]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_ipv4.c
usb: ch9.h: usb_endpoint_maxp() uses __le16_to_cpu()
[karo-tx-linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
94                                                    __be32 addr);
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
96                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #else
98 static inline
99 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
100 {
101         return NULL;
102 }
103 #endif
104
105 struct inet_hashinfo tcp_hashinfo;
106 EXPORT_SYMBOL(tcp_hashinfo);
107
108 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
109 {
110         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
111                                           ip_hdr(skb)->saddr,
112                                           tcp_hdr(skb)->dest,
113                                           tcp_hdr(skb)->source);
114 }
115
116 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
117 {
118         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
119         struct tcp_sock *tp = tcp_sk(sk);
120
121         /* With PAWS, it is safe from the viewpoint
122            of data integrity. Even without PAWS it is safe provided sequence
123            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
124
125            Actually, the idea is close to VJ's one, only timestamp cache is
126            held not per host, but per port pair and TW bucket is used as state
127            holder.
128
129            If TW bucket has been already destroyed we fall back to VJ's scheme
130            and use initial timestamp retrieved from peer table.
131          */
132         if (tcptw->tw_ts_recent_stamp &&
133             (twp == NULL || (sysctl_tcp_tw_reuse &&
134                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
135                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
136                 if (tp->write_seq == 0)
137                         tp->write_seq = 1;
138                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
139                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
140                 sock_hold(sktw);
141                 return 1;
142         }
143
144         return 0;
145 }
146 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
147
148 /* This will initiate an outgoing connection. */
149 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
150 {
151         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
152         struct inet_sock *inet = inet_sk(sk);
153         struct tcp_sock *tp = tcp_sk(sk);
154         __be16 orig_sport, orig_dport;
155         __be32 daddr, nexthop;
156         struct flowi4 *fl4;
157         struct rtable *rt;
158         int err;
159         struct ip_options_rcu *inet_opt;
160
161         if (addr_len < sizeof(struct sockaddr_in))
162                 return -EINVAL;
163
164         if (usin->sin_family != AF_INET)
165                 return -EAFNOSUPPORT;
166
167         nexthop = daddr = usin->sin_addr.s_addr;
168         inet_opt = rcu_dereference_protected(inet->inet_opt,
169                                              sock_owned_by_user(sk));
170         if (inet_opt && inet_opt->opt.srr) {
171                 if (!daddr)
172                         return -EINVAL;
173                 nexthop = inet_opt->opt.faddr;
174         }
175
176         orig_sport = inet->inet_sport;
177         orig_dport = usin->sin_port;
178         fl4 = &inet->cork.fl.u.ip4;
179         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
180                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181                               IPPROTO_TCP,
182                               orig_sport, orig_dport, sk, true);
183         if (IS_ERR(rt)) {
184                 err = PTR_ERR(rt);
185                 if (err == -ENETUNREACH)
186                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
187                 return err;
188         }
189
190         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
191                 ip_rt_put(rt);
192                 return -ENETUNREACH;
193         }
194
195         if (!inet_opt || !inet_opt->opt.srr)
196                 daddr = fl4->daddr;
197
198         if (!inet->inet_saddr)
199                 inet->inet_saddr = fl4->saddr;
200         inet->inet_rcv_saddr = inet->inet_saddr;
201
202         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
203                 /* Reset inherited state */
204                 tp->rx_opt.ts_recent       = 0;
205                 tp->rx_opt.ts_recent_stamp = 0;
206                 tp->write_seq              = 0;
207         }
208
209         if (tcp_death_row.sysctl_tw_recycle &&
210             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
211                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
212                 /*
213                  * VJ's idea. We save last timestamp seen from
214                  * the destination in peer table, when entering state
215                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
216                  * when trying new connection.
217                  */
218                 if (peer) {
219                         inet_peer_refcheck(peer);
220                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
221                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
222                                 tp->rx_opt.ts_recent = peer->tcp_ts;
223                         }
224                 }
225         }
226
227         inet->inet_dport = usin->sin_port;
228         inet->inet_daddr = daddr;
229
230         inet_csk(sk)->icsk_ext_hdr_len = 0;
231         if (inet_opt)
232                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
233
234         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
235
236         /* Socket identity is still unknown (sport may be zero).
237          * However we set state to SYN-SENT and not releasing socket
238          * lock select source port, enter ourselves into the hash tables and
239          * complete initialization after this.
240          */
241         tcp_set_state(sk, TCP_SYN_SENT);
242         err = inet_hash_connect(&tcp_death_row, sk);
243         if (err)
244                 goto failure;
245
246         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
247                                inet->inet_sport, inet->inet_dport, sk);
248         if (IS_ERR(rt)) {
249                 err = PTR_ERR(rt);
250                 rt = NULL;
251                 goto failure;
252         }
253         /* OK, now commit destination to socket.  */
254         sk->sk_gso_type = SKB_GSO_TCPV4;
255         sk_setup_caps(sk, &rt->dst);
256
257         if (!tp->write_seq)
258                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
259                                                            inet->inet_daddr,
260                                                            inet->inet_sport,
261                                                            usin->sin_port);
262
263         inet->inet_id = tp->write_seq ^ jiffies;
264
265         err = tcp_connect(sk);
266         rt = NULL;
267         if (err)
268                 goto failure;
269
270         return 0;
271
272 failure:
273         /*
274          * This unhashes the socket and releases the local port,
275          * if necessary.
276          */
277         tcp_set_state(sk, TCP_CLOSE);
278         ip_rt_put(rt);
279         sk->sk_route_caps = 0;
280         inet->inet_dport = 0;
281         return err;
282 }
283 EXPORT_SYMBOL(tcp_v4_connect);
284
285 /*
286  * This routine does path mtu discovery as defined in RFC1191.
287  */
288 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
289 {
290         struct dst_entry *dst;
291         struct inet_sock *inet = inet_sk(sk);
292
293         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
294          * send out by Linux are always <576bytes so they should go through
295          * unfragmented).
296          */
297         if (sk->sk_state == TCP_LISTEN)
298                 return;
299
300         /* We don't check in the destentry if pmtu discovery is forbidden
301          * on this route. We just assume that no packet_to_big packets
302          * are send back when pmtu discovery is not active.
303          * There is a small race when the user changes this flag in the
304          * route, but I think that's acceptable.
305          */
306         if ((dst = __sk_dst_check(sk, 0)) == NULL)
307                 return;
308
309         dst->ops->update_pmtu(dst, mtu);
310
311         /* Something is about to be wrong... Remember soft error
312          * for the case, if this connection will not able to recover.
313          */
314         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
315                 sk->sk_err_soft = EMSGSIZE;
316
317         mtu = dst_mtu(dst);
318
319         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
320             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
321                 tcp_sync_mss(sk, mtu);
322
323                 /* Resend the TCP packet because it's
324                  * clear that the old packet has been
325                  * dropped. This is the new "fast" path mtu
326                  * discovery.
327                  */
328                 tcp_simple_retransmit(sk);
329         } /* else let the usual retransmit timer handle it */
330 }
331
332 /*
333  * This routine is called by the ICMP module when it gets some
334  * sort of error condition.  If err < 0 then the socket should
335  * be closed and the error returned to the user.  If err > 0
336  * it's just the icmp type << 8 | icmp code.  After adjustment
337  * header points to the first 8 bytes of the tcp header.  We need
338  * to find the appropriate port.
339  *
340  * The locking strategy used here is very "optimistic". When
341  * someone else accesses the socket the ICMP is just dropped
342  * and for some paths there is no check at all.
343  * A more general error queue to queue errors for later handling
344  * is probably better.
345  *
346  */
347
348 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
349 {
350         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
351         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
352         struct inet_connection_sock *icsk;
353         struct tcp_sock *tp;
354         struct inet_sock *inet;
355         const int type = icmp_hdr(icmp_skb)->type;
356         const int code = icmp_hdr(icmp_skb)->code;
357         struct sock *sk;
358         struct sk_buff *skb;
359         __u32 seq;
360         __u32 remaining;
361         int err;
362         struct net *net = dev_net(icmp_skb->dev);
363
364         if (icmp_skb->len < (iph->ihl << 2) + 8) {
365                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
366                 return;
367         }
368
369         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
370                         iph->saddr, th->source, inet_iif(icmp_skb));
371         if (!sk) {
372                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
373                 return;
374         }
375         if (sk->sk_state == TCP_TIME_WAIT) {
376                 inet_twsk_put(inet_twsk(sk));
377                 return;
378         }
379
380         bh_lock_sock(sk);
381         /* If too many ICMPs get dropped on busy
382          * servers this needs to be solved differently.
383          */
384         if (sock_owned_by_user(sk))
385                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
386
387         if (sk->sk_state == TCP_CLOSE)
388                 goto out;
389
390         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
391                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
392                 goto out;
393         }
394
395         icsk = inet_csk(sk);
396         tp = tcp_sk(sk);
397         seq = ntohl(th->seq);
398         if (sk->sk_state != TCP_LISTEN &&
399             !between(seq, tp->snd_una, tp->snd_nxt)) {
400                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
401                 goto out;
402         }
403
404         switch (type) {
405         case ICMP_SOURCE_QUENCH:
406                 /* Just silently ignore these. */
407                 goto out;
408         case ICMP_PARAMETERPROB:
409                 err = EPROTO;
410                 break;
411         case ICMP_DEST_UNREACH:
412                 if (code > NR_ICMP_UNREACH)
413                         goto out;
414
415                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
416                         if (!sock_owned_by_user(sk))
417                                 do_pmtu_discovery(sk, iph, info);
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 if (sock_owned_by_user(sk))
431                         break;
432
433                 icsk->icsk_backoff--;
434                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
435                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
436                 tcp_bound_rto(sk);
437
438                 skb = tcp_write_queue_head(sk);
439                 BUG_ON(!skb);
440
441                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
442                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
443
444                 if (remaining) {
445                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
446                                                   remaining, TCP_RTO_MAX);
447                 } else {
448                         /* RTO revert clocked out retransmission.
449                          * Will retransmit now */
450                         tcp_retransmit_timer(sk);
451                 }
452
453                 break;
454         case ICMP_TIME_EXCEEDED:
455                 err = EHOSTUNREACH;
456                 break;
457         default:
458                 goto out;
459         }
460
461         switch (sk->sk_state) {
462                 struct request_sock *req, **prev;
463         case TCP_LISTEN:
464                 if (sock_owned_by_user(sk))
465                         goto out;
466
467                 req = inet_csk_search_req(sk, &prev, th->dest,
468                                           iph->daddr, iph->saddr);
469                 if (!req)
470                         goto out;
471
472                 /* ICMPs are not backlogged, hence we cannot get
473                    an established socket here.
474                  */
475                 WARN_ON(req->sk);
476
477                 if (seq != tcp_rsk(req)->snt_isn) {
478                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
479                         goto out;
480                 }
481
482                 /*
483                  * Still in SYN_RECV, just remove it silently.
484                  * There is no good way to pass the error to the newly
485                  * created socket, and POSIX does not want network
486                  * errors returned from accept().
487                  */
488                 inet_csk_reqsk_queue_drop(sk, req, prev);
489                 goto out;
490
491         case TCP_SYN_SENT:
492         case TCP_SYN_RECV:  /* Cannot happen.
493                                It can f.e. if SYNs crossed.
494                              */
495                 if (!sock_owned_by_user(sk)) {
496                         sk->sk_err = err;
497
498                         sk->sk_error_report(sk);
499
500                         tcp_done(sk);
501                 } else {
502                         sk->sk_err_soft = err;
503                 }
504                 goto out;
505         }
506
507         /* If we've already connected we will keep trying
508          * until we time out, or the user gives up.
509          *
510          * rfc1122 4.2.3.9 allows to consider as hard errors
511          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
512          * but it is obsoleted by pmtu discovery).
513          *
514          * Note, that in modern internet, where routing is unreliable
515          * and in each dark corner broken firewalls sit, sending random
516          * errors ordered by their masters even this two messages finally lose
517          * their original sense (even Linux sends invalid PORT_UNREACHs)
518          *
519          * Now we are in compliance with RFCs.
520          *                                                      --ANK (980905)
521          */
522
523         inet = inet_sk(sk);
524         if (!sock_owned_by_user(sk) && inet->recverr) {
525                 sk->sk_err = err;
526                 sk->sk_error_report(sk);
527         } else  { /* Only an error on timeout */
528                 sk->sk_err_soft = err;
529         }
530
531 out:
532         bh_unlock_sock(sk);
533         sock_put(sk);
534 }
535
536 static void __tcp_v4_send_check(struct sk_buff *skb,
537                                 __be32 saddr, __be32 daddr)
538 {
539         struct tcphdr *th = tcp_hdr(skb);
540
541         if (skb->ip_summed == CHECKSUM_PARTIAL) {
542                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
543                 skb->csum_start = skb_transport_header(skb) - skb->head;
544                 skb->csum_offset = offsetof(struct tcphdr, check);
545         } else {
546                 th->check = tcp_v4_check(skb->len, saddr, daddr,
547                                          csum_partial(th,
548                                                       th->doff << 2,
549                                                       skb->csum));
550         }
551 }
552
553 /* This routine computes an IPv4 TCP checksum. */
554 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
555 {
556         const struct inet_sock *inet = inet_sk(sk);
557
558         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
559 }
560 EXPORT_SYMBOL(tcp_v4_send_check);
561
562 int tcp_v4_gso_send_check(struct sk_buff *skb)
563 {
564         const struct iphdr *iph;
565         struct tcphdr *th;
566
567         if (!pskb_may_pull(skb, sizeof(*th)))
568                 return -EINVAL;
569
570         iph = ip_hdr(skb);
571         th = tcp_hdr(skb);
572
573         th->check = 0;
574         skb->ip_summed = CHECKSUM_PARTIAL;
575         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
576         return 0;
577 }
578
579 /*
580  *      This routine will send an RST to the other tcp.
581  *
582  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
583  *                    for reset.
584  *      Answer: if a packet caused RST, it is not for a socket
585  *              existing in our system, if it is matched to a socket,
586  *              it is just duplicate segment or bug in other side's TCP.
587  *              So that we build reply only basing on parameters
588  *              arrived with segment.
589  *      Exception: precedence violation. We do not implement it in any case.
590  */
591
592 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
593 {
594         const struct tcphdr *th = tcp_hdr(skb);
595         struct {
596                 struct tcphdr th;
597 #ifdef CONFIG_TCP_MD5SIG
598                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
599 #endif
600         } rep;
601         struct ip_reply_arg arg;
602 #ifdef CONFIG_TCP_MD5SIG
603         struct tcp_md5sig_key *key;
604 #endif
605         struct net *net;
606
607         /* Never send a reset in response to a reset. */
608         if (th->rst)
609                 return;
610
611         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612                 return;
613
614         /* Swap the send and the receive. */
615         memset(&rep, 0, sizeof(rep));
616         rep.th.dest   = th->source;
617         rep.th.source = th->dest;
618         rep.th.doff   = sizeof(struct tcphdr) / 4;
619         rep.th.rst    = 1;
620
621         if (th->ack) {
622                 rep.th.seq = th->ack_seq;
623         } else {
624                 rep.th.ack = 1;
625                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626                                        skb->len - (th->doff << 2));
627         }
628
629         memset(&arg, 0, sizeof(arg));
630         arg.iov[0].iov_base = (unsigned char *)&rep;
631         arg.iov[0].iov_len  = sizeof(rep.th);
632
633 #ifdef CONFIG_TCP_MD5SIG
634         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
635         if (key) {
636                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
637                                    (TCPOPT_NOP << 16) |
638                                    (TCPOPT_MD5SIG << 8) |
639                                    TCPOLEN_MD5SIG);
640                 /* Update length and the length the header thinks exists */
641                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
642                 rep.th.doff = arg.iov[0].iov_len / 4;
643
644                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
645                                      key, ip_hdr(skb)->saddr,
646                                      ip_hdr(skb)->daddr, &rep.th);
647         }
648 #endif
649         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
650                                       ip_hdr(skb)->saddr, /* XXX */
651                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
652         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
653         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
654
655         net = dev_net(skb_dst(skb)->dev);
656         arg.tos = ip_hdr(skb)->tos;
657         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
658                       &arg, arg.iov[0].iov_len);
659
660         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
661         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
662 }
663
664 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
665    outside socket context is ugly, certainly. What can I do?
666  */
667
668 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
669                             u32 win, u32 ts, int oif,
670                             struct tcp_md5sig_key *key,
671                             int reply_flags, u8 tos)
672 {
673         const struct tcphdr *th = tcp_hdr(skb);
674         struct {
675                 struct tcphdr th;
676                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
677 #ifdef CONFIG_TCP_MD5SIG
678                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
679 #endif
680                         ];
681         } rep;
682         struct ip_reply_arg arg;
683         struct net *net = dev_net(skb_dst(skb)->dev);
684
685         memset(&rep.th, 0, sizeof(struct tcphdr));
686         memset(&arg, 0, sizeof(arg));
687
688         arg.iov[0].iov_base = (unsigned char *)&rep;
689         arg.iov[0].iov_len  = sizeof(rep.th);
690         if (ts) {
691                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
692                                    (TCPOPT_TIMESTAMP << 8) |
693                                    TCPOLEN_TIMESTAMP);
694                 rep.opt[1] = htonl(tcp_time_stamp);
695                 rep.opt[2] = htonl(ts);
696                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
697         }
698
699         /* Swap the send and the receive. */
700         rep.th.dest    = th->source;
701         rep.th.source  = th->dest;
702         rep.th.doff    = arg.iov[0].iov_len / 4;
703         rep.th.seq     = htonl(seq);
704         rep.th.ack_seq = htonl(ack);
705         rep.th.ack     = 1;
706         rep.th.window  = htons(win);
707
708 #ifdef CONFIG_TCP_MD5SIG
709         if (key) {
710                 int offset = (ts) ? 3 : 0;
711
712                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
713                                           (TCPOPT_NOP << 16) |
714                                           (TCPOPT_MD5SIG << 8) |
715                                           TCPOLEN_MD5SIG);
716                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
717                 rep.th.doff = arg.iov[0].iov_len/4;
718
719                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
720                                     key, ip_hdr(skb)->saddr,
721                                     ip_hdr(skb)->daddr, &rep.th);
722         }
723 #endif
724         arg.flags = reply_flags;
725         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
726                                       ip_hdr(skb)->saddr, /* XXX */
727                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
728         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
729         if (oif)
730                 arg.bound_dev_if = oif;
731         arg.tos = tos;
732         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
733                       &arg, arg.iov[0].iov_len);
734
735         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
736 }
737
738 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
739 {
740         struct inet_timewait_sock *tw = inet_twsk(sk);
741         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
742
743         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
744                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
745                         tcptw->tw_ts_recent,
746                         tw->tw_bound_dev_if,
747                         tcp_twsk_md5_key(tcptw),
748                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
749                         tw->tw_tos
750                         );
751
752         inet_twsk_put(tw);
753 }
754
755 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
756                                   struct request_sock *req)
757 {
758         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
759                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
760                         req->ts_recent,
761                         0,
762                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
763                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
764                         ip_hdr(skb)->tos);
765 }
766
767 /*
768  *      Send a SYN-ACK after having received a SYN.
769  *      This still operates on a request_sock only, not on a big
770  *      socket.
771  */
772 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
773                               struct request_sock *req,
774                               struct request_values *rvp)
775 {
776         const struct inet_request_sock *ireq = inet_rsk(req);
777         struct flowi4 fl4;
778         int err = -1;
779         struct sk_buff * skb;
780
781         /* First, grab a route. */
782         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
783                 return -1;
784
785         skb = tcp_make_synack(sk, dst, req, rvp);
786
787         if (skb) {
788                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
789
790                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
791                                             ireq->rmt_addr,
792                                             ireq->opt);
793                 err = net_xmit_eval(err);
794         }
795
796         dst_release(dst);
797         return err;
798 }
799
800 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
801                               struct request_values *rvp)
802 {
803         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
804         return tcp_v4_send_synack(sk, NULL, req, rvp);
805 }
806
807 /*
808  *      IPv4 request_sock destructor.
809  */
810 static void tcp_v4_reqsk_destructor(struct request_sock *req)
811 {
812         kfree(inet_rsk(req)->opt);
813 }
814
815 /*
816  * Return 1 if a syncookie should be sent
817  */
818 int tcp_syn_flood_action(struct sock *sk,
819                          const struct sk_buff *skb,
820                          const char *proto)
821 {
822         const char *msg = "Dropping request";
823         int want_cookie = 0;
824         struct listen_sock *lopt;
825
826
827
828 #ifdef CONFIG_SYN_COOKIES
829         if (sysctl_tcp_syncookies) {
830                 msg = "Sending cookies";
831                 want_cookie = 1;
832                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
833         } else
834 #endif
835                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
836
837         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
838         if (!lopt->synflood_warned) {
839                 lopt->synflood_warned = 1;
840                 pr_info("%s: Possible SYN flooding on port %d. %s. "
841                         " Check SNMP counters.\n",
842                         proto, ntohs(tcp_hdr(skb)->dest), msg);
843         }
844         return want_cookie;
845 }
846 EXPORT_SYMBOL(tcp_syn_flood_action);
847
848 /*
849  * Save and compile IPv4 options into the request_sock if needed.
850  */
851 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
852                                                   struct sk_buff *skb)
853 {
854         const struct ip_options *opt = &(IPCB(skb)->opt);
855         struct ip_options_rcu *dopt = NULL;
856
857         if (opt && opt->optlen) {
858                 int opt_size = sizeof(*dopt) + opt->optlen;
859
860                 dopt = kmalloc(opt_size, GFP_ATOMIC);
861                 if (dopt) {
862                         if (ip_options_echo(&dopt->opt, skb)) {
863                                 kfree(dopt);
864                                 dopt = NULL;
865                         }
866                 }
867         }
868         return dopt;
869 }
870
871 #ifdef CONFIG_TCP_MD5SIG
872 /*
873  * RFC2385 MD5 checksumming requires a mapping of
874  * IP address->MD5 Key.
875  * We need to maintain these in the sk structure.
876  */
877
878 /* Find the Key structure for an address.  */
879 static struct tcp_md5sig_key *
880                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
881 {
882         struct tcp_sock *tp = tcp_sk(sk);
883         int i;
884
885         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
886                 return NULL;
887         for (i = 0; i < tp->md5sig_info->entries4; i++) {
888                 if (tp->md5sig_info->keys4[i].addr == addr)
889                         return &tp->md5sig_info->keys4[i].base;
890         }
891         return NULL;
892 }
893
894 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
895                                          struct sock *addr_sk)
896 {
897         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
898 }
899 EXPORT_SYMBOL(tcp_v4_md5_lookup);
900
901 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
902                                                       struct request_sock *req)
903 {
904         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
905 }
906
907 /* This can be called on a newly created socket, from other files */
908 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
909                       u8 *newkey, u8 newkeylen)
910 {
911         /* Add Key to the list */
912         struct tcp_md5sig_key *key;
913         struct tcp_sock *tp = tcp_sk(sk);
914         struct tcp4_md5sig_key *keys;
915
916         key = tcp_v4_md5_do_lookup(sk, addr);
917         if (key) {
918                 /* Pre-existing entry - just update that one. */
919                 kfree(key->key);
920                 key->key = newkey;
921                 key->keylen = newkeylen;
922         } else {
923                 struct tcp_md5sig_info *md5sig;
924
925                 if (!tp->md5sig_info) {
926                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
927                                                   GFP_ATOMIC);
928                         if (!tp->md5sig_info) {
929                                 kfree(newkey);
930                                 return -ENOMEM;
931                         }
932                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
933                 }
934
935                 md5sig = tp->md5sig_info;
936                 if (md5sig->entries4 == 0 &&
937                     tcp_alloc_md5sig_pool(sk) == NULL) {
938                         kfree(newkey);
939                         return -ENOMEM;
940                 }
941
942                 if (md5sig->alloced4 == md5sig->entries4) {
943                         keys = kmalloc((sizeof(*keys) *
944                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
945                         if (!keys) {
946                                 kfree(newkey);
947                                 if (md5sig->entries4 == 0)
948                                         tcp_free_md5sig_pool();
949                                 return -ENOMEM;
950                         }
951
952                         if (md5sig->entries4)
953                                 memcpy(keys, md5sig->keys4,
954                                        sizeof(*keys) * md5sig->entries4);
955
956                         /* Free old key list, and reference new one */
957                         kfree(md5sig->keys4);
958                         md5sig->keys4 = keys;
959                         md5sig->alloced4++;
960                 }
961                 md5sig->entries4++;
962                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
963                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
964                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
965         }
966         return 0;
967 }
968 EXPORT_SYMBOL(tcp_v4_md5_do_add);
969
970 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
971                                u8 *newkey, u8 newkeylen)
972 {
973         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
974                                  newkey, newkeylen);
975 }
976
977 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
978 {
979         struct tcp_sock *tp = tcp_sk(sk);
980         int i;
981
982         for (i = 0; i < tp->md5sig_info->entries4; i++) {
983                 if (tp->md5sig_info->keys4[i].addr == addr) {
984                         /* Free the key */
985                         kfree(tp->md5sig_info->keys4[i].base.key);
986                         tp->md5sig_info->entries4--;
987
988                         if (tp->md5sig_info->entries4 == 0) {
989                                 kfree(tp->md5sig_info->keys4);
990                                 tp->md5sig_info->keys4 = NULL;
991                                 tp->md5sig_info->alloced4 = 0;
992                                 tcp_free_md5sig_pool();
993                         } else if (tp->md5sig_info->entries4 != i) {
994                                 /* Need to do some manipulation */
995                                 memmove(&tp->md5sig_info->keys4[i],
996                                         &tp->md5sig_info->keys4[i+1],
997                                         (tp->md5sig_info->entries4 - i) *
998                                          sizeof(struct tcp4_md5sig_key));
999                         }
1000                         return 0;
1001                 }
1002         }
1003         return -ENOENT;
1004 }
1005 EXPORT_SYMBOL(tcp_v4_md5_do_del);
1006
1007 static void tcp_v4_clear_md5_list(struct sock *sk)
1008 {
1009         struct tcp_sock *tp = tcp_sk(sk);
1010
1011         /* Free each key, then the set of key keys,
1012          * the crypto element, and then decrement our
1013          * hold on the last resort crypto.
1014          */
1015         if (tp->md5sig_info->entries4) {
1016                 int i;
1017                 for (i = 0; i < tp->md5sig_info->entries4; i++)
1018                         kfree(tp->md5sig_info->keys4[i].base.key);
1019                 tp->md5sig_info->entries4 = 0;
1020                 tcp_free_md5sig_pool();
1021         }
1022         if (tp->md5sig_info->keys4) {
1023                 kfree(tp->md5sig_info->keys4);
1024                 tp->md5sig_info->keys4 = NULL;
1025                 tp->md5sig_info->alloced4  = 0;
1026         }
1027 }
1028
1029 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1030                                  int optlen)
1031 {
1032         struct tcp_md5sig cmd;
1033         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1034         u8 *newkey;
1035
1036         if (optlen < sizeof(cmd))
1037                 return -EINVAL;
1038
1039         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1040                 return -EFAULT;
1041
1042         if (sin->sin_family != AF_INET)
1043                 return -EINVAL;
1044
1045         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1046                 if (!tcp_sk(sk)->md5sig_info)
1047                         return -ENOENT;
1048                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1049         }
1050
1051         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1052                 return -EINVAL;
1053
1054         if (!tcp_sk(sk)->md5sig_info) {
1055                 struct tcp_sock *tp = tcp_sk(sk);
1056                 struct tcp_md5sig_info *p;
1057
1058                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1059                 if (!p)
1060                         return -EINVAL;
1061
1062                 tp->md5sig_info = p;
1063                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1064         }
1065
1066         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1067         if (!newkey)
1068                 return -ENOMEM;
1069         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1070                                  newkey, cmd.tcpm_keylen);
1071 }
1072
1073 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1074                                         __be32 daddr, __be32 saddr, int nbytes)
1075 {
1076         struct tcp4_pseudohdr *bp;
1077         struct scatterlist sg;
1078
1079         bp = &hp->md5_blk.ip4;
1080
1081         /*
1082          * 1. the TCP pseudo-header (in the order: source IP address,
1083          * destination IP address, zero-padded protocol number, and
1084          * segment length)
1085          */
1086         bp->saddr = saddr;
1087         bp->daddr = daddr;
1088         bp->pad = 0;
1089         bp->protocol = IPPROTO_TCP;
1090         bp->len = cpu_to_be16(nbytes);
1091
1092         sg_init_one(&sg, bp, sizeof(*bp));
1093         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1094 }
1095
1096 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1097                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1098 {
1099         struct tcp_md5sig_pool *hp;
1100         struct hash_desc *desc;
1101
1102         hp = tcp_get_md5sig_pool();
1103         if (!hp)
1104                 goto clear_hash_noput;
1105         desc = &hp->md5_desc;
1106
1107         if (crypto_hash_init(desc))
1108                 goto clear_hash;
1109         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1110                 goto clear_hash;
1111         if (tcp_md5_hash_header(hp, th))
1112                 goto clear_hash;
1113         if (tcp_md5_hash_key(hp, key))
1114                 goto clear_hash;
1115         if (crypto_hash_final(desc, md5_hash))
1116                 goto clear_hash;
1117
1118         tcp_put_md5sig_pool();
1119         return 0;
1120
1121 clear_hash:
1122         tcp_put_md5sig_pool();
1123 clear_hash_noput:
1124         memset(md5_hash, 0, 16);
1125         return 1;
1126 }
1127
1128 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1129                         const struct sock *sk, const struct request_sock *req,
1130                         const struct sk_buff *skb)
1131 {
1132         struct tcp_md5sig_pool *hp;
1133         struct hash_desc *desc;
1134         const struct tcphdr *th = tcp_hdr(skb);
1135         __be32 saddr, daddr;
1136
1137         if (sk) {
1138                 saddr = inet_sk(sk)->inet_saddr;
1139                 daddr = inet_sk(sk)->inet_daddr;
1140         } else if (req) {
1141                 saddr = inet_rsk(req)->loc_addr;
1142                 daddr = inet_rsk(req)->rmt_addr;
1143         } else {
1144                 const struct iphdr *iph = ip_hdr(skb);
1145                 saddr = iph->saddr;
1146                 daddr = iph->daddr;
1147         }
1148
1149         hp = tcp_get_md5sig_pool();
1150         if (!hp)
1151                 goto clear_hash_noput;
1152         desc = &hp->md5_desc;
1153
1154         if (crypto_hash_init(desc))
1155                 goto clear_hash;
1156
1157         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1158                 goto clear_hash;
1159         if (tcp_md5_hash_header(hp, th))
1160                 goto clear_hash;
1161         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1162                 goto clear_hash;
1163         if (tcp_md5_hash_key(hp, key))
1164                 goto clear_hash;
1165         if (crypto_hash_final(desc, md5_hash))
1166                 goto clear_hash;
1167
1168         tcp_put_md5sig_pool();
1169         return 0;
1170
1171 clear_hash:
1172         tcp_put_md5sig_pool();
1173 clear_hash_noput:
1174         memset(md5_hash, 0, 16);
1175         return 1;
1176 }
1177 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1178
1179 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1180 {
1181         /*
1182          * This gets called for each TCP segment that arrives
1183          * so we want to be efficient.
1184          * We have 3 drop cases:
1185          * o No MD5 hash and one expected.
1186          * o MD5 hash and we're not expecting one.
1187          * o MD5 hash and its wrong.
1188          */
1189         const __u8 *hash_location = NULL;
1190         struct tcp_md5sig_key *hash_expected;
1191         const struct iphdr *iph = ip_hdr(skb);
1192         const struct tcphdr *th = tcp_hdr(skb);
1193         int genhash;
1194         unsigned char newhash[16];
1195
1196         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1197         hash_location = tcp_parse_md5sig_option(th);
1198
1199         /* We've parsed the options - do we have a hash? */
1200         if (!hash_expected && !hash_location)
1201                 return 0;
1202
1203         if (hash_expected && !hash_location) {
1204                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1205                 return 1;
1206         }
1207
1208         if (!hash_expected && hash_location) {
1209                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1210                 return 1;
1211         }
1212
1213         /* Okay, so this is hash_expected and hash_location -
1214          * so we need to calculate the checksum.
1215          */
1216         genhash = tcp_v4_md5_hash_skb(newhash,
1217                                       hash_expected,
1218                                       NULL, NULL, skb);
1219
1220         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1221                 if (net_ratelimit()) {
1222                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1223                                &iph->saddr, ntohs(th->source),
1224                                &iph->daddr, ntohs(th->dest),
1225                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1226                 }
1227                 return 1;
1228         }
1229         return 0;
1230 }
1231
1232 #endif
1233
1234 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1235         .family         =       PF_INET,
1236         .obj_size       =       sizeof(struct tcp_request_sock),
1237         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1238         .send_ack       =       tcp_v4_reqsk_send_ack,
1239         .destructor     =       tcp_v4_reqsk_destructor,
1240         .send_reset     =       tcp_v4_send_reset,
1241         .syn_ack_timeout =      tcp_syn_ack_timeout,
1242 };
1243
1244 #ifdef CONFIG_TCP_MD5SIG
1245 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1246         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1247         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1248 };
1249 #endif
1250
1251 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1252 {
1253         struct tcp_extend_values tmp_ext;
1254         struct tcp_options_received tmp_opt;
1255         const u8 *hash_location;
1256         struct request_sock *req;
1257         struct inet_request_sock *ireq;
1258         struct tcp_sock *tp = tcp_sk(sk);
1259         struct dst_entry *dst = NULL;
1260         __be32 saddr = ip_hdr(skb)->saddr;
1261         __be32 daddr = ip_hdr(skb)->daddr;
1262         __u32 isn = TCP_SKB_CB(skb)->when;
1263         int want_cookie = 0;
1264
1265         /* Never answer to SYNs send to broadcast or multicast */
1266         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1267                 goto drop;
1268
1269         /* TW buckets are converted to open requests without
1270          * limitations, they conserve resources and peer is
1271          * evidently real one.
1272          */
1273         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1274                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1275                 if (!want_cookie)
1276                         goto drop;
1277         }
1278
1279         /* Accept backlog is full. If we have already queued enough
1280          * of warm entries in syn queue, drop request. It is better than
1281          * clogging syn queue with openreqs with exponentially increasing
1282          * timeout.
1283          */
1284         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1285                 goto drop;
1286
1287         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1288         if (!req)
1289                 goto drop;
1290
1291 #ifdef CONFIG_TCP_MD5SIG
1292         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1293 #endif
1294
1295         tcp_clear_options(&tmp_opt);
1296         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1297         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1298         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1299
1300         if (tmp_opt.cookie_plus > 0 &&
1301             tmp_opt.saw_tstamp &&
1302             !tp->rx_opt.cookie_out_never &&
1303             (sysctl_tcp_cookie_size > 0 ||
1304              (tp->cookie_values != NULL &&
1305               tp->cookie_values->cookie_desired > 0))) {
1306                 u8 *c;
1307                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1308                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1309
1310                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1311                         goto drop_and_release;
1312
1313                 /* Secret recipe starts with IP addresses */
1314                 *mess++ ^= (__force u32)daddr;
1315                 *mess++ ^= (__force u32)saddr;
1316
1317                 /* plus variable length Initiator Cookie */
1318                 c = (u8 *)mess;
1319                 while (l-- > 0)
1320                         *c++ ^= *hash_location++;
1321
1322                 want_cookie = 0;        /* not our kind of cookie */
1323                 tmp_ext.cookie_out_never = 0; /* false */
1324                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1325         } else if (!tp->rx_opt.cookie_in_always) {
1326                 /* redundant indications, but ensure initialization. */
1327                 tmp_ext.cookie_out_never = 1; /* true */
1328                 tmp_ext.cookie_plus = 0;
1329         } else {
1330                 goto drop_and_release;
1331         }
1332         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1333
1334         if (want_cookie && !tmp_opt.saw_tstamp)
1335                 tcp_clear_options(&tmp_opt);
1336
1337         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1338         tcp_openreq_init(req, &tmp_opt, skb);
1339
1340         ireq = inet_rsk(req);
1341         ireq->loc_addr = daddr;
1342         ireq->rmt_addr = saddr;
1343         ireq->no_srccheck = inet_sk(sk)->transparent;
1344         ireq->opt = tcp_v4_save_options(sk, skb);
1345
1346         if (security_inet_conn_request(sk, skb, req))
1347                 goto drop_and_free;
1348
1349         if (!want_cookie || tmp_opt.tstamp_ok)
1350                 TCP_ECN_create_request(req, tcp_hdr(skb));
1351
1352         if (want_cookie) {
1353                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1354                 req->cookie_ts = tmp_opt.tstamp_ok;
1355         } else if (!isn) {
1356                 struct inet_peer *peer = NULL;
1357                 struct flowi4 fl4;
1358
1359                 /* VJ's idea. We save last timestamp seen
1360                  * from the destination in peer table, when entering
1361                  * state TIME-WAIT, and check against it before
1362                  * accepting new connection request.
1363                  *
1364                  * If "isn" is not zero, this request hit alive
1365                  * timewait bucket, so that all the necessary checks
1366                  * are made in the function processing timewait state.
1367                  */
1368                 if (tmp_opt.saw_tstamp &&
1369                     tcp_death_row.sysctl_tw_recycle &&
1370                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1371                     fl4.daddr == saddr &&
1372                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1373                         inet_peer_refcheck(peer);
1374                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1375                             (s32)(peer->tcp_ts - req->ts_recent) >
1376                                                         TCP_PAWS_WINDOW) {
1377                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1378                                 goto drop_and_release;
1379                         }
1380                 }
1381                 /* Kill the following clause, if you dislike this way. */
1382                 else if (!sysctl_tcp_syncookies &&
1383                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1384                           (sysctl_max_syn_backlog >> 2)) &&
1385                          (!peer || !peer->tcp_ts_stamp) &&
1386                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1387                         /* Without syncookies last quarter of
1388                          * backlog is filled with destinations,
1389                          * proven to be alive.
1390                          * It means that we continue to communicate
1391                          * to destinations, already remembered
1392                          * to the moment of synflood.
1393                          */
1394                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1395                                        &saddr, ntohs(tcp_hdr(skb)->source));
1396                         goto drop_and_release;
1397                 }
1398
1399                 isn = tcp_v4_init_sequence(skb);
1400         }
1401         tcp_rsk(req)->snt_isn = isn;
1402         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1403
1404         if (tcp_v4_send_synack(sk, dst, req,
1405                                (struct request_values *)&tmp_ext) ||
1406             want_cookie)
1407                 goto drop_and_free;
1408
1409         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1410         return 0;
1411
1412 drop_and_release:
1413         dst_release(dst);
1414 drop_and_free:
1415         reqsk_free(req);
1416 drop:
1417         return 0;
1418 }
1419 EXPORT_SYMBOL(tcp_v4_conn_request);
1420
1421
1422 /*
1423  * The three way handshake has completed - we got a valid synack -
1424  * now create the new socket.
1425  */
1426 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1427                                   struct request_sock *req,
1428                                   struct dst_entry *dst)
1429 {
1430         struct inet_request_sock *ireq;
1431         struct inet_sock *newinet;
1432         struct tcp_sock *newtp;
1433         struct sock *newsk;
1434 #ifdef CONFIG_TCP_MD5SIG
1435         struct tcp_md5sig_key *key;
1436 #endif
1437         struct ip_options_rcu *inet_opt;
1438
1439         if (sk_acceptq_is_full(sk))
1440                 goto exit_overflow;
1441
1442         newsk = tcp_create_openreq_child(sk, req, skb);
1443         if (!newsk)
1444                 goto exit_nonewsk;
1445
1446         newsk->sk_gso_type = SKB_GSO_TCPV4;
1447
1448         newtp                 = tcp_sk(newsk);
1449         newinet               = inet_sk(newsk);
1450         ireq                  = inet_rsk(req);
1451         newinet->inet_daddr   = ireq->rmt_addr;
1452         newinet->inet_rcv_saddr = ireq->loc_addr;
1453         newinet->inet_saddr           = ireq->loc_addr;
1454         inet_opt              = ireq->opt;
1455         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1456         ireq->opt             = NULL;
1457         newinet->mc_index     = inet_iif(skb);
1458         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1459         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1460         if (inet_opt)
1461                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1462         newinet->inet_id = newtp->write_seq ^ jiffies;
1463
1464         if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1465                 goto put_and_exit;
1466
1467         sk_setup_caps(newsk, dst);
1468
1469         tcp_mtup_init(newsk);
1470         tcp_sync_mss(newsk, dst_mtu(dst));
1471         newtp->advmss = dst_metric_advmss(dst);
1472         if (tcp_sk(sk)->rx_opt.user_mss &&
1473             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1474                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1475
1476         tcp_initialize_rcv_mss(newsk);
1477         if (tcp_rsk(req)->snt_synack)
1478                 tcp_valid_rtt_meas(newsk,
1479                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1480         newtp->total_retrans = req->retrans;
1481
1482 #ifdef CONFIG_TCP_MD5SIG
1483         /* Copy over the MD5 key from the original socket */
1484         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1485         if (key != NULL) {
1486                 /*
1487                  * We're using one, so create a matching key
1488                  * on the newsk structure. If we fail to get
1489                  * memory, then we end up not copying the key
1490                  * across. Shucks.
1491                  */
1492                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1493                 if (newkey != NULL)
1494                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1495                                           newkey, key->keylen);
1496                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1497         }
1498 #endif
1499
1500         if (__inet_inherit_port(sk, newsk) < 0)
1501                 goto put_and_exit;
1502         __inet_hash_nolisten(newsk, NULL);
1503
1504         return newsk;
1505
1506 exit_overflow:
1507         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1508 exit_nonewsk:
1509         dst_release(dst);
1510 exit:
1511         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1512         return NULL;
1513 put_and_exit:
1514         tcp_clear_xmit_timers(newsk);
1515         tcp_cleanup_congestion_control(newsk);
1516         bh_unlock_sock(newsk);
1517         sock_put(newsk);
1518         goto exit;
1519 }
1520 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1521
1522 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1523 {
1524         struct tcphdr *th = tcp_hdr(skb);
1525         const struct iphdr *iph = ip_hdr(skb);
1526         struct sock *nsk;
1527         struct request_sock **prev;
1528         /* Find possible connection requests. */
1529         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1530                                                        iph->saddr, iph->daddr);
1531         if (req)
1532                 return tcp_check_req(sk, skb, req, prev);
1533
1534         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1535                         th->source, iph->daddr, th->dest, inet_iif(skb));
1536
1537         if (nsk) {
1538                 if (nsk->sk_state != TCP_TIME_WAIT) {
1539                         bh_lock_sock(nsk);
1540                         return nsk;
1541                 }
1542                 inet_twsk_put(inet_twsk(nsk));
1543                 return NULL;
1544         }
1545
1546 #ifdef CONFIG_SYN_COOKIES
1547         if (!th->syn)
1548                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1549 #endif
1550         return sk;
1551 }
1552
1553 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1554 {
1555         const struct iphdr *iph = ip_hdr(skb);
1556
1557         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1558                 if (!tcp_v4_check(skb->len, iph->saddr,
1559                                   iph->daddr, skb->csum)) {
1560                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1561                         return 0;
1562                 }
1563         }
1564
1565         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1566                                        skb->len, IPPROTO_TCP, 0);
1567
1568         if (skb->len <= 76) {
1569                 return __skb_checksum_complete(skb);
1570         }
1571         return 0;
1572 }
1573
1574
1575 /* The socket must have it's spinlock held when we get
1576  * here.
1577  *
1578  * We have a potential double-lock case here, so even when
1579  * doing backlog processing we use the BH locking scheme.
1580  * This is because we cannot sleep with the original spinlock
1581  * held.
1582  */
1583 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1584 {
1585         struct sock *rsk;
1586 #ifdef CONFIG_TCP_MD5SIG
1587         /*
1588          * We really want to reject the packet as early as possible
1589          * if:
1590          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1591          *  o There is an MD5 option and we're not expecting one
1592          */
1593         if (tcp_v4_inbound_md5_hash(sk, skb))
1594                 goto discard;
1595 #endif
1596
1597         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1598                 sock_rps_save_rxhash(sk, skb);
1599                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1600                         rsk = sk;
1601                         goto reset;
1602                 }
1603                 return 0;
1604         }
1605
1606         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1607                 goto csum_err;
1608
1609         if (sk->sk_state == TCP_LISTEN) {
1610                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1611                 if (!nsk)
1612                         goto discard;
1613
1614                 if (nsk != sk) {
1615                         sock_rps_save_rxhash(nsk, skb);
1616                         if (tcp_child_process(sk, nsk, skb)) {
1617                                 rsk = nsk;
1618                                 goto reset;
1619                         }
1620                         return 0;
1621                 }
1622         } else
1623                 sock_rps_save_rxhash(sk, skb);
1624
1625         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1626                 rsk = sk;
1627                 goto reset;
1628         }
1629         return 0;
1630
1631 reset:
1632         tcp_v4_send_reset(rsk, skb);
1633 discard:
1634         kfree_skb(skb);
1635         /* Be careful here. If this function gets more complicated and
1636          * gcc suffers from register pressure on the x86, sk (in %ebx)
1637          * might be destroyed here. This current version compiles correctly,
1638          * but you have been warned.
1639          */
1640         return 0;
1641
1642 csum_err:
1643         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1644         goto discard;
1645 }
1646 EXPORT_SYMBOL(tcp_v4_do_rcv);
1647
1648 /*
1649  *      From tcp_input.c
1650  */
1651
1652 int tcp_v4_rcv(struct sk_buff *skb)
1653 {
1654         const struct iphdr *iph;
1655         const struct tcphdr *th;
1656         struct sock *sk;
1657         int ret;
1658         struct net *net = dev_net(skb->dev);
1659
1660         if (skb->pkt_type != PACKET_HOST)
1661                 goto discard_it;
1662
1663         /* Count it even if it's bad */
1664         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1665
1666         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1667                 goto discard_it;
1668
1669         th = tcp_hdr(skb);
1670
1671         if (th->doff < sizeof(struct tcphdr) / 4)
1672                 goto bad_packet;
1673         if (!pskb_may_pull(skb, th->doff * 4))
1674                 goto discard_it;
1675
1676         /* An explanation is required here, I think.
1677          * Packet length and doff are validated by header prediction,
1678          * provided case of th->doff==0 is eliminated.
1679          * So, we defer the checks. */
1680         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1681                 goto bad_packet;
1682
1683         th = tcp_hdr(skb);
1684         iph = ip_hdr(skb);
1685         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1686         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1687                                     skb->len - th->doff * 4);
1688         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1689         TCP_SKB_CB(skb)->when    = 0;
1690         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1691         TCP_SKB_CB(skb)->sacked  = 0;
1692
1693         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1694         if (!sk)
1695                 goto no_tcp_socket;
1696
1697 process:
1698         if (sk->sk_state == TCP_TIME_WAIT)
1699                 goto do_time_wait;
1700
1701         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1702                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1703                 goto discard_and_relse;
1704         }
1705
1706         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1707                 goto discard_and_relse;
1708         nf_reset(skb);
1709
1710         if (sk_filter(sk, skb))
1711                 goto discard_and_relse;
1712
1713         skb->dev = NULL;
1714
1715         bh_lock_sock_nested(sk);
1716         ret = 0;
1717         if (!sock_owned_by_user(sk)) {
1718 #ifdef CONFIG_NET_DMA
1719                 struct tcp_sock *tp = tcp_sk(sk);
1720                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1721                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1722                 if (tp->ucopy.dma_chan)
1723                         ret = tcp_v4_do_rcv(sk, skb);
1724                 else
1725 #endif
1726                 {
1727                         if (!tcp_prequeue(sk, skb))
1728                                 ret = tcp_v4_do_rcv(sk, skb);
1729                 }
1730         } else if (unlikely(sk_add_backlog(sk, skb))) {
1731                 bh_unlock_sock(sk);
1732                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1733                 goto discard_and_relse;
1734         }
1735         bh_unlock_sock(sk);
1736
1737         sock_put(sk);
1738
1739         return ret;
1740
1741 no_tcp_socket:
1742         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1743                 goto discard_it;
1744
1745         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1746 bad_packet:
1747                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1748         } else {
1749                 tcp_v4_send_reset(NULL, skb);
1750         }
1751
1752 discard_it:
1753         /* Discard frame. */
1754         kfree_skb(skb);
1755         return 0;
1756
1757 discard_and_relse:
1758         sock_put(sk);
1759         goto discard_it;
1760
1761 do_time_wait:
1762         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1763                 inet_twsk_put(inet_twsk(sk));
1764                 goto discard_it;
1765         }
1766
1767         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1768                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1769                 inet_twsk_put(inet_twsk(sk));
1770                 goto discard_it;
1771         }
1772         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1773         case TCP_TW_SYN: {
1774                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1775                                                         &tcp_hashinfo,
1776                                                         iph->daddr, th->dest,
1777                                                         inet_iif(skb));
1778                 if (sk2) {
1779                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1780                         inet_twsk_put(inet_twsk(sk));
1781                         sk = sk2;
1782                         goto process;
1783                 }
1784                 /* Fall through to ACK */
1785         }
1786         case TCP_TW_ACK:
1787                 tcp_v4_timewait_ack(sk, skb);
1788                 break;
1789         case TCP_TW_RST:
1790                 goto no_tcp_socket;
1791         case TCP_TW_SUCCESS:;
1792         }
1793         goto discard_it;
1794 }
1795
1796 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1797 {
1798         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1799         struct inet_sock *inet = inet_sk(sk);
1800         struct inet_peer *peer;
1801
1802         if (!rt ||
1803             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1804                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1805                 *release_it = true;
1806         } else {
1807                 if (!rt->peer)
1808                         rt_bind_peer(rt, inet->inet_daddr, 1);
1809                 peer = rt->peer;
1810                 *release_it = false;
1811         }
1812
1813         return peer;
1814 }
1815 EXPORT_SYMBOL(tcp_v4_get_peer);
1816
1817 void *tcp_v4_tw_get_peer(struct sock *sk)
1818 {
1819         const struct inet_timewait_sock *tw = inet_twsk(sk);
1820
1821         return inet_getpeer_v4(tw->tw_daddr, 1);
1822 }
1823 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1824
1825 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1826         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1827         .twsk_unique    = tcp_twsk_unique,
1828         .twsk_destructor= tcp_twsk_destructor,
1829         .twsk_getpeer   = tcp_v4_tw_get_peer,
1830 };
1831
1832 const struct inet_connection_sock_af_ops ipv4_specific = {
1833         .queue_xmit        = ip_queue_xmit,
1834         .send_check        = tcp_v4_send_check,
1835         .rebuild_header    = inet_sk_rebuild_header,
1836         .conn_request      = tcp_v4_conn_request,
1837         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1838         .get_peer          = tcp_v4_get_peer,
1839         .net_header_len    = sizeof(struct iphdr),
1840         .setsockopt        = ip_setsockopt,
1841         .getsockopt        = ip_getsockopt,
1842         .addr2sockaddr     = inet_csk_addr2sockaddr,
1843         .sockaddr_len      = sizeof(struct sockaddr_in),
1844         .bind_conflict     = inet_csk_bind_conflict,
1845 #ifdef CONFIG_COMPAT
1846         .compat_setsockopt = compat_ip_setsockopt,
1847         .compat_getsockopt = compat_ip_getsockopt,
1848 #endif
1849 };
1850 EXPORT_SYMBOL(ipv4_specific);
1851
1852 #ifdef CONFIG_TCP_MD5SIG
1853 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1854         .md5_lookup             = tcp_v4_md5_lookup,
1855         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1856         .md5_add                = tcp_v4_md5_add_func,
1857         .md5_parse              = tcp_v4_parse_md5_keys,
1858 };
1859 #endif
1860
1861 /* NOTE: A lot of things set to zero explicitly by call to
1862  *       sk_alloc() so need not be done here.
1863  */
1864 static int tcp_v4_init_sock(struct sock *sk)
1865 {
1866         struct inet_connection_sock *icsk = inet_csk(sk);
1867         struct tcp_sock *tp = tcp_sk(sk);
1868
1869         skb_queue_head_init(&tp->out_of_order_queue);
1870         tcp_init_xmit_timers(sk);
1871         tcp_prequeue_init(tp);
1872
1873         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1874         tp->mdev = TCP_TIMEOUT_INIT;
1875
1876         /* So many TCP implementations out there (incorrectly) count the
1877          * initial SYN frame in their delayed-ACK and congestion control
1878          * algorithms that we must have the following bandaid to talk
1879          * efficiently to them.  -DaveM
1880          */
1881         tp->snd_cwnd = TCP_INIT_CWND;
1882
1883         /* See draft-stevens-tcpca-spec-01 for discussion of the
1884          * initialization of these values.
1885          */
1886         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1887         tp->snd_cwnd_clamp = ~0;
1888         tp->mss_cache = TCP_MSS_DEFAULT;
1889
1890         tp->reordering = sysctl_tcp_reordering;
1891         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1892
1893         sk->sk_state = TCP_CLOSE;
1894
1895         sk->sk_write_space = sk_stream_write_space;
1896         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1897
1898         icsk->icsk_af_ops = &ipv4_specific;
1899         icsk->icsk_sync_mss = tcp_sync_mss;
1900 #ifdef CONFIG_TCP_MD5SIG
1901         tp->af_specific = &tcp_sock_ipv4_specific;
1902 #endif
1903
1904         /* TCP Cookie Transactions */
1905         if (sysctl_tcp_cookie_size > 0) {
1906                 /* Default, cookies without s_data_payload. */
1907                 tp->cookie_values =
1908                         kzalloc(sizeof(*tp->cookie_values),
1909                                 sk->sk_allocation);
1910                 if (tp->cookie_values != NULL)
1911                         kref_init(&tp->cookie_values->kref);
1912         }
1913         /* Presumed zeroed, in order of appearance:
1914          *      cookie_in_always, cookie_out_never,
1915          *      s_data_constant, s_data_in, s_data_out
1916          */
1917         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1918         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1919
1920         local_bh_disable();
1921         sock_update_memcg(sk);
1922         sk_sockets_allocated_inc(sk);
1923         local_bh_enable();
1924
1925         return 0;
1926 }
1927
1928 void tcp_v4_destroy_sock(struct sock *sk)
1929 {
1930         struct tcp_sock *tp = tcp_sk(sk);
1931
1932         tcp_clear_xmit_timers(sk);
1933
1934         tcp_cleanup_congestion_control(sk);
1935
1936         /* Cleanup up the write buffer. */
1937         tcp_write_queue_purge(sk);
1938
1939         /* Cleans up our, hopefully empty, out_of_order_queue. */
1940         __skb_queue_purge(&tp->out_of_order_queue);
1941
1942 #ifdef CONFIG_TCP_MD5SIG
1943         /* Clean up the MD5 key list, if any */
1944         if (tp->md5sig_info) {
1945                 tcp_v4_clear_md5_list(sk);
1946                 kfree(tp->md5sig_info);
1947                 tp->md5sig_info = NULL;
1948         }
1949 #endif
1950
1951 #ifdef CONFIG_NET_DMA
1952         /* Cleans up our sk_async_wait_queue */
1953         __skb_queue_purge(&sk->sk_async_wait_queue);
1954 #endif
1955
1956         /* Clean prequeue, it must be empty really */
1957         __skb_queue_purge(&tp->ucopy.prequeue);
1958
1959         /* Clean up a referenced TCP bind bucket. */
1960         if (inet_csk(sk)->icsk_bind_hash)
1961                 inet_put_port(sk);
1962
1963         /*
1964          * If sendmsg cached page exists, toss it.
1965          */
1966         if (sk->sk_sndmsg_page) {
1967                 __free_page(sk->sk_sndmsg_page);
1968                 sk->sk_sndmsg_page = NULL;
1969         }
1970
1971         /* TCP Cookie Transactions */
1972         if (tp->cookie_values != NULL) {
1973                 kref_put(&tp->cookie_values->kref,
1974                          tcp_cookie_values_release);
1975                 tp->cookie_values = NULL;
1976         }
1977
1978         sk_sockets_allocated_dec(sk);
1979         sock_release_memcg(sk);
1980 }
1981 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1982
1983 #ifdef CONFIG_PROC_FS
1984 /* Proc filesystem TCP sock list dumping. */
1985
1986 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1987 {
1988         return hlist_nulls_empty(head) ? NULL :
1989                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1990 }
1991
1992 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1993 {
1994         return !is_a_nulls(tw->tw_node.next) ?
1995                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1996 }
1997
1998 /*
1999  * Get next listener socket follow cur.  If cur is NULL, get first socket
2000  * starting from bucket given in st->bucket; when st->bucket is zero the
2001  * very first socket in the hash table is returned.
2002  */
2003 static void *listening_get_next(struct seq_file *seq, void *cur)
2004 {
2005         struct inet_connection_sock *icsk;
2006         struct hlist_nulls_node *node;
2007         struct sock *sk = cur;
2008         struct inet_listen_hashbucket *ilb;
2009         struct tcp_iter_state *st = seq->private;
2010         struct net *net = seq_file_net(seq);
2011
2012         if (!sk) {
2013                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2014                 spin_lock_bh(&ilb->lock);
2015                 sk = sk_nulls_head(&ilb->head);
2016                 st->offset = 0;
2017                 goto get_sk;
2018         }
2019         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2020         ++st->num;
2021         ++st->offset;
2022
2023         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2024                 struct request_sock *req = cur;
2025
2026                 icsk = inet_csk(st->syn_wait_sk);
2027                 req = req->dl_next;
2028                 while (1) {
2029                         while (req) {
2030                                 if (req->rsk_ops->family == st->family) {
2031                                         cur = req;
2032                                         goto out;
2033                                 }
2034                                 req = req->dl_next;
2035                         }
2036                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2037                                 break;
2038 get_req:
2039                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2040                 }
2041                 sk        = sk_nulls_next(st->syn_wait_sk);
2042                 st->state = TCP_SEQ_STATE_LISTENING;
2043                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2044         } else {
2045                 icsk = inet_csk(sk);
2046                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2047                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2048                         goto start_req;
2049                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2050                 sk = sk_nulls_next(sk);
2051         }
2052 get_sk:
2053         sk_nulls_for_each_from(sk, node) {
2054                 if (!net_eq(sock_net(sk), net))
2055                         continue;
2056                 if (sk->sk_family == st->family) {
2057                         cur = sk;
2058                         goto out;
2059                 }
2060                 icsk = inet_csk(sk);
2061                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2063 start_req:
2064                         st->uid         = sock_i_uid(sk);
2065                         st->syn_wait_sk = sk;
2066                         st->state       = TCP_SEQ_STATE_OPENREQ;
2067                         st->sbucket     = 0;
2068                         goto get_req;
2069                 }
2070                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2071         }
2072         spin_unlock_bh(&ilb->lock);
2073         st->offset = 0;
2074         if (++st->bucket < INET_LHTABLE_SIZE) {
2075                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2076                 spin_lock_bh(&ilb->lock);
2077                 sk = sk_nulls_head(&ilb->head);
2078                 goto get_sk;
2079         }
2080         cur = NULL;
2081 out:
2082         return cur;
2083 }
2084
2085 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2086 {
2087         struct tcp_iter_state *st = seq->private;
2088         void *rc;
2089
2090         st->bucket = 0;
2091         st->offset = 0;
2092         rc = listening_get_next(seq, NULL);
2093
2094         while (rc && *pos) {
2095                 rc = listening_get_next(seq, rc);
2096                 --*pos;
2097         }
2098         return rc;
2099 }
2100
2101 static inline int empty_bucket(struct tcp_iter_state *st)
2102 {
2103         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2104                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2105 }
2106
2107 /*
2108  * Get first established socket starting from bucket given in st->bucket.
2109  * If st->bucket is zero, the very first socket in the hash is returned.
2110  */
2111 static void *established_get_first(struct seq_file *seq)
2112 {
2113         struct tcp_iter_state *st = seq->private;
2114         struct net *net = seq_file_net(seq);
2115         void *rc = NULL;
2116
2117         st->offset = 0;
2118         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2119                 struct sock *sk;
2120                 struct hlist_nulls_node *node;
2121                 struct inet_timewait_sock *tw;
2122                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2123
2124                 /* Lockless fast path for the common case of empty buckets */
2125                 if (empty_bucket(st))
2126                         continue;
2127
2128                 spin_lock_bh(lock);
2129                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2130                         if (sk->sk_family != st->family ||
2131                             !net_eq(sock_net(sk), net)) {
2132                                 continue;
2133                         }
2134                         rc = sk;
2135                         goto out;
2136                 }
2137                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2138                 inet_twsk_for_each(tw, node,
2139                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2140                         if (tw->tw_family != st->family ||
2141                             !net_eq(twsk_net(tw), net)) {
2142                                 continue;
2143                         }
2144                         rc = tw;
2145                         goto out;
2146                 }
2147                 spin_unlock_bh(lock);
2148                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2149         }
2150 out:
2151         return rc;
2152 }
2153
2154 static void *established_get_next(struct seq_file *seq, void *cur)
2155 {
2156         struct sock *sk = cur;
2157         struct inet_timewait_sock *tw;
2158         struct hlist_nulls_node *node;
2159         struct tcp_iter_state *st = seq->private;
2160         struct net *net = seq_file_net(seq);
2161
2162         ++st->num;
2163         ++st->offset;
2164
2165         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2166                 tw = cur;
2167                 tw = tw_next(tw);
2168 get_tw:
2169                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2170                         tw = tw_next(tw);
2171                 }
2172                 if (tw) {
2173                         cur = tw;
2174                         goto out;
2175                 }
2176                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2177                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2178
2179                 /* Look for next non empty bucket */
2180                 st->offset = 0;
2181                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2182                                 empty_bucket(st))
2183                         ;
2184                 if (st->bucket > tcp_hashinfo.ehash_mask)
2185                         return NULL;
2186
2187                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2188                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2189         } else
2190                 sk = sk_nulls_next(sk);
2191
2192         sk_nulls_for_each_from(sk, node) {
2193                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2194                         goto found;
2195         }
2196
2197         st->state = TCP_SEQ_STATE_TIME_WAIT;
2198         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2199         goto get_tw;
2200 found:
2201         cur = sk;
2202 out:
2203         return cur;
2204 }
2205
2206 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2207 {
2208         struct tcp_iter_state *st = seq->private;
2209         void *rc;
2210
2211         st->bucket = 0;
2212         rc = established_get_first(seq);
2213
2214         while (rc && pos) {
2215                 rc = established_get_next(seq, rc);
2216                 --pos;
2217         }
2218         return rc;
2219 }
2220
2221 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2222 {
2223         void *rc;
2224         struct tcp_iter_state *st = seq->private;
2225
2226         st->state = TCP_SEQ_STATE_LISTENING;
2227         rc        = listening_get_idx(seq, &pos);
2228
2229         if (!rc) {
2230                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2231                 rc        = established_get_idx(seq, pos);
2232         }
2233
2234         return rc;
2235 }
2236
2237 static void *tcp_seek_last_pos(struct seq_file *seq)
2238 {
2239         struct tcp_iter_state *st = seq->private;
2240         int offset = st->offset;
2241         int orig_num = st->num;
2242         void *rc = NULL;
2243
2244         switch (st->state) {
2245         case TCP_SEQ_STATE_OPENREQ:
2246         case TCP_SEQ_STATE_LISTENING:
2247                 if (st->bucket >= INET_LHTABLE_SIZE)
2248                         break;
2249                 st->state = TCP_SEQ_STATE_LISTENING;
2250                 rc = listening_get_next(seq, NULL);
2251                 while (offset-- && rc)
2252                         rc = listening_get_next(seq, rc);
2253                 if (rc)
2254                         break;
2255                 st->bucket = 0;
2256                 /* Fallthrough */
2257         case TCP_SEQ_STATE_ESTABLISHED:
2258         case TCP_SEQ_STATE_TIME_WAIT:
2259                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2260                 if (st->bucket > tcp_hashinfo.ehash_mask)
2261                         break;
2262                 rc = established_get_first(seq);
2263                 while (offset-- && rc)
2264                         rc = established_get_next(seq, rc);
2265         }
2266
2267         st->num = orig_num;
2268
2269         return rc;
2270 }
2271
2272 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2273 {
2274         struct tcp_iter_state *st = seq->private;
2275         void *rc;
2276
2277         if (*pos && *pos == st->last_pos) {
2278                 rc = tcp_seek_last_pos(seq);
2279                 if (rc)
2280                         goto out;
2281         }
2282
2283         st->state = TCP_SEQ_STATE_LISTENING;
2284         st->num = 0;
2285         st->bucket = 0;
2286         st->offset = 0;
2287         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2288
2289 out:
2290         st->last_pos = *pos;
2291         return rc;
2292 }
2293
2294 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2295 {
2296         struct tcp_iter_state *st = seq->private;
2297         void *rc = NULL;
2298
2299         if (v == SEQ_START_TOKEN) {
2300                 rc = tcp_get_idx(seq, 0);
2301                 goto out;
2302         }
2303
2304         switch (st->state) {
2305         case TCP_SEQ_STATE_OPENREQ:
2306         case TCP_SEQ_STATE_LISTENING:
2307                 rc = listening_get_next(seq, v);
2308                 if (!rc) {
2309                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2310                         st->bucket = 0;
2311                         st->offset = 0;
2312                         rc        = established_get_first(seq);
2313                 }
2314                 break;
2315         case TCP_SEQ_STATE_ESTABLISHED:
2316         case TCP_SEQ_STATE_TIME_WAIT:
2317                 rc = established_get_next(seq, v);
2318                 break;
2319         }
2320 out:
2321         ++*pos;
2322         st->last_pos = *pos;
2323         return rc;
2324 }
2325
2326 static void tcp_seq_stop(struct seq_file *seq, void *v)
2327 {
2328         struct tcp_iter_state *st = seq->private;
2329
2330         switch (st->state) {
2331         case TCP_SEQ_STATE_OPENREQ:
2332                 if (v) {
2333                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2334                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2335                 }
2336         case TCP_SEQ_STATE_LISTENING:
2337                 if (v != SEQ_START_TOKEN)
2338                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2339                 break;
2340         case TCP_SEQ_STATE_TIME_WAIT:
2341         case TCP_SEQ_STATE_ESTABLISHED:
2342                 if (v)
2343                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2344                 break;
2345         }
2346 }
2347
2348 int tcp_seq_open(struct inode *inode, struct file *file)
2349 {
2350         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2351         struct tcp_iter_state *s;
2352         int err;
2353
2354         err = seq_open_net(inode, file, &afinfo->seq_ops,
2355                           sizeof(struct tcp_iter_state));
2356         if (err < 0)
2357                 return err;
2358
2359         s = ((struct seq_file *)file->private_data)->private;
2360         s->family               = afinfo->family;
2361         s->last_pos             = 0;
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(tcp_seq_open);
2365
2366 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2367 {
2368         int rc = 0;
2369         struct proc_dir_entry *p;
2370
2371         afinfo->seq_ops.start           = tcp_seq_start;
2372         afinfo->seq_ops.next            = tcp_seq_next;
2373         afinfo->seq_ops.stop            = tcp_seq_stop;
2374
2375         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2376                              afinfo->seq_fops, afinfo);
2377         if (!p)
2378                 rc = -ENOMEM;
2379         return rc;
2380 }
2381 EXPORT_SYMBOL(tcp_proc_register);
2382
2383 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2384 {
2385         proc_net_remove(net, afinfo->name);
2386 }
2387 EXPORT_SYMBOL(tcp_proc_unregister);
2388
2389 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2390                          struct seq_file *f, int i, int uid, int *len)
2391 {
2392         const struct inet_request_sock *ireq = inet_rsk(req);
2393         int ttd = req->expires - jiffies;
2394
2395         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2396                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2397                 i,
2398                 ireq->loc_addr,
2399                 ntohs(inet_sk(sk)->inet_sport),
2400                 ireq->rmt_addr,
2401                 ntohs(ireq->rmt_port),
2402                 TCP_SYN_RECV,
2403                 0, 0, /* could print option size, but that is af dependent. */
2404                 1,    /* timers active (only the expire timer) */
2405                 jiffies_to_clock_t(ttd),
2406                 req->retrans,
2407                 uid,
2408                 0,  /* non standard timer */
2409                 0, /* open_requests have no inode */
2410                 atomic_read(&sk->sk_refcnt),
2411                 req,
2412                 len);
2413 }
2414
2415 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2416 {
2417         int timer_active;
2418         unsigned long timer_expires;
2419         const struct tcp_sock *tp = tcp_sk(sk);
2420         const struct inet_connection_sock *icsk = inet_csk(sk);
2421         const struct inet_sock *inet = inet_sk(sk);
2422         __be32 dest = inet->inet_daddr;
2423         __be32 src = inet->inet_rcv_saddr;
2424         __u16 destp = ntohs(inet->inet_dport);
2425         __u16 srcp = ntohs(inet->inet_sport);
2426         int rx_queue;
2427
2428         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2429                 timer_active    = 1;
2430                 timer_expires   = icsk->icsk_timeout;
2431         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2432                 timer_active    = 4;
2433                 timer_expires   = icsk->icsk_timeout;
2434         } else if (timer_pending(&sk->sk_timer)) {
2435                 timer_active    = 2;
2436                 timer_expires   = sk->sk_timer.expires;
2437         } else {
2438                 timer_active    = 0;
2439                 timer_expires = jiffies;
2440         }
2441
2442         if (sk->sk_state == TCP_LISTEN)
2443                 rx_queue = sk->sk_ack_backlog;
2444         else
2445                 /*
2446                  * because we dont lock socket, we might find a transient negative value
2447                  */
2448                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2449
2450         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2451                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2452                 i, src, srcp, dest, destp, sk->sk_state,
2453                 tp->write_seq - tp->snd_una,
2454                 rx_queue,
2455                 timer_active,
2456                 jiffies_to_clock_t(timer_expires - jiffies),
2457                 icsk->icsk_retransmits,
2458                 sock_i_uid(sk),
2459                 icsk->icsk_probes_out,
2460                 sock_i_ino(sk),
2461                 atomic_read(&sk->sk_refcnt), sk,
2462                 jiffies_to_clock_t(icsk->icsk_rto),
2463                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2464                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2465                 tp->snd_cwnd,
2466                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2467                 len);
2468 }
2469
2470 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2471                                struct seq_file *f, int i, int *len)
2472 {
2473         __be32 dest, src;
2474         __u16 destp, srcp;
2475         int ttd = tw->tw_ttd - jiffies;
2476
2477         if (ttd < 0)
2478                 ttd = 0;
2479
2480         dest  = tw->tw_daddr;
2481         src   = tw->tw_rcv_saddr;
2482         destp = ntohs(tw->tw_dport);
2483         srcp  = ntohs(tw->tw_sport);
2484
2485         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2486                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2487                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2488                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2489                 atomic_read(&tw->tw_refcnt), tw, len);
2490 }
2491
2492 #define TMPSZ 150
2493
2494 static int tcp4_seq_show(struct seq_file *seq, void *v)
2495 {
2496         struct tcp_iter_state *st;
2497         int len;
2498
2499         if (v == SEQ_START_TOKEN) {
2500                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2501                            "  sl  local_address rem_address   st tx_queue "
2502                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2503                            "inode");
2504                 goto out;
2505         }
2506         st = seq->private;
2507
2508         switch (st->state) {
2509         case TCP_SEQ_STATE_LISTENING:
2510         case TCP_SEQ_STATE_ESTABLISHED:
2511                 get_tcp4_sock(v, seq, st->num, &len);
2512                 break;
2513         case TCP_SEQ_STATE_OPENREQ:
2514                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2515                 break;
2516         case TCP_SEQ_STATE_TIME_WAIT:
2517                 get_timewait4_sock(v, seq, st->num, &len);
2518                 break;
2519         }
2520         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2521 out:
2522         return 0;
2523 }
2524
2525 static const struct file_operations tcp_afinfo_seq_fops = {
2526         .owner   = THIS_MODULE,
2527         .open    = tcp_seq_open,
2528         .read    = seq_read,
2529         .llseek  = seq_lseek,
2530         .release = seq_release_net
2531 };
2532
2533 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2534         .name           = "tcp",
2535         .family         = AF_INET,
2536         .seq_fops       = &tcp_afinfo_seq_fops,
2537         .seq_ops        = {
2538                 .show           = tcp4_seq_show,
2539         },
2540 };
2541
2542 static int __net_init tcp4_proc_init_net(struct net *net)
2543 {
2544         return tcp_proc_register(net, &tcp4_seq_afinfo);
2545 }
2546
2547 static void __net_exit tcp4_proc_exit_net(struct net *net)
2548 {
2549         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2550 }
2551
2552 static struct pernet_operations tcp4_net_ops = {
2553         .init = tcp4_proc_init_net,
2554         .exit = tcp4_proc_exit_net,
2555 };
2556
2557 int __init tcp4_proc_init(void)
2558 {
2559         return register_pernet_subsys(&tcp4_net_ops);
2560 }
2561
2562 void tcp4_proc_exit(void)
2563 {
2564         unregister_pernet_subsys(&tcp4_net_ops);
2565 }
2566 #endif /* CONFIG_PROC_FS */
2567
2568 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2569 {
2570         const struct iphdr *iph = skb_gro_network_header(skb);
2571
2572         switch (skb->ip_summed) {
2573         case CHECKSUM_COMPLETE:
2574                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2575                                   skb->csum)) {
2576                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2577                         break;
2578                 }
2579
2580                 /* fall through */
2581         case CHECKSUM_NONE:
2582                 NAPI_GRO_CB(skb)->flush = 1;
2583                 return NULL;
2584         }
2585
2586         return tcp_gro_receive(head, skb);
2587 }
2588
2589 int tcp4_gro_complete(struct sk_buff *skb)
2590 {
2591         const struct iphdr *iph = ip_hdr(skb);
2592         struct tcphdr *th = tcp_hdr(skb);
2593
2594         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2595                                   iph->saddr, iph->daddr, 0);
2596         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2597
2598         return tcp_gro_complete(skb);
2599 }
2600
2601 struct proto tcp_prot = {
2602         .name                   = "TCP",
2603         .owner                  = THIS_MODULE,
2604         .close                  = tcp_close,
2605         .connect                = tcp_v4_connect,
2606         .disconnect             = tcp_disconnect,
2607         .accept                 = inet_csk_accept,
2608         .ioctl                  = tcp_ioctl,
2609         .init                   = tcp_v4_init_sock,
2610         .destroy                = tcp_v4_destroy_sock,
2611         .shutdown               = tcp_shutdown,
2612         .setsockopt             = tcp_setsockopt,
2613         .getsockopt             = tcp_getsockopt,
2614         .recvmsg                = tcp_recvmsg,
2615         .sendmsg                = tcp_sendmsg,
2616         .sendpage               = tcp_sendpage,
2617         .backlog_rcv            = tcp_v4_do_rcv,
2618         .hash                   = inet_hash,
2619         .unhash                 = inet_unhash,
2620         .get_port               = inet_csk_get_port,
2621         .enter_memory_pressure  = tcp_enter_memory_pressure,
2622         .sockets_allocated      = &tcp_sockets_allocated,
2623         .orphan_count           = &tcp_orphan_count,
2624         .memory_allocated       = &tcp_memory_allocated,
2625         .memory_pressure        = &tcp_memory_pressure,
2626         .sysctl_wmem            = sysctl_tcp_wmem,
2627         .sysctl_rmem            = sysctl_tcp_rmem,
2628         .max_header             = MAX_TCP_HEADER,
2629         .obj_size               = sizeof(struct tcp_sock),
2630         .slab_flags             = SLAB_DESTROY_BY_RCU,
2631         .twsk_prot              = &tcp_timewait_sock_ops,
2632         .rsk_prot               = &tcp_request_sock_ops,
2633         .h.hashinfo             = &tcp_hashinfo,
2634         .no_autobind            = true,
2635 #ifdef CONFIG_COMPAT
2636         .compat_setsockopt      = compat_tcp_setsockopt,
2637         .compat_getsockopt      = compat_tcp_getsockopt,
2638 #endif
2639 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2640         .init_cgroup            = tcp_init_cgroup,
2641         .destroy_cgroup         = tcp_destroy_cgroup,
2642         .proto_cgroup           = tcp_proto_cgroup,
2643 #endif
2644 };
2645 EXPORT_SYMBOL(tcp_prot);
2646
2647 static int __net_init tcp_sk_init(struct net *net)
2648 {
2649         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2650                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2651 }
2652
2653 static void __net_exit tcp_sk_exit(struct net *net)
2654 {
2655         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2656 }
2657
2658 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2659 {
2660         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2661 }
2662
2663 static struct pernet_operations __net_initdata tcp_sk_ops = {
2664        .init       = tcp_sk_init,
2665        .exit       = tcp_sk_exit,
2666        .exit_batch = tcp_sk_exit_batch,
2667 };
2668
2669 void __init tcp_v4_init(void)
2670 {
2671         inet_hashinfo_init(&tcp_hashinfo);
2672         if (register_pernet_subsys(&tcp_sk_ops))
2673                 panic("Failed to create the TCP control socket.\n");
2674 }