]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/openvswitch/actions.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / net / openvswitch / actions.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44                               struct sw_flow_key *key,
45                               const struct nlattr *attr, int len);
46
47 struct deferred_action {
48         struct sk_buff *skb;
49         const struct nlattr *actions;
50
51         /* Store pkt_key clone when creating deferred action. */
52         struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57         int head;
58         int tail;
59         /* Deferred action fifo queue storage. */
60         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68         fifo->head = 0;
69         fifo->tail = 0;
70 }
71
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74         return (fifo->head == fifo->tail);
75 }
76
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79         if (action_fifo_is_empty(fifo))
80                 return NULL;
81
82         return &fifo->fifo[fifo->tail++];
83 }
84
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88                 return NULL;
89
90         return &fifo->fifo[fifo->head++];
91 }
92
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95                                                     const struct sw_flow_key *key,
96                                                     const struct nlattr *attr)
97 {
98         struct action_fifo *fifo;
99         struct deferred_action *da;
100
101         fifo = this_cpu_ptr(action_fifos);
102         da = action_fifo_put(fifo);
103         if (da) {
104                 da->skb = skb;
105                 da->actions = attr;
106                 da->pkt_key = *key;
107         }
108
109         return da;
110 }
111
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114         key->eth.type = htons(0);
115 }
116
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119         return !!key->eth.type;
120 }
121
122 static int make_writable(struct sk_buff *skb, int write_len)
123 {
124         if (!pskb_may_pull(skb, write_len))
125                 return -ENOMEM;
126
127         if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
128                 return 0;
129
130         return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
131 }
132
133 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
134                      const struct ovs_action_push_mpls *mpls)
135 {
136         __be32 *new_mpls_lse;
137         struct ethhdr *hdr;
138
139         /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
140         if (skb->encapsulation)
141                 return -ENOTSUPP;
142
143         if (skb_cow_head(skb, MPLS_HLEN) < 0)
144                 return -ENOMEM;
145
146         skb_push(skb, MPLS_HLEN);
147         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
148                 skb->mac_len);
149         skb_reset_mac_header(skb);
150
151         new_mpls_lse = (__be32 *)skb_mpls_header(skb);
152         *new_mpls_lse = mpls->mpls_lse;
153
154         if (skb->ip_summed == CHECKSUM_COMPLETE)
155                 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
156                                                              MPLS_HLEN, 0));
157
158         hdr = eth_hdr(skb);
159         hdr->h_proto = mpls->mpls_ethertype;
160
161         skb_set_inner_protocol(skb, skb->protocol);
162         skb->protocol = mpls->mpls_ethertype;
163
164         invalidate_flow_key(key);
165         return 0;
166 }
167
168 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
169                     const __be16 ethertype)
170 {
171         struct ethhdr *hdr;
172         int err;
173
174         err = make_writable(skb, skb->mac_len + MPLS_HLEN);
175         if (unlikely(err))
176                 return err;
177
178         if (skb->ip_summed == CHECKSUM_COMPLETE)
179                 skb->csum = csum_sub(skb->csum,
180                                      csum_partial(skb_mpls_header(skb),
181                                                   MPLS_HLEN, 0));
182
183         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
184                 skb->mac_len);
185
186         __skb_pull(skb, MPLS_HLEN);
187         skb_reset_mac_header(skb);
188
189         /* skb_mpls_header() is used to locate the ethertype
190          * field correctly in the presence of VLAN tags.
191          */
192         hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
193         hdr->h_proto = ethertype;
194         if (eth_p_mpls(skb->protocol))
195                 skb->protocol = ethertype;
196
197         invalidate_flow_key(key);
198         return 0;
199 }
200
201 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
202                     const __be32 *mpls_lse)
203 {
204         __be32 *stack;
205         int err;
206
207         err = make_writable(skb, skb->mac_len + MPLS_HLEN);
208         if (unlikely(err))
209                 return err;
210
211         stack = (__be32 *)skb_mpls_header(skb);
212         if (skb->ip_summed == CHECKSUM_COMPLETE) {
213                 __be32 diff[] = { ~(*stack), *mpls_lse };
214                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
215                                           ~skb->csum);
216         }
217
218         *stack = *mpls_lse;
219         key->mpls.top_lse = *mpls_lse;
220         return 0;
221 }
222
223 /* remove VLAN header from packet and update csum accordingly. */
224 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
225 {
226         struct vlan_hdr *vhdr;
227         int err;
228
229         err = make_writable(skb, VLAN_ETH_HLEN);
230         if (unlikely(err))
231                 return err;
232
233         if (skb->ip_summed == CHECKSUM_COMPLETE)
234                 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
235                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
236
237         vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
238         *current_tci = vhdr->h_vlan_TCI;
239
240         memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
241         __skb_pull(skb, VLAN_HLEN);
242
243         vlan_set_encap_proto(skb, vhdr);
244         skb->mac_header += VLAN_HLEN;
245
246         if (skb_network_offset(skb) < ETH_HLEN)
247                 skb_set_network_header(skb, ETH_HLEN);
248
249         /* Update mac_len for subsequent MPLS actions */
250         skb_reset_mac_len(skb);
251         return 0;
252 }
253
254 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256         __be16 tci;
257         int err;
258
259         if (likely(vlan_tx_tag_present(skb))) {
260                 skb->vlan_tci = 0;
261         } else {
262                 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
263                              skb->len < VLAN_ETH_HLEN))
264                         return 0;
265
266                 err = __pop_vlan_tci(skb, &tci);
267                 if (err)
268                         return err;
269         }
270         /* move next vlan tag to hw accel tag */
271         if (likely(skb->protocol != htons(ETH_P_8021Q) ||
272                    skb->len < VLAN_ETH_HLEN)) {
273                 key->eth.tci = 0;
274                 return 0;
275         }
276
277         invalidate_flow_key(key);
278         err = __pop_vlan_tci(skb, &tci);
279         if (unlikely(err))
280                 return err;
281
282         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
283         return 0;
284 }
285
286 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
287                      const struct ovs_action_push_vlan *vlan)
288 {
289         if (unlikely(vlan_tx_tag_present(skb))) {
290                 u16 current_tag;
291
292                 /* push down current VLAN tag */
293                 current_tag = vlan_tx_tag_get(skb);
294
295                 if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
296                         return -ENOMEM;
297                 /* Update mac_len for subsequent MPLS actions */
298                 skb->mac_len += VLAN_HLEN;
299
300                 if (skb->ip_summed == CHECKSUM_COMPLETE)
301                         skb->csum = csum_add(skb->csum, csum_partial(skb->data
302                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
303
304                 invalidate_flow_key(key);
305         } else {
306                 key->eth.tci = vlan->vlan_tci;
307         }
308         __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
309         return 0;
310 }
311
312 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
313                         const struct ovs_key_ethernet *eth_key)
314 {
315         int err;
316         err = make_writable(skb, ETH_HLEN);
317         if (unlikely(err))
318                 return err;
319
320         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
321
322         ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
323         ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
324
325         ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
326
327         ether_addr_copy(key->eth.src, eth_key->eth_src);
328         ether_addr_copy(key->eth.dst, eth_key->eth_dst);
329         return 0;
330 }
331
332 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
333                         __be32 *addr, __be32 new_addr)
334 {
335         int transport_len = skb->len - skb_transport_offset(skb);
336
337         if (nh->protocol == IPPROTO_TCP) {
338                 if (likely(transport_len >= sizeof(struct tcphdr)))
339                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
340                                                  *addr, new_addr, 1);
341         } else if (nh->protocol == IPPROTO_UDP) {
342                 if (likely(transport_len >= sizeof(struct udphdr))) {
343                         struct udphdr *uh = udp_hdr(skb);
344
345                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
346                                 inet_proto_csum_replace4(&uh->check, skb,
347                                                          *addr, new_addr, 1);
348                                 if (!uh->check)
349                                         uh->check = CSUM_MANGLED_0;
350                         }
351                 }
352         }
353
354         csum_replace4(&nh->check, *addr, new_addr);
355         skb_clear_hash(skb);
356         *addr = new_addr;
357 }
358
359 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
360                                  __be32 addr[4], const __be32 new_addr[4])
361 {
362         int transport_len = skb->len - skb_transport_offset(skb);
363
364         if (l4_proto == IPPROTO_TCP) {
365                 if (likely(transport_len >= sizeof(struct tcphdr)))
366                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
367                                                   addr, new_addr, 1);
368         } else if (l4_proto == IPPROTO_UDP) {
369                 if (likely(transport_len >= sizeof(struct udphdr))) {
370                         struct udphdr *uh = udp_hdr(skb);
371
372                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
373                                 inet_proto_csum_replace16(&uh->check, skb,
374                                                           addr, new_addr, 1);
375                                 if (!uh->check)
376                                         uh->check = CSUM_MANGLED_0;
377                         }
378                 }
379         }
380 }
381
382 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
383                           __be32 addr[4], const __be32 new_addr[4],
384                           bool recalculate_csum)
385 {
386         if (recalculate_csum)
387                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
388
389         skb_clear_hash(skb);
390         memcpy(addr, new_addr, sizeof(__be32[4]));
391 }
392
393 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
394 {
395         nh->priority = tc >> 4;
396         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
397 }
398
399 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
400 {
401         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
402         nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
403         nh->flow_lbl[2] = fl & 0x000000FF;
404 }
405
406 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
407 {
408         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
409         nh->ttl = new_ttl;
410 }
411
412 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
413                     const struct ovs_key_ipv4 *ipv4_key)
414 {
415         struct iphdr *nh;
416         int err;
417
418         err = make_writable(skb, skb_network_offset(skb) +
419                                  sizeof(struct iphdr));
420         if (unlikely(err))
421                 return err;
422
423         nh = ip_hdr(skb);
424
425         if (ipv4_key->ipv4_src != nh->saddr) {
426                 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
427                 key->ipv4.addr.src = ipv4_key->ipv4_src;
428         }
429
430         if (ipv4_key->ipv4_dst != nh->daddr) {
431                 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
432                 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
433         }
434
435         if (ipv4_key->ipv4_tos != nh->tos) {
436                 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
437                 key->ip.tos = nh->tos;
438         }
439
440         if (ipv4_key->ipv4_ttl != nh->ttl) {
441                 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
442                 key->ip.ttl = ipv4_key->ipv4_ttl;
443         }
444
445         return 0;
446 }
447
448 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
449                     const struct ovs_key_ipv6 *ipv6_key)
450 {
451         struct ipv6hdr *nh;
452         int err;
453         __be32 *saddr;
454         __be32 *daddr;
455
456         err = make_writable(skb, skb_network_offset(skb) +
457                             sizeof(struct ipv6hdr));
458         if (unlikely(err))
459                 return err;
460
461         nh = ipv6_hdr(skb);
462         saddr = (__be32 *)&nh->saddr;
463         daddr = (__be32 *)&nh->daddr;
464
465         if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
466                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
467                               ipv6_key->ipv6_src, true);
468                 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
469                        sizeof(ipv6_key->ipv6_src));
470         }
471
472         if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
473                 unsigned int offset = 0;
474                 int flags = IP6_FH_F_SKIP_RH;
475                 bool recalc_csum = true;
476
477                 if (ipv6_ext_hdr(nh->nexthdr))
478                         recalc_csum = ipv6_find_hdr(skb, &offset,
479                                                     NEXTHDR_ROUTING, NULL,
480                                                     &flags) != NEXTHDR_ROUTING;
481
482                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
483                               ipv6_key->ipv6_dst, recalc_csum);
484                 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
485                        sizeof(ipv6_key->ipv6_dst));
486         }
487
488         set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
489         key->ip.tos = ipv6_get_dsfield(nh);
490
491         set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
492         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
493
494         nh->hop_limit = ipv6_key->ipv6_hlimit;
495         key->ip.ttl = ipv6_key->ipv6_hlimit;
496         return 0;
497 }
498
499 /* Must follow make_writable() since that can move the skb data. */
500 static void set_tp_port(struct sk_buff *skb, __be16 *port,
501                          __be16 new_port, __sum16 *check)
502 {
503         inet_proto_csum_replace2(check, skb, *port, new_port, 0);
504         *port = new_port;
505         skb_clear_hash(skb);
506 }
507
508 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
509 {
510         struct udphdr *uh = udp_hdr(skb);
511
512         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
513                 set_tp_port(skb, port, new_port, &uh->check);
514
515                 if (!uh->check)
516                         uh->check = CSUM_MANGLED_0;
517         } else {
518                 *port = new_port;
519                 skb_clear_hash(skb);
520         }
521 }
522
523 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
524                    const struct ovs_key_udp *udp_port_key)
525 {
526         struct udphdr *uh;
527         int err;
528
529         err = make_writable(skb, skb_transport_offset(skb) +
530                                  sizeof(struct udphdr));
531         if (unlikely(err))
532                 return err;
533
534         uh = udp_hdr(skb);
535         if (udp_port_key->udp_src != uh->source) {
536                 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
537                 key->tp.src = udp_port_key->udp_src;
538         }
539
540         if (udp_port_key->udp_dst != uh->dest) {
541                 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
542                 key->tp.dst = udp_port_key->udp_dst;
543         }
544
545         return 0;
546 }
547
548 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
549                    const struct ovs_key_tcp *tcp_port_key)
550 {
551         struct tcphdr *th;
552         int err;
553
554         err = make_writable(skb, skb_transport_offset(skb) +
555                                  sizeof(struct tcphdr));
556         if (unlikely(err))
557                 return err;
558
559         th = tcp_hdr(skb);
560         if (tcp_port_key->tcp_src != th->source) {
561                 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
562                 key->tp.src = tcp_port_key->tcp_src;
563         }
564
565         if (tcp_port_key->tcp_dst != th->dest) {
566                 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
567                 key->tp.dst = tcp_port_key->tcp_dst;
568         }
569
570         return 0;
571 }
572
573 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
574                     const struct ovs_key_sctp *sctp_port_key)
575 {
576         struct sctphdr *sh;
577         int err;
578         unsigned int sctphoff = skb_transport_offset(skb);
579
580         err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
581         if (unlikely(err))
582                 return err;
583
584         sh = sctp_hdr(skb);
585         if (sctp_port_key->sctp_src != sh->source ||
586             sctp_port_key->sctp_dst != sh->dest) {
587                 __le32 old_correct_csum, new_csum, old_csum;
588
589                 old_csum = sh->checksum;
590                 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
591
592                 sh->source = sctp_port_key->sctp_src;
593                 sh->dest = sctp_port_key->sctp_dst;
594
595                 new_csum = sctp_compute_cksum(skb, sctphoff);
596
597                 /* Carry any checksum errors through. */
598                 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
599
600                 skb_clear_hash(skb);
601                 key->tp.src = sctp_port_key->sctp_src;
602                 key->tp.dst = sctp_port_key->sctp_dst;
603         }
604
605         return 0;
606 }
607
608 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
609 {
610         struct vport *vport = ovs_vport_rcu(dp, out_port);
611
612         if (likely(vport))
613                 ovs_vport_send(vport, skb);
614         else
615                 kfree_skb(skb);
616 }
617
618 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
619                             struct sw_flow_key *key, const struct nlattr *attr)
620 {
621         struct ovs_tunnel_info info;
622         struct dp_upcall_info upcall;
623         const struct nlattr *a;
624         int rem;
625
626         upcall.cmd = OVS_PACKET_CMD_ACTION;
627         upcall.userdata = NULL;
628         upcall.portid = 0;
629         upcall.egress_tun_info = NULL;
630
631         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
632                  a = nla_next(a, &rem)) {
633                 switch (nla_type(a)) {
634                 case OVS_USERSPACE_ATTR_USERDATA:
635                         upcall.userdata = a;
636                         break;
637
638                 case OVS_USERSPACE_ATTR_PID:
639                         upcall.portid = nla_get_u32(a);
640                         break;
641
642                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
643                         /* Get out tunnel info. */
644                         struct vport *vport;
645
646                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
647                         if (vport) {
648                                 int err;
649
650                                 err = ovs_vport_get_egress_tun_info(vport, skb,
651                                                                     &info);
652                                 if (!err)
653                                         upcall.egress_tun_info = &info;
654                         }
655                         break;
656                 }
657
658                 } /* End of switch. */
659         }
660
661         return ovs_dp_upcall(dp, skb, key, &upcall);
662 }
663
664 static int sample(struct datapath *dp, struct sk_buff *skb,
665                   struct sw_flow_key *key, const struct nlattr *attr)
666 {
667         const struct nlattr *acts_list = NULL;
668         const struct nlattr *a;
669         int rem;
670
671         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
672                  a = nla_next(a, &rem)) {
673                 switch (nla_type(a)) {
674                 case OVS_SAMPLE_ATTR_PROBABILITY:
675                         if (prandom_u32() >= nla_get_u32(a))
676                                 return 0;
677                         break;
678
679                 case OVS_SAMPLE_ATTR_ACTIONS:
680                         acts_list = a;
681                         break;
682                 }
683         }
684
685         rem = nla_len(acts_list);
686         a = nla_data(acts_list);
687
688         /* Actions list is empty, do nothing */
689         if (unlikely(!rem))
690                 return 0;
691
692         /* The only known usage of sample action is having a single user-space
693          * action. Treat this usage as a special case.
694          * The output_userspace() should clone the skb to be sent to the
695          * user space. This skb will be consumed by its caller.
696          */
697         if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
698                    nla_is_last(a, rem)))
699                 return output_userspace(dp, skb, key, a);
700
701         skb = skb_clone(skb, GFP_ATOMIC);
702         if (!skb)
703                 /* Skip the sample action when out of memory. */
704                 return 0;
705
706         if (!add_deferred_actions(skb, key, a)) {
707                 if (net_ratelimit())
708                         pr_warn("%s: deferred actions limit reached, dropping sample action\n",
709                                 ovs_dp_name(dp));
710
711                 kfree_skb(skb);
712         }
713         return 0;
714 }
715
716 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
717                          const struct nlattr *attr)
718 {
719         struct ovs_action_hash *hash_act = nla_data(attr);
720         u32 hash = 0;
721
722         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
723         hash = skb_get_hash(skb);
724         hash = jhash_1word(hash, hash_act->hash_basis);
725         if (!hash)
726                 hash = 0x1;
727
728         key->ovs_flow_hash = hash;
729 }
730
731 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
732                               const struct nlattr *nested_attr)
733 {
734         int err = 0;
735
736         switch (nla_type(nested_attr)) {
737         case OVS_KEY_ATTR_PRIORITY:
738                 skb->priority = nla_get_u32(nested_attr);
739                 key->phy.priority = skb->priority;
740                 break;
741
742         case OVS_KEY_ATTR_SKB_MARK:
743                 skb->mark = nla_get_u32(nested_attr);
744                 key->phy.skb_mark = skb->mark;
745                 break;
746
747         case OVS_KEY_ATTR_TUNNEL_INFO:
748                 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
749                 break;
750
751         case OVS_KEY_ATTR_ETHERNET:
752                 err = set_eth_addr(skb, key, nla_data(nested_attr));
753                 break;
754
755         case OVS_KEY_ATTR_IPV4:
756                 err = set_ipv4(skb, key, nla_data(nested_attr));
757                 break;
758
759         case OVS_KEY_ATTR_IPV6:
760                 err = set_ipv6(skb, key, nla_data(nested_attr));
761                 break;
762
763         case OVS_KEY_ATTR_TCP:
764                 err = set_tcp(skb, key, nla_data(nested_attr));
765                 break;
766
767         case OVS_KEY_ATTR_UDP:
768                 err = set_udp(skb, key, nla_data(nested_attr));
769                 break;
770
771         case OVS_KEY_ATTR_SCTP:
772                 err = set_sctp(skb, key, nla_data(nested_attr));
773                 break;
774
775         case OVS_KEY_ATTR_MPLS:
776                 err = set_mpls(skb, key, nla_data(nested_attr));
777                 break;
778         }
779
780         return err;
781 }
782
783 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
784                           struct sw_flow_key *key,
785                           const struct nlattr *a, int rem)
786 {
787         struct deferred_action *da;
788
789         if (!is_flow_key_valid(key)) {
790                 int err;
791
792                 err = ovs_flow_key_update(skb, key);
793                 if (err)
794                         return err;
795         }
796         BUG_ON(!is_flow_key_valid(key));
797
798         if (!nla_is_last(a, rem)) {
799                 /* Recirc action is the not the last action
800                  * of the action list, need to clone the skb.
801                  */
802                 skb = skb_clone(skb, GFP_ATOMIC);
803
804                 /* Skip the recirc action when out of memory, but
805                  * continue on with the rest of the action list.
806                  */
807                 if (!skb)
808                         return 0;
809         }
810
811         da = add_deferred_actions(skb, key, NULL);
812         if (da) {
813                 da->pkt_key.recirc_id = nla_get_u32(a);
814         } else {
815                 kfree_skb(skb);
816
817                 if (net_ratelimit())
818                         pr_warn("%s: deferred action limit reached, drop recirc action\n",
819                                 ovs_dp_name(dp));
820         }
821
822         return 0;
823 }
824
825 /* Execute a list of actions against 'skb'. */
826 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
827                               struct sw_flow_key *key,
828                               const struct nlattr *attr, int len)
829 {
830         /* Every output action needs a separate clone of 'skb', but the common
831          * case is just a single output action, so that doing a clone and
832          * then freeing the original skbuff is wasteful.  So the following code
833          * is slightly obscure just to avoid that.
834          */
835         int prev_port = -1;
836         const struct nlattr *a;
837         int rem;
838
839         for (a = attr, rem = len; rem > 0;
840              a = nla_next(a, &rem)) {
841                 int err = 0;
842
843                 if (unlikely(prev_port != -1)) {
844                         struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
845
846                         if (out_skb)
847                                 do_output(dp, out_skb, prev_port);
848
849                         prev_port = -1;
850                 }
851
852                 switch (nla_type(a)) {
853                 case OVS_ACTION_ATTR_OUTPUT:
854                         prev_port = nla_get_u32(a);
855                         break;
856
857                 case OVS_ACTION_ATTR_USERSPACE:
858                         output_userspace(dp, skb, key, a);
859                         break;
860
861                 case OVS_ACTION_ATTR_HASH:
862                         execute_hash(skb, key, a);
863                         break;
864
865                 case OVS_ACTION_ATTR_PUSH_MPLS:
866                         err = push_mpls(skb, key, nla_data(a));
867                         break;
868
869                 case OVS_ACTION_ATTR_POP_MPLS:
870                         err = pop_mpls(skb, key, nla_get_be16(a));
871                         break;
872
873                 case OVS_ACTION_ATTR_PUSH_VLAN:
874                         err = push_vlan(skb, key, nla_data(a));
875                         if (unlikely(err)) /* skb already freed. */
876                                 return err;
877                         break;
878
879                 case OVS_ACTION_ATTR_POP_VLAN:
880                         err = pop_vlan(skb, key);
881                         break;
882
883                 case OVS_ACTION_ATTR_RECIRC:
884                         err = execute_recirc(dp, skb, key, a, rem);
885                         if (nla_is_last(a, rem)) {
886                                 /* If this is the last action, the skb has
887                                  * been consumed or freed.
888                                  * Return immediately.
889                                  */
890                                 return err;
891                         }
892                         break;
893
894                 case OVS_ACTION_ATTR_SET:
895                         err = execute_set_action(skb, key, nla_data(a));
896                         break;
897
898                 case OVS_ACTION_ATTR_SAMPLE:
899                         err = sample(dp, skb, key, a);
900                         if (unlikely(err)) /* skb already freed. */
901                                 return err;
902                         break;
903                 }
904
905                 if (unlikely(err)) {
906                         kfree_skb(skb);
907                         return err;
908                 }
909         }
910
911         if (prev_port != -1)
912                 do_output(dp, skb, prev_port);
913         else
914                 consume_skb(skb);
915
916         return 0;
917 }
918
919 static void process_deferred_actions(struct datapath *dp)
920 {
921         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
922
923         /* Do not touch the FIFO in case there is no deferred actions. */
924         if (action_fifo_is_empty(fifo))
925                 return;
926
927         /* Finishing executing all deferred actions. */
928         do {
929                 struct deferred_action *da = action_fifo_get(fifo);
930                 struct sk_buff *skb = da->skb;
931                 struct sw_flow_key *key = &da->pkt_key;
932                 const struct nlattr *actions = da->actions;
933
934                 if (actions)
935                         do_execute_actions(dp, skb, key, actions,
936                                            nla_len(actions));
937                 else
938                         ovs_dp_process_packet(skb, key);
939         } while (!action_fifo_is_empty(fifo));
940
941         /* Reset FIFO for the next packet.  */
942         action_fifo_init(fifo);
943 }
944
945 /* Execute a list of actions against 'skb'. */
946 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
947                         const struct sw_flow_actions *acts,
948                         struct sw_flow_key *key)
949 {
950         int level = this_cpu_read(exec_actions_level);
951         int err;
952
953         this_cpu_inc(exec_actions_level);
954         OVS_CB(skb)->egress_tun_info = NULL;
955         err = do_execute_actions(dp, skb, key,
956                                  acts->actions, acts->actions_len);
957
958         if (!level)
959                 process_deferred_actions(dp);
960
961         this_cpu_dec(exec_actions_level);
962         return err;
963 }
964
965 int action_fifos_init(void)
966 {
967         action_fifos = alloc_percpu(struct action_fifo);
968         if (!action_fifos)
969                 return -ENOMEM;
970
971         return 0;
972 }
973
974 void action_fifos_exit(void)
975 {
976         free_percpu(action_fifos);
977 }