]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/bridge/br_netfilter.c
fm10k: using vmalloc requires including linux/vmalloc.h
[karo-tx-linux.git] / net / bridge / br_netfilter.c
1 /*
2  *      Handle firewalling
3  *      Linux ethernet bridge
4  *
5  *      Authors:
6  *      Lennert Buytenhek               <buytenh@gnu.org>
7  *      Bart De Schuymer                <bdschuym@pandora.be>
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Lennert dedicates this file to Kerstin Wurdinger.
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
44
45 #define skb_origaddr(skb)        (((struct bridge_skb_cb *) \
46                                  (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb)  (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb)     (skb_origaddr(skb) != ip_hdr(skb)->daddr)
49
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 static int brnf_pass_vlan_indev __read_mostly = 0;
58 #else
59 #define brnf_call_iptables 1
60 #define brnf_call_ip6tables 1
61 #define brnf_call_arptables 1
62 #define brnf_filter_vlan_tagged 0
63 #define brnf_filter_pppoe_tagged 0
64 #define brnf_pass_vlan_indev 0
65 #endif
66
67 #define IS_IP(skb) \
68         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
69
70 #define IS_IPV6(skb) \
71         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
72
73 #define IS_ARP(skb) \
74         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
75
76 static inline __be16 vlan_proto(const struct sk_buff *skb)
77 {
78         if (vlan_tx_tag_present(skb))
79                 return skb->protocol;
80         else if (skb->protocol == htons(ETH_P_8021Q))
81                 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
82         else
83                 return 0;
84 }
85
86 #define IS_VLAN_IP(skb) \
87         (vlan_proto(skb) == htons(ETH_P_IP) && \
88          brnf_filter_vlan_tagged)
89
90 #define IS_VLAN_IPV6(skb) \
91         (vlan_proto(skb) == htons(ETH_P_IPV6) && \
92          brnf_filter_vlan_tagged)
93
94 #define IS_VLAN_ARP(skb) \
95         (vlan_proto(skb) == htons(ETH_P_ARP) && \
96          brnf_filter_vlan_tagged)
97
98 static inline __be16 pppoe_proto(const struct sk_buff *skb)
99 {
100         return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
101                             sizeof(struct pppoe_hdr)));
102 }
103
104 #define IS_PPPOE_IP(skb) \
105         (skb->protocol == htons(ETH_P_PPP_SES) && \
106          pppoe_proto(skb) == htons(PPP_IP) && \
107          brnf_filter_pppoe_tagged)
108
109 #define IS_PPPOE_IPV6(skb) \
110         (skb->protocol == htons(ETH_P_PPP_SES) && \
111          pppoe_proto(skb) == htons(PPP_IPV6) && \
112          brnf_filter_pppoe_tagged)
113
114 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
115 {
116         struct net_bridge_port *port;
117
118         port = br_port_get_rcu(dev);
119         return port ? &port->br->fake_rtable : NULL;
120 }
121
122 static inline struct net_device *bridge_parent(const struct net_device *dev)
123 {
124         struct net_bridge_port *port;
125
126         port = br_port_get_rcu(dev);
127         return port ? port->br->dev : NULL;
128 }
129
130 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
131 {
132         skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
133         if (likely(skb->nf_bridge))
134                 atomic_set(&(skb->nf_bridge->use), 1);
135
136         return skb->nf_bridge;
137 }
138
139 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
140 {
141         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
142
143         if (atomic_read(&nf_bridge->use) > 1) {
144                 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
145
146                 if (tmp) {
147                         memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
148                         atomic_set(&tmp->use, 1);
149                 }
150                 nf_bridge_put(nf_bridge);
151                 nf_bridge = tmp;
152         }
153         return nf_bridge;
154 }
155
156 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
157 {
158         unsigned int len = nf_bridge_encap_header_len(skb);
159
160         skb_push(skb, len);
161         skb->network_header -= len;
162 }
163
164 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
165 {
166         unsigned int len = nf_bridge_encap_header_len(skb);
167
168         skb_pull(skb, len);
169         skb->network_header += len;
170 }
171
172 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
173 {
174         unsigned int len = nf_bridge_encap_header_len(skb);
175
176         skb_pull_rcsum(skb, len);
177         skb->network_header += len;
178 }
179
180 static inline void nf_bridge_save_header(struct sk_buff *skb)
181 {
182         int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
183
184         skb_copy_from_linear_data_offset(skb, -header_size,
185                                          skb->nf_bridge->data, header_size);
186 }
187
188 /* When handing a packet over to the IP layer
189  * check whether we have a skb that is in the
190  * expected format
191  */
192
193 static int br_parse_ip_options(struct sk_buff *skb)
194 {
195         struct ip_options *opt;
196         const struct iphdr *iph;
197         struct net_device *dev = skb->dev;
198         u32 len;
199
200         if (!pskb_may_pull(skb, sizeof(struct iphdr)))
201                 goto inhdr_error;
202
203         iph = ip_hdr(skb);
204         opt = &(IPCB(skb)->opt);
205
206         /* Basic sanity checks */
207         if (iph->ihl < 5 || iph->version != 4)
208                 goto inhdr_error;
209
210         if (!pskb_may_pull(skb, iph->ihl*4))
211                 goto inhdr_error;
212
213         iph = ip_hdr(skb);
214         if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
215                 goto inhdr_error;
216
217         len = ntohs(iph->tot_len);
218         if (skb->len < len) {
219                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
220                 goto drop;
221         } else if (len < (iph->ihl*4))
222                 goto inhdr_error;
223
224         if (pskb_trim_rcsum(skb, len)) {
225                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
226                 goto drop;
227         }
228
229         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
230         if (iph->ihl == 5)
231                 return 0;
232
233         opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
234         if (ip_options_compile(dev_net(dev), opt, skb))
235                 goto inhdr_error;
236
237         /* Check correct handling of SRR option */
238         if (unlikely(opt->srr)) {
239                 struct in_device *in_dev = __in_dev_get_rcu(dev);
240                 if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
241                         goto drop;
242
243                 if (ip_options_rcv_srr(skb))
244                         goto drop;
245         }
246
247         return 0;
248
249 inhdr_error:
250         IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
251 drop:
252         return -1;
253 }
254
255 /* PF_BRIDGE/PRE_ROUTING *********************************************/
256 /* Undo the changes made for ip6tables PREROUTING and continue the
257  * bridge PRE_ROUTING hook. */
258 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
259 {
260         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
261         struct rtable *rt;
262
263         if (nf_bridge->mask & BRNF_PKT_TYPE) {
264                 skb->pkt_type = PACKET_OTHERHOST;
265                 nf_bridge->mask ^= BRNF_PKT_TYPE;
266         }
267         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
268
269         rt = bridge_parent_rtable(nf_bridge->physindev);
270         if (!rt) {
271                 kfree_skb(skb);
272                 return 0;
273         }
274         skb_dst_set_noref(skb, &rt->dst);
275
276         skb->dev = nf_bridge->physindev;
277         nf_bridge_update_protocol(skb);
278         nf_bridge_push_encap_header(skb);
279         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
280                        br_handle_frame_finish, 1);
281
282         return 0;
283 }
284
285 /* Obtain the correct destination MAC address, while preserving the original
286  * source MAC address. If we already know this address, we just copy it. If we
287  * don't, we use the neighbour framework to find out. In both cases, we make
288  * sure that br_handle_frame_finish() is called afterwards.
289  */
290 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
291 {
292         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
293         struct neighbour *neigh;
294         struct dst_entry *dst;
295
296         skb->dev = bridge_parent(skb->dev);
297         if (!skb->dev)
298                 goto free_skb;
299         dst = skb_dst(skb);
300         neigh = dst_neigh_lookup_skb(dst, skb);
301         if (neigh) {
302                 int ret;
303
304                 if (neigh->hh.hh_len) {
305                         neigh_hh_bridge(&neigh->hh, skb);
306                         skb->dev = nf_bridge->physindev;
307                         ret = br_handle_frame_finish(skb);
308                 } else {
309                         /* the neighbour function below overwrites the complete
310                          * MAC header, so we save the Ethernet source address and
311                          * protocol number.
312                          */
313                         skb_copy_from_linear_data_offset(skb,
314                                                          -(ETH_HLEN-ETH_ALEN),
315                                                          skb->nf_bridge->data,
316                                                          ETH_HLEN-ETH_ALEN);
317                         /* tell br_dev_xmit to continue with forwarding */
318                         nf_bridge->mask |= BRNF_BRIDGED_DNAT;
319                         ret = neigh->output(neigh, skb);
320                 }
321                 neigh_release(neigh);
322                 return ret;
323         }
324 free_skb:
325         kfree_skb(skb);
326         return 0;
327 }
328
329 /* This requires some explaining. If DNAT has taken place,
330  * we will need to fix up the destination Ethernet address.
331  *
332  * There are two cases to consider:
333  * 1. The packet was DNAT'ed to a device in the same bridge
334  *    port group as it was received on. We can still bridge
335  *    the packet.
336  * 2. The packet was DNAT'ed to a different device, either
337  *    a non-bridged device or another bridge port group.
338  *    The packet will need to be routed.
339  *
340  * The correct way of distinguishing between these two cases is to
341  * call ip_route_input() and to look at skb->dst->dev, which is
342  * changed to the destination device if ip_route_input() succeeds.
343  *
344  * Let's first consider the case that ip_route_input() succeeds:
345  *
346  * If the output device equals the logical bridge device the packet
347  * came in on, we can consider this bridging. The corresponding MAC
348  * address will be obtained in br_nf_pre_routing_finish_bridge.
349  * Otherwise, the packet is considered to be routed and we just
350  * change the destination MAC address so that the packet will
351  * later be passed up to the IP stack to be routed. For a redirected
352  * packet, ip_route_input() will give back the localhost as output device,
353  * which differs from the bridge device.
354  *
355  * Let's now consider the case that ip_route_input() fails:
356  *
357  * This can be because the destination address is martian, in which case
358  * the packet will be dropped.
359  * If IP forwarding is disabled, ip_route_input() will fail, while
360  * ip_route_output_key() can return success. The source
361  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
362  * thinks we're handling a locally generated packet and won't care
363  * if IP forwarding is enabled. If the output device equals the logical bridge
364  * device, we proceed as if ip_route_input() succeeded. If it differs from the
365  * logical bridge port or if ip_route_output_key() fails we drop the packet.
366  */
367 static int br_nf_pre_routing_finish(struct sk_buff *skb)
368 {
369         struct net_device *dev = skb->dev;
370         struct iphdr *iph = ip_hdr(skb);
371         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
372         struct rtable *rt;
373         int err;
374
375         if (nf_bridge->mask & BRNF_PKT_TYPE) {
376                 skb->pkt_type = PACKET_OTHERHOST;
377                 nf_bridge->mask ^= BRNF_PKT_TYPE;
378         }
379         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
380         if (dnat_took_place(skb)) {
381                 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
382                         struct in_device *in_dev = __in_dev_get_rcu(dev);
383
384                         /* If err equals -EHOSTUNREACH the error is due to a
385                          * martian destination or due to the fact that
386                          * forwarding is disabled. For most martian packets,
387                          * ip_route_output_key() will fail. It won't fail for 2 types of
388                          * martian destinations: loopback destinations and destination
389                          * 0.0.0.0. In both cases the packet will be dropped because the
390                          * destination is the loopback device and not the bridge. */
391                         if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
392                                 goto free_skb;
393
394                         rt = ip_route_output(dev_net(dev), iph->daddr, 0,
395                                              RT_TOS(iph->tos), 0);
396                         if (!IS_ERR(rt)) {
397                                 /* - Bridged-and-DNAT'ed traffic doesn't
398                                  *   require ip_forwarding. */
399                                 if (rt->dst.dev == dev) {
400                                         skb_dst_set(skb, &rt->dst);
401                                         goto bridged_dnat;
402                                 }
403                                 ip_rt_put(rt);
404                         }
405 free_skb:
406                         kfree_skb(skb);
407                         return 0;
408                 } else {
409                         if (skb_dst(skb)->dev == dev) {
410 bridged_dnat:
411                                 skb->dev = nf_bridge->physindev;
412                                 nf_bridge_update_protocol(skb);
413                                 nf_bridge_push_encap_header(skb);
414                                 NF_HOOK_THRESH(NFPROTO_BRIDGE,
415                                                NF_BR_PRE_ROUTING,
416                                                skb, skb->dev, NULL,
417                                                br_nf_pre_routing_finish_bridge,
418                                                1);
419                                 return 0;
420                         }
421                         ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
422                         skb->pkt_type = PACKET_HOST;
423                 }
424         } else {
425                 rt = bridge_parent_rtable(nf_bridge->physindev);
426                 if (!rt) {
427                         kfree_skb(skb);
428                         return 0;
429                 }
430                 skb_dst_set_noref(skb, &rt->dst);
431         }
432
433         skb->dev = nf_bridge->physindev;
434         nf_bridge_update_protocol(skb);
435         nf_bridge_push_encap_header(skb);
436         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
437                        br_handle_frame_finish, 1);
438
439         return 0;
440 }
441
442 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
443 {
444         struct net_device *vlan, *br;
445
446         br = bridge_parent(dev);
447         if (brnf_pass_vlan_indev == 0 || !vlan_tx_tag_present(skb))
448                 return br;
449
450         vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
451                                     vlan_tx_tag_get(skb) & VLAN_VID_MASK);
452
453         return vlan ? vlan : br;
454 }
455
456 /* Some common code for IPv4/IPv6 */
457 static struct net_device *setup_pre_routing(struct sk_buff *skb)
458 {
459         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
460
461         if (skb->pkt_type == PACKET_OTHERHOST) {
462                 skb->pkt_type = PACKET_HOST;
463                 nf_bridge->mask |= BRNF_PKT_TYPE;
464         }
465
466         nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
467         nf_bridge->physindev = skb->dev;
468         skb->dev = brnf_get_logical_dev(skb, skb->dev);
469         if (skb->protocol == htons(ETH_P_8021Q))
470                 nf_bridge->mask |= BRNF_8021Q;
471         else if (skb->protocol == htons(ETH_P_PPP_SES))
472                 nf_bridge->mask |= BRNF_PPPoE;
473
474         /* Must drop socket now because of tproxy. */
475         skb_orphan(skb);
476         return skb->dev;
477 }
478
479 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
480 static int check_hbh_len(struct sk_buff *skb)
481 {
482         unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
483         u32 pkt_len;
484         const unsigned char *nh = skb_network_header(skb);
485         int off = raw - nh;
486         int len = (raw[1] + 1) << 3;
487
488         if ((raw + len) - skb->data > skb_headlen(skb))
489                 goto bad;
490
491         off += 2;
492         len -= 2;
493
494         while (len > 0) {
495                 int optlen = nh[off + 1] + 2;
496
497                 switch (nh[off]) {
498                 case IPV6_TLV_PAD1:
499                         optlen = 1;
500                         break;
501
502                 case IPV6_TLV_PADN:
503                         break;
504
505                 case IPV6_TLV_JUMBO:
506                         if (nh[off + 1] != 4 || (off & 3) != 2)
507                                 goto bad;
508                         pkt_len = ntohl(*(__be32 *) (nh + off + 2));
509                         if (pkt_len <= IPV6_MAXPLEN ||
510                             ipv6_hdr(skb)->payload_len)
511                                 goto bad;
512                         if (pkt_len > skb->len - sizeof(struct ipv6hdr))
513                                 goto bad;
514                         if (pskb_trim_rcsum(skb,
515                                             pkt_len + sizeof(struct ipv6hdr)))
516                                 goto bad;
517                         nh = skb_network_header(skb);
518                         break;
519                 default:
520                         if (optlen > len)
521                                 goto bad;
522                         break;
523                 }
524                 off += optlen;
525                 len -= optlen;
526         }
527         if (len == 0)
528                 return 0;
529 bad:
530         return -1;
531
532 }
533
534 /* Replicate the checks that IPv6 does on packet reception and pass the packet
535  * to ip6tables, which doesn't support NAT, so things are fairly simple. */
536 static unsigned int br_nf_pre_routing_ipv6(const struct nf_hook_ops *ops,
537                                            struct sk_buff *skb,
538                                            const struct net_device *in,
539                                            const struct net_device *out,
540                                            int (*okfn)(struct sk_buff *))
541 {
542         const struct ipv6hdr *hdr;
543         u32 pkt_len;
544
545         if (skb->len < sizeof(struct ipv6hdr))
546                 return NF_DROP;
547
548         if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
549                 return NF_DROP;
550
551         hdr = ipv6_hdr(skb);
552
553         if (hdr->version != 6)
554                 return NF_DROP;
555
556         pkt_len = ntohs(hdr->payload_len);
557
558         if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
559                 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
560                         return NF_DROP;
561                 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
562                         return NF_DROP;
563         }
564         if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
565                 return NF_DROP;
566
567         nf_bridge_put(skb->nf_bridge);
568         if (!nf_bridge_alloc(skb))
569                 return NF_DROP;
570         if (!setup_pre_routing(skb))
571                 return NF_DROP;
572
573         skb->protocol = htons(ETH_P_IPV6);
574         NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
575                 br_nf_pre_routing_finish_ipv6);
576
577         return NF_STOLEN;
578 }
579
580 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
581  * Replicate the checks that IPv4 does on packet reception.
582  * Set skb->dev to the bridge device (i.e. parent of the
583  * receiving device) to make netfilter happy, the REDIRECT
584  * target in particular.  Save the original destination IP
585  * address to be able to detect DNAT afterwards. */
586 static unsigned int br_nf_pre_routing(const struct nf_hook_ops *ops,
587                                       struct sk_buff *skb,
588                                       const struct net_device *in,
589                                       const struct net_device *out,
590                                       int (*okfn)(struct sk_buff *))
591 {
592         struct net_bridge_port *p;
593         struct net_bridge *br;
594         __u32 len = nf_bridge_encap_header_len(skb);
595
596         if (unlikely(!pskb_may_pull(skb, len)))
597                 return NF_DROP;
598
599         p = br_port_get_rcu(in);
600         if (p == NULL)
601                 return NF_DROP;
602         br = p->br;
603
604         if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
605                 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
606                         return NF_ACCEPT;
607
608                 nf_bridge_pull_encap_header_rcsum(skb);
609                 return br_nf_pre_routing_ipv6(ops, skb, in, out, okfn);
610         }
611
612         if (!brnf_call_iptables && !br->nf_call_iptables)
613                 return NF_ACCEPT;
614
615         if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
616                 return NF_ACCEPT;
617
618         nf_bridge_pull_encap_header_rcsum(skb);
619
620         if (br_parse_ip_options(skb))
621                 return NF_DROP;
622
623         nf_bridge_put(skb->nf_bridge);
624         if (!nf_bridge_alloc(skb))
625                 return NF_DROP;
626         if (!setup_pre_routing(skb))
627                 return NF_DROP;
628         store_orig_dstaddr(skb);
629         skb->protocol = htons(ETH_P_IP);
630
631         NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
632                 br_nf_pre_routing_finish);
633
634         return NF_STOLEN;
635 }
636
637
638 /* PF_BRIDGE/LOCAL_IN ************************************************/
639 /* The packet is locally destined, which requires a real
640  * dst_entry, so detach the fake one.  On the way up, the
641  * packet would pass through PRE_ROUTING again (which already
642  * took place when the packet entered the bridge), but we
643  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
644  * prevent this from happening. */
645 static unsigned int br_nf_local_in(const struct nf_hook_ops *ops,
646                                    struct sk_buff *skb,
647                                    const struct net_device *in,
648                                    const struct net_device *out,
649                                    int (*okfn)(struct sk_buff *))
650 {
651         br_drop_fake_rtable(skb);
652         return NF_ACCEPT;
653 }
654
655 /* PF_BRIDGE/FORWARD *************************************************/
656 static int br_nf_forward_finish(struct sk_buff *skb)
657 {
658         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
659         struct net_device *in;
660
661         if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
662                 in = nf_bridge->physindev;
663                 if (nf_bridge->mask & BRNF_PKT_TYPE) {
664                         skb->pkt_type = PACKET_OTHERHOST;
665                         nf_bridge->mask ^= BRNF_PKT_TYPE;
666                 }
667                 nf_bridge_update_protocol(skb);
668         } else {
669                 in = *((struct net_device **)(skb->cb));
670         }
671         nf_bridge_push_encap_header(skb);
672
673         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
674                        skb->dev, br_forward_finish, 1);
675         return 0;
676 }
677
678
679 /* This is the 'purely bridged' case.  For IP, we pass the packet to
680  * netfilter with indev and outdev set to the bridge device,
681  * but we are still able to filter on the 'real' indev/outdev
682  * because of the physdev module. For ARP, indev and outdev are the
683  * bridge ports. */
684 static unsigned int br_nf_forward_ip(const struct nf_hook_ops *ops,
685                                      struct sk_buff *skb,
686                                      const struct net_device *in,
687                                      const struct net_device *out,
688                                      int (*okfn)(struct sk_buff *))
689 {
690         struct nf_bridge_info *nf_bridge;
691         struct net_device *parent;
692         u_int8_t pf;
693
694         if (!skb->nf_bridge)
695                 return NF_ACCEPT;
696
697         /* Need exclusive nf_bridge_info since we might have multiple
698          * different physoutdevs. */
699         if (!nf_bridge_unshare(skb))
700                 return NF_DROP;
701
702         parent = bridge_parent(out);
703         if (!parent)
704                 return NF_DROP;
705
706         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
707                 pf = NFPROTO_IPV4;
708         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
709                 pf = NFPROTO_IPV6;
710         else
711                 return NF_ACCEPT;
712
713         nf_bridge_pull_encap_header(skb);
714
715         nf_bridge = skb->nf_bridge;
716         if (skb->pkt_type == PACKET_OTHERHOST) {
717                 skb->pkt_type = PACKET_HOST;
718                 nf_bridge->mask |= BRNF_PKT_TYPE;
719         }
720
721         if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
722                 return NF_DROP;
723
724         /* The physdev module checks on this */
725         nf_bridge->mask |= BRNF_BRIDGED;
726         nf_bridge->physoutdev = skb->dev;
727         if (pf == NFPROTO_IPV4)
728                 skb->protocol = htons(ETH_P_IP);
729         else
730                 skb->protocol = htons(ETH_P_IPV6);
731
732         NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
733                 br_nf_forward_finish);
734
735         return NF_STOLEN;
736 }
737
738 static unsigned int br_nf_forward_arp(const struct nf_hook_ops *ops,
739                                       struct sk_buff *skb,
740                                       const struct net_device *in,
741                                       const struct net_device *out,
742                                       int (*okfn)(struct sk_buff *))
743 {
744         struct net_bridge_port *p;
745         struct net_bridge *br;
746         struct net_device **d = (struct net_device **)(skb->cb);
747
748         p = br_port_get_rcu(out);
749         if (p == NULL)
750                 return NF_ACCEPT;
751         br = p->br;
752
753         if (!brnf_call_arptables && !br->nf_call_arptables)
754                 return NF_ACCEPT;
755
756         if (!IS_ARP(skb)) {
757                 if (!IS_VLAN_ARP(skb))
758                         return NF_ACCEPT;
759                 nf_bridge_pull_encap_header(skb);
760         }
761
762         if (arp_hdr(skb)->ar_pln != 4) {
763                 if (IS_VLAN_ARP(skb))
764                         nf_bridge_push_encap_header(skb);
765                 return NF_ACCEPT;
766         }
767         *d = (struct net_device *)in;
768         NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
769                 (struct net_device *)out, br_nf_forward_finish);
770
771         return NF_STOLEN;
772 }
773
774 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4)
775 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
776 {
777         int ret;
778
779         if (skb->protocol == htons(ETH_P_IP) &&
780             skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
781             !skb_is_gso(skb)) {
782                 if (br_parse_ip_options(skb))
783                         /* Drop invalid packet */
784                         return NF_DROP;
785                 ret = ip_fragment(skb, br_dev_queue_push_xmit);
786         } else
787                 ret = br_dev_queue_push_xmit(skb);
788
789         return ret;
790 }
791 #else
792 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
793 {
794         return br_dev_queue_push_xmit(skb);
795 }
796 #endif
797
798 /* PF_BRIDGE/POST_ROUTING ********************************************/
799 static unsigned int br_nf_post_routing(const struct nf_hook_ops *ops,
800                                        struct sk_buff *skb,
801                                        const struct net_device *in,
802                                        const struct net_device *out,
803                                        int (*okfn)(struct sk_buff *))
804 {
805         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
806         struct net_device *realoutdev = bridge_parent(skb->dev);
807         u_int8_t pf;
808
809         if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
810                 return NF_ACCEPT;
811
812         if (!realoutdev)
813                 return NF_DROP;
814
815         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
816                 pf = NFPROTO_IPV4;
817         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
818                 pf = NFPROTO_IPV6;
819         else
820                 return NF_ACCEPT;
821
822         /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
823          * about the value of skb->pkt_type. */
824         if (skb->pkt_type == PACKET_OTHERHOST) {
825                 skb->pkt_type = PACKET_HOST;
826                 nf_bridge->mask |= BRNF_PKT_TYPE;
827         }
828
829         nf_bridge_pull_encap_header(skb);
830         nf_bridge_save_header(skb);
831         if (pf == NFPROTO_IPV4)
832                 skb->protocol = htons(ETH_P_IP);
833         else
834                 skb->protocol = htons(ETH_P_IPV6);
835
836         NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
837                 br_nf_dev_queue_xmit);
838
839         return NF_STOLEN;
840 }
841
842 /* IP/SABOTAGE *****************************************************/
843 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
844  * for the second time. */
845 static unsigned int ip_sabotage_in(const struct nf_hook_ops *ops,
846                                    struct sk_buff *skb,
847                                    const struct net_device *in,
848                                    const struct net_device *out,
849                                    int (*okfn)(struct sk_buff *))
850 {
851         if (skb->nf_bridge &&
852             !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
853                 return NF_STOP;
854         }
855
856         return NF_ACCEPT;
857 }
858
859 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
860  * br_dev_queue_push_xmit is called afterwards */
861 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
862         {
863                 .hook = br_nf_pre_routing,
864                 .owner = THIS_MODULE,
865                 .pf = NFPROTO_BRIDGE,
866                 .hooknum = NF_BR_PRE_ROUTING,
867                 .priority = NF_BR_PRI_BRNF,
868         },
869         {
870                 .hook = br_nf_local_in,
871                 .owner = THIS_MODULE,
872                 .pf = NFPROTO_BRIDGE,
873                 .hooknum = NF_BR_LOCAL_IN,
874                 .priority = NF_BR_PRI_BRNF,
875         },
876         {
877                 .hook = br_nf_forward_ip,
878                 .owner = THIS_MODULE,
879                 .pf = NFPROTO_BRIDGE,
880                 .hooknum = NF_BR_FORWARD,
881                 .priority = NF_BR_PRI_BRNF - 1,
882         },
883         {
884                 .hook = br_nf_forward_arp,
885                 .owner = THIS_MODULE,
886                 .pf = NFPROTO_BRIDGE,
887                 .hooknum = NF_BR_FORWARD,
888                 .priority = NF_BR_PRI_BRNF,
889         },
890         {
891                 .hook = br_nf_post_routing,
892                 .owner = THIS_MODULE,
893                 .pf = NFPROTO_BRIDGE,
894                 .hooknum = NF_BR_POST_ROUTING,
895                 .priority = NF_BR_PRI_LAST,
896         },
897         {
898                 .hook = ip_sabotage_in,
899                 .owner = THIS_MODULE,
900                 .pf = NFPROTO_IPV4,
901                 .hooknum = NF_INET_PRE_ROUTING,
902                 .priority = NF_IP_PRI_FIRST,
903         },
904         {
905                 .hook = ip_sabotage_in,
906                 .owner = THIS_MODULE,
907                 .pf = NFPROTO_IPV6,
908                 .hooknum = NF_INET_PRE_ROUTING,
909                 .priority = NF_IP6_PRI_FIRST,
910         },
911 };
912
913 #ifdef CONFIG_SYSCTL
914 static
915 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
916                             void __user *buffer, size_t *lenp, loff_t *ppos)
917 {
918         int ret;
919
920         ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
921
922         if (write && *(int *)(ctl->data))
923                 *(int *)(ctl->data) = 1;
924         return ret;
925 }
926
927 static struct ctl_table brnf_table[] = {
928         {
929                 .procname       = "bridge-nf-call-arptables",
930                 .data           = &brnf_call_arptables,
931                 .maxlen         = sizeof(int),
932                 .mode           = 0644,
933                 .proc_handler   = brnf_sysctl_call_tables,
934         },
935         {
936                 .procname       = "bridge-nf-call-iptables",
937                 .data           = &brnf_call_iptables,
938                 .maxlen         = sizeof(int),
939                 .mode           = 0644,
940                 .proc_handler   = brnf_sysctl_call_tables,
941         },
942         {
943                 .procname       = "bridge-nf-call-ip6tables",
944                 .data           = &brnf_call_ip6tables,
945                 .maxlen         = sizeof(int),
946                 .mode           = 0644,
947                 .proc_handler   = brnf_sysctl_call_tables,
948         },
949         {
950                 .procname       = "bridge-nf-filter-vlan-tagged",
951                 .data           = &brnf_filter_vlan_tagged,
952                 .maxlen         = sizeof(int),
953                 .mode           = 0644,
954                 .proc_handler   = brnf_sysctl_call_tables,
955         },
956         {
957                 .procname       = "bridge-nf-filter-pppoe-tagged",
958                 .data           = &brnf_filter_pppoe_tagged,
959                 .maxlen         = sizeof(int),
960                 .mode           = 0644,
961                 .proc_handler   = brnf_sysctl_call_tables,
962         },
963         {
964                 .procname       = "bridge-nf-pass-vlan-input-dev",
965                 .data           = &brnf_pass_vlan_indev,
966                 .maxlen         = sizeof(int),
967                 .mode           = 0644,
968                 .proc_handler   = brnf_sysctl_call_tables,
969         },
970         { }
971 };
972 #endif
973
974 static int __init br_netfilter_init(void)
975 {
976         int ret;
977
978         ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
979         if (ret < 0)
980                 return ret;
981
982 #ifdef CONFIG_SYSCTL
983         brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
984         if (brnf_sysctl_header == NULL) {
985                 printk(KERN_WARNING
986                        "br_netfilter: can't register to sysctl.\n");
987                 ret = -ENOMEM;
988                 goto err1;
989         }
990 #endif
991         printk(KERN_NOTICE "Bridge firewalling registered\n");
992         return 0;
993 err1:
994         nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
995         return ret;
996 }
997
998 static void __exit br_netfilter_fini(void)
999 {
1000         nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1001 #ifdef CONFIG_SYSCTL
1002         unregister_net_sysctl_table(brnf_sysctl_header);
1003 #endif
1004 }
1005
1006 module_init(br_netfilter_init);
1007 module_exit(br_netfilter_fini);
1008
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1011 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1012 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");