]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;       /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153                                          struct net_device *dev,
154                                          struct netdev_notifier_info *info);
155
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188         while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206         spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220         struct net *net = dev_net(dev);
221
222         ASSERT_RTNL();
223
224         write_lock_bh(&dev_base_lock);
225         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227         hlist_add_head_rcu(&dev->index_hlist,
228                            dev_index_hash(net, dev->ifindex));
229         write_unlock_bh(&dev_base_lock);
230
231         dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239         ASSERT_RTNL();
240
241         /* Unlink dev from the device chain */
242         write_lock_bh(&dev_base_lock);
243         list_del_rcu(&dev->dev_list);
244         hlist_del_rcu(&dev->name_hlist);
245         hlist_del_rcu(&dev->index_hlist);
246         write_unlock_bh(&dev_base_lock);
247
248         dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252  *      Our notifier list
253  */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258  *      Device drivers call our routines to queue packets here. We empty the
259  *      queue in the local softnet handler.
260  */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312                 if (netdev_lock_type[i] == dev_type)
313                         return i;
314         /* the last key is used by default */
315         return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319                                                  unsigned short dev_type)
320 {
321         int i;
322
323         i = netdev_lock_pos(dev_type);
324         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325                                    netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330         int i;
331
332         i = netdev_lock_pos(dev->type);
333         lockdep_set_class_and_name(&dev->addr_list_lock,
334                                    &netdev_addr_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339                                                  unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349                 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354  *      Add a protocol ID to the list. Now that the input handler is
355  *      smarter we can dispense with all the messy stuff that used to be
356  *      here.
357  *
358  *      BEWARE!!! Protocol handlers, mangling input packets,
359  *      MUST BE last in hash buckets and checking protocol handlers
360  *      MUST start from promiscuous ptype_all chain in net_bh.
361  *      It is true now, do not change it.
362  *      Explanation follows: if protocol handler, mangling packet, will
363  *      be the first on list, it is not able to sense, that packet
364  *      is cloned and should be copied-on-write, so that it will
365  *      change it and subsequent readers will get broken packet.
366  *                                                      --ANK (980803)
367  */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371         if (pt->type == htons(ETH_P_ALL))
372                 return &ptype_all;
373         else
374                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378  *      dev_add_pack - add packet handler
379  *      @pt: packet type declaration
380  *
381  *      Add a protocol handler to the networking stack. The passed &packet_type
382  *      is linked into kernel lists and may not be freed until it has been
383  *      removed from the kernel lists.
384  *
385  *      This call does not sleep therefore it can not
386  *      guarantee all CPU's that are in middle of receiving packets
387  *      will see the new packet type (until the next received packet).
388  */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392         struct list_head *head = ptype_head(pt);
393
394         spin_lock(&ptype_lock);
395         list_add_rcu(&pt->list, head);
396         spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401  *      __dev_remove_pack        - remove packet handler
402  *      @pt: packet type declaration
403  *
404  *      Remove a protocol handler that was previously added to the kernel
405  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *      from the kernel lists and can be freed or reused once this function
407  *      returns.
408  *
409  *      The packet type might still be in use by receivers
410  *      and must not be freed until after all the CPU's have gone
411  *      through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415         struct list_head *head = ptype_head(pt);
416         struct packet_type *pt1;
417
418         spin_lock(&ptype_lock);
419
420         list_for_each_entry(pt1, head, list) {
421                 if (pt == pt1) {
422                         list_del_rcu(&pt->list);
423                         goto out;
424                 }
425         }
426
427         pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429         spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434  *      dev_remove_pack  - remove packet handler
435  *      @pt: packet type declaration
436  *
437  *      Remove a protocol handler that was previously added to the kernel
438  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *      from the kernel lists and can be freed or reused once this function
440  *      returns.
441  *
442  *      This call sleeps to guarantee that no CPU is looking at the packet
443  *      type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447         __dev_remove_pack(pt);
448
449         synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455  *      dev_add_offload - register offload handlers
456  *      @po: protocol offload declaration
457  *
458  *      Add protocol offload handlers to the networking stack. The passed
459  *      &proto_offload is linked into kernel lists and may not be freed until
460  *      it has been removed from the kernel lists.
461  *
462  *      This call does not sleep therefore it can not
463  *      guarantee all CPU's that are in middle of receiving packets
464  *      will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468         struct list_head *head = &offload_base;
469
470         spin_lock(&offload_lock);
471         list_add_rcu(&po->list, head);
472         spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477  *      __dev_remove_offload     - remove offload handler
478  *      @po: packet offload declaration
479  *
480  *      Remove a protocol offload handler that was previously added to the
481  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *      is removed from the kernel lists and can be freed or reused once this
483  *      function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *      and must not be freed until after all the CPU's have gone
487  *      through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491         struct list_head *head = &offload_base;
492         struct packet_offload *po1;
493
494         spin_lock(&offload_lock);
495
496         list_for_each_entry(po1, head, list) {
497                 if (po == po1) {
498                         list_del_rcu(&po->list);
499                         goto out;
500                 }
501         }
502
503         pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505         spin_unlock(&offload_lock);
506 }
507
508 /**
509  *      dev_remove_offload       - remove packet offload handler
510  *      @po: packet offload declaration
511  *
512  *      Remove a packet offload handler that was previously added to the kernel
513  *      offload handlers by dev_add_offload(). The passed &offload_type is
514  *      removed from the kernel lists and can be freed or reused once this
515  *      function returns.
516  *
517  *      This call sleeps to guarantee that no CPU is looking at the packet
518  *      type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522         __dev_remove_offload(po);
523
524         synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530                       Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538  *      netdev_boot_setup_add   - add new setup entry
539  *      @name: name of the device
540  *      @map: configured settings for the device
541  *
542  *      Adds new setup entry to the dev_boot_setup list.  The function
543  *      returns 0 on error and 1 on success.  This is a generic routine to
544  *      all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548         struct netdev_boot_setup *s;
549         int i;
550
551         s = dev_boot_setup;
552         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554                         memset(s[i].name, 0, sizeof(s[i].name));
555                         strlcpy(s[i].name, name, IFNAMSIZ);
556                         memcpy(&s[i].map, map, sizeof(s[i].map));
557                         break;
558                 }
559         }
560
561         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565  *      netdev_boot_setup_check - check boot time settings
566  *      @dev: the netdevice
567  *
568  *      Check boot time settings for the device.
569  *      The found settings are set for the device to be used
570  *      later in the device probing.
571  *      Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575         struct netdev_boot_setup *s = dev_boot_setup;
576         int i;
577
578         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580                     !strcmp(dev->name, s[i].name)) {
581                         dev->irq        = s[i].map.irq;
582                         dev->base_addr  = s[i].map.base_addr;
583                         dev->mem_start  = s[i].map.mem_start;
584                         dev->mem_end    = s[i].map.mem_end;
585                         return 1;
586                 }
587         }
588         return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594  *      netdev_boot_base        - get address from boot time settings
595  *      @prefix: prefix for network device
596  *      @unit: id for network device
597  *
598  *      Check boot time settings for the base address of device.
599  *      The found settings are set for the device to be used
600  *      later in the device probing.
601  *      Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605         const struct netdev_boot_setup *s = dev_boot_setup;
606         char name[IFNAMSIZ];
607         int i;
608
609         sprintf(name, "%s%d", prefix, unit);
610
611         /*
612          * If device already registered then return base of 1
613          * to indicate not to probe for this interface
614          */
615         if (__dev_get_by_name(&init_net, name))
616                 return 1;
617
618         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619                 if (!strcmp(name, s[i].name))
620                         return s[i].map.base_addr;
621         return 0;
622 }
623
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629         int ints[5];
630         struct ifmap map;
631
632         str = get_options(str, ARRAY_SIZE(ints), ints);
633         if (!str || !*str)
634                 return 0;
635
636         /* Save settings */
637         memset(&map, 0, sizeof(map));
638         if (ints[0] > 0)
639                 map.irq = ints[1];
640         if (ints[0] > 1)
641                 map.base_addr = ints[2];
642         if (ints[0] > 2)
643                 map.mem_start = ints[3];
644         if (ints[0] > 3)
645                 map.mem_end = ints[4];
646
647         /* Add new entry to the list */
648         return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655                             Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660  *      __dev_get_by_name       - find a device by its name
661  *      @net: the applicable net namespace
662  *      @name: name to find
663  *
664  *      Find an interface by name. Must be called under RTNL semaphore
665  *      or @dev_base_lock. If the name is found a pointer to the device
666  *      is returned. If the name is not found then %NULL is returned. The
667  *      reference counters are not incremented so the caller must be
668  *      careful with locks.
669  */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673         struct net_device *dev;
674         struct hlist_head *head = dev_name_hash(net, name);
675
676         hlist_for_each_entry(dev, head, name_hlist)
677                 if (!strncmp(dev->name, name, IFNAMSIZ))
678                         return dev;
679
680         return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685  *      dev_get_by_name_rcu     - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name.
690  *      If the name is found a pointer to the device is returned.
691  *      If the name is not found then %NULL is returned.
692  *      The reference counters are not incremented so the caller must be
693  *      careful with locks. The caller must hold RCU lock.
694  */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry_rcu(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710  *      dev_get_by_name         - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name. This can be called from any
715  *      context and does its own locking. The returned handle has
716  *      the usage count incremented and the caller must use dev_put() to
717  *      release it when it is no longer needed. %NULL is returned if no
718  *      matching device is found.
719  */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724
725         rcu_read_lock();
726         dev = dev_get_by_name_rcu(net, name);
727         if (dev)
728                 dev_hold(dev);
729         rcu_read_unlock();
730         return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735  *      __dev_get_by_index - find a device by its ifindex
736  *      @net: the applicable net namespace
737  *      @ifindex: index of device
738  *
739  *      Search for an interface by index. Returns %NULL if the device
740  *      is not found or a pointer to the device. The device has not
741  *      had its reference counter increased so the caller must be careful
742  *      about locking. The caller must hold either the RTNL semaphore
743  *      or @dev_base_lock.
744  */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748         struct net_device *dev;
749         struct hlist_head *head = dev_index_hash(net, ifindex);
750
751         hlist_for_each_entry(dev, head, index_hlist)
752                 if (dev->ifindex == ifindex)
753                         return dev;
754
755         return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760  *      dev_get_by_index_rcu - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772         struct net_device *dev;
773         struct hlist_head *head = dev_index_hash(net, ifindex);
774
775         hlist_for_each_entry_rcu(dev, head, index_hlist)
776                 if (dev->ifindex == ifindex)
777                         return dev;
778
779         return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785  *      dev_get_by_index - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns NULL if the device
790  *      is not found or a pointer to the device. The device returned has
791  *      had a reference added and the pointer is safe until the user calls
792  *      dev_put to indicate they have finished with it.
793  */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798
799         rcu_read_lock();
800         dev = dev_get_by_index_rcu(net, ifindex);
801         if (dev)
802                 dev_hold(dev);
803         rcu_read_unlock();
804         return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809  *      netdev_get_name - get a netdevice name, knowing its ifindex.
810  *      @net: network namespace
811  *      @name: a pointer to the buffer where the name will be stored.
812  *      @ifindex: the ifindex of the interface to get the name from.
813  *
814  *      The use of raw_seqcount_begin() and cond_resched() before
815  *      retrying is required as we want to give the writers a chance
816  *      to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820         struct net_device *dev;
821         unsigned int seq;
822
823 retry:
824         seq = raw_seqcount_begin(&devnet_rename_seq);
825         rcu_read_lock();
826         dev = dev_get_by_index_rcu(net, ifindex);
827         if (!dev) {
828                 rcu_read_unlock();
829                 return -ENODEV;
830         }
831
832         strcpy(name, dev->name);
833         rcu_read_unlock();
834         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835                 cond_resched();
836                 goto retry;
837         }
838
839         return 0;
840 }
841
842 /**
843  *      dev_getbyhwaddr_rcu - find a device by its hardware address
844  *      @net: the applicable net namespace
845  *      @type: media type of device
846  *      @ha: hardware address
847  *
848  *      Search for an interface by MAC address. Returns NULL if the device
849  *      is not found or a pointer to the device.
850  *      The caller must hold RCU or RTNL.
851  *      The returned device has not had its ref count increased
852  *      and the caller must therefore be careful about locking
853  *
854  */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857                                        const char *ha)
858 {
859         struct net_device *dev;
860
861         for_each_netdev_rcu(net, dev)
862                 if (dev->type == type &&
863                     !memcmp(dev->dev_addr, ha, dev->addr_len))
864                         return dev;
865
866         return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872         struct net_device *dev;
873
874         ASSERT_RTNL();
875         for_each_netdev(net, dev)
876                 if (dev->type == type)
877                         return dev;
878
879         return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885         struct net_device *dev, *ret = NULL;
886
887         rcu_read_lock();
888         for_each_netdev_rcu(net, dev)
889                 if (dev->type == type) {
890                         dev_hold(dev);
891                         ret = dev;
892                         break;
893                 }
894         rcu_read_unlock();
895         return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900  *      dev_get_by_flags_rcu - find any device with given flags
901  *      @net: the applicable net namespace
902  *      @if_flags: IFF_* values
903  *      @mask: bitmask of bits in if_flags to check
904  *
905  *      Search for any interface with the given flags. Returns NULL if a device
906  *      is not found or a pointer to the device. Must be called inside
907  *      rcu_read_lock(), and result refcount is unchanged.
908  */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911                                     unsigned short mask)
912 {
913         struct net_device *dev, *ret;
914
915         ret = NULL;
916         for_each_netdev_rcu(net, dev) {
917                 if (((dev->flags ^ if_flags) & mask) == 0) {
918                         ret = dev;
919                         break;
920                 }
921         }
922         return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927  *      dev_valid_name - check if name is okay for network device
928  *      @name: name string
929  *
930  *      Network device names need to be valid file names to
931  *      to allow sysfs to work.  We also disallow any kind of
932  *      whitespace.
933  */
934 bool dev_valid_name(const char *name)
935 {
936         if (*name == '\0')
937                 return false;
938         if (strlen(name) >= IFNAMSIZ)
939                 return false;
940         if (!strcmp(name, ".") || !strcmp(name, ".."))
941                 return false;
942
943         while (*name) {
944                 if (*name == '/' || isspace(*name))
945                         return false;
946                 name++;
947         }
948         return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953  *      __dev_alloc_name - allocate a name for a device
954  *      @net: network namespace to allocate the device name in
955  *      @name: name format string
956  *      @buf:  scratch buffer and result name string
957  *
958  *      Passed a format string - eg "lt%d" it will try and find a suitable
959  *      id. It scans list of devices to build up a free map, then chooses
960  *      the first empty slot. The caller must hold the dev_base or rtnl lock
961  *      while allocating the name and adding the device in order to avoid
962  *      duplicates.
963  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964  *      Returns the number of the unit assigned or a negative errno code.
965  */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969         int i = 0;
970         const char *p;
971         const int max_netdevices = 8*PAGE_SIZE;
972         unsigned long *inuse;
973         struct net_device *d;
974
975         p = strnchr(name, IFNAMSIZ-1, '%');
976         if (p) {
977                 /*
978                  * Verify the string as this thing may have come from
979                  * the user.  There must be either one "%d" and no other "%"
980                  * characters.
981                  */
982                 if (p[1] != 'd' || strchr(p + 2, '%'))
983                         return -EINVAL;
984
985                 /* Use one page as a bit array of possible slots */
986                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987                 if (!inuse)
988                         return -ENOMEM;
989
990                 for_each_netdev(net, d) {
991                         if (!sscanf(d->name, name, &i))
992                                 continue;
993                         if (i < 0 || i >= max_netdevices)
994                                 continue;
995
996                         /*  avoid cases where sscanf is not exact inverse of printf */
997                         snprintf(buf, IFNAMSIZ, name, i);
998                         if (!strncmp(buf, d->name, IFNAMSIZ))
999                                 set_bit(i, inuse);
1000                 }
1001
1002                 i = find_first_zero_bit(inuse, max_netdevices);
1003                 free_page((unsigned long) inuse);
1004         }
1005
1006         if (buf != name)
1007                 snprintf(buf, IFNAMSIZ, name, i);
1008         if (!__dev_get_by_name(net, buf))
1009                 return i;
1010
1011         /* It is possible to run out of possible slots
1012          * when the name is long and there isn't enough space left
1013          * for the digits, or if all bits are used.
1014          */
1015         return -ENFILE;
1016 }
1017
1018 /**
1019  *      dev_alloc_name - allocate a name for a device
1020  *      @dev: device
1021  *      @name: name format string
1022  *
1023  *      Passed a format string - eg "lt%d" it will try and find a suitable
1024  *      id. It scans list of devices to build up a free map, then chooses
1025  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1026  *      while allocating the name and adding the device in order to avoid
1027  *      duplicates.
1028  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029  *      Returns the number of the unit assigned or a negative errno code.
1030  */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034         char buf[IFNAMSIZ];
1035         struct net *net;
1036         int ret;
1037
1038         BUG_ON(!dev_net(dev));
1039         net = dev_net(dev);
1040         ret = __dev_alloc_name(net, name, buf);
1041         if (ret >= 0)
1042                 strlcpy(dev->name, buf, IFNAMSIZ);
1043         return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048                              struct net_device *dev,
1049                              const char *name)
1050 {
1051         char buf[IFNAMSIZ];
1052         int ret;
1053
1054         ret = __dev_alloc_name(net, name, buf);
1055         if (ret >= 0)
1056                 strlcpy(dev->name, buf, IFNAMSIZ);
1057         return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061                               struct net_device *dev,
1062                               const char *name)
1063 {
1064         BUG_ON(!net);
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         if (strchr(name, '%'))
1070                 return dev_alloc_name_ns(net, dev, name);
1071         else if (__dev_get_by_name(net, name))
1072                 return -EEXIST;
1073         else if (dev->name != name)
1074                 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076         return 0;
1077 }
1078
1079 /**
1080  *      dev_change_name - change name of a device
1081  *      @dev: device
1082  *      @newname: name (or format string) must be at least IFNAMSIZ
1083  *
1084  *      Change name of a device, can pass format strings "eth%d".
1085  *      for wildcarding.
1086  */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089         unsigned char old_assign_type;
1090         char oldname[IFNAMSIZ];
1091         int err = 0;
1092         int ret;
1093         struct net *net;
1094
1095         ASSERT_RTNL();
1096         BUG_ON(!dev_net(dev));
1097
1098         net = dev_net(dev);
1099         if (dev->flags & IFF_UP)
1100                 return -EBUSY;
1101
1102         write_seqcount_begin(&devnet_rename_seq);
1103
1104         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105                 write_seqcount_end(&devnet_rename_seq);
1106                 return 0;
1107         }
1108
1109         memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111         err = dev_get_valid_name(net, dev, newname);
1112         if (err < 0) {
1113                 write_seqcount_end(&devnet_rename_seq);
1114                 return err;
1115         }
1116
1117         if (oldname[0] && !strchr(oldname, '%'))
1118                 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120         old_assign_type = dev->name_assign_type;
1121         dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124         ret = device_rename(&dev->dev, dev->name);
1125         if (ret) {
1126                 memcpy(dev->name, oldname, IFNAMSIZ);
1127                 dev->name_assign_type = old_assign_type;
1128                 write_seqcount_end(&devnet_rename_seq);
1129                 return ret;
1130         }
1131
1132         write_seqcount_end(&devnet_rename_seq);
1133
1134         netdev_adjacent_rename_links(dev, oldname);
1135
1136         write_lock_bh(&dev_base_lock);
1137         hlist_del_rcu(&dev->name_hlist);
1138         write_unlock_bh(&dev_base_lock);
1139
1140         synchronize_rcu();
1141
1142         write_lock_bh(&dev_base_lock);
1143         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144         write_unlock_bh(&dev_base_lock);
1145
1146         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147         ret = notifier_to_errno(ret);
1148
1149         if (ret) {
1150                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151                 if (err >= 0) {
1152                         err = ret;
1153                         write_seqcount_begin(&devnet_rename_seq);
1154                         memcpy(dev->name, oldname, IFNAMSIZ);
1155                         memcpy(oldname, newname, IFNAMSIZ);
1156                         dev->name_assign_type = old_assign_type;
1157                         old_assign_type = NET_NAME_RENAMED;
1158                         goto rollback;
1159                 } else {
1160                         pr_err("%s: name change rollback failed: %d\n",
1161                                dev->name, ret);
1162                 }
1163         }
1164
1165         return err;
1166 }
1167
1168 /**
1169  *      dev_set_alias - change ifalias of a device
1170  *      @dev: device
1171  *      @alias: name up to IFALIASZ
1172  *      @len: limit of bytes to copy from info
1173  *
1174  *      Set ifalias for a device,
1175  */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178         char *new_ifalias;
1179
1180         ASSERT_RTNL();
1181
1182         if (len >= IFALIASZ)
1183                 return -EINVAL;
1184
1185         if (!len) {
1186                 kfree(dev->ifalias);
1187                 dev->ifalias = NULL;
1188                 return 0;
1189         }
1190
1191         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192         if (!new_ifalias)
1193                 return -ENOMEM;
1194         dev->ifalias = new_ifalias;
1195
1196         strlcpy(dev->ifalias, alias, len+1);
1197         return len;
1198 }
1199
1200
1201 /**
1202  *      netdev_features_change - device changes features
1203  *      @dev: device to cause notification
1204  *
1205  *      Called to indicate a device has changed features.
1206  */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214  *      netdev_state_change - device changes state
1215  *      @dev: device to cause notification
1216  *
1217  *      Called to indicate a device has changed state. This function calls
1218  *      the notifier chains for netdev_chain and sends a NEWLINK message
1219  *      to the routing socket.
1220  */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223         if (dev->flags & IFF_UP) {
1224                 struct netdev_notifier_change_info change_info;
1225
1226                 change_info.flags_changed = 0;
1227                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228                                               &change_info.info);
1229                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230         }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235  *      netdev_notify_peers - notify network peers about existence of @dev
1236  *      @dev: network device
1237  *
1238  * Generate traffic such that interested network peers are aware of
1239  * @dev, such as by generating a gratuitous ARP. This may be used when
1240  * a device wants to inform the rest of the network about some sort of
1241  * reconfiguration such as a failover event or virtual machine
1242  * migration.
1243  */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246         rtnl_lock();
1247         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248         rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254         const struct net_device_ops *ops = dev->netdev_ops;
1255         int ret;
1256
1257         ASSERT_RTNL();
1258
1259         if (!netif_device_present(dev))
1260                 return -ENODEV;
1261
1262         /* Block netpoll from trying to do any rx path servicing.
1263          * If we don't do this there is a chance ndo_poll_controller
1264          * or ndo_poll may be running while we open the device
1265          */
1266         netpoll_poll_disable(dev);
1267
1268         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269         ret = notifier_to_errno(ret);
1270         if (ret)
1271                 return ret;
1272
1273         set_bit(__LINK_STATE_START, &dev->state);
1274
1275         if (ops->ndo_validate_addr)
1276                 ret = ops->ndo_validate_addr(dev);
1277
1278         if (!ret && ops->ndo_open)
1279                 ret = ops->ndo_open(dev);
1280
1281         netpoll_poll_enable(dev);
1282
1283         if (ret)
1284                 clear_bit(__LINK_STATE_START, &dev->state);
1285         else {
1286                 dev->flags |= IFF_UP;
1287                 net_dmaengine_get();
1288                 dev_set_rx_mode(dev);
1289                 dev_activate(dev);
1290                 add_device_randomness(dev->dev_addr, dev->addr_len);
1291         }
1292
1293         return ret;
1294 }
1295
1296 /**
1297  *      dev_open        - prepare an interface for use.
1298  *      @dev:   device to open
1299  *
1300  *      Takes a device from down to up state. The device's private open
1301  *      function is invoked and then the multicast lists are loaded. Finally
1302  *      the device is moved into the up state and a %NETDEV_UP message is
1303  *      sent to the netdev notifier chain.
1304  *
1305  *      Calling this function on an active interface is a nop. On a failure
1306  *      a negative errno code is returned.
1307  */
1308 int dev_open(struct net_device *dev)
1309 {
1310         int ret;
1311
1312         if (dev->flags & IFF_UP)
1313                 return 0;
1314
1315         ret = __dev_open(dev);
1316         if (ret < 0)
1317                 return ret;
1318
1319         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320         call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322         return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328         struct net_device *dev;
1329
1330         ASSERT_RTNL();
1331         might_sleep();
1332
1333         list_for_each_entry(dev, head, close_list) {
1334                 /* Temporarily disable netpoll until the interface is down */
1335                 netpoll_poll_disable(dev);
1336
1337                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339                 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342                  * can be even on different cpu. So just clear netif_running().
1343                  *
1344                  * dev->stop() will invoke napi_disable() on all of it's
1345                  * napi_struct instances on this device.
1346                  */
1347                 smp_mb__after_atomic(); /* Commit netif_running(). */
1348         }
1349
1350         dev_deactivate_many(head);
1351
1352         list_for_each_entry(dev, head, close_list) {
1353                 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355                 /*
1356                  *      Call the device specific close. This cannot fail.
1357                  *      Only if device is UP
1358                  *
1359                  *      We allow it to be called even after a DETACH hot-plug
1360                  *      event.
1361                  */
1362                 if (ops->ndo_stop)
1363                         ops->ndo_stop(dev);
1364
1365                 dev->flags &= ~IFF_UP;
1366                 net_dmaengine_put();
1367                 netpoll_poll_enable(dev);
1368         }
1369
1370         return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375         int retval;
1376         LIST_HEAD(single);
1377
1378         list_add(&dev->close_list, &single);
1379         retval = __dev_close_many(&single);
1380         list_del(&single);
1381
1382         return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387         struct net_device *dev, *tmp;
1388
1389         /* Remove the devices that don't need to be closed */
1390         list_for_each_entry_safe(dev, tmp, head, close_list)
1391                 if (!(dev->flags & IFF_UP))
1392                         list_del_init(&dev->close_list);
1393
1394         __dev_close_many(head);
1395
1396         list_for_each_entry_safe(dev, tmp, head, close_list) {
1397                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399                 list_del_init(&dev->close_list);
1400         }
1401
1402         return 0;
1403 }
1404
1405 /**
1406  *      dev_close - shutdown an interface.
1407  *      @dev: device to shutdown
1408  *
1409  *      This function moves an active device into down state. A
1410  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412  *      chain.
1413  */
1414 int dev_close(struct net_device *dev)
1415 {
1416         if (dev->flags & IFF_UP) {
1417                 LIST_HEAD(single);
1418
1419                 list_add(&dev->close_list, &single);
1420                 dev_close_many(&single);
1421                 list_del(&single);
1422         }
1423         return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429  *      dev_disable_lro - disable Large Receive Offload on a device
1430  *      @dev: device
1431  *
1432  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1433  *      called under RTNL.  This is needed if received packets may be
1434  *      forwarded to another interface.
1435  */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438         /*
1439          * If we're trying to disable lro on a vlan device
1440          * use the underlying physical device instead
1441          */
1442         if (is_vlan_dev(dev))
1443                 dev = vlan_dev_real_dev(dev);
1444
1445         /* the same for macvlan devices */
1446         if (netif_is_macvlan(dev))
1447                 dev = macvlan_dev_real_dev(dev);
1448
1449         dev->wanted_features &= ~NETIF_F_LRO;
1450         netdev_update_features(dev);
1451
1452         if (unlikely(dev->features & NETIF_F_LRO))
1453                 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458                                    struct net_device *dev)
1459 {
1460         struct netdev_notifier_info info;
1461
1462         netdev_notifier_info_init(&info, dev);
1463         return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469  *      register_netdevice_notifier - register a network notifier block
1470  *      @nb: notifier
1471  *
1472  *      Register a notifier to be called when network device events occur.
1473  *      The notifier passed is linked into the kernel structures and must
1474  *      not be reused until it has been unregistered. A negative errno code
1475  *      is returned on a failure.
1476  *
1477  *      When registered all registration and up events are replayed
1478  *      to the new notifier to allow device to have a race free
1479  *      view of the network device list.
1480  */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484         struct net_device *dev;
1485         struct net_device *last;
1486         struct net *net;
1487         int err;
1488
1489         rtnl_lock();
1490         err = raw_notifier_chain_register(&netdev_chain, nb);
1491         if (err)
1492                 goto unlock;
1493         if (dev_boot_phase)
1494                 goto unlock;
1495         for_each_net(net) {
1496                 for_each_netdev(net, dev) {
1497                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498                         err = notifier_to_errno(err);
1499                         if (err)
1500                                 goto rollback;
1501
1502                         if (!(dev->flags & IFF_UP))
1503                                 continue;
1504
1505                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1506                 }
1507         }
1508
1509 unlock:
1510         rtnl_unlock();
1511         return err;
1512
1513 rollback:
1514         last = dev;
1515         for_each_net(net) {
1516                 for_each_netdev(net, dev) {
1517                         if (dev == last)
1518                                 goto outroll;
1519
1520                         if (dev->flags & IFF_UP) {
1521                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522                                                         dev);
1523                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524                         }
1525                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526                 }
1527         }
1528
1529 outroll:
1530         raw_notifier_chain_unregister(&netdev_chain, nb);
1531         goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536  *      unregister_netdevice_notifier - unregister a network notifier block
1537  *      @nb: notifier
1538  *
1539  *      Unregister a notifier previously registered by
1540  *      register_netdevice_notifier(). The notifier is unlinked into the
1541  *      kernel structures and may then be reused. A negative errno code
1542  *      is returned on a failure.
1543  *
1544  *      After unregistering unregister and down device events are synthesized
1545  *      for all devices on the device list to the removed notifier to remove
1546  *      the need for special case cleanup code.
1547  */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551         struct net_device *dev;
1552         struct net *net;
1553         int err;
1554
1555         rtnl_lock();
1556         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557         if (err)
1558                 goto unlock;
1559
1560         for_each_net(net) {
1561                 for_each_netdev(net, dev) {
1562                         if (dev->flags & IFF_UP) {
1563                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564                                                         dev);
1565                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566                         }
1567                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568                 }
1569         }
1570 unlock:
1571         rtnl_unlock();
1572         return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577  *      call_netdevice_notifiers_info - call all network notifier blocks
1578  *      @val: value passed unmodified to notifier function
1579  *      @dev: net_device pointer passed unmodified to notifier function
1580  *      @info: notifier information data
1581  *
1582  *      Call all network notifier blocks.  Parameters and return value
1583  *      are as for raw_notifier_call_chain().
1584  */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587                                          struct net_device *dev,
1588                                          struct netdev_notifier_info *info)
1589 {
1590         ASSERT_RTNL();
1591         netdev_notifier_info_init(info, dev);
1592         return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596  *      call_netdevice_notifiers - call all network notifier blocks
1597  *      @val: value passed unmodified to notifier function
1598  *      @dev: net_device pointer passed unmodified to notifier function
1599  *
1600  *      Call all network notifier blocks.  Parameters and return value
1601  *      are as for raw_notifier_call_chain().
1602  */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606         struct netdev_notifier_info info;
1607
1608         return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615  * If net_disable_timestamp() is called from irq context, defer the
1616  * static_key_slow_dec() calls.
1617  */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626         if (deferred) {
1627                 while (--deferred)
1628                         static_key_slow_dec(&netstamp_needed);
1629                 return;
1630         }
1631 #endif
1632         static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639         if (in_interrupt()) {
1640                 atomic_inc(&netstamp_needed_deferred);
1641                 return;
1642         }
1643 #endif
1644         static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650         skb->tstamp.tv64 = 0;
1651         if (static_key_false(&netstamp_needed))
1652                 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB)                  \
1656         if (static_key_false(&netstamp_needed)) {               \
1657                 if ((COND) && !(SKB)->tstamp.tv64)      \
1658                         __net_timestamp(SKB);           \
1659         }                                               \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663         unsigned int len;
1664
1665         if (!(dev->flags & IFF_UP))
1666                 return false;
1667
1668         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669         if (skb->len <= len)
1670                 return true;
1671
1672         /* if TSO is enabled, we don't care about the length as the packet
1673          * could be forwarded without being segmented before
1674          */
1675         if (skb_is_gso(skb))
1676                 return true;
1677
1678         return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686                         atomic_long_inc(&dev->rx_dropped);
1687                         kfree_skb(skb);
1688                         return NET_RX_DROP;
1689                 }
1690         }
1691
1692         if (unlikely(!is_skb_forwardable(dev, skb))) {
1693                 atomic_long_inc(&dev->rx_dropped);
1694                 kfree_skb(skb);
1695                 return NET_RX_DROP;
1696         }
1697
1698         skb_scrub_packet(skb, true);
1699         skb->protocol = eth_type_trans(skb, dev);
1700
1701         return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706  * dev_forward_skb - loopback an skb to another netif
1707  *
1708  * @dev: destination network device
1709  * @skb: buffer to forward
1710  *
1711  * return values:
1712  *      NET_RX_SUCCESS  (no congestion)
1713  *      NET_RX_DROP     (packet was dropped, but freed)
1714  *
1715  * dev_forward_skb can be used for injecting an skb from the
1716  * start_xmit function of one device into the receive queue
1717  * of another device.
1718  *
1719  * The receiving device may be in another namespace, so
1720  * we have to clear all information in the skb that could
1721  * impact namespace isolation.
1722  */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730                               struct packet_type *pt_prev,
1731                               struct net_device *orig_dev)
1732 {
1733         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734                 return -ENOMEM;
1735         atomic_inc(&skb->users);
1736         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741         if (!ptype->af_packet_priv || !skb->sk)
1742                 return false;
1743
1744         if (ptype->id_match)
1745                 return ptype->id_match(ptype, skb->sk);
1746         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747                 return true;
1748
1749         return false;
1750 }
1751
1752 /*
1753  *      Support routine. Sends outgoing frames to any network
1754  *      taps currently in use.
1755  */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759         struct packet_type *ptype;
1760         struct sk_buff *skb2 = NULL;
1761         struct packet_type *pt_prev = NULL;
1762
1763         rcu_read_lock();
1764         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765                 /* Never send packets back to the socket
1766                  * they originated from - MvS (miquels@drinkel.ow.org)
1767                  */
1768                 if ((ptype->dev == dev || !ptype->dev) &&
1769                     (!skb_loop_sk(ptype, skb))) {
1770                         if (pt_prev) {
1771                                 deliver_skb(skb2, pt_prev, skb->dev);
1772                                 pt_prev = ptype;
1773                                 continue;
1774                         }
1775
1776                         skb2 = skb_clone(skb, GFP_ATOMIC);
1777                         if (!skb2)
1778                                 break;
1779
1780                         net_timestamp_set(skb2);
1781
1782                         /* skb->nh should be correctly
1783                            set by sender, so that the second statement is
1784                            just protection against buggy protocols.
1785                          */
1786                         skb_reset_mac_header(skb2);
1787
1788                         if (skb_network_header(skb2) < skb2->data ||
1789                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791                                                      ntohs(skb2->protocol),
1792                                                      dev->name);
1793                                 skb_reset_network_header(skb2);
1794                         }
1795
1796                         skb2->transport_header = skb2->network_header;
1797                         skb2->pkt_type = PACKET_OUTGOING;
1798                         pt_prev = ptype;
1799                 }
1800         }
1801         if (pt_prev)
1802                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803         rcu_read_unlock();
1804 }
1805
1806 /**
1807  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808  * @dev: Network device
1809  * @txq: number of queues available
1810  *
1811  * If real_num_tx_queues is changed the tc mappings may no longer be
1812  * valid. To resolve this verify the tc mapping remains valid and if
1813  * not NULL the mapping. With no priorities mapping to this
1814  * offset/count pair it will no longer be used. In the worst case TC0
1815  * is invalid nothing can be done so disable priority mappings. If is
1816  * expected that drivers will fix this mapping if they can before
1817  * calling netif_set_real_num_tx_queues.
1818  */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821         int i;
1822         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824         /* If TC0 is invalidated disable TC mapping */
1825         if (tc->offset + tc->count > txq) {
1826                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827                 dev->num_tc = 0;
1828                 return;
1829         }
1830
1831         /* Invalidated prio to tc mappings set to TC0 */
1832         for (i = 1; i < TC_BITMASK + 1; i++) {
1833                 int q = netdev_get_prio_tc_map(dev, i);
1834
1835                 tc = &dev->tc_to_txq[q];
1836                 if (tc->offset + tc->count > txq) {
1837                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838                                 i, q);
1839                         netdev_set_prio_tc_map(dev, i, 0);
1840                 }
1841         }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P)             \
1847         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850                                         int cpu, u16 index)
1851 {
1852         struct xps_map *map = NULL;
1853         int pos;
1854
1855         if (dev_maps)
1856                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858         for (pos = 0; map && pos < map->len; pos++) {
1859                 if (map->queues[pos] == index) {
1860                         if (map->len > 1) {
1861                                 map->queues[pos] = map->queues[--map->len];
1862                         } else {
1863                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864                                 kfree_rcu(map, rcu);
1865                                 map = NULL;
1866                         }
1867                         break;
1868                 }
1869         }
1870
1871         return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876         struct xps_dev_maps *dev_maps;
1877         int cpu, i;
1878         bool active = false;
1879
1880         mutex_lock(&xps_map_mutex);
1881         dev_maps = xmap_dereference(dev->xps_maps);
1882
1883         if (!dev_maps)
1884                 goto out_no_maps;
1885
1886         for_each_possible_cpu(cpu) {
1887                 for (i = index; i < dev->num_tx_queues; i++) {
1888                         if (!remove_xps_queue(dev_maps, cpu, i))
1889                                 break;
1890                 }
1891                 if (i == dev->num_tx_queues)
1892                         active = true;
1893         }
1894
1895         if (!active) {
1896                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897                 kfree_rcu(dev_maps, rcu);
1898         }
1899
1900         for (i = index; i < dev->num_tx_queues; i++)
1901                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902                                              NUMA_NO_NODE);
1903
1904 out_no_maps:
1905         mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909                                       int cpu, u16 index)
1910 {
1911         struct xps_map *new_map;
1912         int alloc_len = XPS_MIN_MAP_ALLOC;
1913         int i, pos;
1914
1915         for (pos = 0; map && pos < map->len; pos++) {
1916                 if (map->queues[pos] != index)
1917                         continue;
1918                 return map;
1919         }
1920
1921         /* Need to add queue to this CPU's existing map */
1922         if (map) {
1923                 if (pos < map->alloc_len)
1924                         return map;
1925
1926                 alloc_len = map->alloc_len * 2;
1927         }
1928
1929         /* Need to allocate new map to store queue on this CPU's map */
1930         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931                                cpu_to_node(cpu));
1932         if (!new_map)
1933                 return NULL;
1934
1935         for (i = 0; i < pos; i++)
1936                 new_map->queues[i] = map->queues[i];
1937         new_map->alloc_len = alloc_len;
1938         new_map->len = pos;
1939
1940         return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944                         u16 index)
1945 {
1946         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947         struct xps_map *map, *new_map;
1948         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949         int cpu, numa_node_id = -2;
1950         bool active = false;
1951
1952         mutex_lock(&xps_map_mutex);
1953
1954         dev_maps = xmap_dereference(dev->xps_maps);
1955
1956         /* allocate memory for queue storage */
1957         for_each_online_cpu(cpu) {
1958                 if (!cpumask_test_cpu(cpu, mask))
1959                         continue;
1960
1961                 if (!new_dev_maps)
1962                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963                 if (!new_dev_maps) {
1964                         mutex_unlock(&xps_map_mutex);
1965                         return -ENOMEM;
1966                 }
1967
1968                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969                                  NULL;
1970
1971                 map = expand_xps_map(map, cpu, index);
1972                 if (!map)
1973                         goto error;
1974
1975                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976         }
1977
1978         if (!new_dev_maps)
1979                 goto out_no_new_maps;
1980
1981         for_each_possible_cpu(cpu) {
1982                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983                         /* add queue to CPU maps */
1984                         int pos = 0;
1985
1986                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987                         while ((pos < map->len) && (map->queues[pos] != index))
1988                                 pos++;
1989
1990                         if (pos == map->len)
1991                                 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993                         if (numa_node_id == -2)
1994                                 numa_node_id = cpu_to_node(cpu);
1995                         else if (numa_node_id != cpu_to_node(cpu))
1996                                 numa_node_id = -1;
1997 #endif
1998                 } else if (dev_maps) {
1999                         /* fill in the new device map from the old device map */
2000                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002                 }
2003
2004         }
2005
2006         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008         /* Cleanup old maps */
2009         if (dev_maps) {
2010                 for_each_possible_cpu(cpu) {
2011                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013                         if (map && map != new_map)
2014                                 kfree_rcu(map, rcu);
2015                 }
2016
2017                 kfree_rcu(dev_maps, rcu);
2018         }
2019
2020         dev_maps = new_dev_maps;
2021         active = true;
2022
2023 out_no_new_maps:
2024         /* update Tx queue numa node */
2025         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026                                      (numa_node_id >= 0) ? numa_node_id :
2027                                      NUMA_NO_NODE);
2028
2029         if (!dev_maps)
2030                 goto out_no_maps;
2031
2032         /* removes queue from unused CPUs */
2033         for_each_possible_cpu(cpu) {
2034                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035                         continue;
2036
2037                 if (remove_xps_queue(dev_maps, cpu, index))
2038                         active = true;
2039         }
2040
2041         /* free map if not active */
2042         if (!active) {
2043                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044                 kfree_rcu(dev_maps, rcu);
2045         }
2046
2047 out_no_maps:
2048         mutex_unlock(&xps_map_mutex);
2049
2050         return 0;
2051 error:
2052         /* remove any maps that we added */
2053         for_each_possible_cpu(cpu) {
2054                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057                 if (new_map && new_map != map)
2058                         kfree(new_map);
2059         }
2060
2061         mutex_unlock(&xps_map_mutex);
2062
2063         kfree(new_dev_maps);
2064         return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072  */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075         int rc;
2076
2077         if (txq < 1 || txq > dev->num_tx_queues)
2078                 return -EINVAL;
2079
2080         if (dev->reg_state == NETREG_REGISTERED ||
2081             dev->reg_state == NETREG_UNREGISTERING) {
2082                 ASSERT_RTNL();
2083
2084                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085                                                   txq);
2086                 if (rc)
2087                         return rc;
2088
2089                 if (dev->num_tc)
2090                         netif_setup_tc(dev, txq);
2091
2092                 if (txq < dev->real_num_tx_queues) {
2093                         qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095                         netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097                 }
2098         }
2099
2100         dev->real_num_tx_queues = txq;
2101         return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2108  *      @dev: Network device
2109  *      @rxq: Actual number of RX queues
2110  *
2111  *      This must be called either with the rtnl_lock held or before
2112  *      registration of the net device.  Returns 0 on success, or a
2113  *      negative error code.  If called before registration, it always
2114  *      succeeds.
2115  */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118         int rc;
2119
2120         if (rxq < 1 || rxq > dev->num_rx_queues)
2121                 return -EINVAL;
2122
2123         if (dev->reg_state == NETREG_REGISTERED) {
2124                 ASSERT_RTNL();
2125
2126                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127                                                   rxq);
2128                 if (rc)
2129                         return rc;
2130         }
2131
2132         dev->real_num_rx_queues = rxq;
2133         return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139  * netif_get_num_default_rss_queues - default number of RSS queues
2140  *
2141  * This routine should set an upper limit on the number of RSS queues
2142  * used by default by multiqueue devices.
2143  */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152         struct softnet_data *sd;
2153         unsigned long flags;
2154
2155         local_irq_save(flags);
2156         sd = &__get_cpu_var(softnet_data);
2157         q->next_sched = NULL;
2158         *sd->output_queue_tailp = q;
2159         sd->output_queue_tailp = &q->next_sched;
2160         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161         local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167                 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172         enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177         return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182         unsigned long flags;
2183
2184         if (likely(atomic_read(&skb->users) == 1)) {
2185                 smp_rmb();
2186                 atomic_set(&skb->users, 0);
2187         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188                 return;
2189         }
2190         get_kfree_skb_cb(skb)->reason = reason;
2191         local_irq_save(flags);
2192         skb->next = __this_cpu_read(softnet_data.completion_queue);
2193         __this_cpu_write(softnet_data.completion_queue, skb);
2194         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195         local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201         if (in_irq() || irqs_disabled())
2202                 __dev_kfree_skb_irq(skb, reason);
2203         else
2204                 dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207
2208
2209 /**
2210  * netif_device_detach - mark device as removed
2211  * @dev: network device
2212  *
2213  * Mark device as removed from system and therefore no longer available.
2214  */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218             netif_running(dev)) {
2219                 netif_tx_stop_all_queues(dev);
2220         }
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223
2224 /**
2225  * netif_device_attach - mark device as attached
2226  * @dev: network device
2227  *
2228  * Mark device as attached from system and restart if needed.
2229  */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233             netif_running(dev)) {
2234                 netif_tx_wake_all_queues(dev);
2235                 __netdev_watchdog_up(dev);
2236         }
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242         static const netdev_features_t null_features = 0;
2243         struct net_device *dev = skb->dev;
2244         const char *driver = "";
2245
2246         if (!net_ratelimit())
2247                 return;
2248
2249         if (dev && dev->dev.parent)
2250                 driver = dev_driver_string(dev->dev.parent);
2251
2252         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253              "gso_type=%d ip_summed=%d\n",
2254              driver, dev ? &dev->features : &null_features,
2255              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257              skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259
2260 /*
2261  * Invalidate hardware checksum when packet is to be mangled, and
2262  * complete checksum manually on outgoing path.
2263  */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266         __wsum csum;
2267         int ret = 0, offset;
2268
2269         if (skb->ip_summed == CHECKSUM_COMPLETE)
2270                 goto out_set_summed;
2271
2272         if (unlikely(skb_shinfo(skb)->gso_size)) {
2273                 skb_warn_bad_offload(skb);
2274                 return -EINVAL;
2275         }
2276
2277         /* Before computing a checksum, we should make sure no frag could
2278          * be modified by an external entity : checksum could be wrong.
2279          */
2280         if (skb_has_shared_frag(skb)) {
2281                 ret = __skb_linearize(skb);
2282                 if (ret)
2283                         goto out;
2284         }
2285
2286         offset = skb_checksum_start_offset(skb);
2287         BUG_ON(offset >= skb_headlen(skb));
2288         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290         offset += skb->csum_offset;
2291         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293         if (skb_cloned(skb) &&
2294             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296                 if (ret)
2297                         goto out;
2298         }
2299
2300         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302         skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304         return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310         unsigned int vlan_depth = skb->mac_len;
2311         __be16 type = skb->protocol;
2312
2313         /* Tunnel gso handlers can set protocol to ethernet. */
2314         if (type == htons(ETH_P_TEB)) {
2315                 struct ethhdr *eth;
2316
2317                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318                         return 0;
2319
2320                 eth = (struct ethhdr *)skb_mac_header(skb);
2321                 type = eth->h_proto;
2322         }
2323
2324         /* if skb->protocol is 802.1Q/AD then the header should already be
2325          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326          * ETH_HLEN otherwise
2327          */
2328         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329                 if (vlan_depth) {
2330                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2331                                 return 0;
2332                         vlan_depth -= VLAN_HLEN;
2333                 } else {
2334                         vlan_depth = ETH_HLEN;
2335                 }
2336                 do {
2337                         struct vlan_hdr *vh;
2338
2339                         if (unlikely(!pskb_may_pull(skb,
2340                                                     vlan_depth + VLAN_HLEN)))
2341                                 return 0;
2342
2343                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344                         type = vh->h_vlan_encapsulated_proto;
2345                         vlan_depth += VLAN_HLEN;
2346                 } while (type == htons(ETH_P_8021Q) ||
2347                          type == htons(ETH_P_8021AD));
2348         }
2349
2350         *depth = vlan_depth;
2351
2352         return type;
2353 }
2354
2355 /**
2356  *      skb_mac_gso_segment - mac layer segmentation handler.
2357  *      @skb: buffer to segment
2358  *      @features: features for the output path (see dev->features)
2359  */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361                                     netdev_features_t features)
2362 {
2363         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364         struct packet_offload *ptype;
2365         int vlan_depth = skb->mac_len;
2366         __be16 type = skb_network_protocol(skb, &vlan_depth);
2367
2368         if (unlikely(!type))
2369                 return ERR_PTR(-EINVAL);
2370
2371         __skb_pull(skb, vlan_depth);
2372
2373         rcu_read_lock();
2374         list_for_each_entry_rcu(ptype, &offload_base, list) {
2375                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2376                         if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377                                 int err;
2378
2379                                 err = ptype->callbacks.gso_send_check(skb);
2380                                 segs = ERR_PTR(err);
2381                                 if (err || skb_gso_ok(skb, features))
2382                                         break;
2383                                 __skb_push(skb, (skb->data -
2384                                                  skb_network_header(skb)));
2385                         }
2386                         segs = ptype->callbacks.gso_segment(skb, features);
2387                         break;
2388                 }
2389         }
2390         rcu_read_unlock();
2391
2392         __skb_push(skb, skb->data - skb_mac_header(skb));
2393
2394         return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399 /* openvswitch calls this on rx path, so we need a different check.
2400  */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403         if (tx_path)
2404                 return skb->ip_summed != CHECKSUM_PARTIAL;
2405         else
2406                 return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408
2409 /**
2410  *      __skb_gso_segment - Perform segmentation on skb.
2411  *      @skb: buffer to segment
2412  *      @features: features for the output path (see dev->features)
2413  *      @tx_path: whether it is called in TX path
2414  *
2415  *      This function segments the given skb and returns a list of segments.
2416  *
2417  *      It may return NULL if the skb requires no segmentation.  This is
2418  *      only possible when GSO is used for verifying header integrity.
2419  */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421                                   netdev_features_t features, bool tx_path)
2422 {
2423         if (unlikely(skb_needs_check(skb, tx_path))) {
2424                 int err;
2425
2426                 skb_warn_bad_offload(skb);
2427
2428                 err = skb_cow_head(skb, 0);
2429                 if (err < 0)
2430                         return ERR_PTR(err);
2431         }
2432
2433         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434         SKB_GSO_CB(skb)->encap_level = 0;
2435
2436         skb_reset_mac_header(skb);
2437         skb_reset_mac_len(skb);
2438
2439         return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447         if (net_ratelimit()) {
2448                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449                 dump_stack();
2450         }
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456  * 1. IOMMU is present and allows to map all the memory.
2457  * 2. No high memory really exists on this machine.
2458  */
2459
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463         int i;
2464         if (!(dev->features & NETIF_F_HIGHDMA)) {
2465                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467                         if (PageHighMem(skb_frag_page(frag)))
2468                                 return 1;
2469                 }
2470         }
2471
2472         if (PCI_DMA_BUS_IS_PHYS) {
2473                 struct device *pdev = dev->dev.parent;
2474
2475                 if (!pdev)
2476                         return 0;
2477                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481                                 return 1;
2482                 }
2483         }
2484 #endif
2485         return 0;
2486 }
2487
2488 /* If MPLS offload request, verify we are testing hardware MPLS features
2489  * instead of standard features for the netdev.
2490  */
2491 #ifdef CONFIG_NET_MPLS_GSO
2492 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2493                                            netdev_features_t features,
2494                                            __be16 type)
2495 {
2496         if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2497                 features &= skb->dev->mpls_features;
2498
2499         return features;
2500 }
2501 #else
2502 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2503                                            netdev_features_t features,
2504                                            __be16 type)
2505 {
2506         return features;
2507 }
2508 #endif
2509
2510 static netdev_features_t harmonize_features(struct sk_buff *skb,
2511         netdev_features_t features)
2512 {
2513         int tmp;
2514         __be16 type;
2515
2516         type = skb_network_protocol(skb, &tmp);
2517         features = net_mpls_features(skb, features, type);
2518
2519         if (skb->ip_summed != CHECKSUM_NONE &&
2520             !can_checksum_protocol(features, type)) {
2521                 features &= ~NETIF_F_ALL_CSUM;
2522         } else if (illegal_highdma(skb->dev, skb)) {
2523                 features &= ~NETIF_F_SG;
2524         }
2525
2526         return features;
2527 }
2528
2529 netdev_features_t netif_skb_features(struct sk_buff *skb)
2530 {
2531         __be16 protocol = skb->protocol;
2532         netdev_features_t features = skb->dev->features;
2533
2534         if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2535                 features &= ~NETIF_F_GSO_MASK;
2536
2537         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2538                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2539                 protocol = veh->h_vlan_encapsulated_proto;
2540         } else if (!vlan_tx_tag_present(skb)) {
2541                 return harmonize_features(skb, features);
2542         }
2543
2544         features = netdev_intersect_features(features,
2545                                              skb->dev->vlan_features |
2546                                              NETIF_F_HW_VLAN_CTAG_TX |
2547                                              NETIF_F_HW_VLAN_STAG_TX);
2548
2549         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2550                 features = netdev_intersect_features(features,
2551                                                      NETIF_F_SG |
2552                                                      NETIF_F_HIGHDMA |
2553                                                      NETIF_F_FRAGLIST |
2554                                                      NETIF_F_GEN_CSUM |
2555                                                      NETIF_F_HW_VLAN_CTAG_TX |
2556                                                      NETIF_F_HW_VLAN_STAG_TX);
2557
2558         return harmonize_features(skb, features);
2559 }
2560 EXPORT_SYMBOL(netif_skb_features);
2561
2562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2563                     struct netdev_queue *txq, bool more)
2564 {
2565         unsigned int len;
2566         int rc;
2567
2568         if (!list_empty(&ptype_all))
2569                 dev_queue_xmit_nit(skb, dev);
2570
2571         len = skb->len;
2572         trace_net_dev_start_xmit(skb, dev);
2573         rc = netdev_start_xmit(skb, dev, txq, more);
2574         trace_net_dev_xmit(skb, rc, dev, len);
2575
2576         return rc;
2577 }
2578
2579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2580                                     struct netdev_queue *txq, int *ret)
2581 {
2582         struct sk_buff *skb = first;
2583         int rc = NETDEV_TX_OK;
2584
2585         while (skb) {
2586                 struct sk_buff *next = skb->next;
2587
2588                 skb->next = NULL;
2589                 rc = xmit_one(skb, dev, txq, next != NULL);
2590                 if (unlikely(!dev_xmit_complete(rc))) {
2591                         skb->next = next;
2592                         goto out;
2593                 }
2594
2595                 skb = next;
2596                 if (netif_xmit_stopped(txq) && skb) {
2597                         rc = NETDEV_TX_BUSY;
2598                         break;
2599                 }
2600         }
2601
2602 out:
2603         *ret = rc;
2604         return skb;
2605 }
2606
2607 struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
2608 {
2609         if (vlan_tx_tag_present(skb) &&
2610             !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2611                 skb = __vlan_put_tag(skb, skb->vlan_proto,
2612                                      vlan_tx_tag_get(skb));
2613                 if (skb)
2614                         skb->vlan_tci = 0;
2615         }
2616         return skb;
2617 }
2618
2619 struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2620 {
2621         netdev_features_t features;
2622
2623         if (skb->next)
2624                 return skb;
2625
2626         /* If device doesn't need skb->dst, release it right now while
2627          * its hot in this cpu cache
2628          */
2629         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2630                 skb_dst_drop(skb);
2631
2632         features = netif_skb_features(skb);
2633         skb = validate_xmit_vlan(skb, features);
2634         if (unlikely(!skb))
2635                 goto out_null;
2636
2637         /* If encapsulation offload request, verify we are testing
2638          * hardware encapsulation features instead of standard
2639          * features for the netdev
2640          */
2641         if (skb->encapsulation)
2642                 features &= dev->hw_enc_features;
2643
2644         if (netif_needs_gso(skb, features)) {
2645                 struct sk_buff *segs;
2646
2647                 segs = skb_gso_segment(skb, features);
2648                 kfree_skb(skb);
2649                 if (IS_ERR(segs))
2650                         segs = NULL;
2651                 skb = segs;
2652         } else {
2653                 if (skb_needs_linearize(skb, features) &&
2654                     __skb_linearize(skb))
2655                         goto out_kfree_skb;
2656
2657                 /* If packet is not checksummed and device does not
2658                  * support checksumming for this protocol, complete
2659                  * checksumming here.
2660                  */
2661                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2662                         if (skb->encapsulation)
2663                                 skb_set_inner_transport_header(skb,
2664                                                                skb_checksum_start_offset(skb));
2665                         else
2666                                 skb_set_transport_header(skb,
2667                                                          skb_checksum_start_offset(skb));
2668                         if (!(features & NETIF_F_ALL_CSUM) &&
2669                             skb_checksum_help(skb))
2670                                 goto out_kfree_skb;
2671                 }
2672         }
2673
2674         return skb;
2675
2676 out_kfree_skb:
2677         kfree_skb(skb);
2678 out_null:
2679         return NULL;
2680 }
2681
2682 static void qdisc_pkt_len_init(struct sk_buff *skb)
2683 {
2684         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2685
2686         qdisc_skb_cb(skb)->pkt_len = skb->len;
2687
2688         /* To get more precise estimation of bytes sent on wire,
2689          * we add to pkt_len the headers size of all segments
2690          */
2691         if (shinfo->gso_size)  {
2692                 unsigned int hdr_len;
2693                 u16 gso_segs = shinfo->gso_segs;
2694
2695                 /* mac layer + network layer */
2696                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2697
2698                 /* + transport layer */
2699                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2700                         hdr_len += tcp_hdrlen(skb);
2701                 else
2702                         hdr_len += sizeof(struct udphdr);
2703
2704                 if (shinfo->gso_type & SKB_GSO_DODGY)
2705                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2706                                                 shinfo->gso_size);
2707
2708                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2709         }
2710 }
2711
2712 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2713                                  struct net_device *dev,
2714                                  struct netdev_queue *txq)
2715 {
2716         spinlock_t *root_lock = qdisc_lock(q);
2717         bool contended;
2718         int rc;
2719
2720         qdisc_pkt_len_init(skb);
2721         qdisc_calculate_pkt_len(skb, q);
2722         /*
2723          * Heuristic to force contended enqueues to serialize on a
2724          * separate lock before trying to get qdisc main lock.
2725          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2726          * often and dequeue packets faster.
2727          */
2728         contended = qdisc_is_running(q);
2729         if (unlikely(contended))
2730                 spin_lock(&q->busylock);
2731
2732         spin_lock(root_lock);
2733         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2734                 kfree_skb(skb);
2735                 rc = NET_XMIT_DROP;
2736         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2737                    qdisc_run_begin(q)) {
2738                 /*
2739                  * This is a work-conserving queue; there are no old skbs
2740                  * waiting to be sent out; and the qdisc is not running -
2741                  * xmit the skb directly.
2742                  */
2743                 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2744                         skb_dst_force(skb);
2745
2746                 qdisc_bstats_update(q, skb);
2747
2748                 skb = validate_xmit_skb(skb, dev);
2749                 if (skb && sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2750                         if (unlikely(contended)) {
2751                                 spin_unlock(&q->busylock);
2752                                 contended = false;
2753                         }
2754                         __qdisc_run(q);
2755                 } else
2756                         qdisc_run_end(q);
2757
2758                 rc = NET_XMIT_SUCCESS;
2759         } else {
2760                 skb_dst_force(skb);
2761                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2762                 if (qdisc_run_begin(q)) {
2763                         if (unlikely(contended)) {
2764                                 spin_unlock(&q->busylock);
2765                                 contended = false;
2766                         }
2767                         __qdisc_run(q);
2768                 }
2769         }
2770         spin_unlock(root_lock);
2771         if (unlikely(contended))
2772                 spin_unlock(&q->busylock);
2773         return rc;
2774 }
2775
2776 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2777 static void skb_update_prio(struct sk_buff *skb)
2778 {
2779         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2780
2781         if (!skb->priority && skb->sk && map) {
2782                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2783
2784                 if (prioidx < map->priomap_len)
2785                         skb->priority = map->priomap[prioidx];
2786         }
2787 }
2788 #else
2789 #define skb_update_prio(skb)
2790 #endif
2791
2792 static DEFINE_PER_CPU(int, xmit_recursion);
2793 #define RECURSION_LIMIT 10
2794
2795 /**
2796  *      dev_loopback_xmit - loop back @skb
2797  *      @skb: buffer to transmit
2798  */
2799 int dev_loopback_xmit(struct sk_buff *skb)
2800 {
2801         skb_reset_mac_header(skb);
2802         __skb_pull(skb, skb_network_offset(skb));
2803         skb->pkt_type = PACKET_LOOPBACK;
2804         skb->ip_summed = CHECKSUM_UNNECESSARY;
2805         WARN_ON(!skb_dst(skb));
2806         skb_dst_force(skb);
2807         netif_rx_ni(skb);
2808         return 0;
2809 }
2810 EXPORT_SYMBOL(dev_loopback_xmit);
2811
2812 /**
2813  *      __dev_queue_xmit - transmit a buffer
2814  *      @skb: buffer to transmit
2815  *      @accel_priv: private data used for L2 forwarding offload
2816  *
2817  *      Queue a buffer for transmission to a network device. The caller must
2818  *      have set the device and priority and built the buffer before calling
2819  *      this function. The function can be called from an interrupt.
2820  *
2821  *      A negative errno code is returned on a failure. A success does not
2822  *      guarantee the frame will be transmitted as it may be dropped due
2823  *      to congestion or traffic shaping.
2824  *
2825  * -----------------------------------------------------------------------------------
2826  *      I notice this method can also return errors from the queue disciplines,
2827  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2828  *      be positive.
2829  *
2830  *      Regardless of the return value, the skb is consumed, so it is currently
2831  *      difficult to retry a send to this method.  (You can bump the ref count
2832  *      before sending to hold a reference for retry if you are careful.)
2833  *
2834  *      When calling this method, interrupts MUST be enabled.  This is because
2835  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2836  *          --BLG
2837  */
2838 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2839 {
2840         struct net_device *dev = skb->dev;
2841         struct netdev_queue *txq;
2842         struct Qdisc *q;
2843         int rc = -ENOMEM;
2844
2845         skb_reset_mac_header(skb);
2846
2847         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2848                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2849
2850         /* Disable soft irqs for various locks below. Also
2851          * stops preemption for RCU.
2852          */
2853         rcu_read_lock_bh();
2854
2855         skb_update_prio(skb);
2856
2857         txq = netdev_pick_tx(dev, skb, accel_priv);
2858         q = rcu_dereference_bh(txq->qdisc);
2859
2860 #ifdef CONFIG_NET_CLS_ACT
2861         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2862 #endif
2863         trace_net_dev_queue(skb);
2864         if (q->enqueue) {
2865                 rc = __dev_xmit_skb(skb, q, dev, txq);
2866                 goto out;
2867         }
2868
2869         /* The device has no queue. Common case for software devices:
2870            loopback, all the sorts of tunnels...
2871
2872            Really, it is unlikely that netif_tx_lock protection is necessary
2873            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2874            counters.)
2875            However, it is possible, that they rely on protection
2876            made by us here.
2877
2878            Check this and shot the lock. It is not prone from deadlocks.
2879            Either shot noqueue qdisc, it is even simpler 8)
2880          */
2881         if (dev->flags & IFF_UP) {
2882                 int cpu = smp_processor_id(); /* ok because BHs are off */
2883
2884                 if (txq->xmit_lock_owner != cpu) {
2885
2886                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2887                                 goto recursion_alert;
2888
2889                         skb = validate_xmit_skb(skb, dev);
2890                         if (!skb)
2891                                 goto drop;
2892
2893                         HARD_TX_LOCK(dev, txq, cpu);
2894
2895                         if (!netif_xmit_stopped(txq)) {
2896                                 __this_cpu_inc(xmit_recursion);
2897                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2898                                 __this_cpu_dec(xmit_recursion);
2899                                 if (dev_xmit_complete(rc)) {
2900                                         HARD_TX_UNLOCK(dev, txq);
2901                                         goto out;
2902                                 }
2903                         }
2904                         HARD_TX_UNLOCK(dev, txq);
2905                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2906                                              dev->name);
2907                 } else {
2908                         /* Recursion is detected! It is possible,
2909                          * unfortunately
2910                          */
2911 recursion_alert:
2912                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2913                                              dev->name);
2914                 }
2915         }
2916
2917         rc = -ENETDOWN;
2918 drop:
2919         rcu_read_unlock_bh();
2920
2921         atomic_long_inc(&dev->tx_dropped);
2922         kfree_skb_list(skb);
2923         return rc;
2924 out:
2925         rcu_read_unlock_bh();
2926         return rc;
2927 }
2928
2929 int dev_queue_xmit(struct sk_buff *skb)
2930 {
2931         return __dev_queue_xmit(skb, NULL);
2932 }
2933 EXPORT_SYMBOL(dev_queue_xmit);
2934
2935 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2936 {
2937         return __dev_queue_xmit(skb, accel_priv);
2938 }
2939 EXPORT_SYMBOL(dev_queue_xmit_accel);
2940
2941
2942 /*=======================================================================
2943                         Receiver routines
2944   =======================================================================*/
2945
2946 int netdev_max_backlog __read_mostly = 1000;
2947 EXPORT_SYMBOL(netdev_max_backlog);
2948
2949 int netdev_tstamp_prequeue __read_mostly = 1;
2950 int netdev_budget __read_mostly = 300;
2951 int weight_p __read_mostly = 64;            /* old backlog weight */
2952
2953 /* Called with irq disabled */
2954 static inline void ____napi_schedule(struct softnet_data *sd,
2955                                      struct napi_struct *napi)
2956 {
2957         list_add_tail(&napi->poll_list, &sd->poll_list);
2958         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2959 }
2960
2961 #ifdef CONFIG_RPS
2962
2963 /* One global table that all flow-based protocols share. */
2964 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2965 EXPORT_SYMBOL(rps_sock_flow_table);
2966
2967 struct static_key rps_needed __read_mostly;
2968
2969 static struct rps_dev_flow *
2970 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2971             struct rps_dev_flow *rflow, u16 next_cpu)
2972 {
2973         if (next_cpu != RPS_NO_CPU) {
2974 #ifdef CONFIG_RFS_ACCEL
2975                 struct netdev_rx_queue *rxqueue;
2976                 struct rps_dev_flow_table *flow_table;
2977                 struct rps_dev_flow *old_rflow;
2978                 u32 flow_id;
2979                 u16 rxq_index;
2980                 int rc;
2981
2982                 /* Should we steer this flow to a different hardware queue? */
2983                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2984                     !(dev->features & NETIF_F_NTUPLE))
2985                         goto out;
2986                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2987                 if (rxq_index == skb_get_rx_queue(skb))
2988                         goto out;
2989
2990                 rxqueue = dev->_rx + rxq_index;
2991                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2992                 if (!flow_table)
2993                         goto out;
2994                 flow_id = skb_get_hash(skb) & flow_table->mask;
2995                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2996                                                         rxq_index, flow_id);
2997                 if (rc < 0)
2998                         goto out;
2999                 old_rflow = rflow;
3000                 rflow = &flow_table->flows[flow_id];
3001                 rflow->filter = rc;
3002                 if (old_rflow->filter == rflow->filter)
3003                         old_rflow->filter = RPS_NO_FILTER;
3004         out:
3005 #endif
3006                 rflow->last_qtail =
3007                         per_cpu(softnet_data, next_cpu).input_queue_head;
3008         }
3009
3010         rflow->cpu = next_cpu;
3011         return rflow;
3012 }
3013
3014 /*
3015  * get_rps_cpu is called from netif_receive_skb and returns the target
3016  * CPU from the RPS map of the receiving queue for a given skb.
3017  * rcu_read_lock must be held on entry.
3018  */
3019 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3020                        struct rps_dev_flow **rflowp)
3021 {
3022         struct netdev_rx_queue *rxqueue;
3023         struct rps_map *map;
3024         struct rps_dev_flow_table *flow_table;
3025         struct rps_sock_flow_table *sock_flow_table;
3026         int cpu = -1;
3027         u16 tcpu;
3028         u32 hash;
3029
3030         if (skb_rx_queue_recorded(skb)) {
3031                 u16 index = skb_get_rx_queue(skb);
3032                 if (unlikely(index >= dev->real_num_rx_queues)) {
3033                         WARN_ONCE(dev->real_num_rx_queues > 1,
3034                                   "%s received packet on queue %u, but number "
3035                                   "of RX queues is %u\n",
3036                                   dev->name, index, dev->real_num_rx_queues);
3037                         goto done;
3038                 }
3039                 rxqueue = dev->_rx + index;
3040         } else
3041                 rxqueue = dev->_rx;
3042
3043         map = rcu_dereference(rxqueue->rps_map);
3044         if (map) {
3045                 if (map->len == 1 &&
3046                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3047                         tcpu = map->cpus[0];
3048                         if (cpu_online(tcpu))
3049                                 cpu = tcpu;
3050                         goto done;
3051                 }
3052         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3053                 goto done;
3054         }
3055
3056         skb_reset_network_header(skb);
3057         hash = skb_get_hash(skb);
3058         if (!hash)
3059                 goto done;
3060
3061         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3062         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3063         if (flow_table && sock_flow_table) {
3064                 u16 next_cpu;
3065                 struct rps_dev_flow *rflow;
3066
3067                 rflow = &flow_table->flows[hash & flow_table->mask];
3068                 tcpu = rflow->cpu;
3069
3070                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3071
3072                 /*
3073                  * If the desired CPU (where last recvmsg was done) is
3074                  * different from current CPU (one in the rx-queue flow
3075                  * table entry), switch if one of the following holds:
3076                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3077                  *   - Current CPU is offline.
3078                  *   - The current CPU's queue tail has advanced beyond the
3079                  *     last packet that was enqueued using this table entry.
3080                  *     This guarantees that all previous packets for the flow
3081                  *     have been dequeued, thus preserving in order delivery.
3082                  */
3083                 if (unlikely(tcpu != next_cpu) &&
3084                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3085                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3086                       rflow->last_qtail)) >= 0)) {
3087                         tcpu = next_cpu;
3088                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3089                 }
3090
3091                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3092                         *rflowp = rflow;
3093                         cpu = tcpu;
3094                         goto done;
3095                 }
3096         }
3097
3098         if (map) {
3099                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3100                 if (cpu_online(tcpu)) {
3101                         cpu = tcpu;
3102                         goto done;
3103                 }
3104         }
3105
3106 done:
3107         return cpu;
3108 }
3109
3110 #ifdef CONFIG_RFS_ACCEL
3111
3112 /**
3113  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3114  * @dev: Device on which the filter was set
3115  * @rxq_index: RX queue index
3116  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3117  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3118  *
3119  * Drivers that implement ndo_rx_flow_steer() should periodically call
3120  * this function for each installed filter and remove the filters for
3121  * which it returns %true.
3122  */
3123 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3124                          u32 flow_id, u16 filter_id)
3125 {
3126         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3127         struct rps_dev_flow_table *flow_table;
3128         struct rps_dev_flow *rflow;
3129         bool expire = true;
3130         int cpu;
3131
3132         rcu_read_lock();
3133         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3134         if (flow_table && flow_id <= flow_table->mask) {
3135                 rflow = &flow_table->flows[flow_id];
3136                 cpu = ACCESS_ONCE(rflow->cpu);
3137                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3138                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3139                            rflow->last_qtail) <
3140                      (int)(10 * flow_table->mask)))
3141                         expire = false;
3142         }
3143         rcu_read_unlock();
3144         return expire;
3145 }
3146 EXPORT_SYMBOL(rps_may_expire_flow);
3147
3148 #endif /* CONFIG_RFS_ACCEL */
3149
3150 /* Called from hardirq (IPI) context */
3151 static void rps_trigger_softirq(void *data)
3152 {
3153         struct softnet_data *sd = data;
3154
3155         ____napi_schedule(sd, &sd->backlog);
3156         sd->received_rps++;
3157 }
3158
3159 #endif /* CONFIG_RPS */
3160
3161 /*
3162  * Check if this softnet_data structure is another cpu one
3163  * If yes, queue it to our IPI list and return 1
3164  * If no, return 0
3165  */
3166 static int rps_ipi_queued(struct softnet_data *sd)
3167 {
3168 #ifdef CONFIG_RPS
3169         struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3170
3171         if (sd != mysd) {
3172                 sd->rps_ipi_next = mysd->rps_ipi_list;
3173                 mysd->rps_ipi_list = sd;
3174
3175                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3176                 return 1;
3177         }
3178 #endif /* CONFIG_RPS */
3179         return 0;
3180 }
3181
3182 #ifdef CONFIG_NET_FLOW_LIMIT
3183 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3184 #endif
3185
3186 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3187 {
3188 #ifdef CONFIG_NET_FLOW_LIMIT
3189         struct sd_flow_limit *fl;
3190         struct softnet_data *sd;
3191         unsigned int old_flow, new_flow;
3192
3193         if (qlen < (netdev_max_backlog >> 1))
3194                 return false;
3195
3196         sd = &__get_cpu_var(softnet_data);
3197
3198         rcu_read_lock();
3199         fl = rcu_dereference(sd->flow_limit);
3200         if (fl) {
3201                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3202                 old_flow = fl->history[fl->history_head];
3203                 fl->history[fl->history_head] = new_flow;
3204
3205                 fl->history_head++;
3206                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3207
3208                 if (likely(fl->buckets[old_flow]))
3209                         fl->buckets[old_flow]--;
3210
3211                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3212                         fl->count++;
3213                         rcu_read_unlock();
3214                         return true;
3215                 }
3216         }
3217         rcu_read_unlock();
3218 #endif
3219         return false;
3220 }
3221
3222 /*
3223  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3224  * queue (may be a remote CPU queue).
3225  */
3226 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3227                               unsigned int *qtail)
3228 {
3229         struct softnet_data *sd;
3230         unsigned long flags;
3231         unsigned int qlen;
3232
3233         sd = &per_cpu(softnet_data, cpu);
3234
3235         local_irq_save(flags);
3236
3237         rps_lock(sd);
3238         qlen = skb_queue_len(&sd->input_pkt_queue);
3239         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3240                 if (skb_queue_len(&sd->input_pkt_queue)) {
3241 enqueue:
3242                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3243                         input_queue_tail_incr_save(sd, qtail);
3244                         rps_unlock(sd);
3245                         local_irq_restore(flags);
3246                         return NET_RX_SUCCESS;
3247                 }
3248
3249                 /* Schedule NAPI for backlog device
3250                  * We can use non atomic operation since we own the queue lock
3251                  */
3252                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3253                         if (!rps_ipi_queued(sd))
3254                                 ____napi_schedule(sd, &sd->backlog);
3255                 }
3256                 goto enqueue;
3257         }
3258
3259         sd->dropped++;
3260         rps_unlock(sd);
3261
3262         local_irq_restore(flags);
3263
3264         atomic_long_inc(&skb->dev->rx_dropped);
3265         kfree_skb(skb);
3266         return NET_RX_DROP;
3267 }
3268
3269 static int netif_rx_internal(struct sk_buff *skb)
3270 {
3271         int ret;
3272
3273         net_timestamp_check(netdev_tstamp_prequeue, skb);
3274
3275         trace_netif_rx(skb);
3276 #ifdef CONFIG_RPS
3277         if (static_key_false(&rps_needed)) {
3278                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3279                 int cpu;
3280
3281                 preempt_disable();
3282                 rcu_read_lock();
3283
3284                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3285                 if (cpu < 0)
3286                         cpu = smp_processor_id();
3287
3288                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3289
3290                 rcu_read_unlock();
3291                 preempt_enable();
3292         } else
3293 #endif
3294         {
3295                 unsigned int qtail;
3296                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3297                 put_cpu();
3298         }
3299         return ret;
3300 }
3301
3302 /**
3303  *      netif_rx        -       post buffer to the network code
3304  *      @skb: buffer to post
3305  *
3306  *      This function receives a packet from a device driver and queues it for
3307  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3308  *      may be dropped during processing for congestion control or by the
3309  *      protocol layers.
3310  *
3311  *      return values:
3312  *      NET_RX_SUCCESS  (no congestion)
3313  *      NET_RX_DROP     (packet was dropped)
3314  *
3315  */
3316
3317 int netif_rx(struct sk_buff *skb)
3318 {
3319         trace_netif_rx_entry(skb);
3320
3321         return netif_rx_internal(skb);
3322 }
3323 EXPORT_SYMBOL(netif_rx);
3324
3325 int netif_rx_ni(struct sk_buff *skb)
3326 {
3327         int err;
3328
3329         trace_netif_rx_ni_entry(skb);
3330
3331         preempt_disable();
3332         err = netif_rx_internal(skb);
3333         if (local_softirq_pending())
3334                 do_softirq();
3335         preempt_enable();
3336
3337         return err;
3338 }
3339 EXPORT_SYMBOL(netif_rx_ni);
3340
3341 static void net_tx_action(struct softirq_action *h)
3342 {
3343         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3344
3345         if (sd->completion_queue) {
3346                 struct sk_buff *clist;
3347
3348                 local_irq_disable();
3349                 clist = sd->completion_queue;
3350                 sd->completion_queue = NULL;
3351                 local_irq_enable();
3352
3353                 while (clist) {
3354                         struct sk_buff *skb = clist;
3355                         clist = clist->next;
3356
3357                         WARN_ON(atomic_read(&skb->users));
3358                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3359                                 trace_consume_skb(skb);
3360                         else
3361                                 trace_kfree_skb(skb, net_tx_action);
3362                         __kfree_skb(skb);
3363                 }
3364         }
3365
3366         if (sd->output_queue) {
3367                 struct Qdisc *head;
3368
3369                 local_irq_disable();
3370                 head = sd->output_queue;
3371                 sd->output_queue = NULL;
3372                 sd->output_queue_tailp = &sd->output_queue;
3373                 local_irq_enable();
3374
3375                 while (head) {
3376                         struct Qdisc *q = head;
3377                         spinlock_t *root_lock;
3378
3379                         head = head->next_sched;
3380
3381                         root_lock = qdisc_lock(q);
3382                         if (spin_trylock(root_lock)) {
3383                                 smp_mb__before_atomic();
3384                                 clear_bit(__QDISC_STATE_SCHED,
3385                                           &q->state);
3386                                 qdisc_run(q);
3387                                 spin_unlock(root_lock);
3388                         } else {
3389                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3390                                               &q->state)) {
3391                                         __netif_reschedule(q);
3392                                 } else {
3393                                         smp_mb__before_atomic();
3394                                         clear_bit(__QDISC_STATE_SCHED,
3395                                                   &q->state);
3396                                 }
3397                         }
3398                 }
3399         }
3400 }
3401
3402 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3403     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3404 /* This hook is defined here for ATM LANE */
3405 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3406                              unsigned char *addr) __read_mostly;
3407 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3408 #endif
3409
3410 #ifdef CONFIG_NET_CLS_ACT
3411 /* TODO: Maybe we should just force sch_ingress to be compiled in
3412  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3413  * a compare and 2 stores extra right now if we dont have it on
3414  * but have CONFIG_NET_CLS_ACT
3415  * NOTE: This doesn't stop any functionality; if you dont have
3416  * the ingress scheduler, you just can't add policies on ingress.
3417  *
3418  */
3419 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3420 {
3421         struct net_device *dev = skb->dev;
3422         u32 ttl = G_TC_RTTL(skb->tc_verd);
3423         int result = TC_ACT_OK;
3424         struct Qdisc *q;
3425
3426         if (unlikely(MAX_RED_LOOP < ttl++)) {
3427                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3428                                      skb->skb_iif, dev->ifindex);
3429                 return TC_ACT_SHOT;
3430         }
3431
3432         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3433         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3434
3435         q = rxq->qdisc;
3436         if (q != &noop_qdisc) {
3437                 spin_lock(qdisc_lock(q));
3438                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3439                         result = qdisc_enqueue_root(skb, q);
3440                 spin_unlock(qdisc_lock(q));
3441         }
3442
3443         return result;
3444 }
3445
3446 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3447                                          struct packet_type **pt_prev,
3448                                          int *ret, struct net_device *orig_dev)
3449 {
3450         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3451
3452         if (!rxq || rxq->qdisc == &noop_qdisc)
3453                 goto out;
3454
3455         if (*pt_prev) {
3456                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3457                 *pt_prev = NULL;
3458         }
3459
3460         switch (ing_filter(skb, rxq)) {
3461         case TC_ACT_SHOT:
3462         case TC_ACT_STOLEN:
3463                 kfree_skb(skb);
3464                 return NULL;
3465         }
3466
3467 out:
3468         skb->tc_verd = 0;
3469         return skb;
3470 }
3471 #endif
3472
3473 /**
3474  *      netdev_rx_handler_register - register receive handler
3475  *      @dev: device to register a handler for
3476  *      @rx_handler: receive handler to register
3477  *      @rx_handler_data: data pointer that is used by rx handler
3478  *
3479  *      Register a receive handler for a device. This handler will then be
3480  *      called from __netif_receive_skb. A negative errno code is returned
3481  *      on a failure.
3482  *
3483  *      The caller must hold the rtnl_mutex.
3484  *
3485  *      For a general description of rx_handler, see enum rx_handler_result.
3486  */
3487 int netdev_rx_handler_register(struct net_device *dev,
3488                                rx_handler_func_t *rx_handler,
3489                                void *rx_handler_data)
3490 {
3491         ASSERT_RTNL();
3492
3493         if (dev->rx_handler)
3494                 return -EBUSY;
3495
3496         /* Note: rx_handler_data must be set before rx_handler */
3497         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3498         rcu_assign_pointer(dev->rx_handler, rx_handler);
3499
3500         return 0;
3501 }
3502 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3503
3504 /**
3505  *      netdev_rx_handler_unregister - unregister receive handler
3506  *      @dev: device to unregister a handler from
3507  *
3508  *      Unregister a receive handler from a device.
3509  *
3510  *      The caller must hold the rtnl_mutex.
3511  */
3512 void netdev_rx_handler_unregister(struct net_device *dev)
3513 {
3514
3515         ASSERT_RTNL();
3516         RCU_INIT_POINTER(dev->rx_handler, NULL);
3517         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3518          * section has a guarantee to see a non NULL rx_handler_data
3519          * as well.
3520          */
3521         synchronize_net();
3522         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3523 }
3524 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3525
3526 /*
3527  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3528  * the special handling of PFMEMALLOC skbs.
3529  */
3530 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3531 {
3532         switch (skb->protocol) {
3533         case htons(ETH_P_ARP):
3534         case htons(ETH_P_IP):
3535         case htons(ETH_P_IPV6):
3536         case htons(ETH_P_8021Q):
3537         case htons(ETH_P_8021AD):
3538                 return true;
3539         default:
3540                 return false;
3541         }
3542 }
3543
3544 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3545 {
3546         struct packet_type *ptype, *pt_prev;
3547         rx_handler_func_t *rx_handler;
3548         struct net_device *orig_dev;
3549         struct net_device *null_or_dev;
3550         bool deliver_exact = false;
3551         int ret = NET_RX_DROP;
3552         __be16 type;
3553
3554         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3555
3556         trace_netif_receive_skb(skb);
3557
3558         orig_dev = skb->dev;
3559
3560         skb_reset_network_header(skb);
3561         if (!skb_transport_header_was_set(skb))
3562                 skb_reset_transport_header(skb);
3563         skb_reset_mac_len(skb);
3564
3565         pt_prev = NULL;
3566
3567         rcu_read_lock();
3568
3569 another_round:
3570         skb->skb_iif = skb->dev->ifindex;
3571
3572         __this_cpu_inc(softnet_data.processed);
3573
3574         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3575             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3576                 skb = skb_vlan_untag(skb);
3577                 if (unlikely(!skb))
3578                         goto unlock;
3579         }
3580
3581 #ifdef CONFIG_NET_CLS_ACT
3582         if (skb->tc_verd & TC_NCLS) {
3583                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3584                 goto ncls;
3585         }
3586 #endif
3587
3588         if (pfmemalloc)
3589                 goto skip_taps;
3590
3591         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3592                 if (!ptype->dev || ptype->dev == skb->dev) {
3593                         if (pt_prev)
3594                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3595                         pt_prev = ptype;
3596                 }
3597         }
3598
3599 skip_taps:
3600 #ifdef CONFIG_NET_CLS_ACT
3601         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3602         if (!skb)
3603                 goto unlock;
3604 ncls:
3605 #endif
3606
3607         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3608                 goto drop;
3609
3610         if (vlan_tx_tag_present(skb)) {
3611                 if (pt_prev) {
3612                         ret = deliver_skb(skb, pt_prev, orig_dev);
3613                         pt_prev = NULL;
3614                 }
3615                 if (vlan_do_receive(&skb))
3616                         goto another_round;
3617                 else if (unlikely(!skb))
3618                         goto unlock;
3619         }
3620
3621         rx_handler = rcu_dereference(skb->dev->rx_handler);
3622         if (rx_handler) {
3623                 if (pt_prev) {
3624                         ret = deliver_skb(skb, pt_prev, orig_dev);
3625                         pt_prev = NULL;
3626                 }
3627                 switch (rx_handler(&skb)) {
3628                 case RX_HANDLER_CONSUMED:
3629                         ret = NET_RX_SUCCESS;
3630                         goto unlock;
3631                 case RX_HANDLER_ANOTHER:
3632                         goto another_round;
3633                 case RX_HANDLER_EXACT:
3634                         deliver_exact = true;
3635                 case RX_HANDLER_PASS:
3636                         break;
3637                 default:
3638                         BUG();
3639                 }
3640         }
3641
3642         if (unlikely(vlan_tx_tag_present(skb))) {
3643                 if (vlan_tx_tag_get_id(skb))
3644                         skb->pkt_type = PACKET_OTHERHOST;
3645                 /* Note: we might in the future use prio bits
3646                  * and set skb->priority like in vlan_do_receive()
3647                  * For the time being, just ignore Priority Code Point
3648                  */
3649                 skb->vlan_tci = 0;
3650         }
3651
3652         /* deliver only exact match when indicated */
3653         null_or_dev = deliver_exact ? skb->dev : NULL;
3654
3655         type = skb->protocol;
3656         list_for_each_entry_rcu(ptype,
3657                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3658                 if (ptype->type == type &&
3659                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3660                      ptype->dev == orig_dev)) {
3661                         if (pt_prev)
3662                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3663                         pt_prev = ptype;
3664                 }
3665         }
3666
3667         if (pt_prev) {
3668                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3669                         goto drop;
3670                 else
3671                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3672         } else {
3673 drop:
3674                 atomic_long_inc(&skb->dev->rx_dropped);
3675                 kfree_skb(skb);
3676                 /* Jamal, now you will not able to escape explaining
3677                  * me how you were going to use this. :-)
3678                  */
3679                 ret = NET_RX_DROP;
3680         }
3681
3682 unlock:
3683         rcu_read_unlock();
3684         return ret;
3685 }
3686
3687 static int __netif_receive_skb(struct sk_buff *skb)
3688 {
3689         int ret;
3690
3691         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3692                 unsigned long pflags = current->flags;
3693
3694                 /*
3695                  * PFMEMALLOC skbs are special, they should
3696                  * - be delivered to SOCK_MEMALLOC sockets only
3697                  * - stay away from userspace
3698                  * - have bounded memory usage
3699                  *
3700                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3701                  * context down to all allocation sites.
3702                  */
3703                 current->flags |= PF_MEMALLOC;
3704                 ret = __netif_receive_skb_core(skb, true);
3705                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3706         } else
3707                 ret = __netif_receive_skb_core(skb, false);
3708
3709         return ret;
3710 }
3711
3712 static int netif_receive_skb_internal(struct sk_buff *skb)
3713 {
3714         net_timestamp_check(netdev_tstamp_prequeue, skb);
3715
3716         if (skb_defer_rx_timestamp(skb))
3717                 return NET_RX_SUCCESS;
3718
3719 #ifdef CONFIG_RPS
3720         if (static_key_false(&rps_needed)) {
3721                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3722                 int cpu, ret;
3723
3724                 rcu_read_lock();
3725
3726                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3727
3728                 if (cpu >= 0) {
3729                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3730                         rcu_read_unlock();
3731                         return ret;
3732                 }
3733                 rcu_read_unlock();
3734         }
3735 #endif
3736         return __netif_receive_skb(skb);
3737 }
3738
3739 /**
3740  *      netif_receive_skb - process receive buffer from network
3741  *      @skb: buffer to process
3742  *
3743  *      netif_receive_skb() is the main receive data processing function.
3744  *      It always succeeds. The buffer may be dropped during processing
3745  *      for congestion control or by the protocol layers.
3746  *
3747  *      This function may only be called from softirq context and interrupts
3748  *      should be enabled.
3749  *
3750  *      Return values (usually ignored):
3751  *      NET_RX_SUCCESS: no congestion
3752  *      NET_RX_DROP: packet was dropped
3753  */
3754 int netif_receive_skb(struct sk_buff *skb)
3755 {
3756         trace_netif_receive_skb_entry(skb);
3757
3758         return netif_receive_skb_internal(skb);
3759 }
3760 EXPORT_SYMBOL(netif_receive_skb);
3761
3762 /* Network device is going away, flush any packets still pending
3763  * Called with irqs disabled.
3764  */
3765 static void flush_backlog(void *arg)
3766 {
3767         struct net_device *dev = arg;
3768         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3769         struct sk_buff *skb, *tmp;
3770
3771         rps_lock(sd);
3772         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3773                 if (skb->dev == dev) {
3774                         __skb_unlink(skb, &sd->input_pkt_queue);
3775                         kfree_skb(skb);
3776                         input_queue_head_incr(sd);
3777                 }
3778         }
3779         rps_unlock(sd);
3780
3781         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3782                 if (skb->dev == dev) {
3783                         __skb_unlink(skb, &sd->process_queue);
3784                         kfree_skb(skb);
3785                         input_queue_head_incr(sd);
3786                 }
3787         }
3788 }
3789
3790 static int napi_gro_complete(struct sk_buff *skb)
3791 {
3792         struct packet_offload *ptype;
3793         __be16 type = skb->protocol;
3794         struct list_head *head = &offload_base;
3795         int err = -ENOENT;
3796
3797         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3798
3799         if (NAPI_GRO_CB(skb)->count == 1) {
3800                 skb_shinfo(skb)->gso_size = 0;
3801                 goto out;
3802         }
3803
3804         rcu_read_lock();
3805         list_for_each_entry_rcu(ptype, head, list) {
3806                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3807                         continue;
3808
3809                 err = ptype->callbacks.gro_complete(skb, 0);
3810                 break;
3811         }
3812         rcu_read_unlock();
3813
3814         if (err) {
3815                 WARN_ON(&ptype->list == head);
3816                 kfree_skb(skb);
3817                 return NET_RX_SUCCESS;
3818         }
3819
3820 out:
3821         return netif_receive_skb_internal(skb);
3822 }
3823
3824 /* napi->gro_list contains packets ordered by age.
3825  * youngest packets at the head of it.
3826  * Complete skbs in reverse order to reduce latencies.
3827  */
3828 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3829 {
3830         struct sk_buff *skb, *prev = NULL;
3831
3832         /* scan list and build reverse chain */
3833         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3834                 skb->prev = prev;
3835                 prev = skb;
3836         }
3837
3838         for (skb = prev; skb; skb = prev) {
3839                 skb->next = NULL;
3840
3841                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3842                         return;
3843
3844                 prev = skb->prev;
3845                 napi_gro_complete(skb);
3846                 napi->gro_count--;
3847         }
3848
3849         napi->gro_list = NULL;
3850 }
3851 EXPORT_SYMBOL(napi_gro_flush);
3852
3853 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3854 {
3855         struct sk_buff *p;
3856         unsigned int maclen = skb->dev->hard_header_len;
3857         u32 hash = skb_get_hash_raw(skb);
3858
3859         for (p = napi->gro_list; p; p = p->next) {
3860                 unsigned long diffs;
3861
3862                 NAPI_GRO_CB(p)->flush = 0;
3863
3864                 if (hash != skb_get_hash_raw(p)) {
3865                         NAPI_GRO_CB(p)->same_flow = 0;
3866                         continue;
3867                 }
3868
3869                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3870                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3871                 if (maclen == ETH_HLEN)
3872                         diffs |= compare_ether_header(skb_mac_header(p),
3873                                                       skb_mac_header(skb));
3874                 else if (!diffs)
3875                         diffs = memcmp(skb_mac_header(p),
3876                                        skb_mac_header(skb),
3877                                        maclen);
3878                 NAPI_GRO_CB(p)->same_flow = !diffs;
3879         }
3880 }
3881
3882 static void skb_gro_reset_offset(struct sk_buff *skb)
3883 {
3884         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3885         const skb_frag_t *frag0 = &pinfo->frags[0];
3886
3887         NAPI_GRO_CB(skb)->data_offset = 0;
3888         NAPI_GRO_CB(skb)->frag0 = NULL;
3889         NAPI_GRO_CB(skb)->frag0_len = 0;
3890
3891         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3892             pinfo->nr_frags &&
3893             !PageHighMem(skb_frag_page(frag0))) {
3894                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3895                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3896         }
3897 }
3898
3899 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3900 {
3901         struct skb_shared_info *pinfo = skb_shinfo(skb);
3902
3903         BUG_ON(skb->end - skb->tail < grow);
3904
3905         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3906
3907         skb->data_len -= grow;
3908         skb->tail += grow;
3909
3910         pinfo->frags[0].page_offset += grow;
3911         skb_frag_size_sub(&pinfo->frags[0], grow);
3912
3913         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3914                 skb_frag_unref(skb, 0);
3915                 memmove(pinfo->frags, pinfo->frags + 1,
3916                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3917         }
3918 }
3919
3920 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3921 {
3922         struct sk_buff **pp = NULL;
3923         struct packet_offload *ptype;
3924         __be16 type = skb->protocol;
3925         struct list_head *head = &offload_base;
3926         int same_flow;
3927         enum gro_result ret;
3928         int grow;
3929
3930         if (!(skb->dev->features & NETIF_F_GRO))
3931                 goto normal;
3932
3933         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3934                 goto normal;
3935
3936         gro_list_prepare(napi, skb);
3937
3938         rcu_read_lock();
3939         list_for_each_entry_rcu(ptype, head, list) {
3940                 if (ptype->type != type || !ptype->callbacks.gro_receive)
3941                         continue;
3942
3943                 skb_set_network_header(skb, skb_gro_offset(skb));
3944                 skb_reset_mac_len(skb);
3945                 NAPI_GRO_CB(skb)->same_flow = 0;
3946                 NAPI_GRO_CB(skb)->flush = 0;
3947                 NAPI_GRO_CB(skb)->free = 0;
3948                 NAPI_GRO_CB(skb)->udp_mark = 0;
3949
3950                 /* Setup for GRO checksum validation */
3951                 switch (skb->ip_summed) {
3952                 case CHECKSUM_COMPLETE:
3953                         NAPI_GRO_CB(skb)->csum = skb->csum;
3954                         NAPI_GRO_CB(skb)->csum_valid = 1;
3955                         NAPI_GRO_CB(skb)->csum_cnt = 0;
3956                         break;
3957                 case CHECKSUM_UNNECESSARY:
3958                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
3959                         NAPI_GRO_CB(skb)->csum_valid = 0;
3960                         break;
3961                 default:
3962                         NAPI_GRO_CB(skb)->csum_cnt = 0;
3963                         NAPI_GRO_CB(skb)->csum_valid = 0;
3964                 }
3965
3966                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3967                 break;
3968         }
3969         rcu_read_unlock();
3970
3971         if (&ptype->list == head)
3972                 goto normal;
3973
3974         same_flow = NAPI_GRO_CB(skb)->same_flow;
3975         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3976
3977         if (pp) {
3978                 struct sk_buff *nskb = *pp;
3979
3980                 *pp = nskb->next;
3981                 nskb->next = NULL;
3982                 napi_gro_complete(nskb);
3983                 napi->gro_count--;
3984         }
3985
3986         if (same_flow)
3987                 goto ok;
3988
3989         if (NAPI_GRO_CB(skb)->flush)
3990                 goto normal;
3991
3992         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3993                 struct sk_buff *nskb = napi->gro_list;
3994
3995                 /* locate the end of the list to select the 'oldest' flow */
3996                 while (nskb->next) {
3997                         pp = &nskb->next;
3998                         nskb = *pp;
3999                 }
4000                 *pp = NULL;
4001                 nskb->next = NULL;
4002                 napi_gro_complete(nskb);
4003         } else {
4004                 napi->gro_count++;
4005         }
4006         NAPI_GRO_CB(skb)->count = 1;
4007         NAPI_GRO_CB(skb)->age = jiffies;
4008         NAPI_GRO_CB(skb)->last = skb;
4009         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4010         skb->next = napi->gro_list;
4011         napi->gro_list = skb;
4012         ret = GRO_HELD;
4013
4014 pull:
4015         grow = skb_gro_offset(skb) - skb_headlen(skb);
4016         if (grow > 0)
4017                 gro_pull_from_frag0(skb, grow);
4018 ok:
4019         return ret;
4020
4021 normal:
4022         ret = GRO_NORMAL;
4023         goto pull;
4024 }
4025
4026 struct packet_offload *gro_find_receive_by_type(__be16 type)
4027 {
4028         struct list_head *offload_head = &offload_base;
4029         struct packet_offload *ptype;
4030
4031         list_for_each_entry_rcu(ptype, offload_head, list) {
4032                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4033                         continue;
4034                 return ptype;
4035         }
4036         return NULL;
4037 }
4038 EXPORT_SYMBOL(gro_find_receive_by_type);
4039
4040 struct packet_offload *gro_find_complete_by_type(__be16 type)
4041 {
4042         struct list_head *offload_head = &offload_base;
4043         struct packet_offload *ptype;
4044
4045         list_for_each_entry_rcu(ptype, offload_head, list) {
4046                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4047                         continue;
4048                 return ptype;
4049         }
4050         return NULL;
4051 }
4052 EXPORT_SYMBOL(gro_find_complete_by_type);
4053
4054 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4055 {
4056         switch (ret) {
4057         case GRO_NORMAL:
4058                 if (netif_receive_skb_internal(skb))
4059                         ret = GRO_DROP;
4060                 break;
4061
4062         case GRO_DROP:
4063                 kfree_skb(skb);
4064                 break;
4065
4066         case GRO_MERGED_FREE:
4067                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4068                         kmem_cache_free(skbuff_head_cache, skb);
4069                 else
4070                         __kfree_skb(skb);
4071                 break;
4072
4073         case GRO_HELD:
4074         case GRO_MERGED:
4075                 break;
4076         }
4077
4078         return ret;
4079 }
4080
4081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4082 {
4083         trace_napi_gro_receive_entry(skb);
4084
4085         skb_gro_reset_offset(skb);
4086
4087         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4088 }
4089 EXPORT_SYMBOL(napi_gro_receive);
4090
4091 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4092 {
4093         __skb_pull(skb, skb_headlen(skb));
4094         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4095         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4096         skb->vlan_tci = 0;
4097         skb->dev = napi->dev;
4098         skb->skb_iif = 0;
4099         skb->encapsulation = 0;
4100         skb_shinfo(skb)->gso_type = 0;
4101         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4102
4103         napi->skb = skb;
4104 }
4105
4106 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4107 {
4108         struct sk_buff *skb = napi->skb;
4109
4110         if (!skb) {
4111                 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4112                 napi->skb = skb;
4113         }
4114         return skb;
4115 }
4116 EXPORT_SYMBOL(napi_get_frags);
4117
4118 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4119                                       struct sk_buff *skb,
4120                                       gro_result_t ret)
4121 {
4122         switch (ret) {
4123         case GRO_NORMAL:
4124         case GRO_HELD:
4125                 __skb_push(skb, ETH_HLEN);
4126                 skb->protocol = eth_type_trans(skb, skb->dev);
4127                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4128                         ret = GRO_DROP;
4129                 break;
4130
4131         case GRO_DROP:
4132         case GRO_MERGED_FREE:
4133                 napi_reuse_skb(napi, skb);
4134                 break;
4135
4136         case GRO_MERGED:
4137                 break;
4138         }
4139
4140         return ret;
4141 }
4142
4143 /* Upper GRO stack assumes network header starts at gro_offset=0
4144  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4145  * We copy ethernet header into skb->data to have a common layout.
4146  */
4147 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4148 {
4149         struct sk_buff *skb = napi->skb;
4150         const struct ethhdr *eth;
4151         unsigned int hlen = sizeof(*eth);
4152
4153         napi->skb = NULL;
4154
4155         skb_reset_mac_header(skb);
4156         skb_gro_reset_offset(skb);
4157
4158         eth = skb_gro_header_fast(skb, 0);
4159         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4160                 eth = skb_gro_header_slow(skb, hlen, 0);
4161                 if (unlikely(!eth)) {
4162                         napi_reuse_skb(napi, skb);
4163                         return NULL;
4164                 }
4165         } else {
4166                 gro_pull_from_frag0(skb, hlen);
4167                 NAPI_GRO_CB(skb)->frag0 += hlen;
4168                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4169         }
4170         __skb_pull(skb, hlen);
4171
4172         /*
4173          * This works because the only protocols we care about don't require
4174          * special handling.
4175          * We'll fix it up properly in napi_frags_finish()
4176          */
4177         skb->protocol = eth->h_proto;
4178
4179         return skb;
4180 }
4181
4182 gro_result_t napi_gro_frags(struct napi_struct *napi)
4183 {
4184         struct sk_buff *skb = napi_frags_skb(napi);
4185
4186         if (!skb)
4187                 return GRO_DROP;
4188
4189         trace_napi_gro_frags_entry(skb);
4190
4191         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4192 }
4193 EXPORT_SYMBOL(napi_gro_frags);
4194
4195 /* Compute the checksum from gro_offset and return the folded value
4196  * after adding in any pseudo checksum.
4197  */
4198 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4199 {
4200         __wsum wsum;
4201         __sum16 sum;
4202
4203         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4204
4205         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4206         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4207         if (likely(!sum)) {
4208                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4209                     !skb->csum_complete_sw)
4210                         netdev_rx_csum_fault(skb->dev);
4211         }
4212
4213         NAPI_GRO_CB(skb)->csum = wsum;
4214         NAPI_GRO_CB(skb)->csum_valid = 1;
4215
4216         return sum;
4217 }
4218 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4219
4220 /*
4221  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4222  * Note: called with local irq disabled, but exits with local irq enabled.
4223  */
4224 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4225 {
4226 #ifdef CONFIG_RPS
4227         struct softnet_data *remsd = sd->rps_ipi_list;
4228
4229         if (remsd) {
4230                 sd->rps_ipi_list = NULL;
4231
4232                 local_irq_enable();
4233
4234                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4235                 while (remsd) {
4236                         struct softnet_data *next = remsd->rps_ipi_next;
4237
4238                         if (cpu_online(remsd->cpu))
4239                                 smp_call_function_single_async(remsd->cpu,
4240                                                            &remsd->csd);
4241                         remsd = next;
4242                 }
4243         } else
4244 #endif
4245                 local_irq_enable();
4246 }
4247
4248 static int process_backlog(struct napi_struct *napi, int quota)
4249 {
4250         int work = 0;
4251         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4252
4253 #ifdef CONFIG_RPS
4254         /* Check if we have pending ipi, its better to send them now,
4255          * not waiting net_rx_action() end.
4256          */
4257         if (sd->rps_ipi_list) {
4258                 local_irq_disable();
4259                 net_rps_action_and_irq_enable(sd);
4260         }
4261 #endif
4262         napi->weight = weight_p;
4263         local_irq_disable();
4264         while (1) {
4265                 struct sk_buff *skb;
4266
4267                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4268                         local_irq_enable();
4269                         __netif_receive_skb(skb);
4270                         local_irq_disable();
4271                         input_queue_head_incr(sd);
4272                         if (++work >= quota) {
4273                                 local_irq_enable();
4274                                 return work;
4275                         }
4276                 }
4277
4278                 rps_lock(sd);
4279                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4280                         /*
4281                          * Inline a custom version of __napi_complete().
4282                          * only current cpu owns and manipulates this napi,
4283                          * and NAPI_STATE_SCHED is the only possible flag set
4284                          * on backlog.
4285                          * We can use a plain write instead of clear_bit(),
4286                          * and we dont need an smp_mb() memory barrier.
4287                          */
4288                         list_del(&napi->poll_list);
4289                         napi->state = 0;
4290                         rps_unlock(sd);
4291
4292                         break;
4293                 }
4294
4295                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4296                                            &sd->process_queue);
4297                 rps_unlock(sd);
4298         }
4299         local_irq_enable();
4300
4301         return work;
4302 }
4303
4304 /**
4305  * __napi_schedule - schedule for receive
4306  * @n: entry to schedule
4307  *
4308  * The entry's receive function will be scheduled to run
4309  */
4310 void __napi_schedule(struct napi_struct *n)
4311 {
4312         unsigned long flags;
4313
4314         local_irq_save(flags);
4315         ____napi_schedule(&__get_cpu_var(softnet_data), n);
4316         local_irq_restore(flags);
4317 }
4318 EXPORT_SYMBOL(__napi_schedule);
4319
4320 void __napi_complete(struct napi_struct *n)
4321 {
4322         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4323         BUG_ON(n->gro_list);
4324
4325         list_del(&n->poll_list);
4326         smp_mb__before_atomic();
4327         clear_bit(NAPI_STATE_SCHED, &n->state);
4328 }
4329 EXPORT_SYMBOL(__napi_complete);
4330
4331 void napi_complete(struct napi_struct *n)
4332 {
4333         unsigned long flags;
4334
4335         /*
4336          * don't let napi dequeue from the cpu poll list
4337          * just in case its running on a different cpu
4338          */
4339         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4340                 return;
4341
4342         napi_gro_flush(n, false);
4343         local_irq_save(flags);
4344         __napi_complete(n);
4345         local_irq_restore(flags);
4346 }
4347 EXPORT_SYMBOL(napi_complete);
4348
4349 /* must be called under rcu_read_lock(), as we dont take a reference */
4350 struct napi_struct *napi_by_id(unsigned int napi_id)
4351 {
4352         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4353         struct napi_struct *napi;
4354
4355         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4356                 if (napi->napi_id == napi_id)
4357                         return napi;
4358
4359         return NULL;
4360 }
4361 EXPORT_SYMBOL_GPL(napi_by_id);
4362
4363 void napi_hash_add(struct napi_struct *napi)
4364 {
4365         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4366
4367                 spin_lock(&napi_hash_lock);
4368
4369                 /* 0 is not a valid id, we also skip an id that is taken
4370                  * we expect both events to be extremely rare
4371                  */
4372                 napi->napi_id = 0;
4373                 while (!napi->napi_id) {
4374                         napi->napi_id = ++napi_gen_id;
4375                         if (napi_by_id(napi->napi_id))
4376                                 napi->napi_id = 0;
4377                 }
4378
4379                 hlist_add_head_rcu(&napi->napi_hash_node,
4380                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4381
4382                 spin_unlock(&napi_hash_lock);
4383         }
4384 }
4385 EXPORT_SYMBOL_GPL(napi_hash_add);
4386
4387 /* Warning : caller is responsible to make sure rcu grace period
4388  * is respected before freeing memory containing @napi
4389  */
4390 void napi_hash_del(struct napi_struct *napi)
4391 {
4392         spin_lock(&napi_hash_lock);
4393
4394         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4395                 hlist_del_rcu(&napi->napi_hash_node);
4396
4397         spin_unlock(&napi_hash_lock);
4398 }
4399 EXPORT_SYMBOL_GPL(napi_hash_del);
4400
4401 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4402                     int (*poll)(struct napi_struct *, int), int weight)
4403 {
4404         INIT_LIST_HEAD(&napi->poll_list);
4405         napi->gro_count = 0;
4406         napi->gro_list = NULL;
4407         napi->skb = NULL;
4408         napi->poll = poll;
4409         if (weight > NAPI_POLL_WEIGHT)
4410                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4411                             weight, dev->name);
4412         napi->weight = weight;
4413         list_add(&napi->dev_list, &dev->napi_list);
4414         napi->dev = dev;
4415 #ifdef CONFIG_NETPOLL
4416         spin_lock_init(&napi->poll_lock);
4417         napi->poll_owner = -1;
4418 #endif
4419         set_bit(NAPI_STATE_SCHED, &napi->state);
4420 }
4421 EXPORT_SYMBOL(netif_napi_add);
4422
4423 void netif_napi_del(struct napi_struct *napi)
4424 {
4425         list_del_init(&napi->dev_list);
4426         napi_free_frags(napi);
4427
4428         kfree_skb_list(napi->gro_list);
4429         napi->gro_list = NULL;
4430         napi->gro_count = 0;
4431 }
4432 EXPORT_SYMBOL(netif_napi_del);
4433
4434 static void net_rx_action(struct softirq_action *h)
4435 {
4436         struct softnet_data *sd = &__get_cpu_var(softnet_data);
4437         unsigned long time_limit = jiffies + 2;
4438         int budget = netdev_budget;
4439         void *have;
4440
4441         local_irq_disable();
4442
4443         while (!list_empty(&sd->poll_list)) {
4444                 struct napi_struct *n;
4445                 int work, weight;
4446
4447                 /* If softirq window is exhuasted then punt.
4448                  * Allow this to run for 2 jiffies since which will allow
4449                  * an average latency of 1.5/HZ.
4450                  */
4451                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4452                         goto softnet_break;
4453
4454                 local_irq_enable();
4455
4456                 /* Even though interrupts have been re-enabled, this
4457                  * access is safe because interrupts can only add new
4458                  * entries to the tail of this list, and only ->poll()
4459                  * calls can remove this head entry from the list.
4460                  */
4461                 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4462
4463                 have = netpoll_poll_lock(n);
4464
4465                 weight = n->weight;
4466
4467                 /* This NAPI_STATE_SCHED test is for avoiding a race
4468                  * with netpoll's poll_napi().  Only the entity which
4469                  * obtains the lock and sees NAPI_STATE_SCHED set will
4470                  * actually make the ->poll() call.  Therefore we avoid
4471                  * accidentally calling ->poll() when NAPI is not scheduled.
4472                  */
4473                 work = 0;
4474                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4475                         work = n->poll(n, weight);
4476                         trace_napi_poll(n);
4477                 }
4478
4479                 WARN_ON_ONCE(work > weight);
4480
4481                 budget -= work;
4482
4483                 local_irq_disable();
4484
4485                 /* Drivers must not modify the NAPI state if they
4486                  * consume the entire weight.  In such cases this code
4487                  * still "owns" the NAPI instance and therefore can
4488                  * move the instance around on the list at-will.
4489                  */
4490                 if (unlikely(work == weight)) {
4491                         if (unlikely(napi_disable_pending(n))) {
4492                                 local_irq_enable();
4493                                 napi_complete(n);
4494                                 local_irq_disable();
4495                         } else {
4496                                 if (n->gro_list) {
4497                                         /* flush too old packets
4498                                          * If HZ < 1000, flush all packets.
4499                                          */
4500                                         local_irq_enable();
4501                                         napi_gro_flush(n, HZ >= 1000);
4502                                         local_irq_disable();
4503                                 }
4504                                 list_move_tail(&n->poll_list, &sd->poll_list);
4505                         }
4506                 }
4507
4508                 netpoll_poll_unlock(have);
4509         }
4510 out:
4511         net_rps_action_and_irq_enable(sd);
4512
4513 #ifdef CONFIG_NET_DMA
4514         /*
4515          * There may not be any more sk_buffs coming right now, so push
4516          * any pending DMA copies to hardware
4517          */
4518         dma_issue_pending_all();
4519 #endif
4520
4521         return;
4522
4523 softnet_break:
4524         sd->time_squeeze++;
4525         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4526         goto out;
4527 }
4528
4529 struct netdev_adjacent {
4530         struct net_device *dev;
4531
4532         /* upper master flag, there can only be one master device per list */
4533         bool master;
4534
4535         /* counter for the number of times this device was added to us */
4536         u16 ref_nr;
4537
4538         /* private field for the users */
4539         void *private;
4540
4541         struct list_head list;
4542         struct rcu_head rcu;
4543 };
4544
4545 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4546                                                  struct net_device *adj_dev,
4547                                                  struct list_head *adj_list)
4548 {
4549         struct netdev_adjacent *adj;
4550
4551         list_for_each_entry(adj, adj_list, list) {
4552                 if (adj->dev == adj_dev)
4553                         return adj;
4554         }
4555         return NULL;
4556 }
4557
4558 /**
4559  * netdev_has_upper_dev - Check if device is linked to an upper device
4560  * @dev: device
4561  * @upper_dev: upper device to check
4562  *
4563  * Find out if a device is linked to specified upper device and return true
4564  * in case it is. Note that this checks only immediate upper device,
4565  * not through a complete stack of devices. The caller must hold the RTNL lock.
4566  */
4567 bool netdev_has_upper_dev(struct net_device *dev,
4568                           struct net_device *upper_dev)
4569 {
4570         ASSERT_RTNL();
4571
4572         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4573 }
4574 EXPORT_SYMBOL(netdev_has_upper_dev);
4575
4576 /**
4577  * netdev_has_any_upper_dev - Check if device is linked to some device
4578  * @dev: device
4579  *
4580  * Find out if a device is linked to an upper device and return true in case
4581  * it is. The caller must hold the RTNL lock.
4582  */
4583 static bool netdev_has_any_upper_dev(struct net_device *dev)
4584 {
4585         ASSERT_RTNL();
4586
4587         return !list_empty(&dev->all_adj_list.upper);
4588 }
4589
4590 /**
4591  * netdev_master_upper_dev_get - Get master upper device
4592  * @dev: device
4593  *
4594  * Find a master upper device and return pointer to it or NULL in case
4595  * it's not there. The caller must hold the RTNL lock.
4596  */
4597 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4598 {
4599         struct netdev_adjacent *upper;
4600
4601         ASSERT_RTNL();
4602
4603         if (list_empty(&dev->adj_list.upper))
4604                 return NULL;
4605
4606         upper = list_first_entry(&dev->adj_list.upper,
4607                                  struct netdev_adjacent, list);
4608         if (likely(upper->master))
4609                 return upper->dev;
4610         return NULL;
4611 }
4612 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4613
4614 void *netdev_adjacent_get_private(struct list_head *adj_list)
4615 {
4616         struct netdev_adjacent *adj;
4617
4618         adj = list_entry(adj_list, struct netdev_adjacent, list);
4619
4620         return adj->private;
4621 }
4622 EXPORT_SYMBOL(netdev_adjacent_get_private);
4623
4624 /**
4625  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4626  * @dev: device
4627  * @iter: list_head ** of the current position
4628  *
4629  * Gets the next device from the dev's upper list, starting from iter
4630  * position. The caller must hold RCU read lock.
4631  */
4632 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4633                                                  struct list_head **iter)
4634 {
4635         struct netdev_adjacent *upper;
4636
4637         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4638
4639         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4640
4641         if (&upper->list == &dev->adj_list.upper)
4642                 return NULL;
4643
4644         *iter = &upper->list;
4645
4646         return upper->dev;
4647 }
4648 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4649
4650 /**
4651  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4652  * @dev: device
4653  * @iter: list_head ** of the current position
4654  *
4655  * Gets the next device from the dev's upper list, starting from iter
4656  * position. The caller must hold RCU read lock.
4657  */
4658 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4659                                                      struct list_head **iter)
4660 {
4661         struct netdev_adjacent *upper;
4662
4663         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4664
4665         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4666
4667         if (&upper->list == &dev->all_adj_list.upper)
4668                 return NULL;
4669
4670         *iter = &upper->list;
4671
4672         return upper->dev;
4673 }
4674 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4675
4676 /**
4677  * netdev_lower_get_next_private - Get the next ->private from the
4678  *                                 lower neighbour list
4679  * @dev: device
4680  * @iter: list_head ** of the current position
4681  *
4682  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4683  * list, starting from iter position. The caller must hold either hold the
4684  * RTNL lock or its own locking that guarantees that the neighbour lower
4685  * list will remain unchainged.
4686  */
4687 void *netdev_lower_get_next_private(struct net_device *dev,
4688                                     struct list_head **iter)
4689 {
4690         struct netdev_adjacent *lower;
4691
4692         lower = list_entry(*iter, struct netdev_adjacent, list);
4693
4694         if (&lower->list == &dev->adj_list.lower)
4695                 return NULL;
4696
4697         *iter = lower->list.next;
4698
4699         return lower->private;
4700 }
4701 EXPORT_SYMBOL(netdev_lower_get_next_private);
4702
4703 /**
4704  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4705  *                                     lower neighbour list, RCU
4706  *                                     variant
4707  * @dev: device
4708  * @iter: list_head ** of the current position
4709  *
4710  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4711  * list, starting from iter position. The caller must hold RCU read lock.
4712  */
4713 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4714                                         struct list_head **iter)
4715 {
4716         struct netdev_adjacent *lower;
4717
4718         WARN_ON_ONCE(!rcu_read_lock_held());
4719
4720         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4721
4722         if (&lower->list == &dev->adj_list.lower)
4723                 return NULL;
4724
4725         *iter = &lower->list;
4726
4727         return lower->private;
4728 }
4729 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4730
4731 /**
4732  * netdev_lower_get_next - Get the next device from the lower neighbour
4733  *                         list
4734  * @dev: device
4735  * @iter: list_head ** of the current position
4736  *
4737  * Gets the next netdev_adjacent from the dev's lower neighbour
4738  * list, starting from iter position. The caller must hold RTNL lock or
4739  * its own locking that guarantees that the neighbour lower
4740  * list will remain unchainged.
4741  */
4742 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4743 {
4744         struct netdev_adjacent *lower;
4745
4746         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4747
4748         if (&lower->list == &dev->adj_list.lower)
4749                 return NULL;
4750
4751         *iter = &lower->list;
4752
4753         return lower->dev;
4754 }
4755 EXPORT_SYMBOL(netdev_lower_get_next);
4756
4757 /**
4758  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4759  *                                     lower neighbour list, RCU
4760  *                                     variant
4761  * @dev: device
4762  *
4763  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4764  * list. The caller must hold RCU read lock.
4765  */
4766 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4767 {
4768         struct netdev_adjacent *lower;
4769
4770         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4771                         struct netdev_adjacent, list);
4772         if (lower)
4773                 return lower->private;
4774         return NULL;
4775 }
4776 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4777
4778 /**
4779  * netdev_master_upper_dev_get_rcu - Get master upper device
4780  * @dev: device
4781  *
4782  * Find a master upper device and return pointer to it or NULL in case
4783  * it's not there. The caller must hold the RCU read lock.
4784  */
4785 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4786 {
4787         struct netdev_adjacent *upper;
4788
4789         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4790                                        struct netdev_adjacent, list);
4791         if (upper && likely(upper->master))
4792                 return upper->dev;
4793         return NULL;
4794 }
4795 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4796
4797 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4798                               struct net_device *adj_dev,
4799                               struct list_head *dev_list)
4800 {
4801         char linkname[IFNAMSIZ+7];
4802         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4803                 "upper_%s" : "lower_%s", adj_dev->name);
4804         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4805                                  linkname);
4806 }
4807 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4808                                char *name,
4809                                struct list_head *dev_list)
4810 {
4811         char linkname[IFNAMSIZ+7];
4812         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4813                 "upper_%s" : "lower_%s", name);
4814         sysfs_remove_link(&(dev->dev.kobj), linkname);
4815 }
4816
4817 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4818                 (dev_list == &dev->adj_list.upper || \
4819                  dev_list == &dev->adj_list.lower)
4820
4821 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4822                                         struct net_device *adj_dev,
4823                                         struct list_head *dev_list,
4824                                         void *private, bool master)
4825 {
4826         struct netdev_adjacent *adj;
4827         int ret;
4828
4829         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4830
4831         if (adj) {
4832                 adj->ref_nr++;
4833                 return 0;
4834         }
4835
4836         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4837         if (!adj)
4838                 return -ENOMEM;
4839
4840         adj->dev = adj_dev;
4841         adj->master = master;
4842         adj->ref_nr = 1;
4843         adj->private = private;
4844         dev_hold(adj_dev);
4845
4846         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4847                  adj_dev->name, dev->name, adj_dev->name);
4848
4849         if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4850                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4851                 if (ret)
4852                         goto free_adj;
4853         }
4854
4855         /* Ensure that master link is always the first item in list. */
4856         if (master) {
4857                 ret = sysfs_create_link(&(dev->dev.kobj),
4858                                         &(adj_dev->dev.kobj), "master");
4859                 if (ret)
4860                         goto remove_symlinks;
4861
4862                 list_add_rcu(&adj->list, dev_list);
4863         } else {
4864                 list_add_tail_rcu(&adj->list, dev_list);
4865         }
4866
4867         return 0;
4868
4869 remove_symlinks:
4870         if (netdev_adjacent_is_neigh_list(dev, dev_list))
4871                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4872 free_adj:
4873         kfree(adj);
4874         dev_put(adj_dev);
4875
4876         return ret;
4877 }
4878
4879 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4880                                          struct net_device *adj_dev,
4881                                          struct list_head *dev_list)
4882 {
4883         struct netdev_adjacent *adj;
4884
4885         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4886
4887         if (!adj) {
4888                 pr_err("tried to remove device %s from %s\n",
4889                        dev->name, adj_dev->name);
4890                 BUG();
4891         }
4892
4893         if (adj->ref_nr > 1) {
4894                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4895                          adj->ref_nr-1);
4896                 adj->ref_nr--;
4897                 return;
4898         }
4899
4900         if (adj->master)
4901                 sysfs_remove_link(&(dev->dev.kobj), "master");
4902
4903         if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4904             net_eq(dev_net(dev),dev_net(adj_dev)))
4905                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4906
4907         list_del_rcu(&adj->list);
4908         pr_debug("dev_put for %s, because link removed from %s to %s\n",
4909                  adj_dev->name, dev->name, adj_dev->name);
4910         dev_put(adj_dev);
4911         kfree_rcu(adj, rcu);
4912 }
4913
4914 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4915                                             struct net_device *upper_dev,
4916                                             struct list_head *up_list,
4917                                             struct list_head *down_list,
4918                                             void *private, bool master)
4919 {
4920         int ret;
4921
4922         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4923                                            master);
4924         if (ret)
4925                 return ret;
4926
4927         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4928                                            false);
4929         if (ret) {
4930                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4931                 return ret;
4932         }
4933
4934         return 0;
4935 }
4936
4937 static int __netdev_adjacent_dev_link(struct net_device *dev,
4938                                       struct net_device *upper_dev)
4939 {
4940         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4941                                                 &dev->all_adj_list.upper,
4942                                                 &upper_dev->all_adj_list.lower,
4943                                                 NULL, false);
4944 }
4945
4946 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4947                                                struct net_device *upper_dev,
4948                                                struct list_head *up_list,
4949                                                struct list_head *down_list)
4950 {
4951         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4952         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4953 }
4954
4955 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4956                                          struct net_device *upper_dev)
4957 {
4958         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4959                                            &dev->all_adj_list.upper,
4960                                            &upper_dev->all_adj_list.lower);
4961 }
4962
4963 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4964                                                 struct net_device *upper_dev,
4965                                                 void *private, bool master)
4966 {
4967         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4968
4969         if (ret)
4970                 return ret;
4971
4972         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4973                                                &dev->adj_list.upper,
4974                                                &upper_dev->adj_list.lower,
4975                                                private, master);
4976         if (ret) {
4977                 __netdev_adjacent_dev_unlink(dev, upper_dev);
4978                 return ret;
4979         }
4980
4981         return 0;
4982 }
4983
4984 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4985                                                    struct net_device *upper_dev)
4986 {
4987         __netdev_adjacent_dev_unlink(dev, upper_dev);
4988         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4989                                            &dev->adj_list.upper,
4990                                            &upper_dev->adj_list.lower);
4991 }
4992
4993 static int __netdev_upper_dev_link(struct net_device *dev,
4994                                    struct net_device *upper_dev, bool master,
4995                                    void *private)
4996 {
4997         struct netdev_adjacent *i, *j, *to_i, *to_j;
4998         int ret = 0;
4999
5000         ASSERT_RTNL();
5001
5002         if (dev == upper_dev)
5003                 return -EBUSY;
5004
5005         /* To prevent loops, check if dev is not upper device to upper_dev. */
5006         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5007                 return -EBUSY;
5008
5009         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5010                 return -EEXIST;
5011
5012         if (master && netdev_master_upper_dev_get(dev))
5013                 return -EBUSY;
5014
5015         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5016                                                    master);
5017         if (ret)
5018                 return ret;
5019
5020         /* Now that we linked these devs, make all the upper_dev's
5021          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5022          * versa, and don't forget the devices itself. All of these
5023          * links are non-neighbours.
5024          */
5025         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5026                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5027                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5028                                  i->dev->name, j->dev->name);
5029                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5030                         if (ret)
5031                                 goto rollback_mesh;
5032                 }
5033         }
5034
5035         /* add dev to every upper_dev's upper device */
5036         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5037                 pr_debug("linking %s's upper device %s with %s\n",
5038                          upper_dev->name, i->dev->name, dev->name);
5039                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5040                 if (ret)
5041                         goto rollback_upper_mesh;
5042         }
5043
5044         /* add upper_dev to every dev's lower device */
5045         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5046                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5047                          i->dev->name, upper_dev->name);
5048                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5049                 if (ret)
5050                         goto rollback_lower_mesh;
5051         }
5052
5053         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5054         return 0;
5055
5056 rollback_lower_mesh:
5057         to_i = i;
5058         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5059                 if (i == to_i)
5060                         break;
5061                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5062         }
5063
5064         i = NULL;
5065
5066 rollback_upper_mesh:
5067         to_i = i;
5068         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5069                 if (i == to_i)
5070                         break;
5071                 __netdev_adjacent_dev_unlink(dev, i->dev);
5072         }
5073
5074         i = j = NULL;
5075
5076 rollback_mesh:
5077         to_i = i;
5078         to_j = j;
5079         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5080                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5081                         if (i == to_i && j == to_j)
5082                                 break;
5083                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5084                 }
5085                 if (i == to_i)
5086                         break;
5087         }
5088
5089         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5090
5091         return ret;
5092 }
5093
5094 /**
5095  * netdev_upper_dev_link - Add a link to the upper device
5096  * @dev: device
5097  * @upper_dev: new upper device
5098  *
5099  * Adds a link to device which is upper to this one. The caller must hold
5100  * the RTNL lock. On a failure a negative errno code is returned.
5101  * On success the reference counts are adjusted and the function
5102  * returns zero.
5103  */
5104 int netdev_upper_dev_link(struct net_device *dev,
5105                           struct net_device *upper_dev)
5106 {
5107         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5108 }
5109 EXPORT_SYMBOL(netdev_upper_dev_link);
5110
5111 /**
5112  * netdev_master_upper_dev_link - Add a master link to the upper device
5113  * @dev: device
5114  * @upper_dev: new upper device
5115  *
5116  * Adds a link to device which is upper to this one. In this case, only
5117  * one master upper device can be linked, although other non-master devices
5118  * might be linked as well. The caller must hold the RTNL lock.
5119  * On a failure a negative errno code is returned. On success the reference
5120  * counts are adjusted and the function returns zero.
5121  */
5122 int netdev_master_upper_dev_link(struct net_device *dev,
5123                                  struct net_device *upper_dev)
5124 {
5125         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5126 }
5127 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5128
5129 int netdev_master_upper_dev_link_private(struct net_device *dev,
5130                                          struct net_device *upper_dev,
5131                                          void *private)
5132 {
5133         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5134 }
5135 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5136
5137 /**
5138  * netdev_upper_dev_unlink - Removes a link to upper device
5139  * @dev: device
5140  * @upper_dev: new upper device
5141  *
5142  * Removes a link to device which is upper to this one. The caller must hold
5143  * the RTNL lock.
5144  */
5145 void netdev_upper_dev_unlink(struct net_device *dev,
5146                              struct net_device *upper_dev)
5147 {
5148         struct netdev_adjacent *i, *j;
5149         ASSERT_RTNL();
5150
5151         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5152
5153         /* Here is the tricky part. We must remove all dev's lower
5154          * devices from all upper_dev's upper devices and vice
5155          * versa, to maintain the graph relationship.
5156          */
5157         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5158                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5159                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5160
5161         /* remove also the devices itself from lower/upper device
5162          * list
5163          */
5164         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5165                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5166
5167         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5168                 __netdev_adjacent_dev_unlink(dev, i->dev);
5169
5170         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5171 }
5172 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5173
5174 void netdev_adjacent_add_links(struct net_device *dev)
5175 {
5176         struct netdev_adjacent *iter;
5177
5178         struct net *net = dev_net(dev);
5179
5180         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5181                 if (!net_eq(net,dev_net(iter->dev)))
5182                         continue;
5183                 netdev_adjacent_sysfs_add(iter->dev, dev,
5184                                           &iter->dev->adj_list.lower);
5185                 netdev_adjacent_sysfs_add(dev, iter->dev,
5186                                           &dev->adj_list.upper);
5187         }
5188
5189         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5190                 if (!net_eq(net,dev_net(iter->dev)))
5191                         continue;
5192                 netdev_adjacent_sysfs_add(iter->dev, dev,
5193                                           &iter->dev->adj_list.upper);
5194                 netdev_adjacent_sysfs_add(dev, iter->dev,
5195                                           &dev->adj_list.lower);
5196         }
5197 }
5198
5199 void netdev_adjacent_del_links(struct net_device *dev)
5200 {
5201         struct netdev_adjacent *iter;
5202
5203         struct net *net = dev_net(dev);
5204
5205         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5206                 if (!net_eq(net,dev_net(iter->dev)))
5207                         continue;
5208                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5209                                           &iter->dev->adj_list.lower);
5210                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5211                                           &dev->adj_list.upper);
5212         }
5213
5214         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5215                 if (!net_eq(net,dev_net(iter->dev)))
5216                         continue;
5217                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5218                                           &iter->dev->adj_list.upper);
5219                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5220                                           &dev->adj_list.lower);
5221         }
5222 }
5223
5224 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5225 {
5226         struct netdev_adjacent *iter;
5227
5228         struct net *net = dev_net(dev);
5229
5230         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5231                 if (!net_eq(net,dev_net(iter->dev)))
5232                         continue;
5233                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5234                                           &iter->dev->adj_list.lower);
5235                 netdev_adjacent_sysfs_add(iter->dev, dev,
5236                                           &iter->dev->adj_list.lower);
5237         }
5238
5239         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5240                 if (!net_eq(net,dev_net(iter->dev)))
5241                         continue;
5242                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5243                                           &iter->dev->adj_list.upper);
5244                 netdev_adjacent_sysfs_add(iter->dev, dev,
5245                                           &iter->dev->adj_list.upper);
5246         }
5247 }
5248
5249 void *netdev_lower_dev_get_private(struct net_device *dev,
5250                                    struct net_device *lower_dev)
5251 {
5252         struct netdev_adjacent *lower;
5253
5254         if (!lower_dev)
5255                 return NULL;
5256         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5257         if (!lower)
5258                 return NULL;
5259
5260         return lower->private;
5261 }
5262 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5263
5264
5265 int dev_get_nest_level(struct net_device *dev,
5266                        bool (*type_check)(struct net_device *dev))
5267 {
5268         struct net_device *lower = NULL;
5269         struct list_head *iter;
5270         int max_nest = -1;
5271         int nest;
5272
5273         ASSERT_RTNL();
5274
5275         netdev_for_each_lower_dev(dev, lower, iter) {
5276                 nest = dev_get_nest_level(lower, type_check);
5277                 if (max_nest < nest)
5278                         max_nest = nest;
5279         }
5280
5281         if (type_check(dev))
5282                 max_nest++;
5283
5284         return max_nest;
5285 }
5286 EXPORT_SYMBOL(dev_get_nest_level);
5287
5288 static void dev_change_rx_flags(struct net_device *dev, int flags)
5289 {
5290         const struct net_device_ops *ops = dev->netdev_ops;
5291
5292         if (ops->ndo_change_rx_flags)
5293                 ops->ndo_change_rx_flags(dev, flags);
5294 }
5295
5296 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5297 {
5298         unsigned int old_flags = dev->flags;
5299         kuid_t uid;
5300         kgid_t gid;
5301
5302         ASSERT_RTNL();
5303
5304         dev->flags |= IFF_PROMISC;
5305         dev->promiscuity += inc;
5306         if (dev->promiscuity == 0) {
5307                 /*
5308                  * Avoid overflow.
5309                  * If inc causes overflow, untouch promisc and return error.
5310                  */
5311                 if (inc < 0)
5312                         dev->flags &= ~IFF_PROMISC;
5313                 else {
5314                         dev->promiscuity -= inc;
5315                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5316                                 dev->name);
5317                         return -EOVERFLOW;
5318                 }
5319         }
5320         if (dev->flags != old_flags) {
5321                 pr_info("device %s %s promiscuous mode\n",
5322                         dev->name,
5323                         dev->flags & IFF_PROMISC ? "entered" : "left");
5324                 if (audit_enabled) {
5325                         current_uid_gid(&uid, &gid);
5326                         audit_log(current->audit_context, GFP_ATOMIC,
5327                                 AUDIT_ANOM_PROMISCUOUS,
5328                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5329                                 dev->name, (dev->flags & IFF_PROMISC),
5330                                 (old_flags & IFF_PROMISC),
5331                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5332                                 from_kuid(&init_user_ns, uid),
5333                                 from_kgid(&init_user_ns, gid),
5334                                 audit_get_sessionid(current));
5335                 }
5336
5337                 dev_change_rx_flags(dev, IFF_PROMISC);
5338         }
5339         if (notify)
5340                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5341         return 0;
5342 }
5343
5344 /**
5345  *      dev_set_promiscuity     - update promiscuity count on a device
5346  *      @dev: device
5347  *      @inc: modifier
5348  *
5349  *      Add or remove promiscuity from a device. While the count in the device
5350  *      remains above zero the interface remains promiscuous. Once it hits zero
5351  *      the device reverts back to normal filtering operation. A negative inc
5352  *      value is used to drop promiscuity on the device.
5353  *      Return 0 if successful or a negative errno code on error.
5354  */
5355 int dev_set_promiscuity(struct net_device *dev, int inc)
5356 {
5357         unsigned int old_flags = dev->flags;
5358         int err;
5359
5360         err = __dev_set_promiscuity(dev, inc, true);
5361         if (err < 0)
5362                 return err;
5363         if (dev->flags != old_flags)
5364                 dev_set_rx_mode(dev);
5365         return err;
5366 }
5367 EXPORT_SYMBOL(dev_set_promiscuity);
5368
5369 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5370 {
5371         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5372
5373         ASSERT_RTNL();
5374
5375         dev->flags |= IFF_ALLMULTI;
5376         dev->allmulti += inc;
5377         if (dev->allmulti == 0) {
5378                 /*
5379                  * Avoid overflow.
5380                  * If inc causes overflow, untouch allmulti and return error.
5381                  */
5382                 if (inc < 0)
5383                         dev->flags &= ~IFF_ALLMULTI;
5384                 else {
5385                         dev->allmulti -= inc;
5386                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5387                                 dev->name);
5388                         return -EOVERFLOW;
5389                 }
5390         }
5391         if (dev->flags ^ old_flags) {
5392                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5393                 dev_set_rx_mode(dev);
5394                 if (notify)
5395                         __dev_notify_flags(dev, old_flags,
5396                                            dev->gflags ^ old_gflags);
5397         }
5398         return 0;
5399 }
5400
5401 /**
5402  *      dev_set_allmulti        - update allmulti count on a device
5403  *      @dev: device
5404  *      @inc: modifier
5405  *
5406  *      Add or remove reception of all multicast frames to a device. While the
5407  *      count in the device remains above zero the interface remains listening
5408  *      to all interfaces. Once it hits zero the device reverts back to normal
5409  *      filtering operation. A negative @inc value is used to drop the counter
5410  *      when releasing a resource needing all multicasts.
5411  *      Return 0 if successful or a negative errno code on error.
5412  */
5413
5414 int dev_set_allmulti(struct net_device *dev, int inc)
5415 {
5416         return __dev_set_allmulti(dev, inc, true);
5417 }
5418 EXPORT_SYMBOL(dev_set_allmulti);
5419
5420 /*
5421  *      Upload unicast and multicast address lists to device and
5422  *      configure RX filtering. When the device doesn't support unicast
5423  *      filtering it is put in promiscuous mode while unicast addresses
5424  *      are present.
5425  */
5426 void __dev_set_rx_mode(struct net_device *dev)
5427 {
5428         const struct net_device_ops *ops = dev->netdev_ops;
5429
5430         /* dev_open will call this function so the list will stay sane. */
5431         if (!(dev->flags&IFF_UP))
5432                 return;
5433
5434         if (!netif_device_present(dev))
5435                 return;
5436
5437         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5438                 /* Unicast addresses changes may only happen under the rtnl,
5439                  * therefore calling __dev_set_promiscuity here is safe.
5440                  */
5441                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5442                         __dev_set_promiscuity(dev, 1, false);
5443                         dev->uc_promisc = true;
5444                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5445                         __dev_set_promiscuity(dev, -1, false);
5446                         dev->uc_promisc = false;
5447                 }
5448         }
5449
5450         if (ops->ndo_set_rx_mode)
5451                 ops->ndo_set_rx_mode(dev);
5452 }
5453
5454 void dev_set_rx_mode(struct net_device *dev)
5455 {
5456         netif_addr_lock_bh(dev);
5457         __dev_set_rx_mode(dev);
5458         netif_addr_unlock_bh(dev);
5459 }
5460
5461 /**
5462  *      dev_get_flags - get flags reported to userspace
5463  *      @dev: device
5464  *
5465  *      Get the combination of flag bits exported through APIs to userspace.
5466  */
5467 unsigned int dev_get_flags(const struct net_device *dev)
5468 {
5469         unsigned int flags;
5470
5471         flags = (dev->flags & ~(IFF_PROMISC |
5472                                 IFF_ALLMULTI |
5473                                 IFF_RUNNING |
5474                                 IFF_LOWER_UP |
5475                                 IFF_DORMANT)) |
5476                 (dev->gflags & (IFF_PROMISC |
5477                                 IFF_ALLMULTI));
5478
5479         if (netif_running(dev)) {
5480                 if (netif_oper_up(dev))
5481                         flags |= IFF_RUNNING;
5482                 if (netif_carrier_ok(dev))
5483                         flags |= IFF_LOWER_UP;
5484                 if (netif_dormant(dev))
5485                         flags |= IFF_DORMANT;
5486         }
5487
5488         return flags;
5489 }
5490 EXPORT_SYMBOL(dev_get_flags);
5491
5492 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5493 {
5494         unsigned int old_flags = dev->flags;
5495         int ret;
5496
5497         ASSERT_RTNL();
5498
5499         /*
5500          *      Set the flags on our device.
5501          */
5502
5503         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5504                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5505                                IFF_AUTOMEDIA)) |
5506                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5507                                     IFF_ALLMULTI));
5508
5509         /*
5510          *      Load in the correct multicast list now the flags have changed.
5511          */
5512
5513         if ((old_flags ^ flags) & IFF_MULTICAST)
5514                 dev_change_rx_flags(dev, IFF_MULTICAST);
5515
5516         dev_set_rx_mode(dev);
5517
5518         /*
5519          *      Have we downed the interface. We handle IFF_UP ourselves
5520          *      according to user attempts to set it, rather than blindly
5521          *      setting it.
5522          */
5523
5524         ret = 0;
5525         if ((old_flags ^ flags) & IFF_UP)
5526                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5527
5528         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5529                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5530                 unsigned int old_flags = dev->flags;
5531
5532                 dev->gflags ^= IFF_PROMISC;
5533
5534                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5535                         if (dev->flags != old_flags)
5536                                 dev_set_rx_mode(dev);
5537         }
5538
5539         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5540            is important. Some (broken) drivers set IFF_PROMISC, when
5541            IFF_ALLMULTI is requested not asking us and not reporting.
5542          */
5543         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5544                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5545
5546                 dev->gflags ^= IFF_ALLMULTI;
5547                 __dev_set_allmulti(dev, inc, false);
5548         }
5549
5550         return ret;
5551 }
5552
5553 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5554                         unsigned int gchanges)
5555 {
5556         unsigned int changes = dev->flags ^ old_flags;
5557
5558         if (gchanges)
5559                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5560
5561         if (changes & IFF_UP) {
5562                 if (dev->flags & IFF_UP)
5563                         call_netdevice_notifiers(NETDEV_UP, dev);
5564                 else
5565                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5566         }
5567
5568         if (dev->flags & IFF_UP &&
5569             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5570                 struct netdev_notifier_change_info change_info;
5571
5572                 change_info.flags_changed = changes;
5573                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5574                                               &change_info.info);
5575         }
5576 }
5577
5578 /**
5579  *      dev_change_flags - change device settings
5580  *      @dev: device
5581  *      @flags: device state flags
5582  *
5583  *      Change settings on device based state flags. The flags are
5584  *      in the userspace exported format.
5585  */
5586 int dev_change_flags(struct net_device *dev, unsigned int flags)
5587 {
5588         int ret;
5589         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5590
5591         ret = __dev_change_flags(dev, flags);
5592         if (ret < 0)
5593                 return ret;
5594
5595         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5596         __dev_notify_flags(dev, old_flags, changes);
5597         return ret;
5598 }
5599 EXPORT_SYMBOL(dev_change_flags);
5600
5601 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5602 {
5603         const struct net_device_ops *ops = dev->netdev_ops;
5604
5605         if (ops->ndo_change_mtu)
5606                 return ops->ndo_change_mtu(dev, new_mtu);
5607
5608         dev->mtu = new_mtu;
5609         return 0;
5610 }
5611
5612 /**
5613  *      dev_set_mtu - Change maximum transfer unit
5614  *      @dev: device
5615  *      @new_mtu: new transfer unit
5616  *
5617  *      Change the maximum transfer size of the network device.
5618  */
5619 int dev_set_mtu(struct net_device *dev, int new_mtu)
5620 {
5621         int err, orig_mtu;
5622
5623         if (new_mtu == dev->mtu)
5624                 return 0;
5625
5626         /*      MTU must be positive.    */
5627         if (new_mtu < 0)
5628                 return -EINVAL;
5629
5630         if (!netif_device_present(dev))
5631                 return -ENODEV;
5632
5633         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5634         err = notifier_to_errno(err);
5635         if (err)
5636                 return err;
5637
5638         orig_mtu = dev->mtu;
5639         err = __dev_set_mtu(dev, new_mtu);
5640
5641         if (!err) {
5642                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5643                 err = notifier_to_errno(err);
5644                 if (err) {
5645                         /* setting mtu back and notifying everyone again,
5646                          * so that they have a chance to revert changes.
5647                          */
5648                         __dev_set_mtu(dev, orig_mtu);
5649                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5650                 }
5651         }
5652         return err;
5653 }
5654 EXPORT_SYMBOL(dev_set_mtu);
5655
5656 /**
5657  *      dev_set_group - Change group this device belongs to
5658  *      @dev: device
5659  *      @new_group: group this device should belong to
5660  */
5661 void dev_set_group(struct net_device *dev, int new_group)
5662 {
5663         dev->group = new_group;
5664 }
5665 EXPORT_SYMBOL(dev_set_group);
5666
5667 /**
5668  *      dev_set_mac_address - Change Media Access Control Address
5669  *      @dev: device
5670  *      @sa: new address
5671  *
5672  *      Change the hardware (MAC) address of the device
5673  */
5674 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5675 {
5676         const struct net_device_ops *ops = dev->netdev_ops;
5677         int err;
5678
5679         if (!ops->ndo_set_mac_address)
5680                 return -EOPNOTSUPP;
5681         if (sa->sa_family != dev->type)
5682                 return -EINVAL;
5683         if (!netif_device_present(dev))
5684                 return -ENODEV;
5685         err = ops->ndo_set_mac_address(dev, sa);
5686         if (err)
5687                 return err;
5688         dev->addr_assign_type = NET_ADDR_SET;
5689         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5690         add_device_randomness(dev->dev_addr, dev->addr_len);
5691         return 0;
5692 }
5693 EXPORT_SYMBOL(dev_set_mac_address);
5694
5695 /**
5696  *      dev_change_carrier - Change device carrier
5697  *      @dev: device
5698  *      @new_carrier: new value
5699  *
5700  *      Change device carrier
5701  */
5702 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5703 {
5704         const struct net_device_ops *ops = dev->netdev_ops;
5705
5706         if (!ops->ndo_change_carrier)
5707                 return -EOPNOTSUPP;
5708         if (!netif_device_present(dev))
5709                 return -ENODEV;
5710         return ops->ndo_change_carrier(dev, new_carrier);
5711 }
5712 EXPORT_SYMBOL(dev_change_carrier);
5713
5714 /**
5715  *      dev_get_phys_port_id - Get device physical port ID
5716  *      @dev: device
5717  *      @ppid: port ID
5718  *
5719  *      Get device physical port ID
5720  */
5721 int dev_get_phys_port_id(struct net_device *dev,
5722                          struct netdev_phys_port_id *ppid)
5723 {
5724         const struct net_device_ops *ops = dev->netdev_ops;
5725
5726         if (!ops->ndo_get_phys_port_id)
5727                 return -EOPNOTSUPP;
5728         return ops->ndo_get_phys_port_id(dev, ppid);
5729 }
5730 EXPORT_SYMBOL(dev_get_phys_port_id);
5731
5732 /**
5733  *      dev_new_index   -       allocate an ifindex
5734  *      @net: the applicable net namespace
5735  *
5736  *      Returns a suitable unique value for a new device interface
5737  *      number.  The caller must hold the rtnl semaphore or the
5738  *      dev_base_lock to be sure it remains unique.
5739  */
5740 static int dev_new_index(struct net *net)
5741 {
5742         int ifindex = net->ifindex;
5743         for (;;) {
5744                 if (++ifindex <= 0)
5745                         ifindex = 1;
5746                 if (!__dev_get_by_index(net, ifindex))
5747                         return net->ifindex = ifindex;
5748         }
5749 }
5750
5751 /* Delayed registration/unregisteration */
5752 static LIST_HEAD(net_todo_list);
5753 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5754
5755 static void net_set_todo(struct net_device *dev)
5756 {
5757         list_add_tail(&dev->todo_list, &net_todo_list);
5758         dev_net(dev)->dev_unreg_count++;
5759 }
5760
5761 static void rollback_registered_many(struct list_head *head)
5762 {
5763         struct net_device *dev, *tmp;
5764         LIST_HEAD(close_head);
5765
5766         BUG_ON(dev_boot_phase);
5767         ASSERT_RTNL();
5768
5769         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5770                 /* Some devices call without registering
5771                  * for initialization unwind. Remove those
5772                  * devices and proceed with the remaining.
5773                  */
5774                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5775                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5776                                  dev->name, dev);
5777
5778                         WARN_ON(1);
5779                         list_del(&dev->unreg_list);
5780                         continue;
5781                 }
5782                 dev->dismantle = true;
5783                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5784         }
5785
5786         /* If device is running, close it first. */
5787         list_for_each_entry(dev, head, unreg_list)
5788                 list_add_tail(&dev->close_list, &close_head);
5789         dev_close_many(&close_head);
5790
5791         list_for_each_entry(dev, head, unreg_list) {
5792                 /* And unlink it from device chain. */
5793                 unlist_netdevice(dev);
5794
5795                 dev->reg_state = NETREG_UNREGISTERING;
5796         }
5797
5798         synchronize_net();
5799
5800         list_for_each_entry(dev, head, unreg_list) {
5801                 /* Shutdown queueing discipline. */
5802                 dev_shutdown(dev);
5803
5804
5805                 /* Notify protocols, that we are about to destroy
5806                    this device. They should clean all the things.
5807                 */
5808                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5809
5810                 /*
5811                  *      Flush the unicast and multicast chains
5812                  */
5813                 dev_uc_flush(dev);
5814                 dev_mc_flush(dev);
5815
5816                 if (dev->netdev_ops->ndo_uninit)
5817                         dev->netdev_ops->ndo_uninit(dev);
5818
5819                 if (!dev->rtnl_link_ops ||
5820                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5821                         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5822
5823                 /* Notifier chain MUST detach us all upper devices. */
5824                 WARN_ON(netdev_has_any_upper_dev(dev));
5825
5826                 /* Remove entries from kobject tree */
5827                 netdev_unregister_kobject(dev);
5828 #ifdef CONFIG_XPS
5829                 /* Remove XPS queueing entries */
5830                 netif_reset_xps_queues_gt(dev, 0);
5831 #endif
5832         }
5833
5834         synchronize_net();
5835
5836         list_for_each_entry(dev, head, unreg_list)
5837                 dev_put(dev);
5838 }
5839
5840 static void rollback_registered(struct net_device *dev)
5841 {
5842         LIST_HEAD(single);
5843
5844         list_add(&dev->unreg_list, &single);
5845         rollback_registered_many(&single);
5846         list_del(&single);
5847 }
5848
5849 static netdev_features_t netdev_fix_features(struct net_device *dev,
5850         netdev_features_t features)
5851 {
5852         /* Fix illegal checksum combinations */
5853         if ((features & NETIF_F_HW_CSUM) &&
5854             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5855                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5856                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5857         }
5858
5859         /* TSO requires that SG is present as well. */
5860         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5861                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5862                 features &= ~NETIF_F_ALL_TSO;
5863         }
5864
5865         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5866                                         !(features & NETIF_F_IP_CSUM)) {
5867                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5868                 features &= ~NETIF_F_TSO;
5869                 features &= ~NETIF_F_TSO_ECN;
5870         }
5871
5872         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5873                                          !(features & NETIF_F_IPV6_CSUM)) {
5874                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5875                 features &= ~NETIF_F_TSO6;
5876         }
5877
5878         /* TSO ECN requires that TSO is present as well. */
5879         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5880                 features &= ~NETIF_F_TSO_ECN;
5881
5882         /* Software GSO depends on SG. */
5883         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5884                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5885                 features &= ~NETIF_F_GSO;
5886         }
5887
5888         /* UFO needs SG and checksumming */
5889         if (features & NETIF_F_UFO) {
5890                 /* maybe split UFO into V4 and V6? */
5891                 if (!((features & NETIF_F_GEN_CSUM) ||
5892                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5893                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5894                         netdev_dbg(dev,
5895                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5896                         features &= ~NETIF_F_UFO;
5897                 }
5898
5899                 if (!(features & NETIF_F_SG)) {
5900                         netdev_dbg(dev,
5901                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5902                         features &= ~NETIF_F_UFO;
5903                 }
5904         }
5905
5906 #ifdef CONFIG_NET_RX_BUSY_POLL
5907         if (dev->netdev_ops->ndo_busy_poll)
5908                 features |= NETIF_F_BUSY_POLL;
5909         else
5910 #endif
5911                 features &= ~NETIF_F_BUSY_POLL;
5912
5913         return features;
5914 }
5915
5916 int __netdev_update_features(struct net_device *dev)
5917 {
5918         netdev_features_t features;
5919         int err = 0;
5920
5921         ASSERT_RTNL();
5922
5923         features = netdev_get_wanted_features(dev);
5924
5925         if (dev->netdev_ops->ndo_fix_features)
5926                 features = dev->netdev_ops->ndo_fix_features(dev, features);
5927
5928         /* driver might be less strict about feature dependencies */
5929         features = netdev_fix_features(dev, features);
5930
5931         if (dev->features == features)
5932                 return 0;
5933
5934         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5935                 &dev->features, &features);
5936
5937         if (dev->netdev_ops->ndo_set_features)
5938                 err = dev->netdev_ops->ndo_set_features(dev, features);
5939
5940         if (unlikely(err < 0)) {
5941                 netdev_err(dev,
5942                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
5943                         err, &features, &dev->features);
5944                 return -1;
5945         }
5946
5947         if (!err)
5948                 dev->features = features;
5949
5950         return 1;
5951 }
5952
5953 /**
5954  *      netdev_update_features - recalculate device features
5955  *      @dev: the device to check
5956  *
5957  *      Recalculate dev->features set and send notifications if it
5958  *      has changed. Should be called after driver or hardware dependent
5959  *      conditions might have changed that influence the features.
5960  */
5961 void netdev_update_features(struct net_device *dev)
5962 {
5963         if (__netdev_update_features(dev))
5964                 netdev_features_change(dev);
5965 }
5966 EXPORT_SYMBOL(netdev_update_features);
5967
5968 /**
5969  *      netdev_change_features - recalculate device features
5970  *      @dev: the device to check
5971  *
5972  *      Recalculate dev->features set and send notifications even
5973  *      if they have not changed. Should be called instead of
5974  *      netdev_update_features() if also dev->vlan_features might
5975  *      have changed to allow the changes to be propagated to stacked
5976  *      VLAN devices.
5977  */
5978 void netdev_change_features(struct net_device *dev)
5979 {
5980         __netdev_update_features(dev);
5981         netdev_features_change(dev);
5982 }
5983 EXPORT_SYMBOL(netdev_change_features);
5984
5985 /**
5986  *      netif_stacked_transfer_operstate -      transfer operstate
5987  *      @rootdev: the root or lower level device to transfer state from
5988  *      @dev: the device to transfer operstate to
5989  *
5990  *      Transfer operational state from root to device. This is normally
5991  *      called when a stacking relationship exists between the root
5992  *      device and the device(a leaf device).
5993  */
5994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5995                                         struct net_device *dev)
5996 {
5997         if (rootdev->operstate == IF_OPER_DORMANT)
5998                 netif_dormant_on(dev);
5999         else
6000                 netif_dormant_off(dev);
6001
6002         if (netif_carrier_ok(rootdev)) {
6003                 if (!netif_carrier_ok(dev))
6004                         netif_carrier_on(dev);
6005         } else {
6006                 if (netif_carrier_ok(dev))
6007                         netif_carrier_off(dev);
6008         }
6009 }
6010 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6011
6012 #ifdef CONFIG_SYSFS
6013 static int netif_alloc_rx_queues(struct net_device *dev)
6014 {
6015         unsigned int i, count = dev->num_rx_queues;
6016         struct netdev_rx_queue *rx;
6017
6018         BUG_ON(count < 1);
6019
6020         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6021         if (!rx)
6022                 return -ENOMEM;
6023
6024         dev->_rx = rx;
6025
6026         for (i = 0; i < count; i++)
6027                 rx[i].dev = dev;
6028         return 0;
6029 }
6030 #endif
6031
6032 static void netdev_init_one_queue(struct net_device *dev,
6033                                   struct netdev_queue *queue, void *_unused)
6034 {
6035         /* Initialize queue lock */
6036         spin_lock_init(&queue->_xmit_lock);
6037         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6038         queue->xmit_lock_owner = -1;
6039         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6040         queue->dev = dev;
6041 #ifdef CONFIG_BQL
6042         dql_init(&queue->dql, HZ);
6043 #endif
6044 }
6045
6046 static void netif_free_tx_queues(struct net_device *dev)
6047 {
6048         kvfree(dev->_tx);
6049 }
6050
6051 static int netif_alloc_netdev_queues(struct net_device *dev)
6052 {
6053         unsigned int count = dev->num_tx_queues;
6054         struct netdev_queue *tx;
6055         size_t sz = count * sizeof(*tx);
6056
6057         BUG_ON(count < 1 || count > 0xffff);
6058
6059         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6060         if (!tx) {
6061                 tx = vzalloc(sz);
6062                 if (!tx)
6063                         return -ENOMEM;
6064         }
6065         dev->_tx = tx;
6066
6067         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6068         spin_lock_init(&dev->tx_global_lock);
6069
6070         return 0;
6071 }
6072
6073 /**
6074  *      register_netdevice      - register a network device
6075  *      @dev: device to register
6076  *
6077  *      Take a completed network device structure and add it to the kernel
6078  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6079  *      chain. 0 is returned on success. A negative errno code is returned
6080  *      on a failure to set up the device, or if the name is a duplicate.
6081  *
6082  *      Callers must hold the rtnl semaphore. You may want
6083  *      register_netdev() instead of this.
6084  *
6085  *      BUGS:
6086  *      The locking appears insufficient to guarantee two parallel registers
6087  *      will not get the same name.
6088  */
6089
6090 int register_netdevice(struct net_device *dev)
6091 {
6092         int ret;
6093         struct net *net = dev_net(dev);
6094
6095         BUG_ON(dev_boot_phase);
6096         ASSERT_RTNL();
6097
6098         might_sleep();
6099
6100         /* When net_device's are persistent, this will be fatal. */
6101         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6102         BUG_ON(!net);
6103
6104         spin_lock_init(&dev->addr_list_lock);
6105         netdev_set_addr_lockdep_class(dev);
6106
6107         dev->iflink = -1;
6108
6109         ret = dev_get_valid_name(net, dev, dev->name);
6110         if (ret < 0)
6111                 goto out;
6112
6113         /* Init, if this function is available */
6114         if (dev->netdev_ops->ndo_init) {
6115                 ret = dev->netdev_ops->ndo_init(dev);
6116                 if (ret) {
6117                         if (ret > 0)
6118                                 ret = -EIO;
6119                         goto out;
6120                 }
6121         }
6122
6123         if (((dev->hw_features | dev->features) &
6124              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6125             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6126              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6127                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6128                 ret = -EINVAL;
6129                 goto err_uninit;
6130         }
6131
6132         ret = -EBUSY;
6133         if (!dev->ifindex)
6134                 dev->ifindex = dev_new_index(net);
6135         else if (__dev_get_by_index(net, dev->ifindex))
6136                 goto err_uninit;
6137
6138         if (dev->iflink == -1)
6139                 dev->iflink = dev->ifindex;
6140
6141         /* Transfer changeable features to wanted_features and enable
6142          * software offloads (GSO and GRO).
6143          */
6144         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6145         dev->features |= NETIF_F_SOFT_FEATURES;
6146         dev->wanted_features = dev->features & dev->hw_features;
6147
6148         if (!(dev->flags & IFF_LOOPBACK)) {
6149                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6150         }
6151
6152         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6153          */
6154         dev->vlan_features |= NETIF_F_HIGHDMA;
6155
6156         /* Make NETIF_F_SG inheritable to tunnel devices.
6157          */
6158         dev->hw_enc_features |= NETIF_F_SG;
6159
6160         /* Make NETIF_F_SG inheritable to MPLS.
6161          */
6162         dev->mpls_features |= NETIF_F_SG;
6163
6164         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6165         ret = notifier_to_errno(ret);
6166         if (ret)
6167                 goto err_uninit;
6168
6169         ret = netdev_register_kobject(dev);
6170         if (ret)
6171                 goto err_uninit;
6172         dev->reg_state = NETREG_REGISTERED;
6173
6174         __netdev_update_features(dev);
6175
6176         /*
6177          *      Default initial state at registry is that the
6178          *      device is present.
6179          */
6180
6181         set_bit(__LINK_STATE_PRESENT, &dev->state);
6182
6183         linkwatch_init_dev(dev);
6184
6185         dev_init_scheduler(dev);
6186         dev_hold(dev);
6187         list_netdevice(dev);
6188         add_device_randomness(dev->dev_addr, dev->addr_len);
6189
6190         /* If the device has permanent device address, driver should
6191          * set dev_addr and also addr_assign_type should be set to
6192          * NET_ADDR_PERM (default value).
6193          */
6194         if (dev->addr_assign_type == NET_ADDR_PERM)
6195                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6196
6197         /* Notify protocols, that a new device appeared. */
6198         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6199         ret = notifier_to_errno(ret);
6200         if (ret) {
6201                 rollback_registered(dev);
6202                 dev->reg_state = NETREG_UNREGISTERED;
6203         }
6204         /*
6205          *      Prevent userspace races by waiting until the network
6206          *      device is fully setup before sending notifications.
6207          */
6208         if (!dev->rtnl_link_ops ||
6209             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6210                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6211
6212 out:
6213         return ret;
6214
6215 err_uninit:
6216         if (dev->netdev_ops->ndo_uninit)
6217                 dev->netdev_ops->ndo_uninit(dev);
6218         goto out;
6219 }
6220 EXPORT_SYMBOL(register_netdevice);
6221
6222 /**
6223  *      init_dummy_netdev       - init a dummy network device for NAPI
6224  *      @dev: device to init
6225  *
6226  *      This takes a network device structure and initialize the minimum
6227  *      amount of fields so it can be used to schedule NAPI polls without
6228  *      registering a full blown interface. This is to be used by drivers
6229  *      that need to tie several hardware interfaces to a single NAPI
6230  *      poll scheduler due to HW limitations.
6231  */
6232 int init_dummy_netdev(struct net_device *dev)
6233 {
6234         /* Clear everything. Note we don't initialize spinlocks
6235          * are they aren't supposed to be taken by any of the
6236          * NAPI code and this dummy netdev is supposed to be
6237          * only ever used for NAPI polls
6238          */
6239         memset(dev, 0, sizeof(struct net_device));
6240
6241         /* make sure we BUG if trying to hit standard
6242          * register/unregister code path
6243          */
6244         dev->reg_state = NETREG_DUMMY;
6245
6246         /* NAPI wants this */
6247         INIT_LIST_HEAD(&dev->napi_list);
6248
6249         /* a dummy interface is started by default */
6250         set_bit(__LINK_STATE_PRESENT, &dev->state);
6251         set_bit(__LINK_STATE_START, &dev->state);
6252
6253         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6254          * because users of this 'device' dont need to change
6255          * its refcount.
6256          */
6257
6258         return 0;
6259 }
6260 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6261
6262
6263 /**
6264  *      register_netdev - register a network device
6265  *      @dev: device to register
6266  *
6267  *      Take a completed network device structure and add it to the kernel
6268  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6269  *      chain. 0 is returned on success. A negative errno code is returned
6270  *      on a failure to set up the device, or if the name is a duplicate.
6271  *
6272  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6273  *      and expands the device name if you passed a format string to
6274  *      alloc_netdev.
6275  */
6276 int register_netdev(struct net_device *dev)
6277 {
6278         int err;
6279
6280         rtnl_lock();
6281         err = register_netdevice(dev);
6282         rtnl_unlock();
6283         return err;
6284 }
6285 EXPORT_SYMBOL(register_netdev);
6286
6287 int netdev_refcnt_read(const struct net_device *dev)
6288 {
6289         int i, refcnt = 0;
6290
6291         for_each_possible_cpu(i)
6292                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6293         return refcnt;
6294 }
6295 EXPORT_SYMBOL(netdev_refcnt_read);
6296
6297 /**
6298  * netdev_wait_allrefs - wait until all references are gone.
6299  * @dev: target net_device
6300  *
6301  * This is called when unregistering network devices.
6302  *
6303  * Any protocol or device that holds a reference should register
6304  * for netdevice notification, and cleanup and put back the
6305  * reference if they receive an UNREGISTER event.
6306  * We can get stuck here if buggy protocols don't correctly
6307  * call dev_put.
6308  */
6309 static void netdev_wait_allrefs(struct net_device *dev)
6310 {
6311         unsigned long rebroadcast_time, warning_time;
6312         int refcnt;
6313
6314         linkwatch_forget_dev(dev);
6315
6316         rebroadcast_time = warning_time = jiffies;
6317         refcnt = netdev_refcnt_read(dev);
6318
6319         while (refcnt != 0) {
6320                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6321                         rtnl_lock();
6322
6323                         /* Rebroadcast unregister notification */
6324                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6325
6326                         __rtnl_unlock();
6327                         rcu_barrier();
6328                         rtnl_lock();
6329
6330                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6331                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6332                                      &dev->state)) {
6333                                 /* We must not have linkwatch events
6334                                  * pending on unregister. If this
6335                                  * happens, we simply run the queue
6336                                  * unscheduled, resulting in a noop
6337                                  * for this device.
6338                                  */
6339                                 linkwatch_run_queue();
6340                         }
6341
6342                         __rtnl_unlock();
6343
6344                         rebroadcast_time = jiffies;
6345                 }
6346
6347                 msleep(250);
6348
6349                 refcnt = netdev_refcnt_read(dev);
6350
6351                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6352                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6353                                  dev->name, refcnt);
6354                         warning_time = jiffies;
6355                 }
6356         }
6357 }
6358
6359 /* The sequence is:
6360  *
6361  *      rtnl_lock();
6362  *      ...
6363  *      register_netdevice(x1);
6364  *      register_netdevice(x2);
6365  *      ...
6366  *      unregister_netdevice(y1);
6367  *      unregister_netdevice(y2);
6368  *      ...
6369  *      rtnl_unlock();
6370  *      free_netdev(y1);
6371  *      free_netdev(y2);
6372  *
6373  * We are invoked by rtnl_unlock().
6374  * This allows us to deal with problems:
6375  * 1) We can delete sysfs objects which invoke hotplug
6376  *    without deadlocking with linkwatch via keventd.
6377  * 2) Since we run with the RTNL semaphore not held, we can sleep
6378  *    safely in order to wait for the netdev refcnt to drop to zero.
6379  *
6380  * We must not return until all unregister events added during
6381  * the interval the lock was held have been completed.
6382  */
6383 void netdev_run_todo(void)
6384 {
6385         struct list_head list;
6386
6387         /* Snapshot list, allow later requests */
6388         list_replace_init(&net_todo_list, &list);
6389
6390         __rtnl_unlock();
6391
6392
6393         /* Wait for rcu callbacks to finish before next phase */
6394         if (!list_empty(&list))
6395                 rcu_barrier();
6396
6397         while (!list_empty(&list)) {
6398                 struct net_device *dev
6399                         = list_first_entry(&list, struct net_device, todo_list);
6400                 list_del(&dev->todo_list);
6401
6402                 rtnl_lock();
6403                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6404                 __rtnl_unlock();
6405
6406                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6407                         pr_err("network todo '%s' but state %d\n",
6408                                dev->name, dev->reg_state);
6409                         dump_stack();
6410                         continue;
6411                 }
6412
6413                 dev->reg_state = NETREG_UNREGISTERED;
6414
6415                 on_each_cpu(flush_backlog, dev, 1);
6416
6417                 netdev_wait_allrefs(dev);
6418
6419                 /* paranoia */
6420                 BUG_ON(netdev_refcnt_read(dev));
6421                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6422                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6423                 WARN_ON(dev->dn_ptr);
6424
6425                 if (dev->destructor)
6426                         dev->destructor(dev);
6427
6428                 /* Report a network device has been unregistered */
6429                 rtnl_lock();
6430                 dev_net(dev)->dev_unreg_count--;
6431                 __rtnl_unlock();
6432                 wake_up(&netdev_unregistering_wq);
6433
6434                 /* Free network device */
6435                 kobject_put(&dev->dev.kobj);
6436         }
6437 }
6438
6439 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6440  * fields in the same order, with only the type differing.
6441  */
6442 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6443                              const struct net_device_stats *netdev_stats)
6444 {
6445 #if BITS_PER_LONG == 64
6446         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6447         memcpy(stats64, netdev_stats, sizeof(*stats64));
6448 #else
6449         size_t i, n = sizeof(*stats64) / sizeof(u64);
6450         const unsigned long *src = (const unsigned long *)netdev_stats;
6451         u64 *dst = (u64 *)stats64;
6452
6453         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6454                      sizeof(*stats64) / sizeof(u64));
6455         for (i = 0; i < n; i++)
6456                 dst[i] = src[i];
6457 #endif
6458 }
6459 EXPORT_SYMBOL(netdev_stats_to_stats64);
6460
6461 /**
6462  *      dev_get_stats   - get network device statistics
6463  *      @dev: device to get statistics from
6464  *      @storage: place to store stats
6465  *
6466  *      Get network statistics from device. Return @storage.
6467  *      The device driver may provide its own method by setting
6468  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6469  *      otherwise the internal statistics structure is used.
6470  */
6471 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6472                                         struct rtnl_link_stats64 *storage)
6473 {
6474         const struct net_device_ops *ops = dev->netdev_ops;
6475
6476         if (ops->ndo_get_stats64) {
6477                 memset(storage, 0, sizeof(*storage));
6478                 ops->ndo_get_stats64(dev, storage);
6479         } else if (ops->ndo_get_stats) {
6480                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6481         } else {
6482                 netdev_stats_to_stats64(storage, &dev->stats);
6483         }
6484         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6485         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6486         return storage;
6487 }
6488 EXPORT_SYMBOL(dev_get_stats);
6489
6490 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6491 {
6492         struct netdev_queue *queue = dev_ingress_queue(dev);
6493
6494 #ifdef CONFIG_NET_CLS_ACT
6495         if (queue)
6496                 return queue;
6497         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6498         if (!queue)
6499                 return NULL;
6500         netdev_init_one_queue(dev, queue, NULL);
6501         queue->qdisc = &noop_qdisc;
6502         queue->qdisc_sleeping = &noop_qdisc;
6503         rcu_assign_pointer(dev->ingress_queue, queue);
6504 #endif
6505         return queue;
6506 }
6507
6508 static const struct ethtool_ops default_ethtool_ops;
6509
6510 void netdev_set_default_ethtool_ops(struct net_device *dev,
6511                                     const struct ethtool_ops *ops)
6512 {
6513         if (dev->ethtool_ops == &default_ethtool_ops)
6514                 dev->ethtool_ops = ops;
6515 }
6516 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6517
6518 void netdev_freemem(struct net_device *dev)
6519 {
6520         char *addr = (char *)dev - dev->padded;
6521
6522         kvfree(addr);
6523 }
6524
6525 /**
6526  *      alloc_netdev_mqs - allocate network device
6527  *      @sizeof_priv:           size of private data to allocate space for
6528  *      @name:                  device name format string
6529  *      @name_assign_type:      origin of device name
6530  *      @setup:                 callback to initialize device
6531  *      @txqs:                  the number of TX subqueues to allocate
6532  *      @rxqs:                  the number of RX subqueues to allocate
6533  *
6534  *      Allocates a struct net_device with private data area for driver use
6535  *      and performs basic initialization.  Also allocates subqueue structs
6536  *      for each queue on the device.
6537  */
6538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6539                 unsigned char name_assign_type,
6540                 void (*setup)(struct net_device *),
6541                 unsigned int txqs, unsigned int rxqs)
6542 {
6543         struct net_device *dev;
6544         size_t alloc_size;
6545         struct net_device *p;
6546
6547         BUG_ON(strlen(name) >= sizeof(dev->name));
6548
6549         if (txqs < 1) {
6550                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6551                 return NULL;
6552         }
6553
6554 #ifdef CONFIG_SYSFS
6555         if (rxqs < 1) {
6556                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6557                 return NULL;
6558         }
6559 #endif
6560
6561         alloc_size = sizeof(struct net_device);
6562         if (sizeof_priv) {
6563                 /* ensure 32-byte alignment of private area */
6564                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6565                 alloc_size += sizeof_priv;
6566         }
6567         /* ensure 32-byte alignment of whole construct */
6568         alloc_size += NETDEV_ALIGN - 1;
6569
6570         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6571         if (!p)
6572                 p = vzalloc(alloc_size);
6573         if (!p)
6574                 return NULL;
6575
6576         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6577         dev->padded = (char *)dev - (char *)p;
6578
6579         dev->pcpu_refcnt = alloc_percpu(int);
6580         if (!dev->pcpu_refcnt)
6581                 goto free_dev;
6582
6583         if (dev_addr_init(dev))
6584                 goto free_pcpu;
6585
6586         dev_mc_init(dev);
6587         dev_uc_init(dev);
6588
6589         dev_net_set(dev, &init_net);
6590
6591         dev->gso_max_size = GSO_MAX_SIZE;
6592         dev->gso_max_segs = GSO_MAX_SEGS;
6593
6594         INIT_LIST_HEAD(&dev->napi_list);
6595         INIT_LIST_HEAD(&dev->unreg_list);
6596         INIT_LIST_HEAD(&dev->close_list);
6597         INIT_LIST_HEAD(&dev->link_watch_list);
6598         INIT_LIST_HEAD(&dev->adj_list.upper);
6599         INIT_LIST_HEAD(&dev->adj_list.lower);
6600         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6601         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6602         dev->priv_flags = IFF_XMIT_DST_RELEASE;
6603         setup(dev);
6604
6605         dev->num_tx_queues = txqs;
6606         dev->real_num_tx_queues = txqs;
6607         if (netif_alloc_netdev_queues(dev))
6608                 goto free_all;
6609
6610 #ifdef CONFIG_SYSFS
6611         dev->num_rx_queues = rxqs;
6612         dev->real_num_rx_queues = rxqs;
6613         if (netif_alloc_rx_queues(dev))
6614                 goto free_all;
6615 #endif
6616
6617         strcpy(dev->name, name);
6618         dev->name_assign_type = name_assign_type;
6619         dev->group = INIT_NETDEV_GROUP;
6620         if (!dev->ethtool_ops)
6621                 dev->ethtool_ops = &default_ethtool_ops;
6622         return dev;
6623
6624 free_all:
6625         free_netdev(dev);
6626         return NULL;
6627
6628 free_pcpu:
6629         free_percpu(dev->pcpu_refcnt);
6630 free_dev:
6631         netdev_freemem(dev);
6632         return NULL;
6633 }
6634 EXPORT_SYMBOL(alloc_netdev_mqs);
6635
6636 /**
6637  *      free_netdev - free network device
6638  *      @dev: device
6639  *
6640  *      This function does the last stage of destroying an allocated device
6641  *      interface. The reference to the device object is released.
6642  *      If this is the last reference then it will be freed.
6643  */
6644 void free_netdev(struct net_device *dev)
6645 {
6646         struct napi_struct *p, *n;
6647
6648         release_net(dev_net(dev));
6649
6650         netif_free_tx_queues(dev);
6651 #ifdef CONFIG_SYSFS
6652         kfree(dev->_rx);
6653 #endif
6654
6655         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6656
6657         /* Flush device addresses */
6658         dev_addr_flush(dev);
6659
6660         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6661                 netif_napi_del(p);
6662
6663         free_percpu(dev->pcpu_refcnt);
6664         dev->pcpu_refcnt = NULL;
6665
6666         /*  Compatibility with error handling in drivers */
6667         if (dev->reg_state == NETREG_UNINITIALIZED) {
6668                 netdev_freemem(dev);
6669                 return;
6670         }
6671
6672         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6673         dev->reg_state = NETREG_RELEASED;
6674
6675         /* will free via device release */
6676         put_device(&dev->dev);
6677 }
6678 EXPORT_SYMBOL(free_netdev);
6679
6680 /**
6681  *      synchronize_net -  Synchronize with packet receive processing
6682  *
6683  *      Wait for packets currently being received to be done.
6684  *      Does not block later packets from starting.
6685  */
6686 void synchronize_net(void)
6687 {
6688         might_sleep();
6689         if (rtnl_is_locked())
6690                 synchronize_rcu_expedited();
6691         else
6692                 synchronize_rcu();
6693 }
6694 EXPORT_SYMBOL(synchronize_net);
6695
6696 /**
6697  *      unregister_netdevice_queue - remove device from the kernel
6698  *      @dev: device
6699  *      @head: list
6700  *
6701  *      This function shuts down a device interface and removes it
6702  *      from the kernel tables.
6703  *      If head not NULL, device is queued to be unregistered later.
6704  *
6705  *      Callers must hold the rtnl semaphore.  You may want
6706  *      unregister_netdev() instead of this.
6707  */
6708
6709 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6710 {
6711         ASSERT_RTNL();
6712
6713         if (head) {
6714                 list_move_tail(&dev->unreg_list, head);
6715         } else {
6716                 rollback_registered(dev);
6717                 /* Finish processing unregister after unlock */
6718                 net_set_todo(dev);
6719         }
6720 }
6721 EXPORT_SYMBOL(unregister_netdevice_queue);
6722
6723 /**
6724  *      unregister_netdevice_many - unregister many devices
6725  *      @head: list of devices
6726  *
6727  *  Note: As most callers use a stack allocated list_head,
6728  *  we force a list_del() to make sure stack wont be corrupted later.
6729  */
6730 void unregister_netdevice_many(struct list_head *head)
6731 {
6732         struct net_device *dev;
6733
6734         if (!list_empty(head)) {
6735                 rollback_registered_many(head);
6736                 list_for_each_entry(dev, head, unreg_list)
6737                         net_set_todo(dev);
6738                 list_del(head);
6739         }
6740 }
6741 EXPORT_SYMBOL(unregister_netdevice_many);
6742
6743 /**
6744  *      unregister_netdev - remove device from the kernel
6745  *      @dev: device
6746  *
6747  *      This function shuts down a device interface and removes it
6748  *      from the kernel tables.
6749  *
6750  *      This is just a wrapper for unregister_netdevice that takes
6751  *      the rtnl semaphore.  In general you want to use this and not
6752  *      unregister_netdevice.
6753  */
6754 void unregister_netdev(struct net_device *dev)
6755 {
6756         rtnl_lock();
6757         unregister_netdevice(dev);
6758         rtnl_unlock();
6759 }
6760 EXPORT_SYMBOL(unregister_netdev);
6761
6762 /**
6763  *      dev_change_net_namespace - move device to different nethost namespace
6764  *      @dev: device
6765  *      @net: network namespace
6766  *      @pat: If not NULL name pattern to try if the current device name
6767  *            is already taken in the destination network namespace.
6768  *
6769  *      This function shuts down a device interface and moves it
6770  *      to a new network namespace. On success 0 is returned, on
6771  *      a failure a netagive errno code is returned.
6772  *
6773  *      Callers must hold the rtnl semaphore.
6774  */
6775
6776 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6777 {
6778         int err;
6779
6780         ASSERT_RTNL();
6781
6782         /* Don't allow namespace local devices to be moved. */
6783         err = -EINVAL;
6784         if (dev->features & NETIF_F_NETNS_LOCAL)
6785                 goto out;
6786
6787         /* Ensure the device has been registrered */
6788         if (dev->reg_state != NETREG_REGISTERED)
6789                 goto out;
6790
6791         /* Get out if there is nothing todo */
6792         err = 0;
6793         if (net_eq(dev_net(dev), net))
6794                 goto out;
6795
6796         /* Pick the destination device name, and ensure
6797          * we can use it in the destination network namespace.
6798          */
6799         err = -EEXIST;
6800         if (__dev_get_by_name(net, dev->name)) {
6801                 /* We get here if we can't use the current device name */
6802                 if (!pat)
6803                         goto out;
6804                 if (dev_get_valid_name(net, dev, pat) < 0)
6805                         goto out;
6806         }
6807
6808         /*
6809          * And now a mini version of register_netdevice unregister_netdevice.
6810          */
6811
6812         /* If device is running close it first. */
6813         dev_close(dev);
6814
6815         /* And unlink it from device chain */
6816         err = -ENODEV;
6817         unlist_netdevice(dev);
6818
6819         synchronize_net();
6820
6821         /* Shutdown queueing discipline. */
6822         dev_shutdown(dev);
6823
6824         /* Notify protocols, that we are about to destroy
6825            this device. They should clean all the things.
6826
6827            Note that dev->reg_state stays at NETREG_REGISTERED.
6828            This is wanted because this way 8021q and macvlan know
6829            the device is just moving and can keep their slaves up.
6830         */
6831         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6832         rcu_barrier();
6833         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6834         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6835
6836         /*
6837          *      Flush the unicast and multicast chains
6838          */
6839         dev_uc_flush(dev);
6840         dev_mc_flush(dev);
6841
6842         /* Send a netdev-removed uevent to the old namespace */
6843         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6844         netdev_adjacent_del_links(dev);
6845
6846         /* Actually switch the network namespace */
6847         dev_net_set(dev, net);
6848
6849         /* If there is an ifindex conflict assign a new one */
6850         if (__dev_get_by_index(net, dev->ifindex)) {
6851                 int iflink = (dev->iflink == dev->ifindex);
6852                 dev->ifindex = dev_new_index(net);
6853                 if (iflink)
6854                         dev->iflink = dev->ifindex;
6855         }
6856
6857         /* Send a netdev-add uevent to the new namespace */
6858         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6859         netdev_adjacent_add_links(dev);
6860
6861         /* Fixup kobjects */
6862         err = device_rename(&dev->dev, dev->name);
6863         WARN_ON(err);
6864
6865         /* Add the device back in the hashes */
6866         list_netdevice(dev);
6867
6868         /* Notify protocols, that a new device appeared. */
6869         call_netdevice_notifiers(NETDEV_REGISTER, dev);
6870
6871         /*
6872          *      Prevent userspace races by waiting until the network
6873          *      device is fully setup before sending notifications.
6874          */
6875         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6876
6877         synchronize_net();
6878         err = 0;
6879 out:
6880         return err;
6881 }
6882 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6883
6884 static int dev_cpu_callback(struct notifier_block *nfb,
6885                             unsigned long action,
6886                             void *ocpu)
6887 {
6888         struct sk_buff **list_skb;
6889         struct sk_buff *skb;
6890         unsigned int cpu, oldcpu = (unsigned long)ocpu;
6891         struct softnet_data *sd, *oldsd;
6892
6893         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6894                 return NOTIFY_OK;
6895
6896         local_irq_disable();
6897         cpu = smp_processor_id();
6898         sd = &per_cpu(softnet_data, cpu);
6899         oldsd = &per_cpu(softnet_data, oldcpu);
6900
6901         /* Find end of our completion_queue. */
6902         list_skb = &sd->completion_queue;
6903         while (*list_skb)
6904                 list_skb = &(*list_skb)->next;
6905         /* Append completion queue from offline CPU. */
6906         *list_skb = oldsd->completion_queue;
6907         oldsd->completion_queue = NULL;
6908
6909         /* Append output queue from offline CPU. */
6910         if (oldsd->output_queue) {
6911                 *sd->output_queue_tailp = oldsd->output_queue;
6912                 sd->output_queue_tailp = oldsd->output_queue_tailp;
6913                 oldsd->output_queue = NULL;
6914                 oldsd->output_queue_tailp = &oldsd->output_queue;
6915         }
6916         /* Append NAPI poll list from offline CPU. */
6917         if (!list_empty(&oldsd->poll_list)) {
6918                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6919                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6920         }
6921
6922         raise_softirq_irqoff(NET_TX_SOFTIRQ);
6923         local_irq_enable();
6924
6925         /* Process offline CPU's input_pkt_queue */
6926         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6927                 netif_rx_internal(skb);
6928                 input_queue_head_incr(oldsd);
6929         }
6930         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6931                 netif_rx_internal(skb);
6932                 input_queue_head_incr(oldsd);
6933         }
6934
6935         return NOTIFY_OK;
6936 }
6937
6938
6939 /**
6940  *      netdev_increment_features - increment feature set by one
6941  *      @all: current feature set
6942  *      @one: new feature set
6943  *      @mask: mask feature set
6944  *
6945  *      Computes a new feature set after adding a device with feature set
6946  *      @one to the master device with current feature set @all.  Will not
6947  *      enable anything that is off in @mask. Returns the new feature set.
6948  */
6949 netdev_features_t netdev_increment_features(netdev_features_t all,
6950         netdev_features_t one, netdev_features_t mask)
6951 {
6952         if (mask & NETIF_F_GEN_CSUM)
6953                 mask |= NETIF_F_ALL_CSUM;
6954         mask |= NETIF_F_VLAN_CHALLENGED;
6955
6956         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6957         all &= one | ~NETIF_F_ALL_FOR_ALL;
6958
6959         /* If one device supports hw checksumming, set for all. */
6960         if (all & NETIF_F_GEN_CSUM)
6961                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6962
6963         return all;
6964 }
6965 EXPORT_SYMBOL(netdev_increment_features);
6966
6967 static struct hlist_head * __net_init netdev_create_hash(void)
6968 {
6969         int i;
6970         struct hlist_head *hash;
6971
6972         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6973         if (hash != NULL)
6974                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6975                         INIT_HLIST_HEAD(&hash[i]);
6976
6977         return hash;
6978 }
6979
6980 /* Initialize per network namespace state */
6981 static int __net_init netdev_init(struct net *net)
6982 {
6983         if (net != &init_net)
6984                 INIT_LIST_HEAD(&net->dev_base_head);
6985
6986         net->dev_name_head = netdev_create_hash();
6987         if (net->dev_name_head == NULL)
6988                 goto err_name;
6989
6990         net->dev_index_head = netdev_create_hash();
6991         if (net->dev_index_head == NULL)
6992                 goto err_idx;
6993
6994         return 0;
6995
6996 err_idx:
6997         kfree(net->dev_name_head);
6998 err_name:
6999         return -ENOMEM;
7000 }
7001
7002 /**
7003  *      netdev_drivername - network driver for the device
7004  *      @dev: network device
7005  *
7006  *      Determine network driver for device.
7007  */
7008 const char *netdev_drivername(const struct net_device *dev)
7009 {
7010         const struct device_driver *driver;
7011         const struct device *parent;
7012         const char *empty = "";
7013
7014         parent = dev->dev.parent;
7015         if (!parent)
7016                 return empty;
7017
7018         driver = parent->driver;
7019         if (driver && driver->name)
7020                 return driver->name;
7021         return empty;
7022 }
7023
7024 static int __netdev_printk(const char *level, const struct net_device *dev,
7025                            struct va_format *vaf)
7026 {
7027         int r;
7028
7029         if (dev && dev->dev.parent) {
7030                 r = dev_printk_emit(level[1] - '0',
7031                                     dev->dev.parent,
7032                                     "%s %s %s%s: %pV",
7033                                     dev_driver_string(dev->dev.parent),
7034                                     dev_name(dev->dev.parent),
7035                                     netdev_name(dev), netdev_reg_state(dev),
7036                                     vaf);
7037         } else if (dev) {
7038                 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7039                            netdev_reg_state(dev), vaf);
7040         } else {
7041                 r = printk("%s(NULL net_device): %pV", level, vaf);
7042         }
7043
7044         return r;
7045 }
7046
7047 int netdev_printk(const char *level, const struct net_device *dev,
7048                   const char *format, ...)
7049 {
7050         struct va_format vaf;
7051         va_list args;
7052         int r;
7053
7054         va_start(args, format);
7055
7056         vaf.fmt = format;
7057         vaf.va = &args;
7058
7059         r = __netdev_printk(level, dev, &vaf);
7060
7061         va_end(args);
7062
7063         return r;
7064 }
7065 EXPORT_SYMBOL(netdev_printk);
7066
7067 #define define_netdev_printk_level(func, level)                 \
7068 int func(const struct net_device *dev, const char *fmt, ...)    \
7069 {                                                               \
7070         int r;                                                  \
7071         struct va_format vaf;                                   \
7072         va_list args;                                           \
7073                                                                 \
7074         va_start(args, fmt);                                    \
7075                                                                 \
7076         vaf.fmt = fmt;                                          \
7077         vaf.va = &args;                                         \
7078                                                                 \
7079         r = __netdev_printk(level, dev, &vaf);                  \
7080                                                                 \
7081         va_end(args);                                           \
7082                                                                 \
7083         return r;                                               \
7084 }                                                               \
7085 EXPORT_SYMBOL(func);
7086
7087 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7088 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7089 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7090 define_netdev_printk_level(netdev_err, KERN_ERR);
7091 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7092 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7093 define_netdev_printk_level(netdev_info, KERN_INFO);
7094
7095 static void __net_exit netdev_exit(struct net *net)
7096 {
7097         kfree(net->dev_name_head);
7098         kfree(net->dev_index_head);
7099 }
7100
7101 static struct pernet_operations __net_initdata netdev_net_ops = {
7102         .init = netdev_init,
7103         .exit = netdev_exit,
7104 };
7105
7106 static void __net_exit default_device_exit(struct net *net)
7107 {
7108         struct net_device *dev, *aux;
7109         /*
7110          * Push all migratable network devices back to the
7111          * initial network namespace
7112          */
7113         rtnl_lock();
7114         for_each_netdev_safe(net, dev, aux) {
7115                 int err;
7116                 char fb_name[IFNAMSIZ];
7117
7118                 /* Ignore unmoveable devices (i.e. loopback) */
7119                 if (dev->features & NETIF_F_NETNS_LOCAL)
7120                         continue;
7121
7122                 /* Leave virtual devices for the generic cleanup */
7123                 if (dev->rtnl_link_ops)
7124                         continue;
7125
7126                 /* Push remaining network devices to init_net */
7127                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7128                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7129                 if (err) {
7130                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7131                                  __func__, dev->name, err);
7132                         BUG();
7133                 }
7134         }
7135         rtnl_unlock();
7136 }
7137
7138 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7139 {
7140         /* Return with the rtnl_lock held when there are no network
7141          * devices unregistering in any network namespace in net_list.
7142          */
7143         struct net *net;
7144         bool unregistering;
7145         DEFINE_WAIT(wait);
7146
7147         for (;;) {
7148                 prepare_to_wait(&netdev_unregistering_wq, &wait,
7149                                 TASK_UNINTERRUPTIBLE);
7150                 unregistering = false;
7151                 rtnl_lock();
7152                 list_for_each_entry(net, net_list, exit_list) {
7153                         if (net->dev_unreg_count > 0) {
7154                                 unregistering = true;
7155                                 break;
7156                         }
7157                 }
7158                 if (!unregistering)
7159                         break;
7160                 __rtnl_unlock();
7161                 schedule();
7162         }
7163         finish_wait(&netdev_unregistering_wq, &wait);
7164 }
7165
7166 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7167 {
7168         /* At exit all network devices most be removed from a network
7169          * namespace.  Do this in the reverse order of registration.
7170          * Do this across as many network namespaces as possible to
7171          * improve batching efficiency.
7172          */
7173         struct net_device *dev;
7174         struct net *net;
7175         LIST_HEAD(dev_kill_list);
7176
7177         /* To prevent network device cleanup code from dereferencing
7178          * loopback devices or network devices that have been freed
7179          * wait here for all pending unregistrations to complete,
7180          * before unregistring the loopback device and allowing the
7181          * network namespace be freed.
7182          *
7183          * The netdev todo list containing all network devices
7184          * unregistrations that happen in default_device_exit_batch
7185          * will run in the rtnl_unlock() at the end of
7186          * default_device_exit_batch.
7187          */
7188         rtnl_lock_unregistering(net_list);
7189         list_for_each_entry(net, net_list, exit_list) {
7190                 for_each_netdev_reverse(net, dev) {
7191                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7192                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7193                         else
7194                                 unregister_netdevice_queue(dev, &dev_kill_list);
7195                 }
7196         }
7197         unregister_netdevice_many(&dev_kill_list);
7198         rtnl_unlock();
7199 }
7200
7201 static struct pernet_operations __net_initdata default_device_ops = {
7202         .exit = default_device_exit,
7203         .exit_batch = default_device_exit_batch,
7204 };
7205
7206 /*
7207  *      Initialize the DEV module. At boot time this walks the device list and
7208  *      unhooks any devices that fail to initialise (normally hardware not
7209  *      present) and leaves us with a valid list of present and active devices.
7210  *
7211  */
7212
7213 /*
7214  *       This is called single threaded during boot, so no need
7215  *       to take the rtnl semaphore.
7216  */
7217 static int __init net_dev_init(void)
7218 {
7219         int i, rc = -ENOMEM;
7220
7221         BUG_ON(!dev_boot_phase);
7222
7223         if (dev_proc_init())
7224                 goto out;
7225
7226         if (netdev_kobject_init())
7227                 goto out;
7228
7229         INIT_LIST_HEAD(&ptype_all);
7230         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7231                 INIT_LIST_HEAD(&ptype_base[i]);
7232
7233         INIT_LIST_HEAD(&offload_base);
7234
7235         if (register_pernet_subsys(&netdev_net_ops))
7236                 goto out;
7237
7238         /*
7239          *      Initialise the packet receive queues.
7240          */
7241
7242         for_each_possible_cpu(i) {
7243                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7244
7245                 skb_queue_head_init(&sd->input_pkt_queue);
7246                 skb_queue_head_init(&sd->process_queue);
7247                 INIT_LIST_HEAD(&sd->poll_list);
7248                 sd->output_queue_tailp = &sd->output_queue;
7249 #ifdef CONFIG_RPS
7250                 sd->csd.func = rps_trigger_softirq;
7251                 sd->csd.info = sd;
7252                 sd->cpu = i;
7253 #endif
7254
7255                 sd->backlog.poll = process_backlog;
7256                 sd->backlog.weight = weight_p;
7257         }
7258
7259         dev_boot_phase = 0;
7260
7261         /* The loopback device is special if any other network devices
7262          * is present in a network namespace the loopback device must
7263          * be present. Since we now dynamically allocate and free the
7264          * loopback device ensure this invariant is maintained by
7265          * keeping the loopback device as the first device on the
7266          * list of network devices.  Ensuring the loopback devices
7267          * is the first device that appears and the last network device
7268          * that disappears.
7269          */
7270         if (register_pernet_device(&loopback_net_ops))
7271                 goto out;
7272
7273         if (register_pernet_device(&default_device_ops))
7274                 goto out;
7275
7276         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7277         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7278
7279         hotcpu_notifier(dev_cpu_callback, 0);
7280         dst_init();
7281         rc = 0;
7282 out:
7283         return rc;
7284 }
7285
7286 subsys_initcall(net_dev_init);