]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
mm/vmscan: replace zone_nr_lru_pages() with get_lruvec_size()
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98         struct mem_cgroup *mem_cgroup;
99         struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field)                    \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetch(&prev->_field);                        \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetchw(&prev->_field);                       \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133  * From 0 .. 100.  Higher means more swappy.
134  */
135 int vm_swappiness = 60;
136 long vm_total_pages;    /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149         return true;
150 }
151 #endif
152
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154 {
155         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 }
157
158 static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
159 {
160         if (!mem_cgroup_disabled())
161                 return mem_cgroup_get_lruvec_size(lruvec, lru);
162
163         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
164 }
165
166 /*
167  * Add a shrinker callback to be called from the vm
168  */
169 void register_shrinker(struct shrinker *shrinker)
170 {
171         atomic_long_set(&shrinker->nr_in_batch, 0);
172         down_write(&shrinker_rwsem);
173         list_add_tail(&shrinker->list, &shrinker_list);
174         up_write(&shrinker_rwsem);
175 }
176 EXPORT_SYMBOL(register_shrinker);
177
178 /*
179  * Remove one
180  */
181 void unregister_shrinker(struct shrinker *shrinker)
182 {
183         down_write(&shrinker_rwsem);
184         list_del(&shrinker->list);
185         up_write(&shrinker_rwsem);
186 }
187 EXPORT_SYMBOL(unregister_shrinker);
188
189 static inline int do_shrinker_shrink(struct shrinker *shrinker,
190                                      struct shrink_control *sc,
191                                      unsigned long nr_to_scan)
192 {
193         sc->nr_to_scan = nr_to_scan;
194         return (*shrinker->shrink)(shrinker, sc);
195 }
196
197 #define SHRINK_BATCH 128
198 /*
199  * Call the shrink functions to age shrinkable caches
200  *
201  * Here we assume it costs one seek to replace a lru page and that it also
202  * takes a seek to recreate a cache object.  With this in mind we age equal
203  * percentages of the lru and ageable caches.  This should balance the seeks
204  * generated by these structures.
205  *
206  * If the vm encountered mapped pages on the LRU it increase the pressure on
207  * slab to avoid swapping.
208  *
209  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
210  *
211  * `lru_pages' represents the number of on-LRU pages in all the zones which
212  * are eligible for the caller's allocation attempt.  It is used for balancing
213  * slab reclaim versus page reclaim.
214  *
215  * Returns the number of slab objects which we shrunk.
216  */
217 unsigned long shrink_slab(struct shrink_control *shrink,
218                           unsigned long nr_pages_scanned,
219                           unsigned long lru_pages)
220 {
221         struct shrinker *shrinker;
222         unsigned long ret = 0;
223
224         if (nr_pages_scanned == 0)
225                 nr_pages_scanned = SWAP_CLUSTER_MAX;
226
227         if (!down_read_trylock(&shrinker_rwsem)) {
228                 /* Assume we'll be able to shrink next time */
229                 ret = 1;
230                 goto out;
231         }
232
233         list_for_each_entry(shrinker, &shrinker_list, list) {
234                 unsigned long long delta;
235                 long total_scan;
236                 long max_pass;
237                 int shrink_ret = 0;
238                 long nr;
239                 long new_nr;
240                 long batch_size = shrinker->batch ? shrinker->batch
241                                                   : SHRINK_BATCH;
242
243                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
244                 if (max_pass <= 0)
245                         continue;
246
247                 /*
248                  * copy the current shrinker scan count into a local variable
249                  * and zero it so that other concurrent shrinker invocations
250                  * don't also do this scanning work.
251                  */
252                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
253
254                 total_scan = nr;
255                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
256                 delta *= max_pass;
257                 do_div(delta, lru_pages + 1);
258                 total_scan += delta;
259                 if (total_scan < 0) {
260                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
261                                "delete nr=%ld\n",
262                                shrinker->shrink, total_scan);
263                         total_scan = max_pass;
264                 }
265
266                 /*
267                  * We need to avoid excessive windup on filesystem shrinkers
268                  * due to large numbers of GFP_NOFS allocations causing the
269                  * shrinkers to return -1 all the time. This results in a large
270                  * nr being built up so when a shrink that can do some work
271                  * comes along it empties the entire cache due to nr >>>
272                  * max_pass.  This is bad for sustaining a working set in
273                  * memory.
274                  *
275                  * Hence only allow the shrinker to scan the entire cache when
276                  * a large delta change is calculated directly.
277                  */
278                 if (delta < max_pass / 4)
279                         total_scan = min(total_scan, max_pass / 2);
280
281                 /*
282                  * Avoid risking looping forever due to too large nr value:
283                  * never try to free more than twice the estimate number of
284                  * freeable entries.
285                  */
286                 if (total_scan > max_pass * 2)
287                         total_scan = max_pass * 2;
288
289                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
290                                         nr_pages_scanned, lru_pages,
291                                         max_pass, delta, total_scan);
292
293                 while (total_scan >= batch_size) {
294                         int nr_before;
295
296                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
297                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
298                                                         batch_size);
299                         if (shrink_ret == -1)
300                                 break;
301                         if (shrink_ret < nr_before)
302                                 ret += nr_before - shrink_ret;
303                         count_vm_events(SLABS_SCANNED, batch_size);
304                         total_scan -= batch_size;
305
306                         cond_resched();
307                 }
308
309                 /*
310                  * move the unused scan count back into the shrinker in a
311                  * manner that handles concurrent updates. If we exhausted the
312                  * scan, there is no need to do an update.
313                  */
314                 if (total_scan > 0)
315                         new_nr = atomic_long_add_return(total_scan,
316                                         &shrinker->nr_in_batch);
317                 else
318                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
319
320                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
321         }
322         up_read(&shrinker_rwsem);
323 out:
324         cond_resched();
325         return ret;
326 }
327
328 static inline int is_page_cache_freeable(struct page *page)
329 {
330         /*
331          * A freeable page cache page is referenced only by the caller
332          * that isolated the page, the page cache radix tree and
333          * optional buffer heads at page->private.
334          */
335         return page_count(page) - page_has_private(page) == 2;
336 }
337
338 static int may_write_to_queue(struct backing_dev_info *bdi,
339                               struct scan_control *sc)
340 {
341         if (current->flags & PF_SWAPWRITE)
342                 return 1;
343         if (!bdi_write_congested(bdi))
344                 return 1;
345         if (bdi == current->backing_dev_info)
346                 return 1;
347         return 0;
348 }
349
350 /*
351  * We detected a synchronous write error writing a page out.  Probably
352  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
353  * fsync(), msync() or close().
354  *
355  * The tricky part is that after writepage we cannot touch the mapping: nothing
356  * prevents it from being freed up.  But we have a ref on the page and once
357  * that page is locked, the mapping is pinned.
358  *
359  * We're allowed to run sleeping lock_page() here because we know the caller has
360  * __GFP_FS.
361  */
362 static void handle_write_error(struct address_space *mapping,
363                                 struct page *page, int error)
364 {
365         lock_page(page);
366         if (page_mapping(page) == mapping)
367                 mapping_set_error(mapping, error);
368         unlock_page(page);
369 }
370
371 /* possible outcome of pageout() */
372 typedef enum {
373         /* failed to write page out, page is locked */
374         PAGE_KEEP,
375         /* move page to the active list, page is locked */
376         PAGE_ACTIVATE,
377         /* page has been sent to the disk successfully, page is unlocked */
378         PAGE_SUCCESS,
379         /* page is clean and locked */
380         PAGE_CLEAN,
381 } pageout_t;
382
383 /*
384  * pageout is called by shrink_page_list() for each dirty page.
385  * Calls ->writepage().
386  */
387 static pageout_t pageout(struct page *page, struct address_space *mapping,
388                          struct scan_control *sc)
389 {
390         /*
391          * If the page is dirty, only perform writeback if that write
392          * will be non-blocking.  To prevent this allocation from being
393          * stalled by pagecache activity.  But note that there may be
394          * stalls if we need to run get_block().  We could test
395          * PagePrivate for that.
396          *
397          * If this process is currently in __generic_file_aio_write() against
398          * this page's queue, we can perform writeback even if that
399          * will block.
400          *
401          * If the page is swapcache, write it back even if that would
402          * block, for some throttling. This happens by accident, because
403          * swap_backing_dev_info is bust: it doesn't reflect the
404          * congestion state of the swapdevs.  Easy to fix, if needed.
405          */
406         if (!is_page_cache_freeable(page))
407                 return PAGE_KEEP;
408         if (!mapping) {
409                 /*
410                  * Some data journaling orphaned pages can have
411                  * page->mapping == NULL while being dirty with clean buffers.
412                  */
413                 if (page_has_private(page)) {
414                         if (try_to_free_buffers(page)) {
415                                 ClearPageDirty(page);
416                                 printk("%s: orphaned page\n", __func__);
417                                 return PAGE_CLEAN;
418                         }
419                 }
420                 return PAGE_KEEP;
421         }
422         if (mapping->a_ops->writepage == NULL)
423                 return PAGE_ACTIVATE;
424         if (!may_write_to_queue(mapping->backing_dev_info, sc))
425                 return PAGE_KEEP;
426
427         if (clear_page_dirty_for_io(page)) {
428                 int res;
429                 struct writeback_control wbc = {
430                         .sync_mode = WB_SYNC_NONE,
431                         .nr_to_write = SWAP_CLUSTER_MAX,
432                         .range_start = 0,
433                         .range_end = LLONG_MAX,
434                         .for_reclaim = 1,
435                 };
436
437                 SetPageReclaim(page);
438                 res = mapping->a_ops->writepage(page, &wbc);
439                 if (res < 0)
440                         handle_write_error(mapping, page, res);
441                 if (res == AOP_WRITEPAGE_ACTIVATE) {
442                         ClearPageReclaim(page);
443                         return PAGE_ACTIVATE;
444                 }
445
446                 if (!PageWriteback(page)) {
447                         /* synchronous write or broken a_ops? */
448                         ClearPageReclaim(page);
449                 }
450                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
451                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
452                 return PAGE_SUCCESS;
453         }
454
455         return PAGE_CLEAN;
456 }
457
458 /*
459  * Same as remove_mapping, but if the page is removed from the mapping, it
460  * gets returned with a refcount of 0.
461  */
462 static int __remove_mapping(struct address_space *mapping, struct page *page)
463 {
464         BUG_ON(!PageLocked(page));
465         BUG_ON(mapping != page_mapping(page));
466
467         spin_lock_irq(&mapping->tree_lock);
468         /*
469          * The non racy check for a busy page.
470          *
471          * Must be careful with the order of the tests. When someone has
472          * a ref to the page, it may be possible that they dirty it then
473          * drop the reference. So if PageDirty is tested before page_count
474          * here, then the following race may occur:
475          *
476          * get_user_pages(&page);
477          * [user mapping goes away]
478          * write_to(page);
479          *                              !PageDirty(page)    [good]
480          * SetPageDirty(page);
481          * put_page(page);
482          *                              !page_count(page)   [good, discard it]
483          *
484          * [oops, our write_to data is lost]
485          *
486          * Reversing the order of the tests ensures such a situation cannot
487          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
488          * load is not satisfied before that of page->_count.
489          *
490          * Note that if SetPageDirty is always performed via set_page_dirty,
491          * and thus under tree_lock, then this ordering is not required.
492          */
493         if (!page_freeze_refs(page, 2))
494                 goto cannot_free;
495         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
496         if (unlikely(PageDirty(page))) {
497                 page_unfreeze_refs(page, 2);
498                 goto cannot_free;
499         }
500
501         if (PageSwapCache(page)) {
502                 swp_entry_t swap = { .val = page_private(page) };
503                 __delete_from_swap_cache(page);
504                 spin_unlock_irq(&mapping->tree_lock);
505                 swapcache_free(swap, page);
506         } else {
507                 void (*freepage)(struct page *);
508
509                 freepage = mapping->a_ops->freepage;
510
511                 __delete_from_page_cache(page);
512                 spin_unlock_irq(&mapping->tree_lock);
513                 mem_cgroup_uncharge_cache_page(page);
514
515                 if (freepage != NULL)
516                         freepage(page);
517         }
518
519         return 1;
520
521 cannot_free:
522         spin_unlock_irq(&mapping->tree_lock);
523         return 0;
524 }
525
526 /*
527  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
528  * someone else has a ref on the page, abort and return 0.  If it was
529  * successfully detached, return 1.  Assumes the caller has a single ref on
530  * this page.
531  */
532 int remove_mapping(struct address_space *mapping, struct page *page)
533 {
534         if (__remove_mapping(mapping, page)) {
535                 /*
536                  * Unfreezing the refcount with 1 rather than 2 effectively
537                  * drops the pagecache ref for us without requiring another
538                  * atomic operation.
539                  */
540                 page_unfreeze_refs(page, 1);
541                 return 1;
542         }
543         return 0;
544 }
545
546 /**
547  * putback_lru_page - put previously isolated page onto appropriate LRU list
548  * @page: page to be put back to appropriate lru list
549  *
550  * Add previously isolated @page to appropriate LRU list.
551  * Page may still be unevictable for other reasons.
552  *
553  * lru_lock must not be held, interrupts must be enabled.
554  */
555 void putback_lru_page(struct page *page)
556 {
557         int lru;
558         int active = !!TestClearPageActive(page);
559         int was_unevictable = PageUnevictable(page);
560
561         VM_BUG_ON(PageLRU(page));
562
563 redo:
564         ClearPageUnevictable(page);
565
566         if (page_evictable(page, NULL)) {
567                 /*
568                  * For evictable pages, we can use the cache.
569                  * In event of a race, worst case is we end up with an
570                  * unevictable page on [in]active list.
571                  * We know how to handle that.
572                  */
573                 lru = active + page_lru_base_type(page);
574                 lru_cache_add_lru(page, lru);
575         } else {
576                 /*
577                  * Put unevictable pages directly on zone's unevictable
578                  * list.
579                  */
580                 lru = LRU_UNEVICTABLE;
581                 add_page_to_unevictable_list(page);
582                 /*
583                  * When racing with an mlock or AS_UNEVICTABLE clearing
584                  * (page is unlocked) make sure that if the other thread
585                  * does not observe our setting of PG_lru and fails
586                  * isolation/check_move_unevictable_pages,
587                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
588                  * the page back to the evictable list.
589                  *
590                  * The other side is TestClearPageMlocked() or shmem_lock().
591                  */
592                 smp_mb();
593         }
594
595         /*
596          * page's status can change while we move it among lru. If an evictable
597          * page is on unevictable list, it never be freed. To avoid that,
598          * check after we added it to the list, again.
599          */
600         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
601                 if (!isolate_lru_page(page)) {
602                         put_page(page);
603                         goto redo;
604                 }
605                 /* This means someone else dropped this page from LRU
606                  * So, it will be freed or putback to LRU again. There is
607                  * nothing to do here.
608                  */
609         }
610
611         if (was_unevictable && lru != LRU_UNEVICTABLE)
612                 count_vm_event(UNEVICTABLE_PGRESCUED);
613         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
614                 count_vm_event(UNEVICTABLE_PGCULLED);
615
616         put_page(page);         /* drop ref from isolate */
617 }
618
619 enum page_references {
620         PAGEREF_RECLAIM,
621         PAGEREF_RECLAIM_CLEAN,
622         PAGEREF_KEEP,
623         PAGEREF_ACTIVATE,
624 };
625
626 static enum page_references page_check_references(struct page *page,
627                                                   struct scan_control *sc)
628 {
629         int referenced_ptes, referenced_page;
630         unsigned long vm_flags;
631
632         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
633                                           &vm_flags);
634         referenced_page = TestClearPageReferenced(page);
635
636         /*
637          * Mlock lost the isolation race with us.  Let try_to_unmap()
638          * move the page to the unevictable list.
639          */
640         if (vm_flags & VM_LOCKED)
641                 return PAGEREF_RECLAIM;
642
643         if (referenced_ptes) {
644                 if (PageSwapBacked(page))
645                         return PAGEREF_ACTIVATE;
646                 /*
647                  * All mapped pages start out with page table
648                  * references from the instantiating fault, so we need
649                  * to look twice if a mapped file page is used more
650                  * than once.
651                  *
652                  * Mark it and spare it for another trip around the
653                  * inactive list.  Another page table reference will
654                  * lead to its activation.
655                  *
656                  * Note: the mark is set for activated pages as well
657                  * so that recently deactivated but used pages are
658                  * quickly recovered.
659                  */
660                 SetPageReferenced(page);
661
662                 if (referenced_page || referenced_ptes > 1)
663                         return PAGEREF_ACTIVATE;
664
665                 /*
666                  * Activate file-backed executable pages after first usage.
667                  */
668                 if (vm_flags & VM_EXEC)
669                         return PAGEREF_ACTIVATE;
670
671                 return PAGEREF_KEEP;
672         }
673
674         /* Reclaim if clean, defer dirty pages to writeback */
675         if (referenced_page && !PageSwapBacked(page))
676                 return PAGEREF_RECLAIM_CLEAN;
677
678         return PAGEREF_RECLAIM;
679 }
680
681 /*
682  * shrink_page_list() returns the number of reclaimed pages
683  */
684 static unsigned long shrink_page_list(struct list_head *page_list,
685                                       struct zone *zone,
686                                       struct scan_control *sc,
687                                       unsigned long *ret_nr_dirty,
688                                       unsigned long *ret_nr_writeback)
689 {
690         LIST_HEAD(ret_pages);
691         LIST_HEAD(free_pages);
692         int pgactivate = 0;
693         unsigned long nr_dirty = 0;
694         unsigned long nr_congested = 0;
695         unsigned long nr_reclaimed = 0;
696         unsigned long nr_writeback = 0;
697
698         cond_resched();
699
700         while (!list_empty(page_list)) {
701                 enum page_references references;
702                 struct address_space *mapping;
703                 struct page *page;
704                 int may_enter_fs;
705
706                 cond_resched();
707
708                 page = lru_to_page(page_list);
709                 list_del(&page->lru);
710
711                 if (!trylock_page(page))
712                         goto keep;
713
714                 VM_BUG_ON(PageActive(page));
715                 VM_BUG_ON(page_zone(page) != zone);
716
717                 sc->nr_scanned++;
718
719                 if (unlikely(!page_evictable(page, NULL)))
720                         goto cull_mlocked;
721
722                 if (!sc->may_unmap && page_mapped(page))
723                         goto keep_locked;
724
725                 /* Double the slab pressure for mapped and swapcache pages */
726                 if (page_mapped(page) || PageSwapCache(page))
727                         sc->nr_scanned++;
728
729                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
730                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
731
732                 if (PageWriteback(page)) {
733                         nr_writeback++;
734                         unlock_page(page);
735                         goto keep;
736                 }
737
738                 references = page_check_references(page, sc);
739                 switch (references) {
740                 case PAGEREF_ACTIVATE:
741                         goto activate_locked;
742                 case PAGEREF_KEEP:
743                         goto keep_locked;
744                 case PAGEREF_RECLAIM:
745                 case PAGEREF_RECLAIM_CLEAN:
746                         ; /* try to reclaim the page below */
747                 }
748
749                 /*
750                  * Anonymous process memory has backing store?
751                  * Try to allocate it some swap space here.
752                  */
753                 if (PageAnon(page) && !PageSwapCache(page)) {
754                         if (!(sc->gfp_mask & __GFP_IO))
755                                 goto keep_locked;
756                         if (!add_to_swap(page))
757                                 goto activate_locked;
758                         may_enter_fs = 1;
759                 }
760
761                 mapping = page_mapping(page);
762
763                 /*
764                  * The page is mapped into the page tables of one or more
765                  * processes. Try to unmap it here.
766                  */
767                 if (page_mapped(page) && mapping) {
768                         switch (try_to_unmap(page, TTU_UNMAP)) {
769                         case SWAP_FAIL:
770                                 goto activate_locked;
771                         case SWAP_AGAIN:
772                                 goto keep_locked;
773                         case SWAP_MLOCK:
774                                 goto cull_mlocked;
775                         case SWAP_SUCCESS:
776                                 ; /* try to free the page below */
777                         }
778                 }
779
780                 if (PageDirty(page)) {
781                         nr_dirty++;
782
783                         /*
784                          * Only kswapd can writeback filesystem pages to
785                          * avoid risk of stack overflow but do not writeback
786                          * unless under significant pressure.
787                          */
788                         if (page_is_file_cache(page) &&
789                                         (!current_is_kswapd() ||
790                                          sc->priority >= DEF_PRIORITY - 2)) {
791                                 /*
792                                  * Immediately reclaim when written back.
793                                  * Similar in principal to deactivate_page()
794                                  * except we already have the page isolated
795                                  * and know it's dirty
796                                  */
797                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
798                                 SetPageReclaim(page);
799
800                                 goto keep_locked;
801                         }
802
803                         if (references == PAGEREF_RECLAIM_CLEAN)
804                                 goto keep_locked;
805                         if (!may_enter_fs)
806                                 goto keep_locked;
807                         if (!sc->may_writepage)
808                                 goto keep_locked;
809
810                         /* Page is dirty, try to write it out here */
811                         switch (pageout(page, mapping, sc)) {
812                         case PAGE_KEEP:
813                                 nr_congested++;
814                                 goto keep_locked;
815                         case PAGE_ACTIVATE:
816                                 goto activate_locked;
817                         case PAGE_SUCCESS:
818                                 if (PageWriteback(page))
819                                         goto keep;
820                                 if (PageDirty(page))
821                                         goto keep;
822
823                                 /*
824                                  * A synchronous write - probably a ramdisk.  Go
825                                  * ahead and try to reclaim the page.
826                                  */
827                                 if (!trylock_page(page))
828                                         goto keep;
829                                 if (PageDirty(page) || PageWriteback(page))
830                                         goto keep_locked;
831                                 mapping = page_mapping(page);
832                         case PAGE_CLEAN:
833                                 ; /* try to free the page below */
834                         }
835                 }
836
837                 /*
838                  * If the page has buffers, try to free the buffer mappings
839                  * associated with this page. If we succeed we try to free
840                  * the page as well.
841                  *
842                  * We do this even if the page is PageDirty().
843                  * try_to_release_page() does not perform I/O, but it is
844                  * possible for a page to have PageDirty set, but it is actually
845                  * clean (all its buffers are clean).  This happens if the
846                  * buffers were written out directly, with submit_bh(). ext3
847                  * will do this, as well as the blockdev mapping.
848                  * try_to_release_page() will discover that cleanness and will
849                  * drop the buffers and mark the page clean - it can be freed.
850                  *
851                  * Rarely, pages can have buffers and no ->mapping.  These are
852                  * the pages which were not successfully invalidated in
853                  * truncate_complete_page().  We try to drop those buffers here
854                  * and if that worked, and the page is no longer mapped into
855                  * process address space (page_count == 1) it can be freed.
856                  * Otherwise, leave the page on the LRU so it is swappable.
857                  */
858                 if (page_has_private(page)) {
859                         if (!try_to_release_page(page, sc->gfp_mask))
860                                 goto activate_locked;
861                         if (!mapping && page_count(page) == 1) {
862                                 unlock_page(page);
863                                 if (put_page_testzero(page))
864                                         goto free_it;
865                                 else {
866                                         /*
867                                          * rare race with speculative reference.
868                                          * the speculative reference will free
869                                          * this page shortly, so we may
870                                          * increment nr_reclaimed here (and
871                                          * leave it off the LRU).
872                                          */
873                                         nr_reclaimed++;
874                                         continue;
875                                 }
876                         }
877                 }
878
879                 if (!mapping || !__remove_mapping(mapping, page))
880                         goto keep_locked;
881
882                 /*
883                  * At this point, we have no other references and there is
884                  * no way to pick any more up (removed from LRU, removed
885                  * from pagecache). Can use non-atomic bitops now (and
886                  * we obviously don't have to worry about waking up a process
887                  * waiting on the page lock, because there are no references.
888                  */
889                 __clear_page_locked(page);
890 free_it:
891                 nr_reclaimed++;
892
893                 /*
894                  * Is there need to periodically free_page_list? It would
895                  * appear not as the counts should be low
896                  */
897                 list_add(&page->lru, &free_pages);
898                 continue;
899
900 cull_mlocked:
901                 if (PageSwapCache(page))
902                         try_to_free_swap(page);
903                 unlock_page(page);
904                 putback_lru_page(page);
905                 continue;
906
907 activate_locked:
908                 /* Not a candidate for swapping, so reclaim swap space. */
909                 if (PageSwapCache(page) && vm_swap_full())
910                         try_to_free_swap(page);
911                 VM_BUG_ON(PageActive(page));
912                 SetPageActive(page);
913                 pgactivate++;
914 keep_locked:
915                 unlock_page(page);
916 keep:
917                 list_add(&page->lru, &ret_pages);
918                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
919         }
920
921         /*
922          * Tag a zone as congested if all the dirty pages encountered were
923          * backed by a congested BDI. In this case, reclaimers should just
924          * back off and wait for congestion to clear because further reclaim
925          * will encounter the same problem
926          */
927         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
928                 zone_set_flag(zone, ZONE_CONGESTED);
929
930         free_hot_cold_page_list(&free_pages, 1);
931
932         list_splice(&ret_pages, page_list);
933         count_vm_events(PGACTIVATE, pgactivate);
934         *ret_nr_dirty += nr_dirty;
935         *ret_nr_writeback += nr_writeback;
936         return nr_reclaimed;
937 }
938
939 /*
940  * Attempt to remove the specified page from its LRU.  Only take this page
941  * if it is of the appropriate PageActive status.  Pages which are being
942  * freed elsewhere are also ignored.
943  *
944  * page:        page to consider
945  * mode:        one of the LRU isolation modes defined above
946  *
947  * returns 0 on success, -ve errno on failure.
948  */
949 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
950 {
951         int ret = -EINVAL;
952
953         /* Only take pages on the LRU. */
954         if (!PageLRU(page))
955                 return ret;
956
957         /* Do not give back unevictable pages for compaction */
958         if (PageUnevictable(page))
959                 return ret;
960
961         ret = -EBUSY;
962
963         /*
964          * To minimise LRU disruption, the caller can indicate that it only
965          * wants to isolate pages it will be able to operate on without
966          * blocking - clean pages for the most part.
967          *
968          * ISOLATE_CLEAN means that only clean pages should be isolated. This
969          * is used by reclaim when it is cannot write to backing storage
970          *
971          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
972          * that it is possible to migrate without blocking
973          */
974         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
975                 /* All the caller can do on PageWriteback is block */
976                 if (PageWriteback(page))
977                         return ret;
978
979                 if (PageDirty(page)) {
980                         struct address_space *mapping;
981
982                         /* ISOLATE_CLEAN means only clean pages */
983                         if (mode & ISOLATE_CLEAN)
984                                 return ret;
985
986                         /*
987                          * Only pages without mappings or that have a
988                          * ->migratepage callback are possible to migrate
989                          * without blocking
990                          */
991                         mapping = page_mapping(page);
992                         if (mapping && !mapping->a_ops->migratepage)
993                                 return ret;
994                 }
995         }
996
997         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
998                 return ret;
999
1000         if (likely(get_page_unless_zero(page))) {
1001                 /*
1002                  * Be careful not to clear PageLRU until after we're
1003                  * sure the page is not being freed elsewhere -- the
1004                  * page release code relies on it.
1005                  */
1006                 ClearPageLRU(page);
1007                 ret = 0;
1008         }
1009
1010         return ret;
1011 }
1012
1013 /*
1014  * zone->lru_lock is heavily contended.  Some of the functions that
1015  * shrink the lists perform better by taking out a batch of pages
1016  * and working on them outside the LRU lock.
1017  *
1018  * For pagecache intensive workloads, this function is the hottest
1019  * spot in the kernel (apart from copy_*_user functions).
1020  *
1021  * Appropriate locks must be held before calling this function.
1022  *
1023  * @nr_to_scan: The number of pages to look through on the list.
1024  * @lruvec:     The LRU vector to pull pages from.
1025  * @dst:        The temp list to put pages on to.
1026  * @nr_scanned: The number of pages that were scanned.
1027  * @sc:         The scan_control struct for this reclaim session
1028  * @mode:       One of the LRU isolation modes
1029  * @lru:        LRU list id for isolating
1030  *
1031  * returns how many pages were moved onto *@dst.
1032  */
1033 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1034                 struct lruvec *lruvec, struct list_head *dst,
1035                 unsigned long *nr_scanned, struct scan_control *sc,
1036                 isolate_mode_t mode, enum lru_list lru)
1037 {
1038         struct list_head *src;
1039         unsigned long nr_taken = 0;
1040         unsigned long scan;
1041         int file = is_file_lru(lru);
1042
1043         src = &lruvec->lists[lru];
1044
1045         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1046                 struct page *page;
1047
1048                 page = lru_to_page(src);
1049                 prefetchw_prev_lru_page(page, src, flags);
1050
1051                 VM_BUG_ON(!PageLRU(page));
1052
1053                 switch (__isolate_lru_page(page, mode)) {
1054                 case 0:
1055                         mem_cgroup_lru_del_list(page, lru);
1056                         list_move(&page->lru, dst);
1057                         nr_taken += hpage_nr_pages(page);
1058                         break;
1059
1060                 case -EBUSY:
1061                         /* else it is being freed elsewhere */
1062                         list_move(&page->lru, src);
1063                         continue;
1064
1065                 default:
1066                         BUG();
1067                 }
1068         }
1069
1070         *nr_scanned = scan;
1071
1072         trace_mm_vmscan_lru_isolate(sc->order,
1073                         nr_to_scan, scan,
1074                         nr_taken,
1075                         mode, file);
1076         return nr_taken;
1077 }
1078
1079 /**
1080  * isolate_lru_page - tries to isolate a page from its LRU list
1081  * @page: page to isolate from its LRU list
1082  *
1083  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1084  * vmstat statistic corresponding to whatever LRU list the page was on.
1085  *
1086  * Returns 0 if the page was removed from an LRU list.
1087  * Returns -EBUSY if the page was not on an LRU list.
1088  *
1089  * The returned page will have PageLRU() cleared.  If it was found on
1090  * the active list, it will have PageActive set.  If it was found on
1091  * the unevictable list, it will have the PageUnevictable bit set. That flag
1092  * may need to be cleared by the caller before letting the page go.
1093  *
1094  * The vmstat statistic corresponding to the list on which the page was
1095  * found will be decremented.
1096  *
1097  * Restrictions:
1098  * (1) Must be called with an elevated refcount on the page. This is a
1099  *     fundamentnal difference from isolate_lru_pages (which is called
1100  *     without a stable reference).
1101  * (2) the lru_lock must not be held.
1102  * (3) interrupts must be enabled.
1103  */
1104 int isolate_lru_page(struct page *page)
1105 {
1106         int ret = -EBUSY;
1107
1108         VM_BUG_ON(!page_count(page));
1109
1110         if (PageLRU(page)) {
1111                 struct zone *zone = page_zone(page);
1112
1113                 spin_lock_irq(&zone->lru_lock);
1114                 if (PageLRU(page)) {
1115                         int lru = page_lru(page);
1116                         ret = 0;
1117                         get_page(page);
1118                         ClearPageLRU(page);
1119
1120                         del_page_from_lru_list(zone, page, lru);
1121                 }
1122                 spin_unlock_irq(&zone->lru_lock);
1123         }
1124         return ret;
1125 }
1126
1127 /*
1128  * Are there way too many processes in the direct reclaim path already?
1129  */
1130 static int too_many_isolated(struct zone *zone, int file,
1131                 struct scan_control *sc)
1132 {
1133         unsigned long inactive, isolated;
1134
1135         if (current_is_kswapd())
1136                 return 0;
1137
1138         if (!global_reclaim(sc))
1139                 return 0;
1140
1141         if (file) {
1142                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1143                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1144         } else {
1145                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1146                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1147         }
1148
1149         return isolated > inactive;
1150 }
1151
1152 static noinline_for_stack void
1153 putback_inactive_pages(struct lruvec *lruvec,
1154                        struct list_head *page_list)
1155 {
1156         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1157         struct zone *zone = lruvec_zone(lruvec);
1158         LIST_HEAD(pages_to_free);
1159
1160         /*
1161          * Put back any unfreeable pages.
1162          */
1163         while (!list_empty(page_list)) {
1164                 struct page *page = lru_to_page(page_list);
1165                 int lru;
1166
1167                 VM_BUG_ON(PageLRU(page));
1168                 list_del(&page->lru);
1169                 if (unlikely(!page_evictable(page, NULL))) {
1170                         spin_unlock_irq(&zone->lru_lock);
1171                         putback_lru_page(page);
1172                         spin_lock_irq(&zone->lru_lock);
1173                         continue;
1174                 }
1175                 SetPageLRU(page);
1176                 lru = page_lru(page);
1177                 add_page_to_lru_list(zone, page, lru);
1178                 if (is_active_lru(lru)) {
1179                         int file = is_file_lru(lru);
1180                         int numpages = hpage_nr_pages(page);
1181                         reclaim_stat->recent_rotated[file] += numpages;
1182                 }
1183                 if (put_page_testzero(page)) {
1184                         __ClearPageLRU(page);
1185                         __ClearPageActive(page);
1186                         del_page_from_lru_list(zone, page, lru);
1187
1188                         if (unlikely(PageCompound(page))) {
1189                                 spin_unlock_irq(&zone->lru_lock);
1190                                 (*get_compound_page_dtor(page))(page);
1191                                 spin_lock_irq(&zone->lru_lock);
1192                         } else
1193                                 list_add(&page->lru, &pages_to_free);
1194                 }
1195         }
1196
1197         /*
1198          * To save our caller's stack, now use input list for pages to free.
1199          */
1200         list_splice(&pages_to_free, page_list);
1201 }
1202
1203 /*
1204  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1205  * of reclaimed pages
1206  */
1207 static noinline_for_stack unsigned long
1208 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1209                      struct scan_control *sc, enum lru_list lru)
1210 {
1211         LIST_HEAD(page_list);
1212         unsigned long nr_scanned;
1213         unsigned long nr_reclaimed = 0;
1214         unsigned long nr_taken;
1215         unsigned long nr_dirty = 0;
1216         unsigned long nr_writeback = 0;
1217         isolate_mode_t isolate_mode = 0;
1218         int file = is_file_lru(lru);
1219         struct zone *zone = mz->zone;
1220         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1221         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1222
1223         while (unlikely(too_many_isolated(zone, file, sc))) {
1224                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1225
1226                 /* We are about to die and free our memory. Return now. */
1227                 if (fatal_signal_pending(current))
1228                         return SWAP_CLUSTER_MAX;
1229         }
1230
1231         lru_add_drain();
1232
1233         if (!sc->may_unmap)
1234                 isolate_mode |= ISOLATE_UNMAPPED;
1235         if (!sc->may_writepage)
1236                 isolate_mode |= ISOLATE_CLEAN;
1237
1238         spin_lock_irq(&zone->lru_lock);
1239
1240         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1241                                      &nr_scanned, sc, isolate_mode, lru);
1242
1243         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1244         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1245
1246         if (global_reclaim(sc)) {
1247                 zone->pages_scanned += nr_scanned;
1248                 if (current_is_kswapd())
1249                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1250                                                nr_scanned);
1251                 else
1252                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1253                                                nr_scanned);
1254         }
1255         spin_unlock_irq(&zone->lru_lock);
1256
1257         if (nr_taken == 0)
1258                 return 0;
1259
1260         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1261                                                 &nr_dirty, &nr_writeback);
1262
1263         spin_lock_irq(&zone->lru_lock);
1264
1265         reclaim_stat->recent_scanned[file] += nr_taken;
1266
1267         if (global_reclaim(sc)) {
1268                 if (current_is_kswapd())
1269                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1270                                                nr_reclaimed);
1271                 else
1272                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1273                                                nr_reclaimed);
1274         }
1275
1276         putback_inactive_pages(lruvec, &page_list);
1277
1278         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1279
1280         spin_unlock_irq(&zone->lru_lock);
1281
1282         free_hot_cold_page_list(&page_list, 1);
1283
1284         /*
1285          * If reclaim is isolating dirty pages under writeback, it implies
1286          * that the long-lived page allocation rate is exceeding the page
1287          * laundering rate. Either the global limits are not being effective
1288          * at throttling processes due to the page distribution throughout
1289          * zones or there is heavy usage of a slow backing device. The
1290          * only option is to throttle from reclaim context which is not ideal
1291          * as there is no guarantee the dirtying process is throttled in the
1292          * same way balance_dirty_pages() manages.
1293          *
1294          * This scales the number of dirty pages that must be under writeback
1295          * before throttling depending on priority. It is a simple backoff
1296          * function that has the most effect in the range DEF_PRIORITY to
1297          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1298          * in trouble and reclaim is considered to be in trouble.
1299          *
1300          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1301          * DEF_PRIORITY-1  50% must be PageWriteback
1302          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1303          * ...
1304          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1305          *                     isolated page is PageWriteback
1306          */
1307         if (nr_writeback && nr_writeback >=
1308                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1309                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1310
1311         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1312                 zone_idx(zone),
1313                 nr_scanned, nr_reclaimed,
1314                 sc->priority,
1315                 trace_shrink_flags(file));
1316         return nr_reclaimed;
1317 }
1318
1319 /*
1320  * This moves pages from the active list to the inactive list.
1321  *
1322  * We move them the other way if the page is referenced by one or more
1323  * processes, from rmap.
1324  *
1325  * If the pages are mostly unmapped, the processing is fast and it is
1326  * appropriate to hold zone->lru_lock across the whole operation.  But if
1327  * the pages are mapped, the processing is slow (page_referenced()) so we
1328  * should drop zone->lru_lock around each page.  It's impossible to balance
1329  * this, so instead we remove the pages from the LRU while processing them.
1330  * It is safe to rely on PG_active against the non-LRU pages in here because
1331  * nobody will play with that bit on a non-LRU page.
1332  *
1333  * The downside is that we have to touch page->_count against each page.
1334  * But we had to alter page->flags anyway.
1335  */
1336
1337 static void move_active_pages_to_lru(struct zone *zone,
1338                                      struct list_head *list,
1339                                      struct list_head *pages_to_free,
1340                                      enum lru_list lru)
1341 {
1342         unsigned long pgmoved = 0;
1343         struct page *page;
1344
1345         while (!list_empty(list)) {
1346                 struct lruvec *lruvec;
1347
1348                 page = lru_to_page(list);
1349
1350                 VM_BUG_ON(PageLRU(page));
1351                 SetPageLRU(page);
1352
1353                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1354                 list_move(&page->lru, &lruvec->lists[lru]);
1355                 pgmoved += hpage_nr_pages(page);
1356
1357                 if (put_page_testzero(page)) {
1358                         __ClearPageLRU(page);
1359                         __ClearPageActive(page);
1360                         del_page_from_lru_list(zone, page, lru);
1361
1362                         if (unlikely(PageCompound(page))) {
1363                                 spin_unlock_irq(&zone->lru_lock);
1364                                 (*get_compound_page_dtor(page))(page);
1365                                 spin_lock_irq(&zone->lru_lock);
1366                         } else
1367                                 list_add(&page->lru, pages_to_free);
1368                 }
1369         }
1370         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1371         if (!is_active_lru(lru))
1372                 __count_vm_events(PGDEACTIVATE, pgmoved);
1373 }
1374
1375 static void shrink_active_list(unsigned long nr_to_scan,
1376                                struct mem_cgroup_zone *mz,
1377                                struct scan_control *sc,
1378                                enum lru_list lru)
1379 {
1380         unsigned long nr_taken;
1381         unsigned long nr_scanned;
1382         unsigned long vm_flags;
1383         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1384         LIST_HEAD(l_active);
1385         LIST_HEAD(l_inactive);
1386         struct page *page;
1387         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1388         unsigned long nr_rotated = 0;
1389         isolate_mode_t isolate_mode = 0;
1390         int file = is_file_lru(lru);
1391         struct zone *zone = mz->zone;
1392         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1393
1394         lru_add_drain();
1395
1396         if (!sc->may_unmap)
1397                 isolate_mode |= ISOLATE_UNMAPPED;
1398         if (!sc->may_writepage)
1399                 isolate_mode |= ISOLATE_CLEAN;
1400
1401         spin_lock_irq(&zone->lru_lock);
1402
1403         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1404                                      &nr_scanned, sc, isolate_mode, lru);
1405         if (global_reclaim(sc))
1406                 zone->pages_scanned += nr_scanned;
1407
1408         reclaim_stat->recent_scanned[file] += nr_taken;
1409
1410         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1411         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1412         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1413         spin_unlock_irq(&zone->lru_lock);
1414
1415         while (!list_empty(&l_hold)) {
1416                 cond_resched();
1417                 page = lru_to_page(&l_hold);
1418                 list_del(&page->lru);
1419
1420                 if (unlikely(!page_evictable(page, NULL))) {
1421                         putback_lru_page(page);
1422                         continue;
1423                 }
1424
1425                 if (unlikely(buffer_heads_over_limit)) {
1426                         if (page_has_private(page) && trylock_page(page)) {
1427                                 if (page_has_private(page))
1428                                         try_to_release_page(page, 0);
1429                                 unlock_page(page);
1430                         }
1431                 }
1432
1433                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1434                                     &vm_flags)) {
1435                         nr_rotated += hpage_nr_pages(page);
1436                         /*
1437                          * Identify referenced, file-backed active pages and
1438                          * give them one more trip around the active list. So
1439                          * that executable code get better chances to stay in
1440                          * memory under moderate memory pressure.  Anon pages
1441                          * are not likely to be evicted by use-once streaming
1442                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1443                          * so we ignore them here.
1444                          */
1445                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1446                                 list_add(&page->lru, &l_active);
1447                                 continue;
1448                         }
1449                 }
1450
1451                 ClearPageActive(page);  /* we are de-activating */
1452                 list_add(&page->lru, &l_inactive);
1453         }
1454
1455         /*
1456          * Move pages back to the lru list.
1457          */
1458         spin_lock_irq(&zone->lru_lock);
1459         /*
1460          * Count referenced pages from currently used mappings as rotated,
1461          * even though only some of them are actually re-activated.  This
1462          * helps balance scan pressure between file and anonymous pages in
1463          * get_scan_ratio.
1464          */
1465         reclaim_stat->recent_rotated[file] += nr_rotated;
1466
1467         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1468         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1469         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1470         spin_unlock_irq(&zone->lru_lock);
1471
1472         free_hot_cold_page_list(&l_hold, 1);
1473 }
1474
1475 #ifdef CONFIG_SWAP
1476 static int inactive_anon_is_low_global(struct zone *zone)
1477 {
1478         unsigned long active, inactive;
1479
1480         active = zone_page_state(zone, NR_ACTIVE_ANON);
1481         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1482
1483         if (inactive * zone->inactive_ratio < active)
1484                 return 1;
1485
1486         return 0;
1487 }
1488
1489 /**
1490  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1491  * @zone: zone to check
1492  * @sc:   scan control of this context
1493  *
1494  * Returns true if the zone does not have enough inactive anon pages,
1495  * meaning some active anon pages need to be deactivated.
1496  */
1497 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1498 {
1499         /*
1500          * If we don't have swap space, anonymous page deactivation
1501          * is pointless.
1502          */
1503         if (!total_swap_pages)
1504                 return 0;
1505
1506         if (!mem_cgroup_disabled())
1507                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1508                                                        mz->zone);
1509
1510         return inactive_anon_is_low_global(mz->zone);
1511 }
1512 #else
1513 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1514 {
1515         return 0;
1516 }
1517 #endif
1518
1519 static int inactive_file_is_low_global(struct zone *zone)
1520 {
1521         unsigned long active, inactive;
1522
1523         active = zone_page_state(zone, NR_ACTIVE_FILE);
1524         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1525
1526         return (active > inactive);
1527 }
1528
1529 /**
1530  * inactive_file_is_low - check if file pages need to be deactivated
1531  * @mz: memory cgroup and zone to check
1532  *
1533  * When the system is doing streaming IO, memory pressure here
1534  * ensures that active file pages get deactivated, until more
1535  * than half of the file pages are on the inactive list.
1536  *
1537  * Once we get to that situation, protect the system's working
1538  * set from being evicted by disabling active file page aging.
1539  *
1540  * This uses a different ratio than the anonymous pages, because
1541  * the page cache uses a use-once replacement algorithm.
1542  */
1543 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1544 {
1545         if (!mem_cgroup_disabled())
1546                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1547                                                        mz->zone);
1548
1549         return inactive_file_is_low_global(mz->zone);
1550 }
1551
1552 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1553 {
1554         if (file)
1555                 return inactive_file_is_low(mz);
1556         else
1557                 return inactive_anon_is_low(mz);
1558 }
1559
1560 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1561                                  struct mem_cgroup_zone *mz,
1562                                  struct scan_control *sc)
1563 {
1564         int file = is_file_lru(lru);
1565
1566         if (is_active_lru(lru)) {
1567                 if (inactive_list_is_low(mz, file))
1568                         shrink_active_list(nr_to_scan, mz, sc, lru);
1569                 return 0;
1570         }
1571
1572         return shrink_inactive_list(nr_to_scan, mz, sc, lru);
1573 }
1574
1575 static int vmscan_swappiness(struct scan_control *sc)
1576 {
1577         if (global_reclaim(sc))
1578                 return vm_swappiness;
1579         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1580 }
1581
1582 /*
1583  * Determine how aggressively the anon and file LRU lists should be
1584  * scanned.  The relative value of each set of LRU lists is determined
1585  * by looking at the fraction of the pages scanned we did rotate back
1586  * onto the active list instead of evict.
1587  *
1588  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1589  */
1590 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1591                            unsigned long *nr)
1592 {
1593         unsigned long anon, file, free;
1594         unsigned long anon_prio, file_prio;
1595         unsigned long ap, fp;
1596         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1597         u64 fraction[2], denominator;
1598         enum lru_list lru;
1599         int noswap = 0;
1600         bool force_scan = false;
1601         struct lruvec *lruvec;
1602
1603         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1604
1605         /*
1606          * If the zone or memcg is small, nr[l] can be 0.  This
1607          * results in no scanning on this priority and a potential
1608          * priority drop.  Global direct reclaim can go to the next
1609          * zone and tends to have no problems. Global kswapd is for
1610          * zone balancing and it needs to scan a minimum amount. When
1611          * reclaiming for a memcg, a priority drop can cause high
1612          * latencies, so it's better to scan a minimum amount there as
1613          * well.
1614          */
1615         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1616                 force_scan = true;
1617         if (!global_reclaim(sc))
1618                 force_scan = true;
1619
1620         /* If we have no swap space, do not bother scanning anon pages. */
1621         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1622                 noswap = 1;
1623                 fraction[0] = 0;
1624                 fraction[1] = 1;
1625                 denominator = 1;
1626                 goto out;
1627         }
1628
1629         anon  = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1630                 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1631         file  = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1632                 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1633
1634         if (global_reclaim(sc)) {
1635                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1636                 /* If we have very few page cache pages,
1637                    force-scan anon pages. */
1638                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1639                         fraction[0] = 1;
1640                         fraction[1] = 0;
1641                         denominator = 1;
1642                         goto out;
1643                 }
1644         }
1645
1646         /*
1647          * With swappiness at 100, anonymous and file have the same priority.
1648          * This scanning priority is essentially the inverse of IO cost.
1649          */
1650         anon_prio = vmscan_swappiness(sc);
1651         file_prio = 200 - vmscan_swappiness(sc);
1652
1653         /*
1654          * OK, so we have swap space and a fair amount of page cache
1655          * pages.  We use the recently rotated / recently scanned
1656          * ratios to determine how valuable each cache is.
1657          *
1658          * Because workloads change over time (and to avoid overflow)
1659          * we keep these statistics as a floating average, which ends
1660          * up weighing recent references more than old ones.
1661          *
1662          * anon in [0], file in [1]
1663          */
1664         spin_lock_irq(&mz->zone->lru_lock);
1665         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1666                 reclaim_stat->recent_scanned[0] /= 2;
1667                 reclaim_stat->recent_rotated[0] /= 2;
1668         }
1669
1670         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1671                 reclaim_stat->recent_scanned[1] /= 2;
1672                 reclaim_stat->recent_rotated[1] /= 2;
1673         }
1674
1675         /*
1676          * The amount of pressure on anon vs file pages is inversely
1677          * proportional to the fraction of recently scanned pages on
1678          * each list that were recently referenced and in active use.
1679          */
1680         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1681         ap /= reclaim_stat->recent_rotated[0] + 1;
1682
1683         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1684         fp /= reclaim_stat->recent_rotated[1] + 1;
1685         spin_unlock_irq(&mz->zone->lru_lock);
1686
1687         fraction[0] = ap;
1688         fraction[1] = fp;
1689         denominator = ap + fp + 1;
1690 out:
1691         for_each_evictable_lru(lru) {
1692                 int file = is_file_lru(lru);
1693                 unsigned long scan;
1694
1695                 scan = get_lruvec_size(lruvec, lru);
1696                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1697                         scan >>= sc->priority;
1698                         if (!scan && force_scan)
1699                                 scan = SWAP_CLUSTER_MAX;
1700                         scan = div64_u64(scan * fraction[file], denominator);
1701                 }
1702                 nr[lru] = scan;
1703         }
1704 }
1705
1706 /* Use reclaim/compaction for costly allocs or under memory pressure */
1707 static bool in_reclaim_compaction(struct scan_control *sc)
1708 {
1709         if (COMPACTION_BUILD && sc->order &&
1710                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1711                          sc->priority < DEF_PRIORITY - 2))
1712                 return true;
1713
1714         return false;
1715 }
1716
1717 /*
1718  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1719  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1720  * true if more pages should be reclaimed such that when the page allocator
1721  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1722  * It will give up earlier than that if there is difficulty reclaiming pages.
1723  */
1724 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1725                                         unsigned long nr_reclaimed,
1726                                         unsigned long nr_scanned,
1727                                         struct scan_control *sc)
1728 {
1729         unsigned long pages_for_compaction;
1730         unsigned long inactive_lru_pages;
1731         struct lruvec *lruvec;
1732
1733         /* If not in reclaim/compaction mode, stop */
1734         if (!in_reclaim_compaction(sc))
1735                 return false;
1736
1737         /* Consider stopping depending on scan and reclaim activity */
1738         if (sc->gfp_mask & __GFP_REPEAT) {
1739                 /*
1740                  * For __GFP_REPEAT allocations, stop reclaiming if the
1741                  * full LRU list has been scanned and we are still failing
1742                  * to reclaim pages. This full LRU scan is potentially
1743                  * expensive but a __GFP_REPEAT caller really wants to succeed
1744                  */
1745                 if (!nr_reclaimed && !nr_scanned)
1746                         return false;
1747         } else {
1748                 /*
1749                  * For non-__GFP_REPEAT allocations which can presumably
1750                  * fail without consequence, stop if we failed to reclaim
1751                  * any pages from the last SWAP_CLUSTER_MAX number of
1752                  * pages that were scanned. This will return to the
1753                  * caller faster at the risk reclaim/compaction and
1754                  * the resulting allocation attempt fails
1755                  */
1756                 if (!nr_reclaimed)
1757                         return false;
1758         }
1759
1760         /*
1761          * If we have not reclaimed enough pages for compaction and the
1762          * inactive lists are large enough, continue reclaiming
1763          */
1764         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1765         pages_for_compaction = (2UL << sc->order);
1766         inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1767         if (nr_swap_pages > 0)
1768                 inactive_lru_pages += get_lruvec_size(lruvec,
1769                                                       LRU_INACTIVE_ANON);
1770         if (sc->nr_reclaimed < pages_for_compaction &&
1771                         inactive_lru_pages > pages_for_compaction)
1772                 return true;
1773
1774         /* If compaction would go ahead or the allocation would succeed, stop */
1775         switch (compaction_suitable(mz->zone, sc->order)) {
1776         case COMPACT_PARTIAL:
1777         case COMPACT_CONTINUE:
1778                 return false;
1779         default:
1780                 return true;
1781         }
1782 }
1783
1784 /*
1785  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1786  */
1787 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1788                                    struct scan_control *sc)
1789 {
1790         unsigned long nr[NR_LRU_LISTS];
1791         unsigned long nr_to_scan;
1792         enum lru_list lru;
1793         unsigned long nr_reclaimed, nr_scanned;
1794         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1795         struct blk_plug plug;
1796
1797 restart:
1798         nr_reclaimed = 0;
1799         nr_scanned = sc->nr_scanned;
1800         get_scan_count(mz, sc, nr);
1801
1802         blk_start_plug(&plug);
1803         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1804                                         nr[LRU_INACTIVE_FILE]) {
1805                 for_each_evictable_lru(lru) {
1806                         if (nr[lru]) {
1807                                 nr_to_scan = min_t(unsigned long,
1808                                                    nr[lru], SWAP_CLUSTER_MAX);
1809                                 nr[lru] -= nr_to_scan;
1810
1811                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1812                                                             mz, sc);
1813                         }
1814                 }
1815                 /*
1816                  * On large memory systems, scan >> priority can become
1817                  * really large. This is fine for the starting priority;
1818                  * we want to put equal scanning pressure on each zone.
1819                  * However, if the VM has a harder time of freeing pages,
1820                  * with multiple processes reclaiming pages, the total
1821                  * freeing target can get unreasonably large.
1822                  */
1823                 if (nr_reclaimed >= nr_to_reclaim &&
1824                     sc->priority < DEF_PRIORITY)
1825                         break;
1826         }
1827         blk_finish_plug(&plug);
1828         sc->nr_reclaimed += nr_reclaimed;
1829
1830         /*
1831          * Even if we did not try to evict anon pages at all, we want to
1832          * rebalance the anon lru active/inactive ratio.
1833          */
1834         if (inactive_anon_is_low(mz))
1835                 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1836                                    sc, LRU_ACTIVE_ANON);
1837
1838         /* reclaim/compaction might need reclaim to continue */
1839         if (should_continue_reclaim(mz, nr_reclaimed,
1840                                     sc->nr_scanned - nr_scanned, sc))
1841                 goto restart;
1842
1843         throttle_vm_writeout(sc->gfp_mask);
1844 }
1845
1846 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1847 {
1848         struct mem_cgroup *root = sc->target_mem_cgroup;
1849         struct mem_cgroup_reclaim_cookie reclaim = {
1850                 .zone = zone,
1851                 .priority = sc->priority,
1852         };
1853         struct mem_cgroup *memcg;
1854
1855         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1856         do {
1857                 struct mem_cgroup_zone mz = {
1858                         .mem_cgroup = memcg,
1859                         .zone = zone,
1860                 };
1861
1862                 shrink_mem_cgroup_zone(&mz, sc);
1863                 /*
1864                  * Limit reclaim has historically picked one memcg and
1865                  * scanned it with decreasing priority levels until
1866                  * nr_to_reclaim had been reclaimed.  This priority
1867                  * cycle is thus over after a single memcg.
1868                  *
1869                  * Direct reclaim and kswapd, on the other hand, have
1870                  * to scan all memory cgroups to fulfill the overall
1871                  * scan target for the zone.
1872                  */
1873                 if (!global_reclaim(sc)) {
1874                         mem_cgroup_iter_break(root, memcg);
1875                         break;
1876                 }
1877                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1878         } while (memcg);
1879 }
1880
1881 /* Returns true if compaction should go ahead for a high-order request */
1882 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1883 {
1884         unsigned long balance_gap, watermark;
1885         bool watermark_ok;
1886
1887         /* Do not consider compaction for orders reclaim is meant to satisfy */
1888         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1889                 return false;
1890
1891         /*
1892          * Compaction takes time to run and there are potentially other
1893          * callers using the pages just freed. Continue reclaiming until
1894          * there is a buffer of free pages available to give compaction
1895          * a reasonable chance of completing and allocating the page
1896          */
1897         balance_gap = min(low_wmark_pages(zone),
1898                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1899                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1900         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1901         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1902
1903         /*
1904          * If compaction is deferred, reclaim up to a point where
1905          * compaction will have a chance of success when re-enabled
1906          */
1907         if (compaction_deferred(zone, sc->order))
1908                 return watermark_ok;
1909
1910         /* If compaction is not ready to start, keep reclaiming */
1911         if (!compaction_suitable(zone, sc->order))
1912                 return false;
1913
1914         return watermark_ok;
1915 }
1916
1917 /*
1918  * This is the direct reclaim path, for page-allocating processes.  We only
1919  * try to reclaim pages from zones which will satisfy the caller's allocation
1920  * request.
1921  *
1922  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1923  * Because:
1924  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1925  *    allocation or
1926  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1927  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1928  *    zone defense algorithm.
1929  *
1930  * If a zone is deemed to be full of pinned pages then just give it a light
1931  * scan then give up on it.
1932  *
1933  * This function returns true if a zone is being reclaimed for a costly
1934  * high-order allocation and compaction is ready to begin. This indicates to
1935  * the caller that it should consider retrying the allocation instead of
1936  * further reclaim.
1937  */
1938 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1939 {
1940         struct zoneref *z;
1941         struct zone *zone;
1942         unsigned long nr_soft_reclaimed;
1943         unsigned long nr_soft_scanned;
1944         bool aborted_reclaim = false;
1945
1946         /*
1947          * If the number of buffer_heads in the machine exceeds the maximum
1948          * allowed level, force direct reclaim to scan the highmem zone as
1949          * highmem pages could be pinning lowmem pages storing buffer_heads
1950          */
1951         if (buffer_heads_over_limit)
1952                 sc->gfp_mask |= __GFP_HIGHMEM;
1953
1954         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1955                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1956                 if (!populated_zone(zone))
1957                         continue;
1958                 /*
1959                  * Take care memory controller reclaiming has small influence
1960                  * to global LRU.
1961                  */
1962                 if (global_reclaim(sc)) {
1963                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1964                                 continue;
1965                         if (zone->all_unreclaimable &&
1966                                         sc->priority != DEF_PRIORITY)
1967                                 continue;       /* Let kswapd poll it */
1968                         if (COMPACTION_BUILD) {
1969                                 /*
1970                                  * If we already have plenty of memory free for
1971                                  * compaction in this zone, don't free any more.
1972                                  * Even though compaction is invoked for any
1973                                  * non-zero order, only frequent costly order
1974                                  * reclamation is disruptive enough to become a
1975                                  * noticeable problem, like transparent huge
1976                                  * page allocations.
1977                                  */
1978                                 if (compaction_ready(zone, sc)) {
1979                                         aborted_reclaim = true;
1980                                         continue;
1981                                 }
1982                         }
1983                         /*
1984                          * This steals pages from memory cgroups over softlimit
1985                          * and returns the number of reclaimed pages and
1986                          * scanned pages. This works for global memory pressure
1987                          * and balancing, not for a memcg's limit.
1988                          */
1989                         nr_soft_scanned = 0;
1990                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1991                                                 sc->order, sc->gfp_mask,
1992                                                 &nr_soft_scanned);
1993                         sc->nr_reclaimed += nr_soft_reclaimed;
1994                         sc->nr_scanned += nr_soft_scanned;
1995                         /* need some check for avoid more shrink_zone() */
1996                 }
1997
1998                 shrink_zone(zone, sc);
1999         }
2000
2001         return aborted_reclaim;
2002 }
2003
2004 static bool zone_reclaimable(struct zone *zone)
2005 {
2006         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2007 }
2008
2009 /* All zones in zonelist are unreclaimable? */
2010 static bool all_unreclaimable(struct zonelist *zonelist,
2011                 struct scan_control *sc)
2012 {
2013         struct zoneref *z;
2014         struct zone *zone;
2015
2016         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2017                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2018                 if (!populated_zone(zone))
2019                         continue;
2020                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2021                         continue;
2022                 if (!zone->all_unreclaimable)
2023                         return false;
2024         }
2025
2026         return true;
2027 }
2028
2029 /*
2030  * This is the main entry point to direct page reclaim.
2031  *
2032  * If a full scan of the inactive list fails to free enough memory then we
2033  * are "out of memory" and something needs to be killed.
2034  *
2035  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2036  * high - the zone may be full of dirty or under-writeback pages, which this
2037  * caller can't do much about.  We kick the writeback threads and take explicit
2038  * naps in the hope that some of these pages can be written.  But if the
2039  * allocating task holds filesystem locks which prevent writeout this might not
2040  * work, and the allocation attempt will fail.
2041  *
2042  * returns:     0, if no pages reclaimed
2043  *              else, the number of pages reclaimed
2044  */
2045 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2046                                         struct scan_control *sc,
2047                                         struct shrink_control *shrink)
2048 {
2049         unsigned long total_scanned = 0;
2050         struct reclaim_state *reclaim_state = current->reclaim_state;
2051         struct zoneref *z;
2052         struct zone *zone;
2053         unsigned long writeback_threshold;
2054         bool aborted_reclaim;
2055
2056         delayacct_freepages_start();
2057
2058         if (global_reclaim(sc))
2059                 count_vm_event(ALLOCSTALL);
2060
2061         do {
2062                 sc->nr_scanned = 0;
2063                 aborted_reclaim = shrink_zones(zonelist, sc);
2064
2065                 /*
2066                  * Don't shrink slabs when reclaiming memory from
2067                  * over limit cgroups
2068                  */
2069                 if (global_reclaim(sc)) {
2070                         unsigned long lru_pages = 0;
2071                         for_each_zone_zonelist(zone, z, zonelist,
2072                                         gfp_zone(sc->gfp_mask)) {
2073                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2074                                         continue;
2075
2076                                 lru_pages += zone_reclaimable_pages(zone);
2077                         }
2078
2079                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2080                         if (reclaim_state) {
2081                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2082                                 reclaim_state->reclaimed_slab = 0;
2083                         }
2084                 }
2085                 total_scanned += sc->nr_scanned;
2086                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2087                         goto out;
2088
2089                 /*
2090                  * Try to write back as many pages as we just scanned.  This
2091                  * tends to cause slow streaming writers to write data to the
2092                  * disk smoothly, at the dirtying rate, which is nice.   But
2093                  * that's undesirable in laptop mode, where we *want* lumpy
2094                  * writeout.  So in laptop mode, write out the whole world.
2095                  */
2096                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2097                 if (total_scanned > writeback_threshold) {
2098                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2099                                                 WB_REASON_TRY_TO_FREE_PAGES);
2100                         sc->may_writepage = 1;
2101                 }
2102
2103                 /* Take a nap, wait for some writeback to complete */
2104                 if (!sc->hibernation_mode && sc->nr_scanned &&
2105                     sc->priority < DEF_PRIORITY - 2) {
2106                         struct zone *preferred_zone;
2107
2108                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2109                                                 &cpuset_current_mems_allowed,
2110                                                 &preferred_zone);
2111                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2112                 }
2113         } while (--sc->priority >= 0);
2114
2115 out:
2116         delayacct_freepages_end();
2117
2118         if (sc->nr_reclaimed)
2119                 return sc->nr_reclaimed;
2120
2121         /*
2122          * As hibernation is going on, kswapd is freezed so that it can't mark
2123          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2124          * check.
2125          */
2126         if (oom_killer_disabled)
2127                 return 0;
2128
2129         /* Aborted reclaim to try compaction? don't OOM, then */
2130         if (aborted_reclaim)
2131                 return 1;
2132
2133         /* top priority shrink_zones still had more to do? don't OOM, then */
2134         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2135                 return 1;
2136
2137         return 0;
2138 }
2139
2140 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2141                                 gfp_t gfp_mask, nodemask_t *nodemask)
2142 {
2143         unsigned long nr_reclaimed;
2144         struct scan_control sc = {
2145                 .gfp_mask = gfp_mask,
2146                 .may_writepage = !laptop_mode,
2147                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2148                 .may_unmap = 1,
2149                 .may_swap = 1,
2150                 .order = order,
2151                 .priority = DEF_PRIORITY,
2152                 .target_mem_cgroup = NULL,
2153                 .nodemask = nodemask,
2154         };
2155         struct shrink_control shrink = {
2156                 .gfp_mask = sc.gfp_mask,
2157         };
2158
2159         trace_mm_vmscan_direct_reclaim_begin(order,
2160                                 sc.may_writepage,
2161                                 gfp_mask);
2162
2163         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2164
2165         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2166
2167         return nr_reclaimed;
2168 }
2169
2170 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2171
2172 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2173                                                 gfp_t gfp_mask, bool noswap,
2174                                                 struct zone *zone,
2175                                                 unsigned long *nr_scanned)
2176 {
2177         struct scan_control sc = {
2178                 .nr_scanned = 0,
2179                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2180                 .may_writepage = !laptop_mode,
2181                 .may_unmap = 1,
2182                 .may_swap = !noswap,
2183                 .order = 0,
2184                 .priority = 0,
2185                 .target_mem_cgroup = memcg,
2186         };
2187         struct mem_cgroup_zone mz = {
2188                 .mem_cgroup = memcg,
2189                 .zone = zone,
2190         };
2191
2192         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2193                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2194
2195         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2196                                                       sc.may_writepage,
2197                                                       sc.gfp_mask);
2198
2199         /*
2200          * NOTE: Although we can get the priority field, using it
2201          * here is not a good idea, since it limits the pages we can scan.
2202          * if we don't reclaim here, the shrink_zone from balance_pgdat
2203          * will pick up pages from other mem cgroup's as well. We hack
2204          * the priority and make it zero.
2205          */
2206         shrink_mem_cgroup_zone(&mz, &sc);
2207
2208         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2209
2210         *nr_scanned = sc.nr_scanned;
2211         return sc.nr_reclaimed;
2212 }
2213
2214 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2215                                            gfp_t gfp_mask,
2216                                            bool noswap)
2217 {
2218         struct zonelist *zonelist;
2219         unsigned long nr_reclaimed;
2220         int nid;
2221         struct scan_control sc = {
2222                 .may_writepage = !laptop_mode,
2223                 .may_unmap = 1,
2224                 .may_swap = !noswap,
2225                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2226                 .order = 0,
2227                 .priority = DEF_PRIORITY,
2228                 .target_mem_cgroup = memcg,
2229                 .nodemask = NULL, /* we don't care the placement */
2230                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2231                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2232         };
2233         struct shrink_control shrink = {
2234                 .gfp_mask = sc.gfp_mask,
2235         };
2236
2237         /*
2238          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2239          * take care of from where we get pages. So the node where we start the
2240          * scan does not need to be the current node.
2241          */
2242         nid = mem_cgroup_select_victim_node(memcg);
2243
2244         zonelist = NODE_DATA(nid)->node_zonelists;
2245
2246         trace_mm_vmscan_memcg_reclaim_begin(0,
2247                                             sc.may_writepage,
2248                                             sc.gfp_mask);
2249
2250         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2251
2252         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2253
2254         return nr_reclaimed;
2255 }
2256 #endif
2257
2258 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2259 {
2260         struct mem_cgroup *memcg;
2261
2262         if (!total_swap_pages)
2263                 return;
2264
2265         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2266         do {
2267                 struct mem_cgroup_zone mz = {
2268                         .mem_cgroup = memcg,
2269                         .zone = zone,
2270                 };
2271
2272                 if (inactive_anon_is_low(&mz))
2273                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2274                                            sc, LRU_ACTIVE_ANON);
2275
2276                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2277         } while (memcg);
2278 }
2279
2280 /*
2281  * pgdat_balanced is used when checking if a node is balanced for high-order
2282  * allocations. Only zones that meet watermarks and are in a zone allowed
2283  * by the callers classzone_idx are added to balanced_pages. The total of
2284  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2285  * for the node to be considered balanced. Forcing all zones to be balanced
2286  * for high orders can cause excessive reclaim when there are imbalanced zones.
2287  * The choice of 25% is due to
2288  *   o a 16M DMA zone that is balanced will not balance a zone on any
2289  *     reasonable sized machine
2290  *   o On all other machines, the top zone must be at least a reasonable
2291  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2292  *     would need to be at least 256M for it to be balance a whole node.
2293  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2294  *     to balance a node on its own. These seemed like reasonable ratios.
2295  */
2296 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2297                                                 int classzone_idx)
2298 {
2299         unsigned long present_pages = 0;
2300         int i;
2301
2302         for (i = 0; i <= classzone_idx; i++)
2303                 present_pages += pgdat->node_zones[i].present_pages;
2304
2305         /* A special case here: if zone has no page, we think it's balanced */
2306         return balanced_pages >= (present_pages >> 2);
2307 }
2308
2309 /* is kswapd sleeping prematurely? */
2310 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2311                                         int classzone_idx)
2312 {
2313         int i;
2314         unsigned long balanced = 0;
2315         bool all_zones_ok = true;
2316
2317         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2318         if (remaining)
2319                 return true;
2320
2321         /* Check the watermark levels */
2322         for (i = 0; i <= classzone_idx; i++) {
2323                 struct zone *zone = pgdat->node_zones + i;
2324
2325                 if (!populated_zone(zone))
2326                         continue;
2327
2328                 /*
2329                  * balance_pgdat() skips over all_unreclaimable after
2330                  * DEF_PRIORITY. Effectively, it considers them balanced so
2331                  * they must be considered balanced here as well if kswapd
2332                  * is to sleep
2333                  */
2334                 if (zone->all_unreclaimable) {
2335                         balanced += zone->present_pages;
2336                         continue;
2337                 }
2338
2339                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2340                                                         i, 0))
2341                         all_zones_ok = false;
2342                 else
2343                         balanced += zone->present_pages;
2344         }
2345
2346         /*
2347          * For high-order requests, the balanced zones must contain at least
2348          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2349          * must be balanced
2350          */
2351         if (order)
2352                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2353         else
2354                 return !all_zones_ok;
2355 }
2356
2357 /*
2358  * For kswapd, balance_pgdat() will work across all this node's zones until
2359  * they are all at high_wmark_pages(zone).
2360  *
2361  * Returns the final order kswapd was reclaiming at
2362  *
2363  * There is special handling here for zones which are full of pinned pages.
2364  * This can happen if the pages are all mlocked, or if they are all used by
2365  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2366  * What we do is to detect the case where all pages in the zone have been
2367  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2368  * dead and from now on, only perform a short scan.  Basically we're polling
2369  * the zone for when the problem goes away.
2370  *
2371  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2372  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2373  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2374  * lower zones regardless of the number of free pages in the lower zones. This
2375  * interoperates with the page allocator fallback scheme to ensure that aging
2376  * of pages is balanced across the zones.
2377  */
2378 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2379                                                         int *classzone_idx)
2380 {
2381         int all_zones_ok;
2382         unsigned long balanced;
2383         int i;
2384         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2385         unsigned long total_scanned;
2386         struct reclaim_state *reclaim_state = current->reclaim_state;
2387         unsigned long nr_soft_reclaimed;
2388         unsigned long nr_soft_scanned;
2389         struct scan_control sc = {
2390                 .gfp_mask = GFP_KERNEL,
2391                 .may_unmap = 1,
2392                 .may_swap = 1,
2393                 /*
2394                  * kswapd doesn't want to be bailed out while reclaim. because
2395                  * we want to put equal scanning pressure on each zone.
2396                  */
2397                 .nr_to_reclaim = ULONG_MAX,
2398                 .order = order,
2399                 .target_mem_cgroup = NULL,
2400         };
2401         struct shrink_control shrink = {
2402                 .gfp_mask = sc.gfp_mask,
2403         };
2404 loop_again:
2405         total_scanned = 0;
2406         sc.priority = DEF_PRIORITY;
2407         sc.nr_reclaimed = 0;
2408         sc.may_writepage = !laptop_mode;
2409         count_vm_event(PAGEOUTRUN);
2410
2411         do {
2412                 unsigned long lru_pages = 0;
2413                 int has_under_min_watermark_zone = 0;
2414
2415                 all_zones_ok = 1;
2416                 balanced = 0;
2417
2418                 /*
2419                  * Scan in the highmem->dma direction for the highest
2420                  * zone which needs scanning
2421                  */
2422                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2423                         struct zone *zone = pgdat->node_zones + i;
2424
2425                         if (!populated_zone(zone))
2426                                 continue;
2427
2428                         if (zone->all_unreclaimable &&
2429                             sc.priority != DEF_PRIORITY)
2430                                 continue;
2431
2432                         /*
2433                          * Do some background aging of the anon list, to give
2434                          * pages a chance to be referenced before reclaiming.
2435                          */
2436                         age_active_anon(zone, &sc);
2437
2438                         /*
2439                          * If the number of buffer_heads in the machine
2440                          * exceeds the maximum allowed level and this node
2441                          * has a highmem zone, force kswapd to reclaim from
2442                          * it to relieve lowmem pressure.
2443                          */
2444                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2445                                 end_zone = i;
2446                                 break;
2447                         }
2448
2449                         if (!zone_watermark_ok_safe(zone, order,
2450                                         high_wmark_pages(zone), 0, 0)) {
2451                                 end_zone = i;
2452                                 break;
2453                         } else {
2454                                 /* If balanced, clear the congested flag */
2455                                 zone_clear_flag(zone, ZONE_CONGESTED);
2456                         }
2457                 }
2458                 if (i < 0)
2459                         goto out;
2460
2461                 for (i = 0; i <= end_zone; i++) {
2462                         struct zone *zone = pgdat->node_zones + i;
2463
2464                         lru_pages += zone_reclaimable_pages(zone);
2465                 }
2466
2467                 /*
2468                  * Now scan the zone in the dma->highmem direction, stopping
2469                  * at the last zone which needs scanning.
2470                  *
2471                  * We do this because the page allocator works in the opposite
2472                  * direction.  This prevents the page allocator from allocating
2473                  * pages behind kswapd's direction of progress, which would
2474                  * cause too much scanning of the lower zones.
2475                  */
2476                 for (i = 0; i <= end_zone; i++) {
2477                         struct zone *zone = pgdat->node_zones + i;
2478                         int nr_slab, testorder;
2479                         unsigned long balance_gap;
2480
2481                         if (!populated_zone(zone))
2482                                 continue;
2483
2484                         if (zone->all_unreclaimable &&
2485                             sc.priority != DEF_PRIORITY)
2486                                 continue;
2487
2488                         sc.nr_scanned = 0;
2489
2490                         nr_soft_scanned = 0;
2491                         /*
2492                          * Call soft limit reclaim before calling shrink_zone.
2493                          */
2494                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2495                                                         order, sc.gfp_mask,
2496                                                         &nr_soft_scanned);
2497                         sc.nr_reclaimed += nr_soft_reclaimed;
2498                         total_scanned += nr_soft_scanned;
2499
2500                         /*
2501                          * We put equal pressure on every zone, unless
2502                          * one zone has way too many pages free
2503                          * already. The "too many pages" is defined
2504                          * as the high wmark plus a "gap" where the
2505                          * gap is either the low watermark or 1%
2506                          * of the zone, whichever is smaller.
2507                          */
2508                         balance_gap = min(low_wmark_pages(zone),
2509                                 (zone->present_pages +
2510                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2511                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2512                         /*
2513                          * Kswapd reclaims only single pages with compaction
2514                          * enabled. Trying too hard to reclaim until contiguous
2515                          * free pages have become available can hurt performance
2516                          * by evicting too much useful data from memory.
2517                          * Do not reclaim more than needed for compaction.
2518                          */
2519                         testorder = order;
2520                         if (COMPACTION_BUILD && order &&
2521                                         compaction_suitable(zone, order) !=
2522                                                 COMPACT_SKIPPED)
2523                                 testorder = 0;
2524
2525                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2526                                     !zone_watermark_ok_safe(zone, testorder,
2527                                         high_wmark_pages(zone) + balance_gap,
2528                                         end_zone, 0)) {
2529                                 shrink_zone(zone, &sc);
2530
2531                                 reclaim_state->reclaimed_slab = 0;
2532                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2533                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2534                                 total_scanned += sc.nr_scanned;
2535
2536                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2537                                         zone->all_unreclaimable = 1;
2538                         }
2539
2540                         /*
2541                          * If we've done a decent amount of scanning and
2542                          * the reclaim ratio is low, start doing writepage
2543                          * even in laptop mode
2544                          */
2545                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2546                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2547                                 sc.may_writepage = 1;
2548
2549                         if (zone->all_unreclaimable) {
2550                                 if (end_zone && end_zone == i)
2551                                         end_zone--;
2552                                 continue;
2553                         }
2554
2555                         if (!zone_watermark_ok_safe(zone, testorder,
2556                                         high_wmark_pages(zone), end_zone, 0)) {
2557                                 all_zones_ok = 0;
2558                                 /*
2559                                  * We are still under min water mark.  This
2560                                  * means that we have a GFP_ATOMIC allocation
2561                                  * failure risk. Hurry up!
2562                                  */
2563                                 if (!zone_watermark_ok_safe(zone, order,
2564                                             min_wmark_pages(zone), end_zone, 0))
2565                                         has_under_min_watermark_zone = 1;
2566                         } else {
2567                                 /*
2568                                  * If a zone reaches its high watermark,
2569                                  * consider it to be no longer congested. It's
2570                                  * possible there are dirty pages backed by
2571                                  * congested BDIs but as pressure is relieved,
2572                                  * spectulatively avoid congestion waits
2573                                  */
2574                                 zone_clear_flag(zone, ZONE_CONGESTED);
2575                                 if (i <= *classzone_idx)
2576                                         balanced += zone->present_pages;
2577                         }
2578
2579                 }
2580                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2581                         break;          /* kswapd: all done */
2582                 /*
2583                  * OK, kswapd is getting into trouble.  Take a nap, then take
2584                  * another pass across the zones.
2585                  */
2586                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2587                         if (has_under_min_watermark_zone)
2588                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2589                         else
2590                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2591                 }
2592
2593                 /*
2594                  * We do this so kswapd doesn't build up large priorities for
2595                  * example when it is freeing in parallel with allocators. It
2596                  * matches the direct reclaim path behaviour in terms of impact
2597                  * on zone->*_priority.
2598                  */
2599                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2600                         break;
2601         } while (--sc.priority >= 0);
2602 out:
2603
2604         /*
2605          * order-0: All zones must meet high watermark for a balanced node
2606          * high-order: Balanced zones must make up at least 25% of the node
2607          *             for the node to be balanced
2608          */
2609         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2610                 cond_resched();
2611
2612                 try_to_freeze();
2613
2614                 /*
2615                  * Fragmentation may mean that the system cannot be
2616                  * rebalanced for high-order allocations in all zones.
2617                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2618                  * it means the zones have been fully scanned and are still
2619                  * not balanced. For high-order allocations, there is
2620                  * little point trying all over again as kswapd may
2621                  * infinite loop.
2622                  *
2623                  * Instead, recheck all watermarks at order-0 as they
2624                  * are the most important. If watermarks are ok, kswapd will go
2625                  * back to sleep. High-order users can still perform direct
2626                  * reclaim if they wish.
2627                  */
2628                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2629                         order = sc.order = 0;
2630
2631                 goto loop_again;
2632         }
2633
2634         /*
2635          * If kswapd was reclaiming at a higher order, it has the option of
2636          * sleeping without all zones being balanced. Before it does, it must
2637          * ensure that the watermarks for order-0 on *all* zones are met and
2638          * that the congestion flags are cleared. The congestion flag must
2639          * be cleared as kswapd is the only mechanism that clears the flag
2640          * and it is potentially going to sleep here.
2641          */
2642         if (order) {
2643                 int zones_need_compaction = 1;
2644
2645                 for (i = 0; i <= end_zone; i++) {
2646                         struct zone *zone = pgdat->node_zones + i;
2647
2648                         if (!populated_zone(zone))
2649                                 continue;
2650
2651                         if (zone->all_unreclaimable &&
2652                             sc.priority != DEF_PRIORITY)
2653                                 continue;
2654
2655                         /* Would compaction fail due to lack of free memory? */
2656                         if (COMPACTION_BUILD &&
2657                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2658                                 goto loop_again;
2659
2660                         /* Confirm the zone is balanced for order-0 */
2661                         if (!zone_watermark_ok(zone, 0,
2662                                         high_wmark_pages(zone), 0, 0)) {
2663                                 order = sc.order = 0;
2664                                 goto loop_again;
2665                         }
2666
2667                         /* Check if the memory needs to be defragmented. */
2668                         if (zone_watermark_ok(zone, order,
2669                                     low_wmark_pages(zone), *classzone_idx, 0))
2670                                 zones_need_compaction = 0;
2671
2672                         /* If balanced, clear the congested flag */
2673                         zone_clear_flag(zone, ZONE_CONGESTED);
2674                 }
2675
2676                 if (zones_need_compaction)
2677                         compact_pgdat(pgdat, order);
2678         }
2679
2680         /*
2681          * Return the order we were reclaiming at so sleeping_prematurely()
2682          * makes a decision on the order we were last reclaiming at. However,
2683          * if another caller entered the allocator slow path while kswapd
2684          * was awake, order will remain at the higher level
2685          */
2686         *classzone_idx = end_zone;
2687         return order;
2688 }
2689
2690 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2691 {
2692         long remaining = 0;
2693         DEFINE_WAIT(wait);
2694
2695         if (freezing(current) || kthread_should_stop())
2696                 return;
2697
2698         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699
2700         /* Try to sleep for a short interval */
2701         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2702                 remaining = schedule_timeout(HZ/10);
2703                 finish_wait(&pgdat->kswapd_wait, &wait);
2704                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2705         }
2706
2707         /*
2708          * After a short sleep, check if it was a premature sleep. If not, then
2709          * go fully to sleep until explicitly woken up.
2710          */
2711         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2712                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2713
2714                 /*
2715                  * vmstat counters are not perfectly accurate and the estimated
2716                  * value for counters such as NR_FREE_PAGES can deviate from the
2717                  * true value by nr_online_cpus * threshold. To avoid the zone
2718                  * watermarks being breached while under pressure, we reduce the
2719                  * per-cpu vmstat threshold while kswapd is awake and restore
2720                  * them before going back to sleep.
2721                  */
2722                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2723                 schedule();
2724                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2725         } else {
2726                 if (remaining)
2727                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2728                 else
2729                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2730         }
2731         finish_wait(&pgdat->kswapd_wait, &wait);
2732 }
2733
2734 /*
2735  * The background pageout daemon, started as a kernel thread
2736  * from the init process.
2737  *
2738  * This basically trickles out pages so that we have _some_
2739  * free memory available even if there is no other activity
2740  * that frees anything up. This is needed for things like routing
2741  * etc, where we otherwise might have all activity going on in
2742  * asynchronous contexts that cannot page things out.
2743  *
2744  * If there are applications that are active memory-allocators
2745  * (most normal use), this basically shouldn't matter.
2746  */
2747 static int kswapd(void *p)
2748 {
2749         unsigned long order, new_order;
2750         unsigned balanced_order;
2751         int classzone_idx, new_classzone_idx;
2752         int balanced_classzone_idx;
2753         pg_data_t *pgdat = (pg_data_t*)p;
2754         struct task_struct *tsk = current;
2755
2756         struct reclaim_state reclaim_state = {
2757                 .reclaimed_slab = 0,
2758         };
2759         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2760
2761         lockdep_set_current_reclaim_state(GFP_KERNEL);
2762
2763         if (!cpumask_empty(cpumask))
2764                 set_cpus_allowed_ptr(tsk, cpumask);
2765         current->reclaim_state = &reclaim_state;
2766
2767         /*
2768          * Tell the memory management that we're a "memory allocator",
2769          * and that if we need more memory we should get access to it
2770          * regardless (see "__alloc_pages()"). "kswapd" should
2771          * never get caught in the normal page freeing logic.
2772          *
2773          * (Kswapd normally doesn't need memory anyway, but sometimes
2774          * you need a small amount of memory in order to be able to
2775          * page out something else, and this flag essentially protects
2776          * us from recursively trying to free more memory as we're
2777          * trying to free the first piece of memory in the first place).
2778          */
2779         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2780         set_freezable();
2781
2782         order = new_order = 0;
2783         balanced_order = 0;
2784         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2785         balanced_classzone_idx = classzone_idx;
2786         for ( ; ; ) {
2787                 int ret;
2788
2789                 /*
2790                  * If the last balance_pgdat was unsuccessful it's unlikely a
2791                  * new request of a similar or harder type will succeed soon
2792                  * so consider going to sleep on the basis we reclaimed at
2793                  */
2794                 if (balanced_classzone_idx >= new_classzone_idx &&
2795                                         balanced_order == new_order) {
2796                         new_order = pgdat->kswapd_max_order;
2797                         new_classzone_idx = pgdat->classzone_idx;
2798                         pgdat->kswapd_max_order =  0;
2799                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2800                 }
2801
2802                 if (order < new_order || classzone_idx > new_classzone_idx) {
2803                         /*
2804                          * Don't sleep if someone wants a larger 'order'
2805                          * allocation or has tigher zone constraints
2806                          */
2807                         order = new_order;
2808                         classzone_idx = new_classzone_idx;
2809                 } else {
2810                         kswapd_try_to_sleep(pgdat, balanced_order,
2811                                                 balanced_classzone_idx);
2812                         order = pgdat->kswapd_max_order;
2813                         classzone_idx = pgdat->classzone_idx;
2814                         new_order = order;
2815                         new_classzone_idx = classzone_idx;
2816                         pgdat->kswapd_max_order = 0;
2817                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2818                 }
2819
2820                 ret = try_to_freeze();
2821                 if (kthread_should_stop())
2822                         break;
2823
2824                 /*
2825                  * We can speed up thawing tasks if we don't call balance_pgdat
2826                  * after returning from the refrigerator
2827                  */
2828                 if (!ret) {
2829                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2830                         balanced_classzone_idx = classzone_idx;
2831                         balanced_order = balance_pgdat(pgdat, order,
2832                                                 &balanced_classzone_idx);
2833                 }
2834         }
2835         return 0;
2836 }
2837
2838 /*
2839  * A zone is low on free memory, so wake its kswapd task to service it.
2840  */
2841 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2842 {
2843         pg_data_t *pgdat;
2844
2845         if (!populated_zone(zone))
2846                 return;
2847
2848         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2849                 return;
2850         pgdat = zone->zone_pgdat;
2851         if (pgdat->kswapd_max_order < order) {
2852                 pgdat->kswapd_max_order = order;
2853                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2854         }
2855         if (!waitqueue_active(&pgdat->kswapd_wait))
2856                 return;
2857         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2858                 return;
2859
2860         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2861         wake_up_interruptible(&pgdat->kswapd_wait);
2862 }
2863
2864 /*
2865  * The reclaimable count would be mostly accurate.
2866  * The less reclaimable pages may be
2867  * - mlocked pages, which will be moved to unevictable list when encountered
2868  * - mapped pages, which may require several travels to be reclaimed
2869  * - dirty pages, which is not "instantly" reclaimable
2870  */
2871 unsigned long global_reclaimable_pages(void)
2872 {
2873         int nr;
2874
2875         nr = global_page_state(NR_ACTIVE_FILE) +
2876              global_page_state(NR_INACTIVE_FILE);
2877
2878         if (nr_swap_pages > 0)
2879                 nr += global_page_state(NR_ACTIVE_ANON) +
2880                       global_page_state(NR_INACTIVE_ANON);
2881
2882         return nr;
2883 }
2884
2885 unsigned long zone_reclaimable_pages(struct zone *zone)
2886 {
2887         int nr;
2888
2889         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2890              zone_page_state(zone, NR_INACTIVE_FILE);
2891
2892         if (nr_swap_pages > 0)
2893                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2894                       zone_page_state(zone, NR_INACTIVE_ANON);
2895
2896         return nr;
2897 }
2898
2899 #ifdef CONFIG_HIBERNATION
2900 /*
2901  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2902  * freed pages.
2903  *
2904  * Rather than trying to age LRUs the aim is to preserve the overall
2905  * LRU order by reclaiming preferentially
2906  * inactive > active > active referenced > active mapped
2907  */
2908 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2909 {
2910         struct reclaim_state reclaim_state;
2911         struct scan_control sc = {
2912                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2913                 .may_swap = 1,
2914                 .may_unmap = 1,
2915                 .may_writepage = 1,
2916                 .nr_to_reclaim = nr_to_reclaim,
2917                 .hibernation_mode = 1,
2918                 .order = 0,
2919                 .priority = DEF_PRIORITY,
2920         };
2921         struct shrink_control shrink = {
2922                 .gfp_mask = sc.gfp_mask,
2923         };
2924         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2925         struct task_struct *p = current;
2926         unsigned long nr_reclaimed;
2927
2928         p->flags |= PF_MEMALLOC;
2929         lockdep_set_current_reclaim_state(sc.gfp_mask);
2930         reclaim_state.reclaimed_slab = 0;
2931         p->reclaim_state = &reclaim_state;
2932
2933         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2934
2935         p->reclaim_state = NULL;
2936         lockdep_clear_current_reclaim_state();
2937         p->flags &= ~PF_MEMALLOC;
2938
2939         return nr_reclaimed;
2940 }
2941 #endif /* CONFIG_HIBERNATION */
2942
2943 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2944    not required for correctness.  So if the last cpu in a node goes
2945    away, we get changed to run anywhere: as the first one comes back,
2946    restore their cpu bindings. */
2947 static int __devinit cpu_callback(struct notifier_block *nfb,
2948                                   unsigned long action, void *hcpu)
2949 {
2950         int nid;
2951
2952         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2953                 for_each_node_state(nid, N_HIGH_MEMORY) {
2954                         pg_data_t *pgdat = NODE_DATA(nid);
2955                         const struct cpumask *mask;
2956
2957                         mask = cpumask_of_node(pgdat->node_id);
2958
2959                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2960                                 /* One of our CPUs online: restore mask */
2961                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2962                 }
2963         }
2964         return NOTIFY_OK;
2965 }
2966
2967 /*
2968  * This kswapd start function will be called by init and node-hot-add.
2969  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2970  */
2971 int kswapd_run(int nid)
2972 {
2973         pg_data_t *pgdat = NODE_DATA(nid);
2974         int ret = 0;
2975
2976         if (pgdat->kswapd)
2977                 return 0;
2978
2979         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2980         if (IS_ERR(pgdat->kswapd)) {
2981                 /* failure at boot is fatal */
2982                 BUG_ON(system_state == SYSTEM_BOOTING);
2983                 printk("Failed to start kswapd on node %d\n",nid);
2984                 ret = -1;
2985         }
2986         return ret;
2987 }
2988
2989 /*
2990  * Called by memory hotplug when all memory in a node is offlined.
2991  */
2992 void kswapd_stop(int nid)
2993 {
2994         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2995
2996         if (kswapd)
2997                 kthread_stop(kswapd);
2998 }
2999
3000 static int __init kswapd_init(void)
3001 {
3002         int nid;
3003
3004         swap_setup();
3005         for_each_node_state(nid, N_HIGH_MEMORY)
3006                 kswapd_run(nid);
3007         hotcpu_notifier(cpu_callback, 0);
3008         return 0;
3009 }
3010
3011 module_init(kswapd_init)
3012
3013 #ifdef CONFIG_NUMA
3014 /*
3015  * Zone reclaim mode
3016  *
3017  * If non-zero call zone_reclaim when the number of free pages falls below
3018  * the watermarks.
3019  */
3020 int zone_reclaim_mode __read_mostly;
3021
3022 #define RECLAIM_OFF 0
3023 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3024 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3025 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3026
3027 /*
3028  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3029  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3030  * a zone.
3031  */
3032 #define ZONE_RECLAIM_PRIORITY 4
3033
3034 /*
3035  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3036  * occur.
3037  */
3038 int sysctl_min_unmapped_ratio = 1;
3039
3040 /*
3041  * If the number of slab pages in a zone grows beyond this percentage then
3042  * slab reclaim needs to occur.
3043  */
3044 int sysctl_min_slab_ratio = 5;
3045
3046 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3047 {
3048         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3049         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3050                 zone_page_state(zone, NR_ACTIVE_FILE);
3051
3052         /*
3053          * It's possible for there to be more file mapped pages than
3054          * accounted for by the pages on the file LRU lists because
3055          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3056          */
3057         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3058 }
3059
3060 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3061 static long zone_pagecache_reclaimable(struct zone *zone)
3062 {
3063         long nr_pagecache_reclaimable;
3064         long delta = 0;
3065
3066         /*
3067          * If RECLAIM_SWAP is set, then all file pages are considered
3068          * potentially reclaimable. Otherwise, we have to worry about
3069          * pages like swapcache and zone_unmapped_file_pages() provides
3070          * a better estimate
3071          */
3072         if (zone_reclaim_mode & RECLAIM_SWAP)
3073                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3074         else
3075                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3076
3077         /* If we can't clean pages, remove dirty pages from consideration */
3078         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3079                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3080
3081         /* Watch for any possible underflows due to delta */
3082         if (unlikely(delta > nr_pagecache_reclaimable))
3083                 delta = nr_pagecache_reclaimable;
3084
3085         return nr_pagecache_reclaimable - delta;
3086 }
3087
3088 /*
3089  * Try to free up some pages from this zone through reclaim.
3090  */
3091 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3092 {
3093         /* Minimum pages needed in order to stay on node */
3094         const unsigned long nr_pages = 1 << order;
3095         struct task_struct *p = current;
3096         struct reclaim_state reclaim_state;
3097         struct scan_control sc = {
3098                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3099                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3100                 .may_swap = 1,
3101                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3102                                        SWAP_CLUSTER_MAX),
3103                 .gfp_mask = gfp_mask,
3104                 .order = order,
3105                 .priority = ZONE_RECLAIM_PRIORITY,
3106         };
3107         struct shrink_control shrink = {
3108                 .gfp_mask = sc.gfp_mask,
3109         };
3110         unsigned long nr_slab_pages0, nr_slab_pages1;
3111
3112         cond_resched();
3113         /*
3114          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3115          * and we also need to be able to write out pages for RECLAIM_WRITE
3116          * and RECLAIM_SWAP.
3117          */
3118         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3119         lockdep_set_current_reclaim_state(gfp_mask);
3120         reclaim_state.reclaimed_slab = 0;
3121         p->reclaim_state = &reclaim_state;
3122
3123         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3124                 /*
3125                  * Free memory by calling shrink zone with increasing
3126                  * priorities until we have enough memory freed.
3127                  */
3128                 do {
3129                         shrink_zone(zone, &sc);
3130                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3131         }
3132
3133         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3134         if (nr_slab_pages0 > zone->min_slab_pages) {
3135                 /*
3136                  * shrink_slab() does not currently allow us to determine how
3137                  * many pages were freed in this zone. So we take the current
3138                  * number of slab pages and shake the slab until it is reduced
3139                  * by the same nr_pages that we used for reclaiming unmapped
3140                  * pages.
3141                  *
3142                  * Note that shrink_slab will free memory on all zones and may
3143                  * take a long time.
3144                  */
3145                 for (;;) {
3146                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3147
3148                         /* No reclaimable slab or very low memory pressure */
3149                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3150                                 break;
3151
3152                         /* Freed enough memory */
3153                         nr_slab_pages1 = zone_page_state(zone,
3154                                                         NR_SLAB_RECLAIMABLE);
3155                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3156                                 break;
3157                 }
3158
3159                 /*
3160                  * Update nr_reclaimed by the number of slab pages we
3161                  * reclaimed from this zone.
3162                  */
3163                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3164                 if (nr_slab_pages1 < nr_slab_pages0)
3165                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3166         }
3167
3168         p->reclaim_state = NULL;
3169         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3170         lockdep_clear_current_reclaim_state();
3171         return sc.nr_reclaimed >= nr_pages;
3172 }
3173
3174 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3175 {
3176         int node_id;
3177         int ret;
3178
3179         /*
3180          * Zone reclaim reclaims unmapped file backed pages and
3181          * slab pages if we are over the defined limits.
3182          *
3183          * A small portion of unmapped file backed pages is needed for
3184          * file I/O otherwise pages read by file I/O will be immediately
3185          * thrown out if the zone is overallocated. So we do not reclaim
3186          * if less than a specified percentage of the zone is used by
3187          * unmapped file backed pages.
3188          */
3189         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3190             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3191                 return ZONE_RECLAIM_FULL;
3192
3193         if (zone->all_unreclaimable)
3194                 return ZONE_RECLAIM_FULL;
3195
3196         /*
3197          * Do not scan if the allocation should not be delayed.
3198          */
3199         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3200                 return ZONE_RECLAIM_NOSCAN;
3201
3202         /*
3203          * Only run zone reclaim on the local zone or on zones that do not
3204          * have associated processors. This will favor the local processor
3205          * over remote processors and spread off node memory allocations
3206          * as wide as possible.
3207          */
3208         node_id = zone_to_nid(zone);
3209         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3210                 return ZONE_RECLAIM_NOSCAN;
3211
3212         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3213                 return ZONE_RECLAIM_NOSCAN;
3214
3215         ret = __zone_reclaim(zone, gfp_mask, order);
3216         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3217
3218         if (!ret)
3219                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3220
3221         return ret;
3222 }
3223 #endif
3224
3225 /*
3226  * page_evictable - test whether a page is evictable
3227  * @page: the page to test
3228  * @vma: the VMA in which the page is or will be mapped, may be NULL
3229  *
3230  * Test whether page is evictable--i.e., should be placed on active/inactive
3231  * lists vs unevictable list.  The vma argument is !NULL when called from the
3232  * fault path to determine how to instantate a new page.
3233  *
3234  * Reasons page might not be evictable:
3235  * (1) page's mapping marked unevictable
3236  * (2) page is part of an mlocked VMA
3237  *
3238  */
3239 int page_evictable(struct page *page, struct vm_area_struct *vma)
3240 {
3241
3242         if (mapping_unevictable(page_mapping(page)))
3243                 return 0;
3244
3245         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3246                 return 0;
3247
3248         return 1;
3249 }
3250
3251 #ifdef CONFIG_SHMEM
3252 /**
3253  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3254  * @pages:      array of pages to check
3255  * @nr_pages:   number of pages to check
3256  *
3257  * Checks pages for evictability and moves them to the appropriate lru list.
3258  *
3259  * This function is only used for SysV IPC SHM_UNLOCK.
3260  */
3261 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3262 {
3263         struct lruvec *lruvec;
3264         struct zone *zone = NULL;
3265         int pgscanned = 0;
3266         int pgrescued = 0;
3267         int i;
3268
3269         for (i = 0; i < nr_pages; i++) {
3270                 struct page *page = pages[i];
3271                 struct zone *pagezone;
3272
3273                 pgscanned++;
3274                 pagezone = page_zone(page);
3275                 if (pagezone != zone) {
3276                         if (zone)
3277                                 spin_unlock_irq(&zone->lru_lock);
3278                         zone = pagezone;
3279                         spin_lock_irq(&zone->lru_lock);
3280                 }
3281
3282                 if (!PageLRU(page) || !PageUnevictable(page))
3283                         continue;
3284
3285                 if (page_evictable(page, NULL)) {
3286                         enum lru_list lru = page_lru_base_type(page);
3287
3288                         VM_BUG_ON(PageActive(page));
3289                         ClearPageUnevictable(page);
3290                         __dec_zone_state(zone, NR_UNEVICTABLE);
3291                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3292                                                 LRU_UNEVICTABLE, lru);
3293                         list_move(&page->lru, &lruvec->lists[lru]);
3294                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3295                         pgrescued++;
3296                 }
3297         }
3298
3299         if (zone) {
3300                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3301                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3302                 spin_unlock_irq(&zone->lru_lock);
3303         }
3304 }
3305 #endif /* CONFIG_SHMEM */
3306
3307 static void warn_scan_unevictable_pages(void)
3308 {
3309         printk_once(KERN_WARNING
3310                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3311                     "disabled for lack of a legitimate use case.  If you have "
3312                     "one, please send an email to linux-mm@kvack.org.\n",
3313                     current->comm);
3314 }
3315
3316 /*
3317  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3318  * all nodes' unevictable lists for evictable pages
3319  */
3320 unsigned long scan_unevictable_pages;
3321
3322 int scan_unevictable_handler(struct ctl_table *table, int write,
3323                            void __user *buffer,
3324                            size_t *length, loff_t *ppos)
3325 {
3326         warn_scan_unevictable_pages();
3327         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3328         scan_unevictable_pages = 0;
3329         return 0;
3330 }
3331
3332 #ifdef CONFIG_NUMA
3333 /*
3334  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3335  * a specified node's per zone unevictable lists for evictable pages.
3336  */
3337
3338 static ssize_t read_scan_unevictable_node(struct device *dev,
3339                                           struct device_attribute *attr,
3340                                           char *buf)
3341 {
3342         warn_scan_unevictable_pages();
3343         return sprintf(buf, "0\n");     /* always zero; should fit... */
3344 }
3345
3346 static ssize_t write_scan_unevictable_node(struct device *dev,
3347                                            struct device_attribute *attr,
3348                                         const char *buf, size_t count)
3349 {
3350         warn_scan_unevictable_pages();
3351         return 1;
3352 }
3353
3354
3355 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3356                         read_scan_unevictable_node,
3357                         write_scan_unevictable_node);
3358
3359 int scan_unevictable_register_node(struct node *node)
3360 {
3361         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3362 }
3363
3364 void scan_unevictable_unregister_node(struct node *node)
3365 {
3366         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3367 }
3368 #endif