]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/sunrpc/cache.c
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi...
[karo-tx-linux.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38
39 #define  RPCDBG_FACILITY RPCDBG_CACHE
40
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43
44 static void cache_init(struct cache_head *h)
45 {
46         time_t now = seconds_since_boot();
47         h->next = NULL;
48         h->flags = 0;
49         kref_init(&h->ref);
50         h->expiry_time = now + CACHE_NEW_EXPIRY;
51         h->last_refresh = now;
52 }
53
54 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
55                                        struct cache_head *key, int hash)
56 {
57         struct cache_head **head,  **hp;
58         struct cache_head *new = NULL, *freeme = NULL;
59
60         head = &detail->hash_table[hash];
61
62         read_lock(&detail->hash_lock);
63
64         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
65                 struct cache_head *tmp = *hp;
66                 if (detail->match(tmp, key)) {
67                         if (cache_is_expired(detail, tmp))
68                                 /* This entry is expired, we will discard it. */
69                                 break;
70                         cache_get(tmp);
71                         read_unlock(&detail->hash_lock);
72                         return tmp;
73                 }
74         }
75         read_unlock(&detail->hash_lock);
76         /* Didn't find anything, insert an empty entry */
77
78         new = detail->alloc();
79         if (!new)
80                 return NULL;
81         /* must fully initialise 'new', else
82          * we might get lose if we need to
83          * cache_put it soon.
84          */
85         cache_init(new);
86         detail->init(new, key);
87
88         write_lock(&detail->hash_lock);
89
90         /* check if entry appeared while we slept */
91         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
92                 struct cache_head *tmp = *hp;
93                 if (detail->match(tmp, key)) {
94                         if (cache_is_expired(detail, tmp)) {
95                                 *hp = tmp->next;
96                                 tmp->next = NULL;
97                                 detail->entries --;
98                                 freeme = tmp;
99                                 break;
100                         }
101                         cache_get(tmp);
102                         write_unlock(&detail->hash_lock);
103                         cache_put(new, detail);
104                         return tmp;
105                 }
106         }
107         new->next = *head;
108         *head = new;
109         detail->entries++;
110         cache_get(new);
111         write_unlock(&detail->hash_lock);
112
113         if (freeme)
114                 cache_put(freeme, detail);
115         return new;
116 }
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
118
119
120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
121
122 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
123 {
124         head->expiry_time = expiry;
125         head->last_refresh = seconds_since_boot();
126         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
127         set_bit(CACHE_VALID, &head->flags);
128 }
129
130 static void cache_fresh_unlocked(struct cache_head *head,
131                                  struct cache_detail *detail)
132 {
133         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
134                 cache_revisit_request(head);
135                 cache_dequeue(detail, head);
136         }
137 }
138
139 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
140                                        struct cache_head *new, struct cache_head *old, int hash)
141 {
142         /* The 'old' entry is to be replaced by 'new'.
143          * If 'old' is not VALID, we update it directly,
144          * otherwise we need to replace it
145          */
146         struct cache_head **head;
147         struct cache_head *tmp;
148
149         if (!test_bit(CACHE_VALID, &old->flags)) {
150                 write_lock(&detail->hash_lock);
151                 if (!test_bit(CACHE_VALID, &old->flags)) {
152                         if (test_bit(CACHE_NEGATIVE, &new->flags))
153                                 set_bit(CACHE_NEGATIVE, &old->flags);
154                         else
155                                 detail->update(old, new);
156                         cache_fresh_locked(old, new->expiry_time);
157                         write_unlock(&detail->hash_lock);
158                         cache_fresh_unlocked(old, detail);
159                         return old;
160                 }
161                 write_unlock(&detail->hash_lock);
162         }
163         /* We need to insert a new entry */
164         tmp = detail->alloc();
165         if (!tmp) {
166                 cache_put(old, detail);
167                 return NULL;
168         }
169         cache_init(tmp);
170         detail->init(tmp, old);
171         head = &detail->hash_table[hash];
172
173         write_lock(&detail->hash_lock);
174         if (test_bit(CACHE_NEGATIVE, &new->flags))
175                 set_bit(CACHE_NEGATIVE, &tmp->flags);
176         else
177                 detail->update(tmp, new);
178         tmp->next = *head;
179         *head = tmp;
180         detail->entries++;
181         cache_get(tmp);
182         cache_fresh_locked(tmp, new->expiry_time);
183         cache_fresh_locked(old, 0);
184         write_unlock(&detail->hash_lock);
185         cache_fresh_unlocked(tmp, detail);
186         cache_fresh_unlocked(old, detail);
187         cache_put(old, detail);
188         return tmp;
189 }
190 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
191
192 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
193 {
194         if (cd->cache_upcall)
195                 return cd->cache_upcall(cd, h);
196         return sunrpc_cache_pipe_upcall(cd, h);
197 }
198
199 static inline int cache_is_valid(struct cache_head *h)
200 {
201         if (!test_bit(CACHE_VALID, &h->flags))
202                 return -EAGAIN;
203         else {
204                 /* entry is valid */
205                 if (test_bit(CACHE_NEGATIVE, &h->flags))
206                         return -ENOENT;
207                 else {
208                         /*
209                          * In combination with write barrier in
210                          * sunrpc_cache_update, ensures that anyone
211                          * using the cache entry after this sees the
212                          * updated contents:
213                          */
214                         smp_rmb();
215                         return 0;
216                 }
217         }
218 }
219
220 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
221 {
222         int rv;
223
224         write_lock(&detail->hash_lock);
225         rv = cache_is_valid(h);
226         if (rv == -EAGAIN) {
227                 set_bit(CACHE_NEGATIVE, &h->flags);
228                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
229                 rv = -ENOENT;
230         }
231         write_unlock(&detail->hash_lock);
232         cache_fresh_unlocked(h, detail);
233         return rv;
234 }
235
236 /*
237  * This is the generic cache management routine for all
238  * the authentication caches.
239  * It checks the currency of a cache item and will (later)
240  * initiate an upcall to fill it if needed.
241  *
242  *
243  * Returns 0 if the cache_head can be used, or cache_puts it and returns
244  * -EAGAIN if upcall is pending and request has been queued
245  * -ETIMEDOUT if upcall failed or request could not be queue or
246  *           upcall completed but item is still invalid (implying that
247  *           the cache item has been replaced with a newer one).
248  * -ENOENT if cache entry was negative
249  */
250 int cache_check(struct cache_detail *detail,
251                     struct cache_head *h, struct cache_req *rqstp)
252 {
253         int rv;
254         long refresh_age, age;
255
256         /* First decide return status as best we can */
257         rv = cache_is_valid(h);
258
259         /* now see if we want to start an upcall */
260         refresh_age = (h->expiry_time - h->last_refresh);
261         age = seconds_since_boot() - h->last_refresh;
262
263         if (rqstp == NULL) {
264                 if (rv == -EAGAIN)
265                         rv = -ENOENT;
266         } else if (rv == -EAGAIN ||
267                    (h->expiry_time != 0 && age > refresh_age/2)) {
268                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
269                                 refresh_age, age);
270                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
271                         switch (cache_make_upcall(detail, h)) {
272                         case -EINVAL:
273                                 rv = try_to_negate_entry(detail, h);
274                                 break;
275                         case -EAGAIN:
276                                 cache_fresh_unlocked(h, detail);
277                                 break;
278                         }
279                 }
280         }
281
282         if (rv == -EAGAIN) {
283                 if (!cache_defer_req(rqstp, h)) {
284                         /*
285                          * Request was not deferred; handle it as best
286                          * we can ourselves:
287                          */
288                         rv = cache_is_valid(h);
289                         if (rv == -EAGAIN)
290                                 rv = -ETIMEDOUT;
291                 }
292         }
293         if (rv)
294                 cache_put(h, detail);
295         return rv;
296 }
297 EXPORT_SYMBOL_GPL(cache_check);
298
299 /*
300  * caches need to be periodically cleaned.
301  * For this we maintain a list of cache_detail and
302  * a current pointer into that list and into the table
303  * for that entry.
304  *
305  * Each time cache_clean is called it finds the next non-empty entry
306  * in the current table and walks the list in that entry
307  * looking for entries that can be removed.
308  *
309  * An entry gets removed if:
310  * - The expiry is before current time
311  * - The last_refresh time is before the flush_time for that cache
312  *
313  * later we might drop old entries with non-NEVER expiry if that table
314  * is getting 'full' for some definition of 'full'
315  *
316  * The question of "how often to scan a table" is an interesting one
317  * and is answered in part by the use of the "nextcheck" field in the
318  * cache_detail.
319  * When a scan of a table begins, the nextcheck field is set to a time
320  * that is well into the future.
321  * While scanning, if an expiry time is found that is earlier than the
322  * current nextcheck time, nextcheck is set to that expiry time.
323  * If the flush_time is ever set to a time earlier than the nextcheck
324  * time, the nextcheck time is then set to that flush_time.
325  *
326  * A table is then only scanned if the current time is at least
327  * the nextcheck time.
328  *
329  */
330
331 static LIST_HEAD(cache_list);
332 static DEFINE_SPINLOCK(cache_list_lock);
333 static struct cache_detail *current_detail;
334 static int current_index;
335
336 static void do_cache_clean(struct work_struct *work);
337 static struct delayed_work cache_cleaner;
338
339 void sunrpc_init_cache_detail(struct cache_detail *cd)
340 {
341         rwlock_init(&cd->hash_lock);
342         INIT_LIST_HEAD(&cd->queue);
343         spin_lock(&cache_list_lock);
344         cd->nextcheck = 0;
345         cd->entries = 0;
346         atomic_set(&cd->readers, 0);
347         cd->last_close = 0;
348         cd->last_warn = -1;
349         list_add(&cd->others, &cache_list);
350         spin_unlock(&cache_list_lock);
351
352         /* start the cleaning process */
353         schedule_delayed_work(&cache_cleaner, 0);
354 }
355 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
356
357 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
358 {
359         cache_purge(cd);
360         spin_lock(&cache_list_lock);
361         write_lock(&cd->hash_lock);
362         if (cd->entries || atomic_read(&cd->inuse)) {
363                 write_unlock(&cd->hash_lock);
364                 spin_unlock(&cache_list_lock);
365                 goto out;
366         }
367         if (current_detail == cd)
368                 current_detail = NULL;
369         list_del_init(&cd->others);
370         write_unlock(&cd->hash_lock);
371         spin_unlock(&cache_list_lock);
372         if (list_empty(&cache_list)) {
373                 /* module must be being unloaded so its safe to kill the worker */
374                 cancel_delayed_work_sync(&cache_cleaner);
375         }
376         return;
377 out:
378         printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
379 }
380 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
381
382 /* clean cache tries to find something to clean
383  * and cleans it.
384  * It returns 1 if it cleaned something,
385  *            0 if it didn't find anything this time
386  *           -1 if it fell off the end of the list.
387  */
388 static int cache_clean(void)
389 {
390         int rv = 0;
391         struct list_head *next;
392
393         spin_lock(&cache_list_lock);
394
395         /* find a suitable table if we don't already have one */
396         while (current_detail == NULL ||
397             current_index >= current_detail->hash_size) {
398                 if (current_detail)
399                         next = current_detail->others.next;
400                 else
401                         next = cache_list.next;
402                 if (next == &cache_list) {
403                         current_detail = NULL;
404                         spin_unlock(&cache_list_lock);
405                         return -1;
406                 }
407                 current_detail = list_entry(next, struct cache_detail, others);
408                 if (current_detail->nextcheck > seconds_since_boot())
409                         current_index = current_detail->hash_size;
410                 else {
411                         current_index = 0;
412                         current_detail->nextcheck = seconds_since_boot()+30*60;
413                 }
414         }
415
416         /* find a non-empty bucket in the table */
417         while (current_detail &&
418                current_index < current_detail->hash_size &&
419                current_detail->hash_table[current_index] == NULL)
420                 current_index++;
421
422         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
423
424         if (current_detail && current_index < current_detail->hash_size) {
425                 struct cache_head *ch, **cp;
426                 struct cache_detail *d;
427
428                 write_lock(&current_detail->hash_lock);
429
430                 /* Ok, now to clean this strand */
431
432                 cp = & current_detail->hash_table[current_index];
433                 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
434                         if (current_detail->nextcheck > ch->expiry_time)
435                                 current_detail->nextcheck = ch->expiry_time+1;
436                         if (!cache_is_expired(current_detail, ch))
437                                 continue;
438
439                         *cp = ch->next;
440                         ch->next = NULL;
441                         current_detail->entries--;
442                         rv = 1;
443                         break;
444                 }
445
446                 write_unlock(&current_detail->hash_lock);
447                 d = current_detail;
448                 if (!ch)
449                         current_index ++;
450                 spin_unlock(&cache_list_lock);
451                 if (ch) {
452                         set_bit(CACHE_CLEANED, &ch->flags);
453                         cache_fresh_unlocked(ch, d);
454                         cache_put(ch, d);
455                 }
456         } else
457                 spin_unlock(&cache_list_lock);
458
459         return rv;
460 }
461
462 /*
463  * We want to regularly clean the cache, so we need to schedule some work ...
464  */
465 static void do_cache_clean(struct work_struct *work)
466 {
467         int delay = 5;
468         if (cache_clean() == -1)
469                 delay = round_jiffies_relative(30*HZ);
470
471         if (list_empty(&cache_list))
472                 delay = 0;
473
474         if (delay)
475                 schedule_delayed_work(&cache_cleaner, delay);
476 }
477
478
479 /*
480  * Clean all caches promptly.  This just calls cache_clean
481  * repeatedly until we are sure that every cache has had a chance to
482  * be fully cleaned
483  */
484 void cache_flush(void)
485 {
486         while (cache_clean() != -1)
487                 cond_resched();
488         while (cache_clean() != -1)
489                 cond_resched();
490 }
491 EXPORT_SYMBOL_GPL(cache_flush);
492
493 void cache_purge(struct cache_detail *detail)
494 {
495         detail->flush_time = LONG_MAX;
496         detail->nextcheck = seconds_since_boot();
497         cache_flush();
498         detail->flush_time = 1;
499 }
500 EXPORT_SYMBOL_GPL(cache_purge);
501
502
503 /*
504  * Deferral and Revisiting of Requests.
505  *
506  * If a cache lookup finds a pending entry, we
507  * need to defer the request and revisit it later.
508  * All deferred requests are stored in a hash table,
509  * indexed by "struct cache_head *".
510  * As it may be wasteful to store a whole request
511  * structure, we allow the request to provide a
512  * deferred form, which must contain a
513  * 'struct cache_deferred_req'
514  * This cache_deferred_req contains a method to allow
515  * it to be revisited when cache info is available
516  */
517
518 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
519 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
520
521 #define DFR_MAX 300     /* ??? */
522
523 static DEFINE_SPINLOCK(cache_defer_lock);
524 static LIST_HEAD(cache_defer_list);
525 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
526 static int cache_defer_cnt;
527
528 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
529 {
530         hlist_del_init(&dreq->hash);
531         if (!list_empty(&dreq->recent)) {
532                 list_del_init(&dreq->recent);
533                 cache_defer_cnt--;
534         }
535 }
536
537 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
538 {
539         int hash = DFR_HASH(item);
540
541         INIT_LIST_HEAD(&dreq->recent);
542         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
543 }
544
545 static void setup_deferral(struct cache_deferred_req *dreq,
546                            struct cache_head *item,
547                            int count_me)
548 {
549
550         dreq->item = item;
551
552         spin_lock(&cache_defer_lock);
553
554         __hash_deferred_req(dreq, item);
555
556         if (count_me) {
557                 cache_defer_cnt++;
558                 list_add(&dreq->recent, &cache_defer_list);
559         }
560
561         spin_unlock(&cache_defer_lock);
562
563 }
564
565 struct thread_deferred_req {
566         struct cache_deferred_req handle;
567         struct completion completion;
568 };
569
570 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
571 {
572         struct thread_deferred_req *dr =
573                 container_of(dreq, struct thread_deferred_req, handle);
574         complete(&dr->completion);
575 }
576
577 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
578 {
579         struct thread_deferred_req sleeper;
580         struct cache_deferred_req *dreq = &sleeper.handle;
581
582         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
583         dreq->revisit = cache_restart_thread;
584
585         setup_deferral(dreq, item, 0);
586
587         if (!test_bit(CACHE_PENDING, &item->flags) ||
588             wait_for_completion_interruptible_timeout(
589                     &sleeper.completion, req->thread_wait) <= 0) {
590                 /* The completion wasn't completed, so we need
591                  * to clean up
592                  */
593                 spin_lock(&cache_defer_lock);
594                 if (!hlist_unhashed(&sleeper.handle.hash)) {
595                         __unhash_deferred_req(&sleeper.handle);
596                         spin_unlock(&cache_defer_lock);
597                 } else {
598                         /* cache_revisit_request already removed
599                          * this from the hash table, but hasn't
600                          * called ->revisit yet.  It will very soon
601                          * and we need to wait for it.
602                          */
603                         spin_unlock(&cache_defer_lock);
604                         wait_for_completion(&sleeper.completion);
605                 }
606         }
607 }
608
609 static void cache_limit_defers(void)
610 {
611         /* Make sure we haven't exceed the limit of allowed deferred
612          * requests.
613          */
614         struct cache_deferred_req *discard = NULL;
615
616         if (cache_defer_cnt <= DFR_MAX)
617                 return;
618
619         spin_lock(&cache_defer_lock);
620
621         /* Consider removing either the first or the last */
622         if (cache_defer_cnt > DFR_MAX) {
623                 if (prandom_u32() & 1)
624                         discard = list_entry(cache_defer_list.next,
625                                              struct cache_deferred_req, recent);
626                 else
627                         discard = list_entry(cache_defer_list.prev,
628                                              struct cache_deferred_req, recent);
629                 __unhash_deferred_req(discard);
630         }
631         spin_unlock(&cache_defer_lock);
632         if (discard)
633                 discard->revisit(discard, 1);
634 }
635
636 /* Return true if and only if a deferred request is queued. */
637 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
638 {
639         struct cache_deferred_req *dreq;
640
641         if (req->thread_wait) {
642                 cache_wait_req(req, item);
643                 if (!test_bit(CACHE_PENDING, &item->flags))
644                         return false;
645         }
646         dreq = req->defer(req);
647         if (dreq == NULL)
648                 return false;
649         setup_deferral(dreq, item, 1);
650         if (!test_bit(CACHE_PENDING, &item->flags))
651                 /* Bit could have been cleared before we managed to
652                  * set up the deferral, so need to revisit just in case
653                  */
654                 cache_revisit_request(item);
655
656         cache_limit_defers();
657         return true;
658 }
659
660 static void cache_revisit_request(struct cache_head *item)
661 {
662         struct cache_deferred_req *dreq;
663         struct list_head pending;
664         struct hlist_node *tmp;
665         int hash = DFR_HASH(item);
666
667         INIT_LIST_HEAD(&pending);
668         spin_lock(&cache_defer_lock);
669
670         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
671                 if (dreq->item == item) {
672                         __unhash_deferred_req(dreq);
673                         list_add(&dreq->recent, &pending);
674                 }
675
676         spin_unlock(&cache_defer_lock);
677
678         while (!list_empty(&pending)) {
679                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
680                 list_del_init(&dreq->recent);
681                 dreq->revisit(dreq, 0);
682         }
683 }
684
685 void cache_clean_deferred(void *owner)
686 {
687         struct cache_deferred_req *dreq, *tmp;
688         struct list_head pending;
689
690
691         INIT_LIST_HEAD(&pending);
692         spin_lock(&cache_defer_lock);
693
694         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
695                 if (dreq->owner == owner) {
696                         __unhash_deferred_req(dreq);
697                         list_add(&dreq->recent, &pending);
698                 }
699         }
700         spin_unlock(&cache_defer_lock);
701
702         while (!list_empty(&pending)) {
703                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
704                 list_del_init(&dreq->recent);
705                 dreq->revisit(dreq, 1);
706         }
707 }
708
709 /*
710  * communicate with user-space
711  *
712  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
713  * On read, you get a full request, or block.
714  * On write, an update request is processed.
715  * Poll works if anything to read, and always allows write.
716  *
717  * Implemented by linked list of requests.  Each open file has
718  * a ->private that also exists in this list.  New requests are added
719  * to the end and may wakeup and preceding readers.
720  * New readers are added to the head.  If, on read, an item is found with
721  * CACHE_UPCALLING clear, we free it from the list.
722  *
723  */
724
725 static DEFINE_SPINLOCK(queue_lock);
726 static DEFINE_MUTEX(queue_io_mutex);
727
728 struct cache_queue {
729         struct list_head        list;
730         int                     reader; /* if 0, then request */
731 };
732 struct cache_request {
733         struct cache_queue      q;
734         struct cache_head       *item;
735         char                    * buf;
736         int                     len;
737         int                     readers;
738 };
739 struct cache_reader {
740         struct cache_queue      q;
741         int                     offset; /* if non-0, we have a refcnt on next request */
742 };
743
744 static int cache_request(struct cache_detail *detail,
745                                struct cache_request *crq)
746 {
747         char *bp = crq->buf;
748         int len = PAGE_SIZE;
749
750         detail->cache_request(detail, crq->item, &bp, &len);
751         if (len < 0)
752                 return -EAGAIN;
753         return PAGE_SIZE - len;
754 }
755
756 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
757                           loff_t *ppos, struct cache_detail *cd)
758 {
759         struct cache_reader *rp = filp->private_data;
760         struct cache_request *rq;
761         struct inode *inode = file_inode(filp);
762         int err;
763
764         if (count == 0)
765                 return 0;
766
767         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
768                               * readers on this file */
769  again:
770         spin_lock(&queue_lock);
771         /* need to find next request */
772         while (rp->q.list.next != &cd->queue &&
773                list_entry(rp->q.list.next, struct cache_queue, list)
774                ->reader) {
775                 struct list_head *next = rp->q.list.next;
776                 list_move(&rp->q.list, next);
777         }
778         if (rp->q.list.next == &cd->queue) {
779                 spin_unlock(&queue_lock);
780                 mutex_unlock(&inode->i_mutex);
781                 WARN_ON_ONCE(rp->offset);
782                 return 0;
783         }
784         rq = container_of(rp->q.list.next, struct cache_request, q.list);
785         WARN_ON_ONCE(rq->q.reader);
786         if (rp->offset == 0)
787                 rq->readers++;
788         spin_unlock(&queue_lock);
789
790         if (rq->len == 0) {
791                 err = cache_request(cd, rq);
792                 if (err < 0)
793                         goto out;
794                 rq->len = err;
795         }
796
797         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
798                 err = -EAGAIN;
799                 spin_lock(&queue_lock);
800                 list_move(&rp->q.list, &rq->q.list);
801                 spin_unlock(&queue_lock);
802         } else {
803                 if (rp->offset + count > rq->len)
804                         count = rq->len - rp->offset;
805                 err = -EFAULT;
806                 if (copy_to_user(buf, rq->buf + rp->offset, count))
807                         goto out;
808                 rp->offset += count;
809                 if (rp->offset >= rq->len) {
810                         rp->offset = 0;
811                         spin_lock(&queue_lock);
812                         list_move(&rp->q.list, &rq->q.list);
813                         spin_unlock(&queue_lock);
814                 }
815                 err = 0;
816         }
817  out:
818         if (rp->offset == 0) {
819                 /* need to release rq */
820                 spin_lock(&queue_lock);
821                 rq->readers--;
822                 if (rq->readers == 0 &&
823                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
824                         list_del(&rq->q.list);
825                         spin_unlock(&queue_lock);
826                         cache_put(rq->item, cd);
827                         kfree(rq->buf);
828                         kfree(rq);
829                 } else
830                         spin_unlock(&queue_lock);
831         }
832         if (err == -EAGAIN)
833                 goto again;
834         mutex_unlock(&inode->i_mutex);
835         return err ? err :  count;
836 }
837
838 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
839                                  size_t count, struct cache_detail *cd)
840 {
841         ssize_t ret;
842
843         if (count == 0)
844                 return -EINVAL;
845         if (copy_from_user(kaddr, buf, count))
846                 return -EFAULT;
847         kaddr[count] = '\0';
848         ret = cd->cache_parse(cd, kaddr, count);
849         if (!ret)
850                 ret = count;
851         return ret;
852 }
853
854 static ssize_t cache_slow_downcall(const char __user *buf,
855                                    size_t count, struct cache_detail *cd)
856 {
857         static char write_buf[8192]; /* protected by queue_io_mutex */
858         ssize_t ret = -EINVAL;
859
860         if (count >= sizeof(write_buf))
861                 goto out;
862         mutex_lock(&queue_io_mutex);
863         ret = cache_do_downcall(write_buf, buf, count, cd);
864         mutex_unlock(&queue_io_mutex);
865 out:
866         return ret;
867 }
868
869 static ssize_t cache_downcall(struct address_space *mapping,
870                               const char __user *buf,
871                               size_t count, struct cache_detail *cd)
872 {
873         struct page *page;
874         char *kaddr;
875         ssize_t ret = -ENOMEM;
876
877         if (count >= PAGE_CACHE_SIZE)
878                 goto out_slow;
879
880         page = find_or_create_page(mapping, 0, GFP_KERNEL);
881         if (!page)
882                 goto out_slow;
883
884         kaddr = kmap(page);
885         ret = cache_do_downcall(kaddr, buf, count, cd);
886         kunmap(page);
887         unlock_page(page);
888         page_cache_release(page);
889         return ret;
890 out_slow:
891         return cache_slow_downcall(buf, count, cd);
892 }
893
894 static ssize_t cache_write(struct file *filp, const char __user *buf,
895                            size_t count, loff_t *ppos,
896                            struct cache_detail *cd)
897 {
898         struct address_space *mapping = filp->f_mapping;
899         struct inode *inode = file_inode(filp);
900         ssize_t ret = -EINVAL;
901
902         if (!cd->cache_parse)
903                 goto out;
904
905         mutex_lock(&inode->i_mutex);
906         ret = cache_downcall(mapping, buf, count, cd);
907         mutex_unlock(&inode->i_mutex);
908 out:
909         return ret;
910 }
911
912 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
913
914 static unsigned int cache_poll(struct file *filp, poll_table *wait,
915                                struct cache_detail *cd)
916 {
917         unsigned int mask;
918         struct cache_reader *rp = filp->private_data;
919         struct cache_queue *cq;
920
921         poll_wait(filp, &queue_wait, wait);
922
923         /* alway allow write */
924         mask = POLL_OUT | POLLWRNORM;
925
926         if (!rp)
927                 return mask;
928
929         spin_lock(&queue_lock);
930
931         for (cq= &rp->q; &cq->list != &cd->queue;
932              cq = list_entry(cq->list.next, struct cache_queue, list))
933                 if (!cq->reader) {
934                         mask |= POLLIN | POLLRDNORM;
935                         break;
936                 }
937         spin_unlock(&queue_lock);
938         return mask;
939 }
940
941 static int cache_ioctl(struct inode *ino, struct file *filp,
942                        unsigned int cmd, unsigned long arg,
943                        struct cache_detail *cd)
944 {
945         int len = 0;
946         struct cache_reader *rp = filp->private_data;
947         struct cache_queue *cq;
948
949         if (cmd != FIONREAD || !rp)
950                 return -EINVAL;
951
952         spin_lock(&queue_lock);
953
954         /* only find the length remaining in current request,
955          * or the length of the next request
956          */
957         for (cq= &rp->q; &cq->list != &cd->queue;
958              cq = list_entry(cq->list.next, struct cache_queue, list))
959                 if (!cq->reader) {
960                         struct cache_request *cr =
961                                 container_of(cq, struct cache_request, q);
962                         len = cr->len - rp->offset;
963                         break;
964                 }
965         spin_unlock(&queue_lock);
966
967         return put_user(len, (int __user *)arg);
968 }
969
970 static int cache_open(struct inode *inode, struct file *filp,
971                       struct cache_detail *cd)
972 {
973         struct cache_reader *rp = NULL;
974
975         if (!cd || !try_module_get(cd->owner))
976                 return -EACCES;
977         nonseekable_open(inode, filp);
978         if (filp->f_mode & FMODE_READ) {
979                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
980                 if (!rp) {
981                         module_put(cd->owner);
982                         return -ENOMEM;
983                 }
984                 rp->offset = 0;
985                 rp->q.reader = 1;
986                 atomic_inc(&cd->readers);
987                 spin_lock(&queue_lock);
988                 list_add(&rp->q.list, &cd->queue);
989                 spin_unlock(&queue_lock);
990         }
991         filp->private_data = rp;
992         return 0;
993 }
994
995 static int cache_release(struct inode *inode, struct file *filp,
996                          struct cache_detail *cd)
997 {
998         struct cache_reader *rp = filp->private_data;
999
1000         if (rp) {
1001                 spin_lock(&queue_lock);
1002                 if (rp->offset) {
1003                         struct cache_queue *cq;
1004                         for (cq= &rp->q; &cq->list != &cd->queue;
1005                              cq = list_entry(cq->list.next, struct cache_queue, list))
1006                                 if (!cq->reader) {
1007                                         container_of(cq, struct cache_request, q)
1008                                                 ->readers--;
1009                                         break;
1010                                 }
1011                         rp->offset = 0;
1012                 }
1013                 list_del(&rp->q.list);
1014                 spin_unlock(&queue_lock);
1015
1016                 filp->private_data = NULL;
1017                 kfree(rp);
1018
1019                 cd->last_close = seconds_since_boot();
1020                 atomic_dec(&cd->readers);
1021         }
1022         module_put(cd->owner);
1023         return 0;
1024 }
1025
1026
1027
1028 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1029 {
1030         struct cache_queue *cq, *tmp;
1031         struct cache_request *cr;
1032         struct list_head dequeued;
1033
1034         INIT_LIST_HEAD(&dequeued);
1035         spin_lock(&queue_lock);
1036         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1037                 if (!cq->reader) {
1038                         cr = container_of(cq, struct cache_request, q);
1039                         if (cr->item != ch)
1040                                 continue;
1041                         if (test_bit(CACHE_PENDING, &ch->flags))
1042                                 /* Lost a race and it is pending again */
1043                                 break;
1044                         if (cr->readers != 0)
1045                                 continue;
1046                         list_move(&cr->q.list, &dequeued);
1047                 }
1048         spin_unlock(&queue_lock);
1049         while (!list_empty(&dequeued)) {
1050                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1051                 list_del(&cr->q.list);
1052                 cache_put(cr->item, detail);
1053                 kfree(cr->buf);
1054                 kfree(cr);
1055         }
1056 }
1057
1058 /*
1059  * Support routines for text-based upcalls.
1060  * Fields are separated by spaces.
1061  * Fields are either mangled to quote space tab newline slosh with slosh
1062  * or a hexified with a leading \x
1063  * Record is terminated with newline.
1064  *
1065  */
1066
1067 void qword_add(char **bpp, int *lp, char *str)
1068 {
1069         char *bp = *bpp;
1070         int len = *lp;
1071         int ret;
1072
1073         if (len < 0) return;
1074
1075         ret = string_escape_str(str, &bp, len, ESCAPE_OCTAL, "\\ \n\t");
1076         if (ret < 0 || ret == len)
1077                 len = -1;
1078         else {
1079                 len -= ret;
1080                 *bp++ = ' ';
1081                 len--;
1082         }
1083         *bpp = bp;
1084         *lp = len;
1085 }
1086 EXPORT_SYMBOL_GPL(qword_add);
1087
1088 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1089 {
1090         char *bp = *bpp;
1091         int len = *lp;
1092
1093         if (len < 0) return;
1094
1095         if (len > 2) {
1096                 *bp++ = '\\';
1097                 *bp++ = 'x';
1098                 len -= 2;
1099                 while (blen && len >= 2) {
1100                         bp = hex_byte_pack(bp, *buf++);
1101                         len -= 2;
1102                         blen--;
1103                 }
1104         }
1105         if (blen || len<1) len = -1;
1106         else {
1107                 *bp++ = ' ';
1108                 len--;
1109         }
1110         *bpp = bp;
1111         *lp = len;
1112 }
1113 EXPORT_SYMBOL_GPL(qword_addhex);
1114
1115 static void warn_no_listener(struct cache_detail *detail)
1116 {
1117         if (detail->last_warn != detail->last_close) {
1118                 detail->last_warn = detail->last_close;
1119                 if (detail->warn_no_listener)
1120                         detail->warn_no_listener(detail, detail->last_close != 0);
1121         }
1122 }
1123
1124 static bool cache_listeners_exist(struct cache_detail *detail)
1125 {
1126         if (atomic_read(&detail->readers))
1127                 return true;
1128         if (detail->last_close == 0)
1129                 /* This cache was never opened */
1130                 return false;
1131         if (detail->last_close < seconds_since_boot() - 30)
1132                 /*
1133                  * We allow for the possibility that someone might
1134                  * restart a userspace daemon without restarting the
1135                  * server; but after 30 seconds, we give up.
1136                  */
1137                  return false;
1138         return true;
1139 }
1140
1141 /*
1142  * register an upcall request to user-space and queue it up for read() by the
1143  * upcall daemon.
1144  *
1145  * Each request is at most one page long.
1146  */
1147 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1148 {
1149
1150         char *buf;
1151         struct cache_request *crq;
1152         int ret = 0;
1153
1154         if (!detail->cache_request)
1155                 return -EINVAL;
1156
1157         if (!cache_listeners_exist(detail)) {
1158                 warn_no_listener(detail);
1159                 return -EINVAL;
1160         }
1161         if (test_bit(CACHE_CLEANED, &h->flags))
1162                 /* Too late to make an upcall */
1163                 return -EAGAIN;
1164
1165         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1166         if (!buf)
1167                 return -EAGAIN;
1168
1169         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1170         if (!crq) {
1171                 kfree(buf);
1172                 return -EAGAIN;
1173         }
1174
1175         crq->q.reader = 0;
1176         crq->item = cache_get(h);
1177         crq->buf = buf;
1178         crq->len = 0;
1179         crq->readers = 0;
1180         spin_lock(&queue_lock);
1181         if (test_bit(CACHE_PENDING, &h->flags))
1182                 list_add_tail(&crq->q.list, &detail->queue);
1183         else
1184                 /* Lost a race, no longer PENDING, so don't enqueue */
1185                 ret = -EAGAIN;
1186         spin_unlock(&queue_lock);
1187         wake_up(&queue_wait);
1188         if (ret == -EAGAIN) {
1189                 kfree(buf);
1190                 kfree(crq);
1191         }
1192         return ret;
1193 }
1194 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1195
1196 /*
1197  * parse a message from user-space and pass it
1198  * to an appropriate cache
1199  * Messages are, like requests, separated into fields by
1200  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1201  *
1202  * Message is
1203  *   reply cachename expiry key ... content....
1204  *
1205  * key and content are both parsed by cache
1206  */
1207
1208 int qword_get(char **bpp, char *dest, int bufsize)
1209 {
1210         /* return bytes copied, or -1 on error */
1211         char *bp = *bpp;
1212         int len = 0;
1213
1214         while (*bp == ' ') bp++;
1215
1216         if (bp[0] == '\\' && bp[1] == 'x') {
1217                 /* HEX STRING */
1218                 bp += 2;
1219                 while (len < bufsize) {
1220                         int h, l;
1221
1222                         h = hex_to_bin(bp[0]);
1223                         if (h < 0)
1224                                 break;
1225
1226                         l = hex_to_bin(bp[1]);
1227                         if (l < 0)
1228                                 break;
1229
1230                         *dest++ = (h << 4) | l;
1231                         bp += 2;
1232                         len++;
1233                 }
1234         } else {
1235                 /* text with \nnn octal quoting */
1236                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1237                         if (*bp == '\\' &&
1238                             isodigit(bp[1]) && (bp[1] <= '3') &&
1239                             isodigit(bp[2]) &&
1240                             isodigit(bp[3])) {
1241                                 int byte = (*++bp -'0');
1242                                 bp++;
1243                                 byte = (byte << 3) | (*bp++ - '0');
1244                                 byte = (byte << 3) | (*bp++ - '0');
1245                                 *dest++ = byte;
1246                                 len++;
1247                         } else {
1248                                 *dest++ = *bp++;
1249                                 len++;
1250                         }
1251                 }
1252         }
1253
1254         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1255                 return -1;
1256         while (*bp == ' ') bp++;
1257         *bpp = bp;
1258         *dest = '\0';
1259         return len;
1260 }
1261 EXPORT_SYMBOL_GPL(qword_get);
1262
1263
1264 /*
1265  * support /proc/sunrpc/cache/$CACHENAME/content
1266  * as a seqfile.
1267  * We call ->cache_show passing NULL for the item to
1268  * get a header, then pass each real item in the cache
1269  */
1270
1271 struct handle {
1272         struct cache_detail *cd;
1273 };
1274
1275 static void *c_start(struct seq_file *m, loff_t *pos)
1276         __acquires(cd->hash_lock)
1277 {
1278         loff_t n = *pos;
1279         unsigned int hash, entry;
1280         struct cache_head *ch;
1281         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1282
1283
1284         read_lock(&cd->hash_lock);
1285         if (!n--)
1286                 return SEQ_START_TOKEN;
1287         hash = n >> 32;
1288         entry = n & ((1LL<<32) - 1);
1289
1290         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1291                 if (!entry--)
1292                         return ch;
1293         n &= ~((1LL<<32) - 1);
1294         do {
1295                 hash++;
1296                 n += 1LL<<32;
1297         } while(hash < cd->hash_size &&
1298                 cd->hash_table[hash]==NULL);
1299         if (hash >= cd->hash_size)
1300                 return NULL;
1301         *pos = n+1;
1302         return cd->hash_table[hash];
1303 }
1304
1305 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1306 {
1307         struct cache_head *ch = p;
1308         int hash = (*pos >> 32);
1309         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1310
1311         if (p == SEQ_START_TOKEN)
1312                 hash = 0;
1313         else if (ch->next == NULL) {
1314                 hash++;
1315                 *pos += 1LL<<32;
1316         } else {
1317                 ++*pos;
1318                 return ch->next;
1319         }
1320         *pos &= ~((1LL<<32) - 1);
1321         while (hash < cd->hash_size &&
1322                cd->hash_table[hash] == NULL) {
1323                 hash++;
1324                 *pos += 1LL<<32;
1325         }
1326         if (hash >= cd->hash_size)
1327                 return NULL;
1328         ++*pos;
1329         return cd->hash_table[hash];
1330 }
1331
1332 static void c_stop(struct seq_file *m, void *p)
1333         __releases(cd->hash_lock)
1334 {
1335         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1336         read_unlock(&cd->hash_lock);
1337 }
1338
1339 static int c_show(struct seq_file *m, void *p)
1340 {
1341         struct cache_head *cp = p;
1342         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1343
1344         if (p == SEQ_START_TOKEN)
1345                 return cd->cache_show(m, cd, NULL);
1346
1347         ifdebug(CACHE)
1348                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1349                            convert_to_wallclock(cp->expiry_time),
1350                            atomic_read(&cp->ref.refcount), cp->flags);
1351         cache_get(cp);
1352         if (cache_check(cd, cp, NULL))
1353                 /* cache_check does a cache_put on failure */
1354                 seq_printf(m, "# ");
1355         else {
1356                 if (cache_is_expired(cd, cp))
1357                         seq_printf(m, "# ");
1358                 cache_put(cp, cd);
1359         }
1360
1361         return cd->cache_show(m, cd, cp);
1362 }
1363
1364 static const struct seq_operations cache_content_op = {
1365         .start  = c_start,
1366         .next   = c_next,
1367         .stop   = c_stop,
1368         .show   = c_show,
1369 };
1370
1371 static int content_open(struct inode *inode, struct file *file,
1372                         struct cache_detail *cd)
1373 {
1374         struct handle *han;
1375
1376         if (!cd || !try_module_get(cd->owner))
1377                 return -EACCES;
1378         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1379         if (han == NULL) {
1380                 module_put(cd->owner);
1381                 return -ENOMEM;
1382         }
1383
1384         han->cd = cd;
1385         return 0;
1386 }
1387
1388 static int content_release(struct inode *inode, struct file *file,
1389                 struct cache_detail *cd)
1390 {
1391         int ret = seq_release_private(inode, file);
1392         module_put(cd->owner);
1393         return ret;
1394 }
1395
1396 static int open_flush(struct inode *inode, struct file *file,
1397                         struct cache_detail *cd)
1398 {
1399         if (!cd || !try_module_get(cd->owner))
1400                 return -EACCES;
1401         return nonseekable_open(inode, file);
1402 }
1403
1404 static int release_flush(struct inode *inode, struct file *file,
1405                         struct cache_detail *cd)
1406 {
1407         module_put(cd->owner);
1408         return 0;
1409 }
1410
1411 static ssize_t read_flush(struct file *file, char __user *buf,
1412                           size_t count, loff_t *ppos,
1413                           struct cache_detail *cd)
1414 {
1415         char tbuf[22];
1416         unsigned long p = *ppos;
1417         size_t len;
1418
1419         snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1420         len = strlen(tbuf);
1421         if (p >= len)
1422                 return 0;
1423         len -= p;
1424         if (len > count)
1425                 len = count;
1426         if (copy_to_user(buf, (void*)(tbuf+p), len))
1427                 return -EFAULT;
1428         *ppos += len;
1429         return len;
1430 }
1431
1432 static ssize_t write_flush(struct file *file, const char __user *buf,
1433                            size_t count, loff_t *ppos,
1434                            struct cache_detail *cd)
1435 {
1436         char tbuf[20];
1437         char *bp, *ep;
1438
1439         if (*ppos || count > sizeof(tbuf)-1)
1440                 return -EINVAL;
1441         if (copy_from_user(tbuf, buf, count))
1442                 return -EFAULT;
1443         tbuf[count] = 0;
1444         simple_strtoul(tbuf, &ep, 0);
1445         if (*ep && *ep != '\n')
1446                 return -EINVAL;
1447
1448         bp = tbuf;
1449         cd->flush_time = get_expiry(&bp);
1450         cd->nextcheck = seconds_since_boot();
1451         cache_flush();
1452
1453         *ppos += count;
1454         return count;
1455 }
1456
1457 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1458                                  size_t count, loff_t *ppos)
1459 {
1460         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1461
1462         return cache_read(filp, buf, count, ppos, cd);
1463 }
1464
1465 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1466                                   size_t count, loff_t *ppos)
1467 {
1468         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1469
1470         return cache_write(filp, buf, count, ppos, cd);
1471 }
1472
1473 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1474 {
1475         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1476
1477         return cache_poll(filp, wait, cd);
1478 }
1479
1480 static long cache_ioctl_procfs(struct file *filp,
1481                                unsigned int cmd, unsigned long arg)
1482 {
1483         struct inode *inode = file_inode(filp);
1484         struct cache_detail *cd = PDE_DATA(inode);
1485
1486         return cache_ioctl(inode, filp, cmd, arg, cd);
1487 }
1488
1489 static int cache_open_procfs(struct inode *inode, struct file *filp)
1490 {
1491         struct cache_detail *cd = PDE_DATA(inode);
1492
1493         return cache_open(inode, filp, cd);
1494 }
1495
1496 static int cache_release_procfs(struct inode *inode, struct file *filp)
1497 {
1498         struct cache_detail *cd = PDE_DATA(inode);
1499
1500         return cache_release(inode, filp, cd);
1501 }
1502
1503 static const struct file_operations cache_file_operations_procfs = {
1504         .owner          = THIS_MODULE,
1505         .llseek         = no_llseek,
1506         .read           = cache_read_procfs,
1507         .write          = cache_write_procfs,
1508         .poll           = cache_poll_procfs,
1509         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1510         .open           = cache_open_procfs,
1511         .release        = cache_release_procfs,
1512 };
1513
1514 static int content_open_procfs(struct inode *inode, struct file *filp)
1515 {
1516         struct cache_detail *cd = PDE_DATA(inode);
1517
1518         return content_open(inode, filp, cd);
1519 }
1520
1521 static int content_release_procfs(struct inode *inode, struct file *filp)
1522 {
1523         struct cache_detail *cd = PDE_DATA(inode);
1524
1525         return content_release(inode, filp, cd);
1526 }
1527
1528 static const struct file_operations content_file_operations_procfs = {
1529         .open           = content_open_procfs,
1530         .read           = seq_read,
1531         .llseek         = seq_lseek,
1532         .release        = content_release_procfs,
1533 };
1534
1535 static int open_flush_procfs(struct inode *inode, struct file *filp)
1536 {
1537         struct cache_detail *cd = PDE_DATA(inode);
1538
1539         return open_flush(inode, filp, cd);
1540 }
1541
1542 static int release_flush_procfs(struct inode *inode, struct file *filp)
1543 {
1544         struct cache_detail *cd = PDE_DATA(inode);
1545
1546         return release_flush(inode, filp, cd);
1547 }
1548
1549 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1550                             size_t count, loff_t *ppos)
1551 {
1552         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1553
1554         return read_flush(filp, buf, count, ppos, cd);
1555 }
1556
1557 static ssize_t write_flush_procfs(struct file *filp,
1558                                   const char __user *buf,
1559                                   size_t count, loff_t *ppos)
1560 {
1561         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1562
1563         return write_flush(filp, buf, count, ppos, cd);
1564 }
1565
1566 static const struct file_operations cache_flush_operations_procfs = {
1567         .open           = open_flush_procfs,
1568         .read           = read_flush_procfs,
1569         .write          = write_flush_procfs,
1570         .release        = release_flush_procfs,
1571         .llseek         = no_llseek,
1572 };
1573
1574 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1575 {
1576         struct sunrpc_net *sn;
1577
1578         if (cd->u.procfs.proc_ent == NULL)
1579                 return;
1580         if (cd->u.procfs.flush_ent)
1581                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1582         if (cd->u.procfs.channel_ent)
1583                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1584         if (cd->u.procfs.content_ent)
1585                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1586         cd->u.procfs.proc_ent = NULL;
1587         sn = net_generic(net, sunrpc_net_id);
1588         remove_proc_entry(cd->name, sn->proc_net_rpc);
1589 }
1590
1591 #ifdef CONFIG_PROC_FS
1592 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1593 {
1594         struct proc_dir_entry *p;
1595         struct sunrpc_net *sn;
1596
1597         sn = net_generic(net, sunrpc_net_id);
1598         cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1599         if (cd->u.procfs.proc_ent == NULL)
1600                 goto out_nomem;
1601         cd->u.procfs.channel_ent = NULL;
1602         cd->u.procfs.content_ent = NULL;
1603
1604         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1605                              cd->u.procfs.proc_ent,
1606                              &cache_flush_operations_procfs, cd);
1607         cd->u.procfs.flush_ent = p;
1608         if (p == NULL)
1609                 goto out_nomem;
1610
1611         if (cd->cache_request || cd->cache_parse) {
1612                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1613                                      cd->u.procfs.proc_ent,
1614                                      &cache_file_operations_procfs, cd);
1615                 cd->u.procfs.channel_ent = p;
1616                 if (p == NULL)
1617                         goto out_nomem;
1618         }
1619         if (cd->cache_show) {
1620                 p = proc_create_data("content", S_IFREG|S_IRUSR,
1621                                 cd->u.procfs.proc_ent,
1622                                 &content_file_operations_procfs, cd);
1623                 cd->u.procfs.content_ent = p;
1624                 if (p == NULL)
1625                         goto out_nomem;
1626         }
1627         return 0;
1628 out_nomem:
1629         remove_cache_proc_entries(cd, net);
1630         return -ENOMEM;
1631 }
1632 #else /* CONFIG_PROC_FS */
1633 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1634 {
1635         return 0;
1636 }
1637 #endif
1638
1639 void __init cache_initialize(void)
1640 {
1641         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1642 }
1643
1644 int cache_register_net(struct cache_detail *cd, struct net *net)
1645 {
1646         int ret;
1647
1648         sunrpc_init_cache_detail(cd);
1649         ret = create_cache_proc_entries(cd, net);
1650         if (ret)
1651                 sunrpc_destroy_cache_detail(cd);
1652         return ret;
1653 }
1654 EXPORT_SYMBOL_GPL(cache_register_net);
1655
1656 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1657 {
1658         remove_cache_proc_entries(cd, net);
1659         sunrpc_destroy_cache_detail(cd);
1660 }
1661 EXPORT_SYMBOL_GPL(cache_unregister_net);
1662
1663 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1664 {
1665         struct cache_detail *cd;
1666
1667         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1668         if (cd == NULL)
1669                 return ERR_PTR(-ENOMEM);
1670
1671         cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1672                                  GFP_KERNEL);
1673         if (cd->hash_table == NULL) {
1674                 kfree(cd);
1675                 return ERR_PTR(-ENOMEM);
1676         }
1677         cd->net = net;
1678         return cd;
1679 }
1680 EXPORT_SYMBOL_GPL(cache_create_net);
1681
1682 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1683 {
1684         kfree(cd->hash_table);
1685         kfree(cd);
1686 }
1687 EXPORT_SYMBOL_GPL(cache_destroy_net);
1688
1689 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1690                                  size_t count, loff_t *ppos)
1691 {
1692         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1693
1694         return cache_read(filp, buf, count, ppos, cd);
1695 }
1696
1697 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1698                                   size_t count, loff_t *ppos)
1699 {
1700         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1701
1702         return cache_write(filp, buf, count, ppos, cd);
1703 }
1704
1705 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1706 {
1707         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1708
1709         return cache_poll(filp, wait, cd);
1710 }
1711
1712 static long cache_ioctl_pipefs(struct file *filp,
1713                               unsigned int cmd, unsigned long arg)
1714 {
1715         struct inode *inode = file_inode(filp);
1716         struct cache_detail *cd = RPC_I(inode)->private;
1717
1718         return cache_ioctl(inode, filp, cmd, arg, cd);
1719 }
1720
1721 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1722 {
1723         struct cache_detail *cd = RPC_I(inode)->private;
1724
1725         return cache_open(inode, filp, cd);
1726 }
1727
1728 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1729 {
1730         struct cache_detail *cd = RPC_I(inode)->private;
1731
1732         return cache_release(inode, filp, cd);
1733 }
1734
1735 const struct file_operations cache_file_operations_pipefs = {
1736         .owner          = THIS_MODULE,
1737         .llseek         = no_llseek,
1738         .read           = cache_read_pipefs,
1739         .write          = cache_write_pipefs,
1740         .poll           = cache_poll_pipefs,
1741         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1742         .open           = cache_open_pipefs,
1743         .release        = cache_release_pipefs,
1744 };
1745
1746 static int content_open_pipefs(struct inode *inode, struct file *filp)
1747 {
1748         struct cache_detail *cd = RPC_I(inode)->private;
1749
1750         return content_open(inode, filp, cd);
1751 }
1752
1753 static int content_release_pipefs(struct inode *inode, struct file *filp)
1754 {
1755         struct cache_detail *cd = RPC_I(inode)->private;
1756
1757         return content_release(inode, filp, cd);
1758 }
1759
1760 const struct file_operations content_file_operations_pipefs = {
1761         .open           = content_open_pipefs,
1762         .read           = seq_read,
1763         .llseek         = seq_lseek,
1764         .release        = content_release_pipefs,
1765 };
1766
1767 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1768 {
1769         struct cache_detail *cd = RPC_I(inode)->private;
1770
1771         return open_flush(inode, filp, cd);
1772 }
1773
1774 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1775 {
1776         struct cache_detail *cd = RPC_I(inode)->private;
1777
1778         return release_flush(inode, filp, cd);
1779 }
1780
1781 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1782                             size_t count, loff_t *ppos)
1783 {
1784         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1785
1786         return read_flush(filp, buf, count, ppos, cd);
1787 }
1788
1789 static ssize_t write_flush_pipefs(struct file *filp,
1790                                   const char __user *buf,
1791                                   size_t count, loff_t *ppos)
1792 {
1793         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1794
1795         return write_flush(filp, buf, count, ppos, cd);
1796 }
1797
1798 const struct file_operations cache_flush_operations_pipefs = {
1799         .open           = open_flush_pipefs,
1800         .read           = read_flush_pipefs,
1801         .write          = write_flush_pipefs,
1802         .release        = release_flush_pipefs,
1803         .llseek         = no_llseek,
1804 };
1805
1806 int sunrpc_cache_register_pipefs(struct dentry *parent,
1807                                  const char *name, umode_t umode,
1808                                  struct cache_detail *cd)
1809 {
1810         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1811         if (IS_ERR(dir))
1812                 return PTR_ERR(dir);
1813         cd->u.pipefs.dir = dir;
1814         return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1817
1818 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1819 {
1820         rpc_remove_cache_dir(cd->u.pipefs.dir);
1821         cd->u.pipefs.dir = NULL;
1822 }
1823 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1824