chmod(inode, inode->i_mode);
599         return error;
600 }
601
602 static void shmem_evict_inode(struct inode *inode)
603 {
604         struct shmem_inode_info *info = SHMEM_I(inode);
605
606         if (inode->i_mapping->a_ops == &shmem_aops) {
607                 shmem_unacct_size(info->flags, inode->i_size);
608                 inode->i_size = 0;
609                 shmem_truncate_range(inode, 0, (loff_t)-1);
610                 if (!list_empty(&info->swaplist)) {
611                         mutex_lock(&shmem_swaplist_mutex);
612                         list_del_init(&info->swaplist);
613                         mutex_unlock(&shmem_swaplist_mutex);
614                 }
615         } else
616                 kfree(info->symlink);
617
618         simple_xattrs_free(&info->xattrs);
619         WARN_ON(inode->i_blocks);
620         shmem_free_inode(inode->i_sb);
621         clear_inode(inode);
622 }
623
624 /*
625  * If swap found in inode, free it and move page from swapcache to filecache.
626  */
627 static int shmem_unuse_inode(struct shmem_inode_info *info,
628                              swp_entry_t swap, struct page **pagep)
629 {
630         struct address_space *mapping = info->vfs_inode.i_mapping;
631         void *radswap;
632         pgoff_t index;
633         gfp_t gfp;
634         int error = 0;
635
636         radswap = swp_to_radix_entry(swap);
637         index = radix_tree_locate_item(&mapping->page_tree, radswap);
638         if (index == -1)
639                 return -EAGAIN; /* tell shmem_unuse we found nothing */
640
641         /*
642          * Move _head_ to start search for next from here.
643          * But be careful: shmem_evict_inode checks list_empty without taking
644          * mutex, and there's an instant in list_move_tail when info->swaplist
645          * would appear empty, if it were the only one on shmem_swaplist.
646          */
647         if (shmem_swaplist.next != &info->swaplist)
648                 list_move_tail(&shmem_swaplist, &info->swaplist);
649
650         gfp = mapping_gfp_mask(mapping);
651         if (shmem_should_replace_page(*pagep, gfp)) {
652                 mutex_unlock(&shmem_swaplist_mutex);
653                 error = shmem_replace_page(pagep, gfp, info, index);
654                 mutex_lock(&shmem_swaplist_mutex);
655                 /*
656                  * We needed to drop mutex to make that restrictive page
657                  * allocation, but the inode might have been freed while we
658                  * dropped it: although a racing shmem_evict_inode() cannot
659                  * complete without emptying the radix_tree, our page lock
660                  * on this swapcache page is not enough to prevent that -
661                  * free_swap_and_cache() of our swap entry will only
662                  * trylock_page(), removing swap from radix_tree whatever.
663                  *
664                  * We must not proceed to shmem_add_to_page_cache() if the
665                  * inode has been freed, but of course we cannot rely on
666                  * inode or mapping or info to check that.  However, we can
667                  * safely check if our swap entry is still in use (and here
668                  * it can't have got reused for another page): if it's still
669                  * in use, then the inode cannot have been freed yet, and we
670                  * can safely proceed (if it's no longer in use, that tells
671                  * nothing about the inode, but we don't need to unuse swap).
672                  */
673                 if (!page_swapcount(*pagep))
674                         error = -ENOENT;
675         }
676
677         /*
678          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
679          * but also to hold up shmem_evict_inode(): so inode cannot be freed
680          * beneath us (pagelock doesn't help until the page is in pagecache).
681          */
682         if (!error)
683                 error = shmem_add_to_page_cache(*pagep, mapping, index,
684                                                 radswap);
685         if (error != -ENOMEM) {
686                 /*
687                  * Truncation and eviction use free_swap_and_cache(), which
688                  * only does trylock page: if we raced, best clean up here.
689                  */
690                 delete_from_swap_cache(*pagep);
691                 set_page_dirty(*pagep);
692                 if (!error) {
693                         spin_lock(&info->lock);
694                         info->swapped--;
695                         spin_unlock(&info->lock);
696                         swap_free(swap);
697                 }
698         }
699         return error;
700 }
701
702 /*
703  * Search through swapped inodes to find and replace swap by page.
704  */
705 int shmem_unuse(swp_entry_t swap, struct page *page)
706 {
707         struct list_head *this, *next;
708         struct shmem_inode_info *info;
709         struct mem_cgroup *memcg;
710         int error = 0;
711
712         /*
713          * There's a faint possibility that swap page was replaced before
714          * caller locked it: caller will come back later with the right page.
715          */
716         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
717                 goto out;
718
719         /*
720          * Charge page using GFP_KERNEL while we can wait, before taking
721          * the shmem_swaplist_mutex which might hold up shmem_writepage().
722          * Charged back to the user (not to caller) when swap account is used.
723          */
724         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
725         if (error)
726                 goto out;
727         /* No radix_tree_preload: swap entry keeps a place for page in tree */
728         error = -EAGAIN;
729
730         mutex_lock(&shmem_swaplist_mutex);
731         list_for_each_safe(this, next, &shmem_swaplist) {
732                 info = list_entry(this, struct shmem_inode_info, swaplist);
733                 if (info->swapped)
734                         error = shmem_unuse_inode(info, swap, &page);
735                 else
736                         list_del_init(&info->swaplist);
737                 cond_resched();
738                 if (error != -EAGAIN)
739                         break;
740                 /* found nothing in this: move on to search the next */
741         }
742         mutex_unlock(&shmem_swaplist_mutex);
743
744         if (error) {
745                 if (error != -ENOMEM)
746                         error = 0;
747                 mem_cgroup_cancel_charge(page, memcg);
748         } else
749                 mem_cgroup_commit_charge(page, memcg, true);
750 out:
751         unlock_page(page);
752         page_cache_release(page);
753         return error;
754 }
755
756 /*
757  * Move the page from the page cache to the swap cache.
758  */
759 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
760 {
761         struct shmem_inode_info *info;
762         struct address_space *mapping;
763         struct inode *inode;
764         swp_entry_t swap;
765         pgoff_t index;
766
767         BUG_ON(!PageLocked(page));
768         mapping = page->mapping;
769         index = page->index;
770         inode = mapping->host;
771         info = SHMEM_I(inode);
772         if (info->flags & VM_LOCKED)
773                 goto redirty;
774         if (!total_swap_pages)
775                 goto redirty;
776
777         /*
778          * Our capabilities prevent regular writeback or sync from ever calling
779          * shmem_writepage; but a stacking filesystem might use ->writepage of
780          * its underlying filesystem, in which case tmpfs should write out to
781          * swap only in response to memory pressure, and not for the writeback
782          * threads or sync.
783          */
784         if (!wbc->for_reclaim) {
785                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
786                 goto redirty;
787         }
788
789         /*
790          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
791          * value into swapfile.c, the only way we can correctly account for a
792          * fallocated page arriving here is now to initialize it and write it.
793          *
794          * That's okay for a page already fallocated earlier, but if we have
795          * not yet completed the fallocation, then (a) we want to keep track
796          * of this page in case we have to undo it, and (b) it may not be a
797          * good idea to continue anyway, once we're pushing into swap.  So
798          * reactivate the page, and let shmem_fallocate() quit when too many.
799          */
800         if (!PageUptodate(page)) {
801                 if (inode->i_private) {
802                         struct shmem_falloc *shmem_falloc;
803                         spin_lock(&inode->i_lock);
804                         shmem_falloc = inode->i_private;
805                         if (shmem_falloc &&
806                             !shmem_falloc->waitq &&
807                             index >= shmem_falloc->start &&
808                             index < shmem_falloc->next)
809                                 shmem_falloc->nr_unswapped++;
810                         else
811                                 shmem_falloc = NULL;
812                         spin_unlock(&inode->i_lock);
813                         if (shmem_falloc)
814                                 goto redirty;
815                 }
816                 clear_highpage(page);
817                 flush_dcache_page(page);
818                 SetPageUptodate(page);
819         }
820
821         swap = get_swap_page();
822         if (!swap.val)
823                 goto redirty;
824
825         /*
826          * Add inode to shmem_unuse()'s list of swapped-out inodes,
827          * if it's not already there.  Do it now before the page is
828          * moved to swap cache, when its pagelock no longer protects
829          * the inode from eviction.  But don't unlock the mutex until
830          * we've incremented swapped, because shmem_unuse_inode() will
831          * prune a !swapped inode from the swaplist under this mutex.
832          */
833         mutex_lock(&shmem_swaplist_mutex);
834         if (list_empty(&info->swaplist))
835                 list_add_tail(&info->swaplist, &shmem_swaplist);
836
837         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
838                 swap_shmem_alloc(swap);
839                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
840
841                 spin_lock(&info->lock);
842                 info->swapped++;
843                 shmem_recalc_inode(inode);
844                 spin_unlock(&info->lock);
845
846                 mutex_unlock(&shmem_swaplist_mutex);
847                 BUG_ON(page_mapped(page));
848                 swap_writepage(page, wbc);
849                 return 0;
850         }
851
852         mutex_unlock(&shmem_swaplist_mutex);
853         swapcache_free(swap);
854 redirty:
855         set_page_dirty(page);
856         if (wbc->for_reclaim)
857                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
858         unlock_page(page);
859         return 0;
860 }
861
862 #ifdef CONFIG_NUMA
863 #ifdef CONFIG_TMPFS
864 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
865 {
866         char buffer[64];
867
868         if (!mpol || mpol->mode == MPOL_DEFAULT)
869                 return;         /* show nothing */
870
871         mpol_to_str(buffer, sizeof(buffer), mpol);
872
873         seq_printf(seq, ",mpol=%s", buffer);
874 }
875
876 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
877 {
878         struct mempolicy *mpol = NULL;
879         if (sbinfo->mpol) {
880                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
881                 mpol = sbinfo->mpol;
882                 mpol_get(mpol);
883                 spin_unlock(&sbinfo->stat_lock);
884         }
885         return mpol;
886 }
887 #endif /* CONFIG_TMPFS */
888
889 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
890                         struct shmem_inode_info *info, pgoff_t index)
891 {
892         struct vm_area_struct pvma;
893         struct page *page;
894
895         /* Create a pseudo vma that just contains the policy */
896         pvma.vm_start = 0;
897         /* Bias interleave by inode number to distribute better across nodes */
898         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
899         pvma.vm_ops = NULL;
900         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
901
902         page = swapin_readahead(swap, gfp, &pvma, 0);
903
904         /* Drop reference taken by mpol_shared_policy_lookup() */
905         mpol_cond_put(pvma.vm_policy);
906
907         return page;
908 }
909
910 static struct page *shmem_alloc_page(gfp_t gfp,
911                         struct shmem_inode_info *info, pgoff_t index)
912 {
913         struct vm_area_struct pvma;
914         struct page *page;
915
916         /* Create a pseudo vma that just contains the policy */
917         pvma.vm_start = 0;
918         /* Bias interleave by inode number to distribute better across nodes */
919         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920         pvma.vm_ops = NULL;
921         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922
923         page = alloc_page_vma(gfp, &pvma, 0);
924
925         /* Drop reference taken by mpol_shared_policy_lookup() */
926         mpol_cond_put(pvma.vm_policy);
927
928         return page;
929 }
930 #else /* !CONFIG_NUMA */
931 #ifdef CONFIG_TMPFS
932 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
933 {
934 }
935 #endif /* CONFIG_TMPFS */
936
937 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
938                         struct shmem_inode_info *info, pgoff_t index)
939 {
940         return swapin_readahead(swap, gfp, NULL, 0);
941 }
942
943 static inline struct page *shmem_alloc_page(gfp_t gfp,
944                         struct shmem_inode_info *info, pgoff_t index)
945 {
946         return alloc_page(gfp);
947 }
948 #endif /* CONFIG_NUMA */
949
950 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
951 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
952 {
953         return NULL;
954 }
955 #endif
956
957 /*
958  * When a page is moved from swapcache to shmem filecache (either by the
959  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
960  * shmem_unuse_inode()), it may have been read in earlier from swap, in
961  * ignorance of the mapping it belongs to.  If that mapping has special
962  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
963  * we may need to copy to a suitable page before moving to filecache.
964  *
965  * In a future release, this may well be extended to respect cpuset and
966  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
967  * but for now it is a simple matter of zone.
968  */
969 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
970 {
971         return page_zonenum(page) > gfp_zone(gfp);
972 }
973
974 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
975                                 struct shmem_inode_info *info, pgoff_t index)
976 {
977         struct page *oldpage, *newpage;
978         struct address_space *swap_mapping;
979         pgoff_t swap_index;
980         int error;
981
982         oldpage = *pagep;
983         swap_index = page_private(oldpage);
984         swap_mapping = page_mapping(oldpage);
985
986         /*
987          * We have arrived here because our zones are constrained, so don't
988          * limit chance of success by further cpuset and node constraints.
989          */
990         gfp &= ~GFP_CONSTRAINT_MASK;
991         newpage = shmem_alloc_page(gfp, info, index);
992         if (!newpage)
993                 return -ENOMEM;
994
995         page_cache_get(newpage);
996         copy_highpage(newpage, oldpage);
997         flush_dcache_page(newpage);
998
999         __set_page_locked(newpage);
1000         SetPageUptodate(newpage);
1001         SetPageSwapBacked(newpage);
1002         set_page_private(newpage, swap_index);
1003         SetPageSwapCache(newpage);
1004
1005         /*
1006          * Our caller will very soon move newpage out of swapcache, but it's
1007          * a nice clean interface for us to replace oldpage by newpage there.
1008          */
1009         spin_lock_irq(&swap_mapping->tree_lock);
1010         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1011                                                                    newpage);
1012         if (!error) {
1013                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1014                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1015         }
1016         spin_unlock_irq(&swap_mapping->tree_lock);
1017
1018         if (unlikely(error)) {
1019                 /*
1020                  * Is this possible?  I think not, now that our callers check
1021                  * both PageSwapCache and page_private after getting page lock;
1022                  * but be defensive.  Reverse old to newpage for clear and free.
1023                  */
1024                 oldpage = newpage;
1025         } else {
1026                 mem_cgroup_migrate(oldpage, newpage, true);
1027                 lru_cache_add_anon(newpage);
1028                 *pagep = newpage;
1029         }
1030
1031         ClearPageSwapCache(oldpage);
1032         set_page_private(oldpage, 0);
1033
1034         unlock_page(oldpage);
1035         page_cache_release(oldpage);
1036         page_cache_release(oldpage);
1037         return error;
1038 }
1039
1040 /*
1041  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1042  *
1043  * If we allocate a new one we do not mark it dirty. That's up to the
1044  * vm. If we swap it in we mark it dirty since we also free the swap
1045  * entry since a page cannot live in both the swap and page cache
1046  */
1047 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1048         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1049 {
1050         struct address_space *mapping = inode->i_mapping;
1051         struct shmem_inode_info *info;
1052         struct shmem_sb_info *sbinfo;
1053         struct mem_cgroup *memcg;
1054         struct page *page;
1055         swp_entry_t swap;
1056         int error;
1057         int once = 0;
1058         int alloced = 0;
1059
1060         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1061                 return -EFBIG;
1062 repeat:
1063         swap.val = 0;
1064         page = find_lock_entry(mapping, index);
1065         if (radix_tree_exceptional_entry(page)) {
1066                 swap = radix_to_swp_entry(page);
1067                 page = NULL;
1068         }
1069
1070         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1071             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1072                 error = -EINVAL;
1073                 goto failed;
1074         }
1075
1076         if (page && sgp == SGP_WRITE)
1077                 mark_page_accessed(page);
1078
1079         /* fallocated page? */
1080         if (page && !PageUptodate(page)) {
1081                 if (sgp != SGP_READ)
1082                         goto clear;
1083                 unlock_page(page);
1084                 page_cache_release(page);
1085                 page = NULL;
1086         }
1087         if (page || (sgp == SGP_READ && !swap.val)) {
1088                 *pagep = page;
1089                 return 0;
1090         }
1091
1092         /*
1093          * Fast cache lookup did not find it:
1094          * bring it back from swap or allocate.
1095          */
1096         info = SHMEM_I(inode);
1097         sbinfo = SHMEM_SB(inode->i_sb);
1098
1099         if (swap.val) {
1100                 /* Look it up and read it in.. */
1101                 page = lookup_swap_cache(swap);
1102                 if (!page) {
1103                         /* here we actually do the io */
1104                         if (fault_type)
1105                                 *fault_type |= VM_FAULT_MAJOR;
1106                         page = shmem_swapin(swap, gfp, info, index);
1107                         if (!page) {
1108                                 error = -ENOMEM;
1109                                 goto failed;
1110                         }
1111                 }
1112
1113                 /* We have to do this with page locked to prevent races */
1114                 lock_page(page);
1115                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1116                     !shmem_confirm_swap(mapping, index, swap)) {
1117                         error = -EEXIST;        /* try again */
1118                         goto unlock;
1119                 }
1120                 if (!PageUptodate(page)) {
1121                         error = -EIO;
1122                         goto failed;
1123                 }
1124                 wait_on_page_writeback(page);
1125
1126                 if (shmem_should_replace_page(page, gfp)) {
1127                         error = shmem_replace_page(&page, gfp, info, index);
1128                         if (error)
1129                                 goto failed;
1130                 }
1131
1132                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1133                 if (!error) {
1134                         error = shmem_add_to_page_cache(page, mapping, index,
1135                                                 swp_to_radix_entry(swap));
1136                         /*
1137                          * We already confirmed swap under page lock, and make
1138                          * no memory allocation here, so usually no possibility
1139                          * of error; but free_swap_and_cache() only trylocks a
1140                          * page, so it is just possible that the entry has been
1141                          * truncated or holepunched since swap was confirmed.
1142                          * shmem_undo_range() will have done some of the
1143                          * unaccounting, now delete_from_swap_cache() will do
1144                          * the rest.
1145                          * Reset swap.val? No, leave it so "failed" goes back to
1146                          * "repeat": reading a hole and writing should succeed.
1147                          */
1148                         if (error) {
1149                                 mem_cgroup_cancel_charge(page, memcg);
1150                                 delete_from_swap_cache(page);
1151                         }
1152                 }
1153                 if (error)
1154                         goto failed;
1155
1156                 mem_cgroup_commit_charge(page, memcg, true);
1157
1158                 spin_lock(&info->lock);
1159                 info->swapped--;
1160                 shmem_recalc_inode(inode);
1161                 spin_unlock(&info->lock);
1162
1163                 if (sgp == SGP_WRITE)
1164                         mark_page_accessed(page);
1165
1166                 delete_from_swap_cache(page);
1167                 set_page_dirty(page);
1168                 swap_free(swap);
1169
1170         } else {
1171                 if (shmem_acct_block(info->flags)) {
1172                         error = -ENOSPC;
1173                         goto failed;
1174                 }
1175                 if (sbinfo->max_blocks) {
1176                         if (percpu_counter_compare(&sbinfo->used_blocks,
1177                                                 sbinfo->max_blocks) >= 0) {
1178                                 error = -ENOSPC;
1179                                 goto unacct;
1180                         }
1181                         percpu_counter_inc(&sbinfo->used_blocks);
1182                 }
1183
1184                 page = shmem_alloc_page(gfp, info, index);
1185                 if (!page) {
1186                         error = -ENOMEM;
1187                         goto decused;
1188                 }
1189
1190                 __SetPageSwapBacked(page);
1191                 __set_page_locked(page);
1192                 if (sgp == SGP_WRITE)
1193                         __SetPageReferenced(page);
1194
1195                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1196                 if (error)
1197                         goto decused;
1198                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1199                 if (!error) {
1200                         error = shmem_add_to_page_cache(page, mapping, index,
1201                                                         NULL);
1202                         radix_tree_preload_end();
1203                 }
1204                 if (error) {
1205                         mem_cgroup_cancel_charge(page, memcg);
1206                         goto decused;
1207                 }
1208                 mem_cgroup_commit_charge(page, memcg, false);
1209                 lru_cache_add_anon(page);
1210
1211                 spin_lock(&info->lock);
1212                 info->alloced++;
1213                 inode->i_blocks += BLOCKS_PER_PAGE;
1214                 shmem_recalc_inode(inode);
1215                 spin_unlock(&info->lock);
1216                 alloced = true;
1217
1218                 /*
1219                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1220                  */
1221                 if (sgp == SGP_FALLOC)
1222                         sgp = SGP_WRITE;
1223 clear:
1224                 /*
1225                  * Let SGP_WRITE caller clear ends if write does not fill page;
1226                  * but SGP_FALLOC on a page fallocated earlier must initialize
1227                  * it now, lest undo on failure cancel our earlier guarantee.
1228                  */
1229                 if (sgp != SGP_WRITE) {
1230                         clear_highpage(page);
1231                         flush_dcache_page(page);
1232                         SetPageUptodate(page);
1233                 }
1234                 if (sgp == SGP_DIRTY)
1235                         set_page_dirty(page);
1236         }
1237
1238         /* Perhaps the file has been truncated since we checked */
1239         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1240             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1241                 error = -EINVAL;
1242                 if (alloced)
1243                         goto trunc;
1244                 else
1245                         goto failed;
1246         }
1247         *pagep = page;
1248         return 0;
1249
1250         /*
1251          * Error recovery.
1252          */
1253 trunc:
1254         info = SHMEM_I(inode);
1255         ClearPageDirty(page);
1256         delete_from_page_cache(page);
1257         spin_lock(&info->lock);
1258         info->alloced--;
1259         inode->i_blocks -= BLOCKS_PER_PAGE;
1260         spin_unlock(&info->lock);
1261 decused:
1262         sbinfo = SHMEM_SB(inode->i_sb);
1263         if (sbinfo->max_blocks)
1264                 percpu_counter_add(&sbinfo->used_blocks, -1);
1265 unacct:
1266         shmem_unacct_blocks(info->flags, 1);
1267 failed:
1268         if (swap.val && error != -EINVAL &&
1269             !shmem_confirm_swap(mapping, index, swap))
1270                 error = -EEXIST;
1271 unlock:
1272         if (page) {
1273                 unlock_page(page);
1274                 page_cache_release(page);
1275         }
1276         if (error == -ENOSPC && !once++) {
1277                 info = SHMEM_I(inode);
1278                 spin_lock(&info->lock);
1279                 shmem_recalc_inode(inode);
1280                 spin_unlock(&info->lock);
1281                 goto repeat;
1282         }
1283         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1284                 goto repeat;
1285         return error;
1286 }
1287
1288 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1289 {
1290         struct inode *inode = file_inode(vma->vm_file);
1291         int error;
1292         int ret = VM_FAULT_LOCKED;
1293
1294         /*
1295          * Trinity finds that probing a hole which tmpfs is punching can
1296          * prevent the hole-punch from ever completing: which in turn
1297          * locks writers out with its hold on i_mutex.  So refrain from
1298          * faulting pages into the hole while it's being punched.  Although
1299          * shmem_undo_range() does remove the additions, it may be unable to
1300          * keep up, as each new page needs its own unmap_mapping_range() call,
1301          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1302          *
1303          * It does not matter if we sometimes reach this check just before the
1304          * hole-punch begins, so that one fault then races with the punch:
1305          * we just need to make racing faults a rare case.
1306          *
1307          * The implementation below would be much simpler if we just used a
1308          * standard mutex or completion: but we cannot take i_mutex in fault,
1309          * and bloating every shmem inode for this unlikely case would be sad.
1310          */
1311         if (unlikely(inode->i_private)) {
1312                 struct shmem_falloc *shmem_falloc;
1313
1314                 spin_lock(&inode->i_lock);
1315                 shmem_falloc = inode->i_private;
1316                 if (shmem_falloc &&
1317                     shmem_falloc->waitq &&
1318                     vmf->pgoff >= shmem_falloc->start &&
1319                     vmf->pgoff < shmem_falloc->next) {
1320                         wait_queue_head_t *shmem_falloc_waitq;
1321                         DEFINE_WAIT(shmem_fault_wait);
1322
1323                         ret = VM_FAULT_NOPAGE;
1324                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1325                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1326                                 /* It's polite to up mmap_sem if we can */
1327                                 up_read(&vma->vm_mm->mmap_sem);
1328                                 ret = VM_FAULT_RETRY;
1329                         }
1330
1331                         shmem_falloc_waitq = shmem_falloc->waitq;
1332                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1333                                         TASK_UNINTERRUPTIBLE);
1334                         spin_unlock(&inode->i_lock);
1335                         schedule();
1336
1337                         /*
1338                          * shmem_falloc_waitq points into the shmem_fallocate()
1339                          * stack of the hole-punching task: shmem_falloc_waitq
1340                          * is usually invalid by the time we reach here, but
1341                          * finish_wait() does not dereference it in that case;
1342                          * though i_lock needed lest racing with wake_up_all().
1343                          */
1344                         spin_lock(&inode->i_lock);
1345                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1346                         spin_unlock(&inode->i_lock);
1347                         return ret;
1348                 }
1349                 spin_unlock(&inode->i_lock);
1350         }
1351
1352         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1353         if (error)
1354                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1355
1356         if (ret & VM_FAULT_MAJOR) {
1357                 count_vm_event(PGMAJFAULT);
1358                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1359         }
1360         return ret;
1361 }
1362
1363 #ifdef CONFIG_NUMA
1364 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1365 {
1366         struct inode *inode = file_inode(vma->vm_file);
1367         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1368 }
1369
1370 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1371                                           unsigned long addr)
1372 {
1373         struct inode *inode = file_inode(vma->vm_file);
1374         pgoff_t index;
1375
1376         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1377         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1378 }
1379 #endif
1380
1381 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1382 {
1383         struct inode *inode = file_inode(file);
1384         struct shmem_inode_info *info = SHMEM_I(inode);
1385         int retval = -ENOMEM;
1386
1387         spin_lock(&info->lock);
1388         if (lock && !(info->flags & VM_LOCKED)) {
1389                 if (!user_shm_lock(inode->i_size, user))
1390                         goto out_nomem;
1391                 info->flags |= VM_LOCKED;
1392                 mapping_set_unevictable(file->f_mapping);
1393         }
1394         if (!lock && (info->flags & VM_LOCKED) && user) {
1395                 user_shm_unlock(inode->i_size, user);
1396                 info->flags &= ~VM_LOCKED;
1397                 mapping_clear_unevictable(file->f_mapping);
1398         }
1399         retval = 0;
1400
1401 out_nomem:
1402         spin_unlock(&info->lock);
1403         return retval;
1404 }
1405
1406 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1407 {
1408         file_accessed(file);
1409         vma->vm_ops = &shmem_vm_ops;
1410         return 0;
1411 }
1412
1413 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1414                                      umode_t mode, dev_t dev, unsigned long flags)
1415 {
1416         struct inode *inode;
1417         struct shmem_inode_info *info;
1418         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1419
1420         if (shmem_reserve_inode(sb))
1421                 return NULL;
1422
1423         inode = new_inode(sb);
1424         if (inode) {
1425                 inode->i_ino = get_next_ino();
1426                 inode_init_owner(inode, dir, mode);
1427                 inode->i_blocks = 0;
1428                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1429                 inode->i_generation = get_seconds();
1430                 info = SHMEM_I(inode);
1431                 memset(info, 0, (char *)inode - (char *)info);
1432                 spin_lock_init(&info->lock);
1433                 info->seals = F_SEAL_SEAL;
1434                 info->flags = flags & VM_NORESERVE;
1435                 INIT_LIST_HEAD(&info->swaplist);
1436                 simple_xattrs_init(&info->xattrs);
1437                 cache_no_acl(inode);
1438
1439                 switch (mode & S_IFMT) {
1440                 default:
1441                         inode->i_op = &shmem_special_inode_operations;
1442                         init_special_inode(inode, mode, dev);
1443                         break;
1444                 case S_IFREG:
1445                         inode->i_mapping->a_ops = &shmem_aops;
1446                         inode->i_op = &shmem_inode_operations;
1447                         inode->i_fop = &shmem_file_operations;
1448                         mpol_shared_policy_init(&info->policy,
1449                                                  shmem_get_sbmpol(sbinfo));
1450                         break;
1451                 case S_IFDIR:
1452                         inc_nlink(inode);
1453                         /* Some things misbehave if size == 0 on a directory */
1454                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1455                         inode->i_op = &shmem_dir_inode_operations;
1456                         inode->i_fop = &simple_dir_operations;
1457                         break;
1458                 case S_IFLNK:
1459                         /*
1460                          * Must not load anything in the rbtree,
1461                          * mpol_free_shared_policy will not be called.
1462                          */
1463                         mpol_shared_policy_init(&info->policy, NULL);
1464                         break;
1465                 }
1466         } else
1467                 shmem_free_inode(sb);
1468         return inode;
1469 }
1470
1471 bool shmem_mapping(struct address_space *mapping)
1472 {
1473         if (!mapping->host)
1474                 return false;
1475
1476         return mapping->host->i_sb->s_op == &shmem_ops;
1477 }
1478
1479 #ifdef CONFIG_TMPFS
1480 static const struct inode_operations shmem_symlink_inode_operations;
1481 static const struct inode_operations shmem_short_symlink_operations;
1482
1483 #ifdef CONFIG_TMPFS_XATTR
1484 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1485 #else
1486 #define shmem_initxattrs NULL
1487 #endif
1488
1489 static int
1490 shmem_write_begin(struct file *file, struct address_space *mapping,
1491                         loff_t pos, unsigned len, unsigned flags,
1492                         struct page **pagep, void **fsdata)
1493 {
1494         struct inode *inode = mapping->host;
1495         struct shmem_inode_info *info = SHMEM_I(inode);
1496         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1497
1498         /* i_mutex is held by caller */
1499         if (unlikely(info->seals)) {
1500                 if (info->seals & F_SEAL_WRITE)
1501                         return -EPERM;
1502                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1503                         return -EPERM;
1504         }
1505
1506         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1507 }
1508
1509 static int
1510 shmem_write_end(struct file *file, struct address_space *mapping,
1511                         loff_t pos, unsigned len, unsigned copied,
1512                         struct page *page, void *fsdata)
1513 {
1514         struct inode *inode = mapping->host;
1515
1516         if (pos + copied > inode->i_size)
1517                 i_size_write(inode, pos + copied);
1518
1519         if (!PageUptodate(page)) {
1520                 if (copied < PAGE_CACHE_SIZE) {
1521                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1522                         zero_user_segments(page, 0, from,
1523                                         from + copied, PAGE_CACHE_SIZE);
1524                 }
1525                 SetPageUptodate(page);
1526         }
1527         set_page_dirty(page);
1528         unlock_page(page);
1529         page_cache_release(page);
1530
1531         return copied;
1532 }
1533
1534 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1535 {
1536         struct file *file = iocb->ki_filp;
1537         struct inode *inode = file_inode(file);
1538         struct address_space *mapping = inode->i_mapping;
1539         pgoff_t index;
1540         unsigned long offset;
1541         enum sgp_type sgp = SGP_READ;
1542         int error = 0;
1543         ssize_t retval = 0;
1544         loff_t *ppos = &iocb->ki_pos;
1545
1546         /*
1547          * Might this read be for a stacking filesystem?  Then when reading
1548          * holes of a sparse file, we actually need to allocate those pages,
1549          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1550          */
1551         if (!iter_is_iovec(to))
1552                 sgp = SGP_DIRTY;
1553
1554         index = *ppos >> PAGE_CACHE_SHIFT;
1555         offset = *ppos & ~PAGE_CACHE_MASK;
1556
1557         for (;;) {
1558                 struct page *page = NULL;
1559                 pgoff_t end_index;
1560                 unsigned long nr, ret;
1561                 loff_t i_size = i_size_read(inode);
1562
1563                 end_index = i_size >> PAGE_CACHE_SHIFT;
1564                 if (index > end_index)
1565                         break;
1566                 if (index == end_index) {
1567                         nr = i_size & ~PAGE_CACHE_MASK;
1568                         if (nr <= offset)
1569                                 break;
1570                 }
1571
1572                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1573                 if (error) {
1574                         if (error == -EINVAL)
1575                                 error = 0;
1576                         break;
1577                 }
1578                 if (page)
1579                         unlock_page(page);
1580
1581                 /*
1582                  * We must evaluate after, since reads (unlike writes)
1583                  * are called without i_mutex protection against truncate
1584                  */
1585                 nr = PAGE_CACHE_SIZE;
1586                 i_size = i_size_read(inode);
1587                 end_index = i_size >> PAGE_CACHE_SHIFT;
1588                 if (index == end_index) {
1589                         nr = i_size & ~PAGE_CACHE_MASK;
1590                         if (nr <= offset) {
1591                                 if (page)
1592                                         page_cache_release(page);
1593                                 break;
1594                         }
1595                 }
1596                 nr -= offset;
1597
1598                 if (page) {
1599                         /*
1600                          * If users can be writing to this page using arbitrary
1601                          * virtual addresses, take care about potential aliasing
1602                          * before reading the page on the kernel side.
1603                          */
1604                         if (mapping_writably_mapped(mapping))
1605                                 flush_dcache_page(page);
1606                         /*
1607                          * Mark the page accessed if we read the beginning.
1608                          */
1609                         if (!offset)
1610                                 mark_page_accessed(page);
1611                 } else {
1612                         page = ZERO_PAGE(0);
1613                         page_cache_get(page);
1614                 }
1615
1616                 /*
1617                  * Ok, we have the page, and it's up-to-date, so
1618                  * now we can copy it to user space...
1619                  */
1620                 ret = copy_page_to_iter(page, offset, nr, to);
1621                 retval += ret;
1622                 offset += ret;
1623                 index += offset >> PAGE_CACHE_SHIFT;
1624                 offset &= ~PAGE_CACHE_MASK;
1625
1626                 page_cache_release(page);
1627                 if (!iov_iter_count(to))
1628                         break;
1629                 if (ret < nr) {
1630                         error = -EFAULT;
1631                         break;
1632                 }
1633                 cond_resched();
1634         }
1635
1636         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1637         file_accessed(file);
1638         return retval ? retval : error;
1639 }
1640
1641 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1642                                 struct pipe_inode_info *pipe, size_t len,
1643                                 unsigned int flags)
1644 {
1645         struct address_space *mapping = in->f_mapping;
1646         struct inode *inode = mapping->host;
1647         unsigned int loff, nr_pages, req_pages;
1648         struct page *pages[PIPE_DEF_BUFFERS];
1649         struct partial_page partial[PIPE_DEF_BUFFERS];
1650         struct page *page;
1651         pgoff_t index, end_index;
1652         loff_t isize, left;
1653         int error, page_nr;
1654         struct splice_pipe_desc spd = {
1655                 .pages = pages,
1656                 .partial = partial,
1657                 .nr_pages_max = PIPE_DEF_BUFFERS,
1658                 .flags = flags,
1659                 .ops = &page_cache_pipe_buf_ops,
1660                 .spd_release = spd_release_page,
1661         };
1662
1663         isize = i_size_read(inode);
1664         if (unlikely(*ppos >= isize))
1665                 return 0;
1666
1667         left = isize - *ppos;
1668         if (unlikely(left < len))
1669                 len = left;
1670
1671         if (splice_grow_spd(pipe, &spd))
1672                 return -ENOMEM;
1673
1674         index = *ppos >> PAGE_CACHE_SHIFT;
1675         loff = *ppos & ~PAGE_CACHE_MASK;
1676         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1677         nr_pages = min(req_pages, spd.nr_pages_max);
1678
1679         spd.nr_pages = find_get_pages_contig(mapping, index,
1680                                                 nr_pages, spd.pages);
1681         index += spd.nr_pages;
1682         error = 0;
1683
1684         while (spd.nr_pages < nr_pages) {
1685                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1686                 if (error)
1687                         break;
1688                 unlock_page(page);
1689                 spd.pages[spd.nr_pages++] = page;
1690                 index++;
1691         }
1692
1693         index = *ppos >> PAGE_CACHE_SHIFT;
1694         nr_pages = spd.nr_pages;
1695         spd.nr_pages = 0;
1696
1697         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1698                 unsigned int this_len;
1699
1700                 if (!len)
1701                         break;
1702
1703                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1704                 page = spd.pages[page_nr];
1705
1706                 if (!PageUptodate(page) || page->mapping != mapping) {
1707                         error = shmem_getpage(inode, index, &page,
1708                                                         SGP_CACHE, NULL);
1709                         if (error)
1710                                 break;
1711                         unlock_page(page);
1712                         page_cache_release(spd.pages[page_nr]);
1713                         spd.pages[page_nr] = page;
1714                 }
1715
1716                 isize = i_size_read(inode);
1717                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1718                 if (unlikely(!isize || index > end_index))
1719                         break;
1720
1721                 if (end_index == index) {
1722                         unsigned int plen;
1723
1724                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1725                         if (plen <= loff)
1726                                 break;
1727
1728                         this_len = min(this_len, plen - loff);
1729                         len = this_len;
1730                 }
1731
1732                 spd.partial[page_nr].offset = loff;
1733                 spd.partial[page_nr].len = this_len;
1734                 len -= this_len;
1735                 loff = 0;
1736                 spd.nr_pages++;
1737                 index++;
1738         }
1739
1740         while (page_nr < nr_pages)
1741                 page_cache_release(spd.pages[page_nr++]);
1742
1743         if (spd.nr_pages)
1744                 error = splice_to_pipe(pipe, &spd);
1745
1746         splice_shrink_spd(&spd);
1747
1748         if (error > 0) {
1749                 *ppos += error;
1750                 file_accessed(in);
1751         }
1752         return error;
1753 }
1754
1755 /*
1756  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1757  */
1758 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1759                                     pgoff_t index, pgoff_t end, int whence)
1760 {
1761         struct page *page;
1762         struct pagevec pvec;
1763         pgoff_t indices[PAGEVEC_SIZE];
1764         bool done = false;
1765         int i;
1766
1767         pagevec_init(&pvec, 0);
1768         pvec.nr = 1;            /* start small: we may be there already */
1769         while (!done) {
1770                 pvec.nr = find_get_entries(mapping, index,
1771                                         pvec.nr, pvec.pages, indices);
1772                 if (!pvec.nr) {
1773                         if (whence == SEEK_DATA)
1774                                 index = end;
1775                         break;
1776                 }
1777                 for (i = 0; i < pvec.nr; i++, index++) {
1778                         if (index < indices[i]) {
1779                                 if (whence == SEEK_HOLE) {
1780                                         done = true;
1781                                         break;
1782                                 }
1783                                 index = indices[i];
1784                         }
1785                         page = pvec.pages[i];
1786                         if (page && !radix_tree_exceptional_entry(page)) {
1787                                 if (!PageUptodate(page))
1788                                         page = NULL;
1789                         }
1790                         if (index >= end ||
1791                             (page && whence == SEEK_DATA) ||
1792                             (!page && whence == SEEK_HOLE)) {
1793                                 done = true;
1794                                 break;
1795                         }
1796                 }
1797                 pagevec_remove_exceptionals(&pvec);
1798                 pagevec_release(&pvec);
1799                 pvec.nr = PAGEVEC_SIZE;
1800                 cond_resched();
1801         }
1802         return index;
1803 }
1804
1805 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1806 {
1807         struct address_space *mapping = file->f_mapping;
1808         struct inode *inode = mapping->host;
1809         pgoff_t start, end;
1810         loff_t new_offset;
1811
1812         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1813                 return generic_file_llseek_size(file, offset, whence,
1814                                         MAX_LFS_FILESIZE, i_size_read(inode));
1815         mutex_lock(&inode->i_mutex);
1816         /* We're holding i_mutex so we can access i_size directly */
1817
1818         if (offset < 0)
1819                 offset = -EINVAL;
1820         else if (offset >= inode->i_size)
1821                 offset = -ENXIO;
1822         else {
1823                 start = offset >> PAGE_CACHE_SHIFT;
1824                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1825                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1826                 new_offset <<= PAGE_CACHE_SHIFT;
1827                 if (new_offset > offset) {
1828                         if (new_offset < inode->i_size)
1829                                 offset = new_offset;
1830                         else if (whence == SEEK_DATA)
1831                                 offset = -ENXIO;
1832                         else
1833                                 offset = inode->i_size;
1834                 }
1835         }
1836
1837         if (offset >= 0)
1838                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1839         mutex_unlock(&inode->i_mutex);
1840         return offset;
1841 }
1842
1843 /*
1844  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1845  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1846  */
1847 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1848 #define LAST_SCAN               4       /* about 150ms max */
1849
1850 static void shmem_tag_pins(struct address_space *mapping)
1851 {
1852         struct radix_tree_iter iter;
1853         void **slot;
1854         pgoff_t start;
1855         struct page *page;
1856
1857         lru_add_drain();
1858         start = 0;
1859         rcu_read_lock();
1860
1861 restart:
1862         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1863                 page = radix_tree_deref_slot(slot);
1864                 if (!page || radix_tree_exception(page)) {
1865                         if (radix_tree_deref_retry(page))
1866                                 goto restart;
1867                 } else if (page_count(page) - page_mapcount(page) > 1) {
1868                         spin_lock_irq(&mapping->tree_lock);
1869                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1870                                            SHMEM_TAG_PINNED);
1871                         spin_unlock_irq(&mapping->tree_lock);
1872                 }
1873
1874                 if (need_resched()) {
1875                         cond_resched_rcu();
1876                         start = iter.index + 1;
1877                         goto restart;
1878                 }
1879         }
1880         rcu_read_unlock();
1881 }
1882
1883 /*
1884  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1885  * via get_user_pages(), drivers might have some pending I/O without any active
1886  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1887  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1888  * them to be dropped.
1889  * The caller must guarantee that no new user will acquire writable references
1890  * to those pages to avoid races.
1891  */
1892 static int shmem_wait_for_pins(struct address_space *mapping)
1893 {
1894         struct radix_tree_iter iter;
1895         void **slot;
1896         pgoff_t start;
1897         struct page *page;
1898         int error, scan;
1899
1900         shmem_tag_pins(mapping);
1901
1902         error = 0;
1903         for (scan = 0; scan <= LAST_SCAN; scan++) {
1904                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1905                         break;
1906
1907                 if (!scan)
1908                         lru_add_drain_all();
1909                 else if (schedule_timeout_killable((HZ << scan) / 200))
1910                         scan = LAST_SCAN;
1911
1912                 start = 0;
1913                 rcu_read_lock();
1914 restart:
1915                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1916                                            start, SHMEM_TAG_PINNED) {
1917
1918                         page = radix_tree_deref_slot(slot);
1919                         if (radix_tree_exception(page)) {
1920                                 if (radix_tree_deref_retry(page))
1921                                         goto restart;
1922
1923                                 page = NULL;
1924                         }
1925
1926                         if (page &&
1927                             page_count(page) - page_mapcount(page) != 1) {
1928                                 if (scan < LAST_SCAN)
1929                                         goto continue_resched;
1930
1931                                 /*
1932                                  * On the last scan, we clean up all those tags
1933                                  * we inserted; but make a note that we still
1934                                  * found pages pinned.
1935                                  */
1936                                 error = -EBUSY;
1937                         }
1938
1939                         spin_lock_irq(&mapping->tree_lock);
1940                         radix_tree_tag_clear(&mapping->page_tree,
1941                                              iter.index, SHMEM_TAG_PINNED);
1942                         spin_unlock_irq(&mapping->tree_lock);
1943 continue_resched:
1944                         if (need_resched()) {
1945                                 cond_resched_rcu();
1946                                 start = iter.index + 1;
1947                                 goto restart;
1948                         }
1949                 }
1950                 rcu_read_unlock();
1951         }
1952
1953         return error;
1954 }
1955
1956 #define F_ALL_SEALS (F_SEAL_SEAL | \
1957                      F_SEAL_SHRINK | \
1958                      F_SEAL_GROW | \
1959                      F_SEAL_WRITE)
1960
1961 int shmem_add_seals(struct file *file, unsigned int seals)
1962 {
1963         struct inode *inode = file_inode(file);
1964         struct shmem_inode_info *info = SHMEM_I(inode);
1965         int error;
1966
1967         /*
1968          * SEALING
1969          * Sealing allows multiple parties to share a shmem-file but restrict
1970          * access to a specific subset of file operations. Seals can only be
1971          * added, but never removed. This way, mutually untrusted parties can
1972          * share common memory regions with a well-defined policy. A malicious
1973          * peer can thus never perform unwanted operations on a shared object.
1974          *
1975          * Seals are only supported on special shmem-files and always affect
1976          * the whole underlying inode. Once a seal is set, it may prevent some
1977          * kinds of access to the file. Currently, the following seals are
1978          * defined:
1979          *   SEAL_SEAL: Prevent further seals from being set on this file
1980          *   SEAL_SHRINK: Prevent the file from shrinking
1981          *   SEAL_GROW: Prevent the file from growing
1982          *   SEAL_WRITE: Prevent write access to the file
1983          *
1984          * As we don't require any trust relationship between two parties, we
1985          * must prevent seals from being removed. Therefore, sealing a file
1986          * only adds a given set of seals to the file, it never touches
1987          * existing seals. Furthermore, the "setting seals"-operation can be
1988          * sealed itself, which basically prevents any further seal from being
1989          * added.
1990          *
1991          * Semantics of sealing are only defined on volatile files. Only
1992          * anonymous shmem files support sealing. More importantly, seals are
1993          * never written to disk. Therefore, there's no plan to support it on
1994          * other file types.
1995          */
1996
1997         if (file->f_op != &shmem_file_operations)
1998                 return -EINVAL;
1999         if (!(file->f_mode & FMODE_WRITE))
2000                 return -EPERM;
2001         if (seals & ~(unsigned int)F_ALL_SEALS)
2002                 return -EINVAL;
2003
2004         mutex_lock(&inode->i_mutex);
2005
2006         if (info->seals & F_SEAL_SEAL) {
2007                 error = -EPERM;
2008                 goto unlock;
2009         }
2010
2011         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2012                 error = mapping_deny_writable(file->f_mapping);
2013                 if (error)
2014                         goto unlock;
2015
2016                 error = shmem_wait_for_pins(file->f_mapping);
2017                 if (error) {
2018                         mapping_allow_writable(file->f_mapping);
2019                         goto unlock;
2020                 }
2021         }
2022
2023         info->seals |= seals;
2024         error = 0;
2025
2026 unlock:
2027         mutex_unlock(&inode->i_mutex);
2028         return error;
2029 }
2030 EXPORT_SYMBOL_GPL(shmem_add_seals);
2031
2032 int shmem_get_seals(struct file *file)
2033 {
2034         if (file->f_op != &shmem_file_operations)
2035                 return -EINVAL;
2036
2037         return SHMEM_I(file_inode(file))->seals;
2038 }
2039 EXPORT_SYMBOL_GPL(shmem_get_seals);
2040
2041 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2042 {
2043         long error;
2044
2045         switch (cmd) {
2046         case F_ADD_SEALS:
2047                 /* disallow upper 32bit */
2048                 if (arg > UINT_MAX)
2049                         return -EINVAL;
2050
2051                 error = shmem_add_seals(file, arg);
2052                 break;
2053         case F_GET_SEALS:
2054                 error = shmem_get_seals(file);
2055                 break;
2056         default:
2057                 error = -EINVAL;
2058                 break;
2059         }
2060
2061         return error;
2062 }
2063
2064 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2065                                                          loff_t len)
2066 {
2067         struct inode *inode = file_inode(file);
2068         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2069         struct shmem_inode_info *info = SHMEM_I(inode);
2070         struct shmem_falloc shmem_falloc;
2071         pgoff_t start, index, end;
2072         int error;
2073
2074         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2075                 return -EOPNOTSUPP;
2076
2077         mutex_lock(&inode->i_mutex);
2078
2079         if (mode & FALLOC_FL_PUNCH_HOLE) {
2080                 struct address_space *mapping = file->f_mapping;
2081                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2082                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2083                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2084
2085                 /* protected by i_mutex */
2086                 if (info->seals & F_SEAL_WRITE) {
2087                         error = -EPERM;
2088                         goto out;
2089                 }
2090
2091                 shmem_falloc.waitq = &shmem_falloc_waitq;
2092                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2093                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2094                 spin_lock(&inode->i_lock);
2095                 inode->i_private = &shmem_falloc;
2096                 spin_unlock(&inode->i_lock);
2097
2098                 if ((u64)unmap_end > (u64)unmap_start)
2099                         unmap_mapping_range(mapping, unmap_start,
2100                                             1 + unmap_end - unmap_start, 0);
2101                 shmem_truncate_range(inode, offset, offset + len - 1);
2102                 /* No need to unmap again: hole-punching leaves COWed pages */
2103
2104                 spin_lock(&inode->i_lock);
2105                 inode->i_private = NULL;
2106                 wake_up_all(&shmem_falloc_waitq);
2107                 spin_unlock(&inode->i_lock);
2108                 error = 0;
2109                 goto out;
2110         }
2111
2112         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2113         error = inode_newsize_ok(inode, offset + len);
2114         if (error)
2115                 goto out;
2116
2117         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2118                 error = -EPERM;
2119                 goto out;
2120         }
2121
2122         start = offset >> PAGE_CACHE_SHIFT;
2123         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2124         /* Try to avoid a swapstorm if len is impossible to satisfy */
2125         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2126                 error = -ENOSPC;
2127                 goto out;
2128         }
2129
2130         shmem_falloc.waitq = NULL;
2131         shmem_falloc.start = start;
2132         shmem_falloc.next  = start;
2133         shmem_falloc.nr_falloced = 0;
2134         shmem_falloc.nr_unswapped = 0;
2135         spin_lock(&inode->i_lock);
2136         inode->i_private = &shmem_falloc;
2137         spin_unlock(&inode->i_lock);
2138
2139         for (index = start; index < end; index++) {
2140                 struct page *page;
2141
2142                 /*
2143                  * Good, the fallocate(2) manpage permits EINTR: we may have
2144                  * been interrupted because we are using up too much memory.
2145                  */
2146                 if (signal_pending(current))
2147                         error = -EINTR;
2148                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2149                         error = -ENOMEM;
2150                 else
2151                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2152                                                                         NULL);
2153                 if (error) {
2154                         /* Remove the !PageUptodate pages we added */
2155                         shmem_undo_range(inode,
2156                                 (loff_t)start << PAGE_CACHE_SHIFT,
2157                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2158                         goto undone;
2159                 }
2160
2161                 /*
2162                  * Inform shmem_writepage() how far we have reached.
2163                  * No need for lock or barrier: we have the page lock.
2164                  */
2165                 shmem_falloc.next++;
2166                 if (!PageUptodate(page))
2167                         shmem_falloc.nr_falloced++;
2168
2169                 /*
2170                  * If !PageUptodate, leave it that way so that freeable pages
2171                  * can be recognized if we need to rollback on error later.
2172                  * But set_page_dirty so that memory pressure will swap rather
2173                  * than free the pages we are allocating (and SGP_CACHE pages
2174                  * might still be clean: we now need to mark those dirty too).
2175                  */
2176                 set_page_dirty(page);
2177                 unlock_page(page);
2178                 page_cache_release(page);
2179                 cond_resched();
2180         }
2181
2182         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2183                 i_size_write(inode, offset + len);
2184         inode->i_ctime = CURRENT_TIME;
2185 undone:
2186         spin_lock(&inode->i_lock);
2187         inode->i_private = NULL;
2188         spin_unlock(&inode->i_lock);
2189 out:
2190         mutex_unlock(&inode->i_mutex);
2191         return error;
2192 }
2193
2194 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2195 {
2196         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2197
2198         buf->f_type = TMPFS_MAGIC;
2199         buf->f_bsize = PAGE_CACHE_SIZE;
2200         buf->f_namelen = NAME_MAX;
2201         if (sbinfo->max_blocks) {
2202                 buf->f_blocks = sbinfo->max_blocks;
2203                 buf->f_bavail =
2204                 buf->f_bfree  = sbinfo->max_blocks -
2205                                 percpu_counter_sum(&sbinfo->used_blocks);
2206         }
2207         if (sbinfo->max_inodes) {
2208                 buf->f_files = sbinfo->max_inodes;
2209                 buf->f_ffree = sbinfo->free_inodes;
2210         }
2211         /* else leave those fields 0 like simple_statfs */
2212         return 0;
2213 }
2214
2215 /*
2216  * File creation. Allocate an inode, and we're done..
2217  */
2218 static int
2219 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2220 {
2221         struct inode *inode;
2222         int error = -ENOSPC;
2223
2224         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2225         if (inode) {
2226                 error = simple_acl_create(dir, inode);
2227                 if (error)
2228                         goto out_iput;
2229                 error = security_inode_init_security(inode, dir,
2230                                                      &dentry->d_name,
2231                                                      shmem_initxattrs, NULL);
2232                 if (error && error != -EOPNOTSUPP)
2233                         goto out_iput;
2234
2235                 error = 0;
2236                 dir->i_size += BOGO_DIRENT_SIZE;
2237                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2238                 d_instantiate(dentry, inode);
2239                 dget(dentry); /* Extra count - pin the dentry in core */
2240         }
2241         return error;
2242 out_iput:
2243         iput(inode);
2244         return error;
2245 }
2246
2247 static int
2248 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2249 {
2250         struct inode *inode;
2251         int error = -ENOSPC;
2252
2253         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2254         if (inode) {
2255                 error = security_inode_init_security(inode, dir,
2256                                                      NULL,
2257                                                      shmem_initxattrs, NULL);
2258                 if (error && error != -EOPNOTSUPP)
2259                         goto out_iput;
2260                 error = simple_acl_create(dir, inode);
2261                 if (error)
2262                         goto out_iput;
2263                 d_tmpfile(dentry, inode);
2264         }
2265         return error;
2266 out_iput:
2267         iput(inode);
2268         return error;
2269 }
2270
2271 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2272 {
2273         int error;
2274
2275         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2276                 return error;
2277         inc_nlink(dir);
2278         return 0;
2279 }
2280
2281 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2282                 bool excl)
2283 {
2284         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2285 }
2286
2287 /*
2288  * Link a file..
2289  */
2290 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2291 {
2292         struct inode *inode = d_inode(old_dentry);
2293         int ret;
2294
2295         /*
2296          * No ordinary (disk based) filesystem counts links as inodes;
2297          * but each new link needs a new dentry, pinning lowmem, and
2298          * tmpfs dentries cannot be pruned until they are unlinked.
2299          */
2300         ret = shmem_reserve_inode(inode->i_sb);
2301         if (ret)
2302                 goto out;
2303
2304         dir->i_size += BOGO_DIRENT_SIZE;
2305         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2306         inc_nlink(inode);
2307         ihold(inode);   /* New dentry reference */
2308         dget(dentry);           /* Extra pinning count for the created dentry */
2309         d_instantiate(dentry, inode);
2310 out:
2311         return ret;
2312 }
2313
2314 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2315 {
2316         struct inode *inode = d_inode(dentry);
2317
2318         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2319                 shmem_free_inode(inode->i_sb);
2320
2321         dir->i_size -= BOGO_DIRENT_SIZE;
2322         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2323         drop_nlink(inode);
2324         dput(dentry);   /* Undo the count from "create" - this does all the work */
2325         return 0;
2326 }
2327
2328 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2329 {
2330         if (!simple_empty(dentry))
2331                 return -ENOTEMPTY;
2332
2333         drop_nlink(d_inode(dentry));
2334         drop_nlink(dir);
2335         return shmem_unlink(dir, dentry);
2336 }
2337
2338 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2339 {
2340         bool old_is_dir = d_is_dir(old_dentry);
2341         bool new_is_dir = d_is_dir(new_dentry);
2342
2343         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2344                 if (old_is_dir) {
2345                         drop_nlink(old_dir);
2346                         inc_nlink(new_dir);
2347                 } else {
2348                         drop_nlink(new_dir);
2349                         inc_nlink(old_dir);
2350                 }
2351         }
2352         old_dir->i_ctime = old_dir->i_mtime =
2353         new_dir->i_ctime = new_dir->i_mtime =
2354         d_inode(old_dentry)->i_ctime =
2355         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2356
2357         return 0;
2358 }
2359
2360 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2361 {
2362         struct dentry *whiteout;
2363         int error;
2364
2365         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2366         if (!whiteout)
2367                 return -ENOMEM;
2368
2369         error = shmem_mknod(old_dir, whiteout,
2370                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2371         dput(whiteout);
2372         if (error)
2373                 return error;
2374
2375         /*
2376          * Cheat and hash the whiteout while the old dentry is still in
2377          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2378          *
2379          * d_lookup() will consistently find one of them at this point,
2380          * not sure which one, but that isn't even important.
2381          */
2382         d_rehash(whiteout);
2383         return 0;
2384 }
2385
2386 /*
2387  * The VFS layer already does all the dentry stuff for rename,
2388  * we just have to decrement the usage count for the target if
2389  * it exists so that the VFS layer correctly free's it when it
2390  * gets overwritten.
2391  */
2392 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2393 {
2394         struct inode *inode = d_inode(old_dentry);
2395         int they_are_dirs = S_ISDIR(inode->i_mode);
2396
2397         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2398                 return -EINVAL;
2399
2400         if (flags & RENAME_EXCHANGE)
2401                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2402
2403         if (!simple_empty(new_dentry))
2404                 return -ENOTEMPTY;
2405
2406         if (flags & RENAME_WHITEOUT) {
2407                 int error;
2408
2409                 error = shmem_whiteout(old_dir, old_dentry);
2410                 if (error)
2411                         return error;
2412         }
2413
2414         if (d_really_is_positive(new_dentry)) {
2415                 (void) shmem_unlink(new_dir, new_dentry);
2416                 if (they_are_dirs) {
2417                         drop_nlink(d_inode(new_dentry));
2418                         drop_nlink(old_dir);
2419                 }
2420         } else if (they_are_dirs) {
2421                 drop_nlink(old_dir);
2422                 inc_nlink(new_dir);
2423         }
2424
2425         old_dir->i_size -= BOGO_DIRENT_SIZE;
2426         new_dir->i_size += BOGO_DIRENT_SIZE;
2427         old_dir->i_ctime = old_dir->i_mtime =
2428         new_dir->i_ctime = new_dir->i_mtime =
2429         inode->i_ctime = CURRENT_TIME;
2430         return 0;
2431 }
2432
2433 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2434 {
2435         int error;
2436         int len;
2437         struct inode *inode;
2438         struct page *page;
2439         char *kaddr;
2440         struct shmem_inode_info *info;
2441
2442         len = strlen(symname) + 1;
2443         if (len > PAGE_CACHE_SIZE)
2444                 return -ENAMETOOLONG;
2445
2446         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2447         if (!inode)
2448                 return -ENOSPC;
2449
2450         error = security_inode_init_security(inode, dir, &dentry->d_name,
2451                                              shmem_initxattrs, NULL);
2452         if (error) {
2453                 if (error != -EOPNOTSUPP) {
2454                         iput(inode);
2455                         return error;
2456                 }
2457                 error = 0;
2458         }
2459
2460         info = SHMEM_I(inode);
2461         inode->i_size = len-1;
2462         if (len <= SHORT_SYMLINK_LEN) {
2463                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2464                 if (!info->symlink) {
2465                         iput(inode);
2466                         return -ENOMEM;
2467                 }
2468                 inode->i_op = &shmem_short_symlink_operations;
2469                 inode->i_link = info->symlink;
2470         } else {
2471                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2472                 if (error) {
2473                         iput(inode);
2474                         return error;
2475                 }
2476                 inode->i_mapping->a_ops = &shmem_aops;
2477                 inode->i_op = &shmem_symlink_inode_operations;
2478                 kaddr = kmap_atomic(page);
2479                 memcpy(kaddr, symname, len);
2480                 kunmap_atomic(kaddr);
2481                 SetPageUptodate(page);
2482                 set_page_dirty(page);
2483                 unlock_page(page);
2484                 page_cache_release(page);
2485         }
2486         dir->i_size += BOGO_DIRENT_SIZE;
2487         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2488         d_instantiate(dentry, inode);
2489         dget(dentry);
2490         return 0;
2491 }
2492
2493 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2494 {
2495         struct page *page = NULL;
2496         int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2497         if (error)
2498                 return ERR_PTR(error);
2499         unlock_page(page);
2500         *cookie = page;
2501         return kmap(page);
2502 }
2503
2504 static void shmem_put_link(struct inode *unused, void *cookie)
2505 {
2506         struct page *page = cookie;
2507         kunmap(page);
2508         mark_page_accessed(page);
2509         page_cache_release(page);
2510 }
2511
2512 #ifdef CONFIG_TMPFS_XATTR
2513 /*
2514  * Superblocks without xattr inode operations may get some security.* xattr
2515  * support from the LSM "for free". As soon as we have any other xattrs
2516  * like ACLs, we also need to implement the security.* handlers at
2517  * filesystem level, though.
2518  */
2519
2520 /*
2521  * Callback for security_inode_init_security() for acquiring xattrs.
2522  */
2523 static int shmem_initxattrs(struct inode *inode,
2524                             const struct xattr *xattr_array,
2525                             void *fs_info)
2526 {
2527         struct shmem_inode_info *info = SHMEM_I(inode);
2528         const struct xattr *xattr;
2529         struct simple_xattr *new_xattr;
2530         size_t len;
2531
2532         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2533                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2534                 if (!new_xattr)
2535                         return -ENOMEM;
2536
2537                 len = strlen(xattr->name) + 1;
2538                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2539                                           GFP_KERNEL);
2540                 if (!new_xattr->name) {
2541                         kfree(new_xattr);
2542                         return -ENOMEM;
2543                 }
2544
2545                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2546                        XATTR_SECURITY_PREFIX_LEN);
2547                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2548                        xattr->name, len);
2549
2550                 simple_xattr_list_add(&info->xattrs, new_xattr);
2551         }
2552
2553         return 0;
2554 }
2555
2556 static const struct xattr_handler *shmem_xattr_handlers[] = {
2557 #ifdef CONFIG_TMPFS_POSIX_ACL
2558         &posix_acl_access_xattr_handler,
2559         &posix_acl_default_xattr_handler,
2560 #endif
2561         NULL
2562 };
2563
2564 static int shmem_xattr_validate(const char *name)
2565 {
2566         struct { const char *prefix; size_t len; } arr[] = {
2567                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2568                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2569         };
2570         int i;
2571
2572         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2573                 size_t preflen = arr[i].len;
2574                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2575                         if (!name[preflen])
2576                                 return -EINVAL;
2577                         return 0;
2578                 }
2579         }
2580         return -EOPNOTSUPP;
2581 }
2582
2583 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2584                               void *buffer, size_t size)
2585 {
2586         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2587         int err;
2588
2589         /*
2590          * If this is a request for a synthetic attribute in the system.*
2591          * namespace use the generic infrastructure to resolve a handler
2592          * for it via sb->s_xattr.
2593          */
2594         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2595                 return generic_getxattr(dentry, name, buffer, size);
2596
2597         err = shmem_xattr_validate(name);
2598         if (err)
2599                 return err;
2600
2601         return simple_xattr_get(&info->xattrs, name, buffer, size);
2602 }
2603
2604 static int shmem_setxattr(struct dentry *dentry, const char *name,
2605                           const void *value, size_t size, int flags)
2606 {
2607         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2608         int err;
2609
2610         /*
2611          * If this is a request for a synthetic attribute in the system.*
2612          * namespace use the generic infrastructure to resolve a handler
2613          * for it via sb->s_xattr.
2614          */
2615         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2616                 return generic_setxattr(dentry, name, value, size, flags);
2617
2618         err = shmem_xattr_validate(name);
2619         if (err)
2620                 return err;
2621
2622         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2623 }
2624
2625 static int shmem_removexattr(struct dentry *dentry, const char *name)
2626 {
2627         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2628         int err;
2629
2630         /*
2631          * If this is a request for a synthetic attribute in the system.*
2632          * namespace use the generic infrastructure to resolve a handler
2633          * for it via sb->s_xattr.
2634          */
2635         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2636                 return generic_removexattr(dentry, name);
2637
2638         err = shmem_xattr_validate(name);
2639         if (err)
2640                 return err;
2641
2642         return simple_xattr_remove(&info->xattrs, name);
2643 }
2644
2645 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2646 {
2647         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2648         return simple_xattr_list(&info->xattrs, buffer, size);
2649 }
2650 #endif /* CONFIG_TMPFS_XATTR */
2651
2652 static const struct inode_operations shmem_short_symlink_operations = {
2653         .readlink       = generic_readlink,
2654         .follow_link    = simple_follow_link,
2655 #ifdef CONFIG_TMPFS_XATTR
2656         .setxattr       = shmem_setxattr,
2657         .getxattr       = shmem_getxattr,
2658         .listxattr      = shmem_listxattr,
2659         .removexattr    = shmem_removexattr,
2660 #endif
2661 };
2662
2663 static const struct inode_operations shmem_symlink_inode_operations = {
2664         .readlink       = generic_readlink,
2665         .follow_link    = shmem_follow_link,
2666         .put_link       = shmem_put_link,
2667 #ifdef CONFIG_TMPFS_XATTR
2668         .setxattr       = shmem_setxattr,
2669         .getxattr       = shmem_getxattr,
2670         .listxattr      = shmem_listxattr,
2671         .removexattr    = shmem_removexattr,
2672 #endif
2673 };
2674
2675 static struct dentry *shmem_get_parent(struct dentry *child)
2676 {
2677         return ERR_PTR(-ESTALE);
2678 }
2679
2680 static int shmem_match(struct inode *ino, void *vfh)
2681 {
2682         __u32 *fh = vfh;
2683         __u64 inum = fh[2];
2684         inum = (inum << 32) | fh[1];
2685         return ino->i_ino == inum && fh[0] == ino->i_generation;
2686 }
2687
2688 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2689                 struct fid *fid, int fh_len, int fh_type)
2690 {
2691         struct inode *inode;
2692         struct dentry *dentry = NULL;
2693         u64 inum;
2694
2695         if (fh_len < 3)
2696                 return NULL;
2697
2698         inum = fid->raw[2];
2699         inum = (inum << 32) | fid->raw[1];
2700
2701         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2702                         shmem_match, fid->raw);
2703         if (inode) {
2704                 dentry = d_find_alias(inode);
2705                 iput(inode);
2706         }
2707
2708         return dentry;
2709 }
2710
2711 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2712                                 struct inode *parent)
2713 {
2714         if (*len < 3) {
2715                 *len = 3;
2716                 return FILEID_INVALID;
2717         }
2718
2719         if (inode_unhashed(inode)) {
2720                 /* Unfortunately insert_inode_hash is not idempotent,
2721                  * so as we hash inodes here rather than at creation
2722                  * time, we need a lock to ensure we only try
2723                  * to do it once
2724                  */
2725                 static DEFINE_SPINLOCK(lock);
2726                 spin_lock(&lock);
2727                 if (inode_unhashed(inode))
2728                         __insert_inode_hash(inode,
2729                                             inode->i_ino + inode->i_generation);
2730                 spin_unlock(&lock);
2731         }
2732
2733         fh[0] = inode->i_generation;
2734         fh[1] = inode->i_ino;
2735         fh[2] = ((__u64)inode->i_ino) >> 32;
2736
2737         *len = 3;
2738         return 1;
2739 }
2740
2741 static const struct export_operations shmem_export_ops = {
2742         .get_parent     = shmem_get_parent,
2743         .encode_fh      = shmem_encode_fh,
2744         .fh_to_dentry   = shmem_fh_to_dentry,
2745 };
2746
2747 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2748                                bool remount)
2749 {
2750         char *this_char, *value, *rest;
2751         struct mempolicy *mpol = NULL;
2752         uid_t uid;
2753         gid_t gid;
2754
2755         while (options != NULL) {
2756                 this_char = options;
2757                 for (;;) {
2758                         /*
2759                          * NUL-terminate this option: unfortunately,
2760                          * mount options form a comma-separated list,
2761                          * but mpol's nodelist may also contain commas.
2762                          */
2763                         options = strchr(options, ',');
2764                         if (options == NULL)
2765                                 break;
2766                         options++;
2767                         if (!isdigit(*options)) {
2768                                 options[-1] = '\0';
2769                                 break;
2770                         }
2771                 }
2772                 if (!*this_char)
2773                         continue;
2774                 if ((value = strchr(this_char,'=')) != NULL) {
2775                         *value++ = 0;
2776                 } else {
2777                         printk(KERN_ERR
2778                             "tmpfs: No value for mount option '%s'\n",
2779                             this_char);
2780                         goto error;
2781                 }
2782
2783                 if (!strcmp(this_char,"size")) {
2784                         unsigned long long size;
2785                         size = memparse(value,&rest);
2786                         if (*rest == '%') {
2787                                 size <<= PAGE_SHIFT;
2788                                 size *= totalram_pages;
2789                                 do_div(size, 100);
2790                                 rest++;
2791                         }
2792                         if (*rest)
2793                                 goto bad_val;
2794                         sbinfo->max_blocks =
2795                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2796                 } else if (!strcmp(this_char,"nr_blocks")) {
2797                         sbinfo->max_blocks = memparse(value, &rest);
2798                         if (*rest)
2799                                 goto bad_val;
2800                 } else if (!strcmp(this_char,"nr_inodes")) {
2801                         sbinfo->max_inodes = memparse(value, &rest);
2802                         if (*rest)
2803                                 goto bad_val;
2804                 } else if (!strcmp(this_char,"mode")) {
2805                         if (remount)
2806                                 continue;
2807                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2808                         if (*rest)
2809                                 goto bad_val;
2810                 } else if (!strcmp(this_char,"uid")) {
2811                         if (remount)
2812                                 continue;
2813                         uid = simple_strtoul(value, &rest, 0);
2814                         if (*rest)
2815                                 goto bad_val;
2816                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2817                         if (!uid_valid(sbinfo->uid))
2818                                 goto bad_val;
2819                 } else if (!strcmp(this_char,"gid")) {
2820                         if (remount)
2821                                 continue;
2822                         gid = simple_strtoul(value, &rest, 0);
2823                         if (*rest)
2824                                 goto bad_val;
2825                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2826                         if (!gid_valid(sbinfo->gid))
2827                                 goto bad_val;
2828                 } else if (!strcmp(this_char,"mpol")) {
2829                         mpol_put(mpol);
2830                         mpol = NULL;
2831                         if (mpol_parse_str(value, &mpol))
2832                                 goto bad_val;
2833                 } else {
2834                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2835                                this_char);
2836                         goto error;
2837                 }
2838         }
2839         sbinfo->mpol = mpol;
2840         return 0;
2841
2842 bad_val:
2843         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2844                value, this_char);
2845 error:
2846         mpol_put(mpol);
2847         return 1;
2848
2849 }
2850
2851 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2852 {
2853         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2854         struct shmem_sb_info config = *sbinfo;
2855         unsigned long inodes;
2856         int error = -EINVAL;
2857
2858         config.mpol = NULL;
2859         if (shmem_parse_options(data, &config, true))
2860                 return error;
2861
2862         spin_lock(&sbinfo->stat_lock);
2863         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2864         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2865                 goto out;
2866         if (config.max_inodes < inodes)
2867                 goto out;
2868         /*
2869          * Those tests disallow limited->unlimited while any are in use;
2870          * but we must separately disallow unlimited->limited, because
2871          * in that case we have no record of how much is already in use.
2872          */
2873         if (config.max_blocks && !sbinfo->max_blocks)
2874                 goto out;
2875         if (config.max_inodes && !sbinfo->max_inodes)
2876                 goto out;
2877
2878         error = 0;
2879         sbinfo->max_blocks  = config.max_blocks;
2880         sbinfo->max_inodes  = config.max_inodes;
2881         sbinfo->free_inodes = config.max_inodes - inodes;
2882
2883         /*
2884          * Preserve previous mempolicy unless mpol remount option was specified.
2885          */
2886         if (config.mpol) {
2887                 mpol_put(sbinfo->mpol);
2888                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2889         }
2890 out:
2891         spin_unlock(&sbinfo->stat_lock);
2892         return error;
2893 }
2894
2895 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2896 {
2897         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2898
2899         if (sbinfo->max_blocks != shmem_default_max_blocks())
2900                 seq_printf(seq, ",size=%luk",
2901                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2902         if (sbinfo->max_inodes != shmem_default_max_inodes())
2903                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2904         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2905                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2906         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2907                 seq_printf(seq, ",uid=%u",
2908                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2909         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2910                 seq_printf(seq, ",gid=%u",
2911                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2912         shmem_show_mpol(seq, sbinfo->mpol);
2913         return 0;
2914 }
2915
2916 #define MFD_NAME_PREFIX "memfd:"
2917 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2918 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2919
2920 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2921
2922 SYSCALL_DEFINE2(memfd_create,
2923                 const char __user *, uname,
2924                 unsigned int, flags)
2925 {
2926         struct shmem_inode_info *info;
2927         struct file *file;
2928         int fd, error;
2929         char *name;
2930         long len;
2931
2932         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2933                 return -EINVAL;
2934
2935         /* length includes terminating zero */
2936         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2937         if (len <= 0)
2938                 return -EFAULT;
2939         if (len > MFD_NAME_MAX_LEN + 1)
2940                 return -EINVAL;
2941
2942         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2943         if (!name)
2944                 return -ENOMEM;
2945
2946         strcpy(name, MFD_NAME_PREFIX);
2947         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2948                 error = -EFAULT;
2949                 goto err_name;
2950         }
2951
2952         /* terminating-zero may have changed after strnlen_user() returned */
2953         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2954                 error = -EFAULT;
2955                 goto err_name;
2956         }
2957
2958         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2959         if (fd < 0) {
2960                 error = fd;
2961                 goto err_name;
2962         }
2963
2964         file = shmem_file_setup(name, 0, VM_NORESERVE);
2965         if (IS_ERR(file)) {
2966                 error = PTR_ERR(file);
2967                 goto err_fd;
2968         }
2969         info = SHMEM_I(file_inode(file));
2970         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2971         file->f_flags |= O_RDWR | O_LARGEFILE;
2972         if (flags & MFD_ALLOW_SEALING)
2973                 info->seals &= ~F_SEAL_SEAL;
2974
2975         fd_install(fd, file);
2976         kfree(name);
2977         return fd;
2978
2979 err_fd:
2980         put_unused_fd(fd);
2981 err_name:
2982         kfree(name);
2983         return error;
2984 }
2985
2986 #endif /* CONFIG_TMPFS */
2987
2988 static void shmem_put_super(struct super_block *sb)
2989 {
2990         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2991
2992         percpu_counter_destroy(&sbinfo->used_blocks);
2993         mpol_put(sbinfo->mpol);
2994         kfree(sbinfo);
2995         sb->s_fs_info = NULL;
2996 }
2997
2998 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2999 {
3000         struct inode *inode;
3001         struct shmem_sb_info *sbinfo;
3002         int err = -ENOMEM;
3003
3004         /* Round up to L1_CACHE_BYTES to resist false sharing */
3005         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3006                                 L1_CACHE_BYTES), GFP_KERNEL);
3007         if (!sbinfo)
3008                 return -ENOMEM;
3009
3010         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3011         sbinfo->uid = current_fsuid();
3012         sbinfo->gid = current_fsgid();
3013         sb->s_fs_info = sbinfo;
3014
3015 #ifdef CONFIG_TMPFS
3016         /*
3017          * Per default we only allow half of the physical ram per
3018          * tmpfs instance, limiting inodes to one per page of lowmem;
3019          * but the internal instance is left unlimited.
3020          */
3021         if (!(sb->s_flags & MS_KERNMOUNT)) {
3022                 sbinfo->max_blocks = shmem_default_max_blocks();
3023                 sbinfo->max_inodes = shmem_default_max_inodes();
3024                 if (shmem_parse_options(data, sbinfo, false)) {
3025                         err = -EINVAL;
3026                         goto failed;
3027                 }
3028         } else {
3029                 sb->s_flags |= MS_NOUSER;
3030         }
3031         sb->s_export_op = &shmem_export_ops;
3032         sb->s_flags |= MS_NOSEC;
3033 #else
3034         sb->s_flags |= MS_NOUSER;
3035 #endif
3036
3037         spin_lock_init(&sbinfo->stat_lock);
3038         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3039                 goto failed;
3040         sbinfo->free_inodes = sbinfo->max_inodes;
3041
3042         sb->s_maxbytes = MAX_LFS_FILESIZE;
3043         sb->s_blocksize = PAGE_CACHE_SIZE;
3044         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3045         sb->s_magic = TMPFS_MAGIC;
3046         sb->s_op = &shmem_ops;
3047         sb->s_time_gran = 1;
3048 #ifdef CONFIG_TMPFS_XATTR
3049         sb->s_xattr = shmem_xattr_handlers;
3050 #endif
3051 #ifdef CONFIG_TMPFS_POSIX_ACL
3052         sb->s_flags |= MS_POSIXACL;
3053 #endif
3054
3055         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3056         if (!inode)
3057                 goto failed;
3058         inode->i_uid = sbinfo->uid;
3059         inode->i_gid = sbinfo->gid;
3060         sb->s_root = d_make_root(inode);
3061         if (!sb->s_root)
3062                 goto failed;
3063         return 0;
3064
3065 failed:
3066         shmem_put_super(sb);
3067         return err;
3068 }
3069
3070 static struct kmem_cache *shmem_inode_cachep;
3071
3072 static struct inode *shmem_alloc_inode(struct super_block *sb)
3073 {
3074         struct shmem_inode_info *info;
3075         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3076         if (!info)
3077                 return NULL;
3078         return &info->vfs_inode;
3079 }
3080
3081 static void shmem_destroy_callback(struct rcu_head *head)
3082 {
3083         struct inode *inode = container_of(head, struct inode, i_rcu);
3084         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3085 }
3086
3087 static void shmem_destroy_inode(struct inode *inode)
3088 {
3089         if (S_ISREG(inode->i_mode))
3090                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3091         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3092 }
3093
3094 static void shmem_init_inode(void *foo)
3095 {
3096         struct shmem_inode_info *info = foo;
3097         inode_init_once(&info->vfs_inode);
3098 }
3099
3100 static int shmem_init_inodecache(void)
3101 {
3102         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3103                                 sizeof(struct shmem_inode_info),
3104                                 0, SLAB_PANIC, shmem_init_inode);
3105         return 0;
3106 }
3107
3108 static void shmem_destroy_inodecache(void)
3109 {
3110         kmem_cache_destroy(shmem_inode_cachep);
3111 }
3112
3113 static const struct address_space_operations shmem_aops = {
3114         .writepage      = shmem_writepage,
3115         .set_page_dirty = __set_page_dirty_no_writeback,
3116 #ifdef CONFIG_TMPFS
3117         .write_begin    = shmem_write_begin,
3118         .write_end      = shmem_write_end,
3119 #endif
3120 #ifdef CONFIG_MIGRATION
3121         .migratepage    = migrate_page,
3122 #endif
3123         .error_remove_page = generic_error_remove_page,
3124 };
3125
3126 static const struct file_operations shmem_file_operations = {
3127         .mmap           = shmem_mmap,
3128 #ifdef CONFIG_TMPFS
3129         .llseek         = shmem_file_llseek,
3130         .read_iter      = shmem_file_read_iter,
3131         .write_iter     = generic_file_write_iter,
3132         .fsync          = noop_fsync,
3133         .splice_read    = shmem_file_splice_read,
3134         .splice_write   = iter_file_splice_write,
3135         .fallocate      = shmem_fallocate,
3136 #endif
3137 };
3138
3139 static const struct inode_operations shmem_inode_operations = {
3140         .getattr        = shmem_getattr,
3141         .setattr        = shmem_setattr,
3142 #ifdef CONFIG_TMPFS_XATTR
3143         .setxattr       = shmem_setxattr,
3144         .getxattr       = shmem_getxattr,
3145         .listxattr      = shmem_listxattr,
3146         .removexattr    = shmem_removexattr,
3147         .set_acl        = simple_set_acl,
3148 #endif
3149 };
3150
3151 static const struct inode_operations shmem_dir_inode_operations = {
3152 #ifdef CONFIG_TMPFS
3153         .create         = shmem_create,
3154         .lookup         = simple_lookup,
3155         .link           = shmem_link,
3156         .unlink         = shmem_unlink,
3157         .symlink        = shmem_symlink,
3158         .mkdir          = shmem_mkdir,
3159         .rmdir          = shmem_rmdir,
3160         .mknod          = shmem_mknod,
3161         .rename2        = shmem_rename2,
3162         .tmpfile        = shmem_tmpfile,
3163 #endif
3164 #ifdef CONFIG_TMPFS_XATTR
3165         .setxattr       = shmem_setxattr,
3166         .getxattr       = shmem_getxattr,
3167         .listxattr      = shmem_listxattr,
3168         .removexattr    = shmem_removexattr,
3169 #endif
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171         .setattr        = shmem_setattr,
3172         .set_acl        = simple_set_acl,
3173 #endif
3174 };
3175
3176 static const struct inode_operations shmem_special_inode_operations = {
3177 #ifdef CONFIG_TMPFS_XATTR
3178         .setxattr       = shmem_setxattr,
3179         .getxattr       = shmem_getxattr,
3180         .listxattr      = shmem_listxattr,
3181         .removexattr    = shmem_removexattr,
3182 #endif
3183 #ifdef CONFIG_TMPFS_POSIX_ACL
3184         .setattr        = shmem_setattr,
3185         .set_acl        = simple_set_acl,
3186 #endif
3187 };
3188
3189 static const struct super_operations shmem_ops = {
3190         .alloc_inode    = shmem_alloc_inode,
3191         .destroy_inode  = shmem_destroy_inode,
3192 #ifdef CONFIG_TMPFS
3193         .statfs         = shmem_statfs,
3194         .remount_fs     = shmem_remount_fs,
3195         .show_options   = shmem_show_options,
3196 #endif
3197         .evict_inode    = shmem_evict_inode,
3198         .drop_inode     = generic_delete_inode,
3199         .put_super      = shmem_put_super,
3200 };
3201
3202 static const struct vm_operations_struct shmem_vm_ops = {
3203         .fault          = shmem_fault,
3204         .map_pages      = filemap_map_pages,
3205 #ifdef CONFIG_NUMA
3206         .set_policy     = shmem_set_policy,
3207         .get_policy     = shmem_get_policy,
3208 #endif
3209 };
3210
3211 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3212         int flags, const char *dev_name, void *data)
3213 {
3214         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3215 }
3216
3217 static struct file_system_type shmem_fs_type = {
3218         .owner          = THIS_MODULE,
3219         .name           = "tmpfs",
3220         .mount          = shmem_mount,
3221         .kill_sb        = kill_litter_super,
3222         .fs_flags       = FS_USERNS_MOUNT,
3223 };
3224
3225 int __init shmem_init(void)
3226 {
3227         int error;
3228
3229         /* If rootfs called this, don't re-init */
3230         if (shmem_inode_cachep)
3231                 return 0;
3232
3233         error = shmem_init_inodecache();
3234         if (error)
3235                 goto out3;
3236
3237         error = register_filesystem(&shmem_fs_type);
3238         if (error) {
3239                 printk(KERN_ERR "Could not register tmpfs\n");
3240                 goto out2;
3241         }
3242
3243         shm_mnt = kern_mount(&shmem_fs_type);
3244         if (IS_ERR(shm_mnt)) {
3245                 error = PTR_ERR(shm_mnt);
3246                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247                 goto out1;
3248         }
3249         return 0;
3250
3251 out1:
3252         unregister_filesystem(&shmem_fs_type);
3253 out2:
3254         shmem_destroy_inodecache();
3255 out3:
3256         shm_mnt = ERR_PTR(error);
3257         return error;
3258 }
3259
3260 #else /* !CONFIG_SHMEM */
3261
3262 /*
3263  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3264  *
3265  * This is intended for small system where the benefits of the full
3266  * shmem code (swap-backed and resource-limited) are outweighed by
3267  * their complexity. On systems without swap this code should be
3268  * effectively equivalent, but much lighter weight.
3269  */
3270
3271 static struct file_system_type shmem_fs_type = {
3272         .name           = "tmpfs",
3273         .mount          = ramfs_mount,
3274         .kill_sb        = kill_litter_super,
3275         .fs_flags       = FS_USERNS_MOUNT,
3276 };
3277
3278 int __init shmem_init(void)
3279 {
3280         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3281
3282         shm_mnt = kern_mount(&shmem_fs_type);
3283         BUG_ON(IS_ERR(shm_mnt));
3284
3285         return 0;
3286 }
3287
3288 int shmem_unuse(swp_entry_t swap, struct page *page)
3289 {
3290         return 0;
3291 }
3292
3293 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3294 {
3295         return 0;
3296 }
3297
3298 void shmem_unlock_mapping(struct address_space *mapping)
3299 {
3300 }
3301
3302 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3303 {
3304         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3305 }
3306 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3307
3308 #define shmem_vm_ops                            generic_file_vm_ops
3309 #define shmem_file_operations                   ramfs_file_operations
3310 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3311 #define shmem_acct_size(flags, size)            0
3312 #define shmem_unacct_size(flags, size)          do {} while (0)
3313
3314 #endif /* CONFIG_SHMEM */
3315
3316 /* common code */
3317
3318 static struct dentry_operations anon_ops = {
3319         .d_dname = simple_dname
3320 };
3321
3322 static struct file *__shmem_file_setup(const char *name, loff_t size,
3323                                        unsigned long flags, unsigned int i_flags)
3324 {
3325         struct file *res;
3326         struct inode *inode;
3327         struct path path;
3328         struct super_block *sb;
3329         struct qstr this;
3330
3331         if (IS_ERR(shm_mnt))
3332                 return ERR_CAST(shm_mnt);
3333
3334         if (size < 0 || size > MAX_LFS_FILESIZE)
3335                 return ERR_PTR(-EINVAL);
3336
3337         if (shmem_acct_size(flags, size))
3338                 return ERR_PTR(-ENOMEM);
3339
3340         res = ERR_PTR(-ENOMEM);
3341         this.name = name;
3342         this.len = strlen(name);
3343         this.hash = 0; /* will go */
3344         sb = shm_mnt->mnt_sb;
3345         path.mnt = mntget(shm_mnt);
3346         path.dentry = d_alloc_pseudo(sb, &this);
3347         if (!path.dentry)
3348                 goto put_memory;
3349         d_set_d_op(path.dentry, &anon_ops);
3350
3351         res = ERR_PTR(-ENOSPC);
3352         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3353         if (!inode)
3354                 goto put_memory;
3355
3356         inode->i_flags |= i_flags;
3357         d_instantiate(path.dentry, inode);
3358         inode->i_size = size;
3359         clear_nlink(inode);     /* It is unlinked */
3360         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3361         if (IS_ERR(res))
3362                 goto put_path;
3363
3364         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3365                   &shmem_file_operations);
3366         if (IS_ERR(res))
3367                 goto put_path;
3368
3369         return res;
3370
3371 put_memory:
3372         shmem_unacct_size(flags, size);
3373 put_path:
3374         path_put(&path);
3375         return res;
3376 }
3377
3378 /**
3379  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3380  *      kernel internal.  There will be NO LSM permission checks against the
3381  *      underlying inode.  So users of this interface must do LSM checks at a
3382  *      higher layer.  The users are the big_key and shm implementations.  LSM
3383  *      checks are provided at the key or shm level rather than the inode.
3384  * @name: name for dentry (to be seen in /proc/<pid>/maps
3385  * @size: size to be set for the file
3386  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3387  */
3388 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3389 {
3390         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3391 }
3392
3393 /**
3394  * shmem_file_setup - get an unlinked file living in tmpfs
3395  * @name: name for dentry (to be seen in /proc/<pid>/maps
3396  * @size: size to be set for the file
3397  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3398  */
3399 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3400 {
3401         return __shmem_file_setup(name, size, flags, 0);
3402 }
3403 EXPORT_SYMBOL_GPL(shmem_file_setup);
3404
3405 /**
3406  * shmem_zero_setup - setup a shared anonymous mapping
3407  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3408  */
3409 int shmem_zero_setup(struct vm_area_struct *vma)
3410 {
3411         struct file *file;
3412         loff_t size = vma->vm_end - vma->vm_start;
3413
3414         /*
3415          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3416          * between XFS directory reading and selinux: since this file is only
3417          * accessible to the user through its mapping, use S_PRIVATE flag to
3418          * bypass file security, in the same way as shmem_kernel_file_setup().
3419          */
3420         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3421         if (IS_ERR(file))
3422                 return PTR_ERR(file);
3423
3424         if (vma->vm_file)
3425                 fput(vma->vm_file);
3426         vma->vm_file = file;
3427         vma->vm_ops = &shmem_vm_ops;
3428         return 0;
3429 }
3430
3431 /**
3432  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3433  * @mapping:    the page's address_space
3434  * @index:      the page index
3435  * @gfp:        the page allocator flags to use if allocating
3436  *
3437  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3438  * with any new page allocations done using the specified allocation flags.
3439  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3440  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3441  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3442  *
3443  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3444  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3445  */
3446 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3447                                          pgoff_t index, gfp_t gfp)
3448 {
3449 #ifdef CONFIG_SHMEM
3450         struct inode *inode = mapping->host;
3451         struct page *page;
3452         int error;
3453
3454         BUG_ON(mapping->a_ops != &shmem_aops);
3455         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3456         if (error)
3457                 page = ERR_PTR(error);
3458         else
3459                 unlock_page(page);
3460         return page;
3461 #else
3462         /*
3463          * The tiny !SHMEM case uses ramfs without swap
3464          */
3465         return read_cache_page_gfp(mapping, index, gfp);
3466 #endif
3467 }
3468 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);