]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/flow_dissector.c
1929af87b2609650d0b484e7d01dc4a405ba8389
[karo-tx-linux.git] / net / core / flow_dissector.c
1 #include <linux/skbuff.h>
2 #include <linux/export.h>
3 #include <linux/ip.h>
4 #include <linux/ipv6.h>
5 #include <linux/if_vlan.h>
6 #include <net/ip.h>
7 #include <net/ipv6.h>
8 #include <linux/igmp.h>
9 #include <linux/icmp.h>
10 #include <linux/sctp.h>
11 #include <linux/dccp.h>
12 #include <linux/if_tunnel.h>
13 #include <linux/if_pppox.h>
14 #include <linux/ppp_defs.h>
15 #include <net/flow_keys.h>
16
17 /* copy saddr & daddr, possibly using 64bit load/store
18  * Equivalent to :      flow->src = iph->saddr;
19  *                      flow->dst = iph->daddr;
20  */
21 static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
22 {
23         BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
24                      offsetof(typeof(*flow), src) + sizeof(flow->src));
25         memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
26 }
27
28 bool skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow)
29 {
30         int poff, nhoff = skb_network_offset(skb);
31         u8 ip_proto;
32         __be16 proto = skb->protocol;
33
34         memset(flow, 0, sizeof(*flow));
35
36 again:
37         switch (proto) {
38         case __constant_htons(ETH_P_IP): {
39                 const struct iphdr *iph;
40                 struct iphdr _iph;
41 ip:
42                 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
43                 if (!iph)
44                         return false;
45
46                 if (ip_is_fragment(iph))
47                         ip_proto = 0;
48                 else
49                         ip_proto = iph->protocol;
50                 iph_to_flow_copy_addrs(flow, iph);
51                 nhoff += iph->ihl * 4;
52                 break;
53         }
54         case __constant_htons(ETH_P_IPV6): {
55                 const struct ipv6hdr *iph;
56                 struct ipv6hdr _iph;
57 ipv6:
58                 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
59                 if (!iph)
60                         return false;
61
62                 ip_proto = iph->nexthdr;
63                 flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
64                 flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
65                 nhoff += sizeof(struct ipv6hdr);
66                 break;
67         }
68         case __constant_htons(ETH_P_8021AD):
69         case __constant_htons(ETH_P_8021Q): {
70                 const struct vlan_hdr *vlan;
71                 struct vlan_hdr _vlan;
72
73                 vlan = skb_header_pointer(skb, nhoff, sizeof(_vlan), &_vlan);
74                 if (!vlan)
75                         return false;
76
77                 proto = vlan->h_vlan_encapsulated_proto;
78                 nhoff += sizeof(*vlan);
79                 goto again;
80         }
81         case __constant_htons(ETH_P_PPP_SES): {
82                 struct {
83                         struct pppoe_hdr hdr;
84                         __be16 proto;
85                 } *hdr, _hdr;
86                 hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
87                 if (!hdr)
88                         return false;
89                 proto = hdr->proto;
90                 nhoff += PPPOE_SES_HLEN;
91                 switch (proto) {
92                 case __constant_htons(PPP_IP):
93                         goto ip;
94                 case __constant_htons(PPP_IPV6):
95                         goto ipv6;
96                 default:
97                         return false;
98                 }
99         }
100         default:
101                 return false;
102         }
103
104         switch (ip_proto) {
105         case IPPROTO_GRE: {
106                 struct gre_hdr {
107                         __be16 flags;
108                         __be16 proto;
109                 } *hdr, _hdr;
110
111                 hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
112                 if (!hdr)
113                         return false;
114                 /*
115                  * Only look inside GRE if version zero and no
116                  * routing
117                  */
118                 if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
119                         proto = hdr->proto;
120                         nhoff += 4;
121                         if (hdr->flags & GRE_CSUM)
122                                 nhoff += 4;
123                         if (hdr->flags & GRE_KEY)
124                                 nhoff += 4;
125                         if (hdr->flags & GRE_SEQ)
126                                 nhoff += 4;
127                         if (proto == htons(ETH_P_TEB)) {
128                                 const struct ethhdr *eth;
129                                 struct ethhdr _eth;
130
131                                 eth = skb_header_pointer(skb, nhoff,
132                                                          sizeof(_eth), &_eth);
133                                 if (!eth)
134                                         return false;
135                                 proto = eth->h_proto;
136                                 nhoff += sizeof(*eth);
137                         }
138                         goto again;
139                 }
140                 break;
141         }
142         case IPPROTO_IPIP:
143                 proto = htons(ETH_P_IP);
144                 goto ip;
145         case IPPROTO_IPV6:
146                 proto = htons(ETH_P_IPV6);
147                 goto ipv6;
148         default:
149                 break;
150         }
151
152         flow->ip_proto = ip_proto;
153         poff = proto_ports_offset(ip_proto);
154         if (poff >= 0) {
155                 __be32 *ports, _ports;
156
157                 nhoff += poff;
158                 ports = skb_header_pointer(skb, nhoff, sizeof(_ports), &_ports);
159                 if (ports)
160                         flow->ports = *ports;
161         }
162
163         flow->thoff = (u16) nhoff;
164
165         return true;
166 }
167 EXPORT_SYMBOL(skb_flow_dissect);
168
169 static u32 hashrnd __read_mostly;
170
171 /*
172  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
173  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
174  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
175  * if hash is a canonical 4-tuple hash over transport ports.
176  */
177 void __skb_get_rxhash(struct sk_buff *skb)
178 {
179         struct flow_keys keys;
180         u32 hash;
181
182         if (!skb_flow_dissect(skb, &keys))
183                 return;
184
185         if (keys.ports)
186                 skb->l4_rxhash = 1;
187
188         /* get a consistent hash (same value on both flow directions) */
189         if (((__force u32)keys.dst < (__force u32)keys.src) ||
190             (((__force u32)keys.dst == (__force u32)keys.src) &&
191              ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
192                 swap(keys.dst, keys.src);
193                 swap(keys.port16[0], keys.port16[1]);
194         }
195
196         hash = jhash_3words((__force u32)keys.dst,
197                             (__force u32)keys.src,
198                             (__force u32)keys.ports, hashrnd);
199         if (!hash)
200                 hash = 1;
201
202         skb->rxhash = hash;
203 }
204 EXPORT_SYMBOL(__skb_get_rxhash);
205
206 /*
207  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
208  * to be used as a distribution range.
209  */
210 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
211                   unsigned int num_tx_queues)
212 {
213         u32 hash;
214         u16 qoffset = 0;
215         u16 qcount = num_tx_queues;
216
217         if (skb_rx_queue_recorded(skb)) {
218                 hash = skb_get_rx_queue(skb);
219                 while (unlikely(hash >= num_tx_queues))
220                         hash -= num_tx_queues;
221                 return hash;
222         }
223
224         if (dev->num_tc) {
225                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
226                 qoffset = dev->tc_to_txq[tc].offset;
227                 qcount = dev->tc_to_txq[tc].count;
228         }
229
230         if (skb->sk && skb->sk->sk_hash)
231                 hash = skb->sk->sk_hash;
232         else
233                 hash = (__force u16) skb->protocol;
234         hash = jhash_1word(hash, hashrnd);
235
236         return (u16) (((u64) hash * qcount) >> 32) + qoffset;
237 }
238 EXPORT_SYMBOL(__skb_tx_hash);
239
240 /* __skb_get_poff() returns the offset to the payload as far as it could
241  * be dissected. The main user is currently BPF, so that we can dynamically
242  * truncate packets without needing to push actual payload to the user
243  * space and can analyze headers only, instead.
244  */
245 u32 __skb_get_poff(const struct sk_buff *skb)
246 {
247         struct flow_keys keys;
248         u32 poff = 0;
249
250         if (!skb_flow_dissect(skb, &keys))
251                 return 0;
252
253         poff += keys.thoff;
254         switch (keys.ip_proto) {
255         case IPPROTO_TCP: {
256                 const struct tcphdr *tcph;
257                 struct tcphdr _tcph;
258
259                 tcph = skb_header_pointer(skb, poff, sizeof(_tcph), &_tcph);
260                 if (!tcph)
261                         return poff;
262
263                 poff += max_t(u32, sizeof(struct tcphdr), tcph->doff * 4);
264                 break;
265         }
266         case IPPROTO_UDP:
267         case IPPROTO_UDPLITE:
268                 poff += sizeof(struct udphdr);
269                 break;
270         /* For the rest, we do not really care about header
271          * extensions at this point for now.
272          */
273         case IPPROTO_ICMP:
274                 poff += sizeof(struct icmphdr);
275                 break;
276         case IPPROTO_ICMPV6:
277                 poff += sizeof(struct icmp6hdr);
278                 break;
279         case IPPROTO_IGMP:
280                 poff += sizeof(struct igmphdr);
281                 break;
282         case IPPROTO_DCCP:
283                 poff += sizeof(struct dccp_hdr);
284                 break;
285         case IPPROTO_SCTP:
286                 poff += sizeof(struct sctphdr);
287                 break;
288         }
289
290         return poff;
291 }
292
293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
294 {
295         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
296                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
297                                      dev->name, queue_index,
298                                      dev->real_num_tx_queues);
299                 return 0;
300         }
301         return queue_index;
302 }
303
304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
305 {
306 #ifdef CONFIG_XPS
307         struct xps_dev_maps *dev_maps;
308         struct xps_map *map;
309         int queue_index = -1;
310
311         rcu_read_lock();
312         dev_maps = rcu_dereference(dev->xps_maps);
313         if (dev_maps) {
314                 map = rcu_dereference(
315                     dev_maps->cpu_map[raw_smp_processor_id()]);
316                 if (map) {
317                         if (map->len == 1)
318                                 queue_index = map->queues[0];
319                         else {
320                                 u32 hash;
321                                 if (skb->sk && skb->sk->sk_hash)
322                                         hash = skb->sk->sk_hash;
323                                 else
324                                         hash = (__force u16) skb->protocol ^
325                                             skb->rxhash;
326                                 hash = jhash_1word(hash, hashrnd);
327                                 queue_index = map->queues[
328                                     ((u64)hash * map->len) >> 32];
329                         }
330                         if (unlikely(queue_index >= dev->real_num_tx_queues))
331                                 queue_index = -1;
332                 }
333         }
334         rcu_read_unlock();
335
336         return queue_index;
337 #else
338         return -1;
339 #endif
340 }
341
342 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
343 {
344         struct sock *sk = skb->sk;
345         int queue_index = sk_tx_queue_get(sk);
346
347         if (queue_index < 0 || skb->ooo_okay ||
348             queue_index >= dev->real_num_tx_queues) {
349                 int new_index = get_xps_queue(dev, skb);
350                 if (new_index < 0)
351                         new_index = skb_tx_hash(dev, skb);
352
353                 if (queue_index != new_index && sk &&
354                     rcu_access_pointer(sk->sk_dst_cache))
355                         sk_tx_queue_set(sk, new_index);
356
357                 queue_index = new_index;
358         }
359
360         return queue_index;
361 }
362 EXPORT_SYMBOL(__netdev_pick_tx);
363
364 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
365                                     struct sk_buff *skb)
366 {
367         int queue_index = 0;
368
369         if (dev->real_num_tx_queues != 1) {
370                 const struct net_device_ops *ops = dev->netdev_ops;
371                 if (ops->ndo_select_queue)
372                         queue_index = ops->ndo_select_queue(dev, skb);
373                 else
374                         queue_index = __netdev_pick_tx(dev, skb);
375                 queue_index = dev_cap_txqueue(dev, queue_index);
376         }
377
378         skb_set_queue_mapping(skb, queue_index);
379         return netdev_get_tx_queue(dev, queue_index);
380 }
381
382 static int __init initialize_hashrnd(void)
383 {
384         get_random_bytes(&hashrnd, sizeof(hashrnd));
385         return 0;
386 }
387
388 late_initcall_sync(initialize_hashrnd);