]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
cfg80211: regulatory: restore proper user alpha2
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA  */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145         return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155         switch (dfs_region) {
156         case NL80211_DFS_UNSET:
157                 return "unset";
158         case NL80211_DFS_FCC:
159                 return "FCC";
160         case NL80211_DFS_ETSI:
161                 return "ETSI";
162         case NL80211_DFS_JP:
163                 return "JP";
164         }
165         return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170         const struct ieee80211_regdomain *regd = NULL;
171         const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173         regd = get_cfg80211_regdom();
174         if (!wiphy)
175                 goto out;
176
177         wiphy_regd = get_wiphy_regdom(wiphy);
178         if (!wiphy_regd)
179                 goto out;
180
181         if (wiphy_regd->dfs_region == regd->dfs_region)
182                 goto out;
183
184         REG_DBG_PRINT("%s: device specific dfs_region "
185                       "(%s) disagrees with cfg80211's "
186                       "central dfs_region (%s)\n",
187                       dev_name(&wiphy->dev),
188                       reg_dfs_region_str(wiphy_regd->dfs_region),
189                       reg_dfs_region_str(regd->dfs_region));
190
191 out:
192         return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197         if (!r)
198                 return;
199         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204         return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219         struct list_head list;
220         struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234         .n_reg_rules = 8,
235         .alpha2 =  "00",
236         .reg_rules = {
237                 /* IEEE 802.11b/g, channels 1..11 */
238                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239                 /* IEEE 802.11b/g, channels 12..13. */
240                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241                         NL80211_RRF_NO_IR),
242                 /* IEEE 802.11 channel 14 - Only JP enables
243                  * this and for 802.11b only */
244                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_NO_OFDM),
247                 /* IEEE 802.11a, channel 36..48 */
248                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR),
250
251                 /* IEEE 802.11a, channel 52..64 - DFS required */
252                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253                         NL80211_RRF_NO_IR |
254                         NL80211_RRF_DFS),
255
256                 /* IEEE 802.11a, channel 100..144 - DFS required */
257                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_DFS),
260
261                 /* IEEE 802.11a, channel 149..165 */
262                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR),
264
265                 /* IEEE 802.11ad (60gHz), channels 1..3 */
266                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267         }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272         &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282         if (request != get_last_request())
283                 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288         struct regulatory_request *lr = get_last_request();
289
290         if (lr != &core_request_world && lr)
291                 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296         struct regulatory_request *lr;
297
298         lr = get_last_request();
299         if (lr == request)
300                 return;
301
302         reg_free_last_request();
303         rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307                              const struct ieee80211_regdomain *new_regdom)
308 {
309         const struct ieee80211_regdomain *r;
310
311         ASSERT_RTNL();
312
313         r = get_cfg80211_regdom();
314
315         /* avoid freeing static information or freeing something twice */
316         if (r == cfg80211_world_regdom)
317                 r = NULL;
318         if (cfg80211_world_regdom == &world_regdom)
319                 cfg80211_world_regdom = NULL;
320         if (r == &world_regdom)
321                 r = NULL;
322
323         rcu_free_regdom(r);
324         rcu_free_regdom(cfg80211_world_regdom);
325
326         cfg80211_world_regdom = &world_regdom;
327         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329         if (!full_reset)
330                 return;
331
332         reg_update_last_request(&core_request_world);
333 }
334
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341         struct regulatory_request *lr;
342
343         lr = get_last_request();
344
345         WARN_ON(!lr);
346
347         reset_regdomains(false, rd);
348
349         cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         /*
371          * Special case where regulatory domain was built by driver
372          * but a specific alpha2 cannot be determined
373          */
374         return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379         if (!alpha2)
380                 return false;
381         /*
382          * Special case where regulatory domain is the
383          * result of an intersection between two regulatory domain
384          * structures
385          */
386         return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391         if (!alpha2)
392                 return false;
393         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398         if (!alpha2_x || !alpha2_y)
399                 return false;
400         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407         if (!r)
408                 return true;
409         return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420                 return false;
421
422         /* This would indicate a mistake on the design */
423         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424                  "Unexpected user alpha2: %c%c\n",
425                  user_alpha2[0], user_alpha2[1]))
426                 return false;
427
428         return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434         struct ieee80211_regdomain *regd;
435         int size_of_regd;
436         unsigned int i;
437
438         size_of_regd =
439                 sizeof(struct ieee80211_regdomain) +
440                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442         regd = kzalloc(size_of_regd, GFP_KERNEL);
443         if (!regd)
444                 return ERR_PTR(-ENOMEM);
445
446         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448         for (i = 0; i < src_regd->n_reg_rules; i++)
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451
452         return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457         char alpha2[2];
458         struct list_head list;
459 };
460
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464 static void reg_regdb_search(struct work_struct *work)
465 {
466         struct reg_regdb_search_request *request;
467         const struct ieee80211_regdomain *curdom, *regdom = NULL;
468         int i;
469
470         rtnl_lock();
471
472         mutex_lock(&reg_regdb_search_mutex);
473         while (!list_empty(&reg_regdb_search_list)) {
474                 request = list_first_entry(&reg_regdb_search_list,
475                                            struct reg_regdb_search_request,
476                                            list);
477                 list_del(&request->list);
478
479                 for (i = 0; i < reg_regdb_size; i++) {
480                         curdom = reg_regdb[i];
481
482                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483                                 regdom = reg_copy_regd(curdom);
484                                 break;
485                         }
486                 }
487
488                 kfree(request);
489         }
490         mutex_unlock(&reg_regdb_search_mutex);
491
492         if (!IS_ERR_OR_NULL(regdom))
493                 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495         rtnl_unlock();
496 }
497
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500 static void reg_regdb_query(const char *alpha2)
501 {
502         struct reg_regdb_search_request *request;
503
504         if (!alpha2)
505                 return;
506
507         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508         if (!request)
509                 return;
510
511         memcpy(request->alpha2, alpha2, 2);
512
513         mutex_lock(&reg_regdb_search_mutex);
514         list_add_tail(&request->list, &reg_regdb_search_list);
515         mutex_unlock(&reg_regdb_search_mutex);
516
517         schedule_work(&reg_regdb_work);
518 }
519
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
522 {
523         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
524         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525 }
526 #else
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530
531 /*
532  * This lets us keep regulatory code which is updated on a regulatory
533  * basis in userspace.
534  */
535 static int call_crda(const char *alpha2)
536 {
537         char country[12];
538         char *env[] = { country, NULL };
539
540         snprintf(country, sizeof(country), "COUNTRY=%c%c",
541                  alpha2[0], alpha2[1]);
542
543         /* query internal regulatory database (if it exists) */
544         reg_regdb_query(alpha2);
545
546         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
548                 return -EINVAL;
549         }
550
551         if (!is_world_regdom((char *) alpha2))
552                 pr_debug("Calling CRDA for country: %c%c\n",
553                         alpha2[0], alpha2[1]);
554         else
555                 pr_debug("Calling CRDA to update world regulatory domain\n");
556
557         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558 }
559
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
562 {
563         if (call_crda(request->alpha2))
564                 return REG_REQ_IGNORE;
565
566         queue_delayed_work(system_power_efficient_wq,
567                            &reg_timeout, msecs_to_jiffies(3142));
568         return REG_REQ_OK;
569 }
570
571 bool reg_is_valid_request(const char *alpha2)
572 {
573         struct regulatory_request *lr = get_last_request();
574
575         if (!lr || lr->processed)
576                 return false;
577
578         return alpha2_equal(lr->alpha2, alpha2);
579 }
580
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582 {
583         struct regulatory_request *lr = get_last_request();
584
585         /*
586          * Follow the driver's regulatory domain, if present, unless a country
587          * IE has been processed or a user wants to help complaince further
588          */
589         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591             wiphy->regd)
592                 return get_wiphy_regdom(wiphy);
593
594         return get_cfg80211_regdom();
595 }
596
597 static unsigned int
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599                                  const struct ieee80211_reg_rule *rule)
600 {
601         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602         const struct ieee80211_freq_range *freq_range_tmp;
603         const struct ieee80211_reg_rule *tmp;
604         u32 start_freq, end_freq, idx, no;
605
606         for (idx = 0; idx < rd->n_reg_rules; idx++)
607                 if (rule == &rd->reg_rules[idx])
608                         break;
609
610         if (idx == rd->n_reg_rules)
611                 return 0;
612
613         /* get start_freq */
614         no = idx;
615
616         while (no) {
617                 tmp = &rd->reg_rules[--no];
618                 freq_range_tmp = &tmp->freq_range;
619
620                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621                         break;
622
623                 freq_range = freq_range_tmp;
624         }
625
626         start_freq = freq_range->start_freq_khz;
627
628         /* get end_freq */
629         freq_range = &rule->freq_range;
630         no = idx;
631
632         while (no < rd->n_reg_rules - 1) {
633                 tmp = &rd->reg_rules[++no];
634                 freq_range_tmp = &tmp->freq_range;
635
636                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637                         break;
638
639                 freq_range = freq_range_tmp;
640         }
641
642         end_freq = freq_range->end_freq_khz;
643
644         return end_freq - start_freq;
645 }
646
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648                                    const struct ieee80211_reg_rule *rule)
649 {
650         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651
652         if (rule->flags & NL80211_RRF_NO_160MHZ)
653                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654         if (rule->flags & NL80211_RRF_NO_80MHZ)
655                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656
657         /*
658          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659          * are not allowed.
660          */
661         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662             rule->flags & NL80211_RRF_NO_HT40PLUS)
663                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664
665         return bw;
666 }
667
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670 {
671         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672         u32 freq_diff;
673
674         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675                 return false;
676
677         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678                 return false;
679
680         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681
682         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683             freq_range->max_bandwidth_khz > freq_diff)
684                 return false;
685
686         return true;
687 }
688
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690 {
691         const struct ieee80211_reg_rule *reg_rule = NULL;
692         unsigned int i;
693
694         if (!rd->n_reg_rules)
695                 return false;
696
697         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698                 return false;
699
700         for (i = 0; i < rd->n_reg_rules; i++) {
701                 reg_rule = &rd->reg_rules[i];
702                 if (!is_valid_reg_rule(reg_rule))
703                         return false;
704         }
705
706         return true;
707 }
708
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710                             u32 center_freq_khz, u32 bw_khz)
711 {
712         u32 start_freq_khz, end_freq_khz;
713
714         start_freq_khz = center_freq_khz - (bw_khz/2);
715         end_freq_khz = center_freq_khz + (bw_khz/2);
716
717         if (start_freq_khz >= freq_range->start_freq_khz &&
718             end_freq_khz <= freq_range->end_freq_khz)
719                 return true;
720
721         return false;
722 }
723
724 /**
725  * freq_in_rule_band - tells us if a frequency is in a frequency band
726  * @freq_range: frequency rule we want to query
727  * @freq_khz: frequency we are inquiring about
728  *
729  * This lets us know if a specific frequency rule is or is not relevant to
730  * a specific frequency's band. Bands are device specific and artificial
731  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732  * however it is safe for now to assume that a frequency rule should not be
733  * part of a frequency's band if the start freq or end freq are off by more
734  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735  * 60 GHz band.
736  * This resolution can be lowered and should be considered as we add
737  * regulatory rule support for other "bands".
738  **/
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740                               u32 freq_khz)
741 {
742 #define ONE_GHZ_IN_KHZ  1000000
743         /*
744          * From 802.11ad: directional multi-gigabit (DMG):
745          * Pertaining to operation in a frequency band containing a channel
746          * with the Channel starting frequency above 45 GHz.
747          */
748         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751                 return true;
752         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753                 return true;
754         return false;
755 #undef ONE_GHZ_IN_KHZ
756 }
757
758 /*
759  * Later on we can perhaps use the more restrictive DFS
760  * region but we don't have information for that yet so
761  * for now simply disallow conflicts.
762  */
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765                          const enum nl80211_dfs_regions dfs_region2)
766 {
767         if (dfs_region1 != dfs_region2)
768                 return NL80211_DFS_UNSET;
769         return dfs_region1;
770 }
771
772 /*
773  * Helper for regdom_intersect(), this does the real
774  * mathematical intersection fun
775  */
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777                                const struct ieee80211_regdomain *rd2,
778                                const struct ieee80211_reg_rule *rule1,
779                                const struct ieee80211_reg_rule *rule2,
780                                struct ieee80211_reg_rule *intersected_rule)
781 {
782         const struct ieee80211_freq_range *freq_range1, *freq_range2;
783         struct ieee80211_freq_range *freq_range;
784         const struct ieee80211_power_rule *power_rule1, *power_rule2;
785         struct ieee80211_power_rule *power_rule;
786         u32 freq_diff, max_bandwidth1, max_bandwidth2;
787
788         freq_range1 = &rule1->freq_range;
789         freq_range2 = &rule2->freq_range;
790         freq_range = &intersected_rule->freq_range;
791
792         power_rule1 = &rule1->power_rule;
793         power_rule2 = &rule2->power_rule;
794         power_rule = &intersected_rule->power_rule;
795
796         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797                                          freq_range2->start_freq_khz);
798         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799                                        freq_range2->end_freq_khz);
800
801         max_bandwidth1 = freq_range1->max_bandwidth_khz;
802         max_bandwidth2 = freq_range2->max_bandwidth_khz;
803
804         if (rule1->flags & NL80211_RRF_AUTO_BW)
805                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806         if (rule2->flags & NL80211_RRF_AUTO_BW)
807                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808
809         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810
811         intersected_rule->flags = rule1->flags | rule2->flags;
812
813         /*
814          * In case NL80211_RRF_AUTO_BW requested for both rules
815          * set AUTO_BW in intersected rule also. Next we will
816          * calculate BW correctly in handle_channel function.
817          * In other case remove AUTO_BW flag while we calculate
818          * maximum bandwidth correctly and auto calculation is
819          * not required.
820          */
821         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822             (rule2->flags & NL80211_RRF_AUTO_BW))
823                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824         else
825                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826
827         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828         if (freq_range->max_bandwidth_khz > freq_diff)
829                 freq_range->max_bandwidth_khz = freq_diff;
830
831         power_rule->max_eirp = min(power_rule1->max_eirp,
832                 power_rule2->max_eirp);
833         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834                 power_rule2->max_antenna_gain);
835
836         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837                                            rule2->dfs_cac_ms);
838
839         if (!is_valid_reg_rule(intersected_rule))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847                           struct ieee80211_reg_rule *r2)
848 {
849         /* for simplicity, currently consider only same flags */
850         if (r1->flags != r2->flags)
851                 return false;
852
853         /* verify r1 is more restrictive */
854         if ((r1->power_rule.max_antenna_gain >
855              r2->power_rule.max_antenna_gain) ||
856             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857                 return false;
858
859         /* make sure r2's range is contained within r1 */
860         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862                 return false;
863
864         /* and finally verify that r1.max_bw >= r2.max_bw */
865         if (r1->freq_range.max_bandwidth_khz <
866             r2->freq_range.max_bandwidth_khz)
867                 return false;
868
869         return true;
870 }
871
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875 {
876         struct ieee80211_reg_rule *tmp_rule;
877         int i;
878
879         for (i = 0; i < *n_rules; i++) {
880                 tmp_rule = &reg_rules[i];
881                 /* rule is already contained - do nothing */
882                 if (rule_contains(tmp_rule, rule))
883                         return;
884
885                 /* extend rule if possible */
886                 if (rule_contains(rule, tmp_rule)) {
887                         memcpy(tmp_rule, rule, sizeof(*rule));
888                         return;
889                 }
890         }
891
892         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893         (*n_rules)++;
894 }
895
896 /**
897  * regdom_intersect - do the intersection between two regulatory domains
898  * @rd1: first regulatory domain
899  * @rd2: second regulatory domain
900  *
901  * Use this function to get the intersection between two regulatory domains.
902  * Once completed we will mark the alpha2 for the rd as intersected, "98",
903  * as no one single alpha2 can represent this regulatory domain.
904  *
905  * Returns a pointer to the regulatory domain structure which will hold the
906  * resulting intersection of rules between rd1 and rd2. We will
907  * kzalloc() this structure for you.
908  */
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911                  const struct ieee80211_regdomain *rd2)
912 {
913         int r, size_of_regd;
914         unsigned int x, y;
915         unsigned int num_rules = 0;
916         const struct ieee80211_reg_rule *rule1, *rule2;
917         struct ieee80211_reg_rule intersected_rule;
918         struct ieee80211_regdomain *rd;
919
920         if (!rd1 || !rd2)
921                 return NULL;
922
923         /*
924          * First we get a count of the rules we'll need, then we actually
925          * build them. This is to so we can malloc() and free() a
926          * regdomain once. The reason we use reg_rules_intersect() here
927          * is it will return -EINVAL if the rule computed makes no sense.
928          * All rules that do check out OK are valid.
929          */
930
931         for (x = 0; x < rd1->n_reg_rules; x++) {
932                 rule1 = &rd1->reg_rules[x];
933                 for (y = 0; y < rd2->n_reg_rules; y++) {
934                         rule2 = &rd2->reg_rules[y];
935                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936                                                  &intersected_rule))
937                                 num_rules++;
938                 }
939         }
940
941         if (!num_rules)
942                 return NULL;
943
944         size_of_regd = sizeof(struct ieee80211_regdomain) +
945                        num_rules * sizeof(struct ieee80211_reg_rule);
946
947         rd = kzalloc(size_of_regd, GFP_KERNEL);
948         if (!rd)
949                 return NULL;
950
951         for (x = 0; x < rd1->n_reg_rules; x++) {
952                 rule1 = &rd1->reg_rules[x];
953                 for (y = 0; y < rd2->n_reg_rules; y++) {
954                         rule2 = &rd2->reg_rules[y];
955                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956                                                 &intersected_rule);
957                         /*
958                          * No need to memset here the intersected rule here as
959                          * we're not using the stack anymore
960                          */
961                         if (r)
962                                 continue;
963
964                         add_rule(&intersected_rule, rd->reg_rules,
965                                  &rd->n_reg_rules);
966                 }
967         }
968
969         rd->alpha2[0] = '9';
970         rd->alpha2[1] = '8';
971         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972                                                   rd2->dfs_region);
973
974         return rd;
975 }
976
977 /*
978  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979  * want to just have the channel structure use these
980  */
981 static u32 map_regdom_flags(u32 rd_flags)
982 {
983         u32 channel_flags = 0;
984         if (rd_flags & NL80211_RRF_NO_IR_ALL)
985                 channel_flags |= IEEE80211_CHAN_NO_IR;
986         if (rd_flags & NL80211_RRF_DFS)
987                 channel_flags |= IEEE80211_CHAN_RADAR;
988         if (rd_flags & NL80211_RRF_NO_OFDM)
989                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
990         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998         if (rd_flags & NL80211_RRF_NO_80MHZ)
999                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000         if (rd_flags & NL80211_RRF_NO_160MHZ)
1001                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002         return channel_flags;
1003 }
1004
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007                    const struct ieee80211_regdomain *regd, u32 bw)
1008 {
1009         int i;
1010         bool band_rule_found = false;
1011         bool bw_fits = false;
1012
1013         if (!regd)
1014                 return ERR_PTR(-EINVAL);
1015
1016         for (i = 0; i < regd->n_reg_rules; i++) {
1017                 const struct ieee80211_reg_rule *rr;
1018                 const struct ieee80211_freq_range *fr = NULL;
1019
1020                 rr = &regd->reg_rules[i];
1021                 fr = &rr->freq_range;
1022
1023                 /*
1024                  * We only need to know if one frequency rule was
1025                  * was in center_freq's band, that's enough, so lets
1026                  * not overwrite it once found
1027                  */
1028                 if (!band_rule_found)
1029                         band_rule_found = freq_in_rule_band(fr, center_freq);
1030
1031                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1032
1033                 if (band_rule_found && bw_fits)
1034                         return rr;
1035         }
1036
1037         if (!band_rule_found)
1038                 return ERR_PTR(-ERANGE);
1039
1040         return ERR_PTR(-EINVAL);
1041 }
1042
1043 const struct ieee80211_reg_rule *__freq_reg_info(struct wiphy *wiphy,
1044                                                  u32 center_freq, u32 min_bw)
1045 {
1046         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1047         const struct ieee80211_reg_rule *reg_rule = NULL;
1048         u32 bw;
1049
1050         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1051                 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1052                 if (!IS_ERR(reg_rule))
1053                         return reg_rule;
1054         }
1055
1056         return reg_rule;
1057 }
1058
1059 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1060                                                u32 center_freq)
1061 {
1062         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1063 }
1064 EXPORT_SYMBOL(freq_reg_info);
1065
1066 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1067 {
1068         switch (initiator) {
1069         case NL80211_REGDOM_SET_BY_CORE:
1070                 return "core";
1071         case NL80211_REGDOM_SET_BY_USER:
1072                 return "user";
1073         case NL80211_REGDOM_SET_BY_DRIVER:
1074                 return "driver";
1075         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1076                 return "country IE";
1077         default:
1078                 WARN_ON(1);
1079                 return "bug";
1080         }
1081 }
1082 EXPORT_SYMBOL(reg_initiator_name);
1083
1084 #ifdef CONFIG_CFG80211_REG_DEBUG
1085 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1086                                     struct ieee80211_channel *chan,
1087                                     const struct ieee80211_reg_rule *reg_rule)
1088 {
1089         const struct ieee80211_power_rule *power_rule;
1090         const struct ieee80211_freq_range *freq_range;
1091         char max_antenna_gain[32], bw[32];
1092
1093         power_rule = &reg_rule->power_rule;
1094         freq_range = &reg_rule->freq_range;
1095
1096         if (!power_rule->max_antenna_gain)
1097                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1098         else
1099                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1100                          power_rule->max_antenna_gain);
1101
1102         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1103                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1104                          freq_range->max_bandwidth_khz,
1105                          reg_get_max_bandwidth(regd, reg_rule));
1106         else
1107                 snprintf(bw, sizeof(bw), "%d KHz",
1108                          freq_range->max_bandwidth_khz);
1109
1110         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1111                       chan->center_freq);
1112
1113         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1114                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1115                       bw, max_antenna_gain,
1116                       power_rule->max_eirp);
1117 }
1118 #else
1119 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1120                                     struct ieee80211_channel *chan,
1121                                     const struct ieee80211_reg_rule *reg_rule)
1122 {
1123         return;
1124 }
1125 #endif
1126
1127 /*
1128  * Note that right now we assume the desired channel bandwidth
1129  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1130  * per channel, the primary and the extension channel).
1131  */
1132 static void handle_channel(struct wiphy *wiphy,
1133                            enum nl80211_reg_initiator initiator,
1134                            struct ieee80211_channel *chan)
1135 {
1136         u32 flags, bw_flags = 0;
1137         const struct ieee80211_reg_rule *reg_rule = NULL;
1138         const struct ieee80211_power_rule *power_rule = NULL;
1139         const struct ieee80211_freq_range *freq_range = NULL;
1140         struct wiphy *request_wiphy = NULL;
1141         struct regulatory_request *lr = get_last_request();
1142         const struct ieee80211_regdomain *regd;
1143         u32 max_bandwidth_khz;
1144
1145         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1146
1147         flags = chan->orig_flags;
1148
1149         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1150         if (IS_ERR(reg_rule)) {
1151                 /*
1152                  * We will disable all channels that do not match our
1153                  * received regulatory rule unless the hint is coming
1154                  * from a Country IE and the Country IE had no information
1155                  * about a band. The IEEE 802.11 spec allows for an AP
1156                  * to send only a subset of the regulatory rules allowed,
1157                  * so an AP in the US that only supports 2.4 GHz may only send
1158                  * a country IE with information for the 2.4 GHz band
1159                  * while 5 GHz is still supported.
1160                  */
1161                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162                     PTR_ERR(reg_rule) == -ERANGE)
1163                         return;
1164
1165                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166                     request_wiphy && request_wiphy == wiphy &&
1167                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1169                                       chan->center_freq);
1170                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1171                         chan->flags = chan->orig_flags;
1172                 } else {
1173                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1174                                       chan->center_freq);
1175                         chan->flags |= IEEE80211_CHAN_DISABLED;
1176                 }
1177                 return;
1178         }
1179
1180         regd = reg_get_regdomain(wiphy);
1181         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1182
1183         power_rule = &reg_rule->power_rule;
1184         freq_range = &reg_rule->freq_range;
1185
1186         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1187         /* Check if auto calculation requested */
1188         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1189                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1190
1191         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1192         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1193                              MHZ_TO_KHZ(10)))
1194                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1196                              MHZ_TO_KHZ(20)))
1197                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1198
1199         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1200                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1201         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1202                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1203         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1204                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1205         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1206                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1207         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1208                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1209
1210         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1211             request_wiphy && request_wiphy == wiphy &&
1212             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1213                 /*
1214                  * This guarantees the driver's requested regulatory domain
1215                  * will always be used as a base for further regulatory
1216                  * settings
1217                  */
1218                 chan->flags = chan->orig_flags =
1219                         map_regdom_flags(reg_rule->flags) | bw_flags;
1220                 chan->max_antenna_gain = chan->orig_mag =
1221                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1222                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1223                         (int) MBM_TO_DBM(power_rule->max_eirp);
1224
1225                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1226                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1227                         if (reg_rule->dfs_cac_ms)
1228                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1229                 }
1230
1231                 return;
1232         }
1233
1234         chan->dfs_state = NL80211_DFS_USABLE;
1235         chan->dfs_state_entered = jiffies;
1236
1237         chan->beacon_found = false;
1238         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1239         chan->max_antenna_gain =
1240                 min_t(int, chan->orig_mag,
1241                       MBI_TO_DBI(power_rule->max_antenna_gain));
1242         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1243
1244         if (chan->flags & IEEE80211_CHAN_RADAR) {
1245                 if (reg_rule->dfs_cac_ms)
1246                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1247                 else
1248                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1249         }
1250
1251         if (chan->orig_mpwr) {
1252                 /*
1253                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1254                  * will always follow the passed country IE power settings.
1255                  */
1256                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1257                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1258                         chan->max_power = chan->max_reg_power;
1259                 else
1260                         chan->max_power = min(chan->orig_mpwr,
1261                                               chan->max_reg_power);
1262         } else
1263                 chan->max_power = chan->max_reg_power;
1264 }
1265
1266 static void handle_band(struct wiphy *wiphy,
1267                         enum nl80211_reg_initiator initiator,
1268                         struct ieee80211_supported_band *sband)
1269 {
1270         unsigned int i;
1271
1272         if (!sband)
1273                 return;
1274
1275         for (i = 0; i < sband->n_channels; i++)
1276                 handle_channel(wiphy, initiator, &sband->channels[i]);
1277 }
1278
1279 static bool reg_request_cell_base(struct regulatory_request *request)
1280 {
1281         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1282                 return false;
1283         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1284 }
1285
1286 bool reg_last_request_cell_base(void)
1287 {
1288         return reg_request_cell_base(get_last_request());
1289 }
1290
1291 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1292 /* Core specific check */
1293 static enum reg_request_treatment
1294 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1295 {
1296         struct regulatory_request *lr = get_last_request();
1297
1298         if (!reg_num_devs_support_basehint)
1299                 return REG_REQ_IGNORE;
1300
1301         if (reg_request_cell_base(lr) &&
1302             !regdom_changes(pending_request->alpha2))
1303                 return REG_REQ_ALREADY_SET;
1304
1305         return REG_REQ_OK;
1306 }
1307
1308 /* Device specific check */
1309 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1310 {
1311         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1312 }
1313 #else
1314 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1315 {
1316         return REG_REQ_IGNORE;
1317 }
1318
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1320 {
1321         return true;
1322 }
1323 #endif
1324
1325 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1326 {
1327         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1328             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1329                 return true;
1330         return false;
1331 }
1332
1333 static bool ignore_reg_update(struct wiphy *wiphy,
1334                               enum nl80211_reg_initiator initiator)
1335 {
1336         struct regulatory_request *lr = get_last_request();
1337
1338         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1339                 return true;
1340
1341         if (!lr) {
1342                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1343                               "since last_request is not set\n",
1344                               reg_initiator_name(initiator));
1345                 return true;
1346         }
1347
1348         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1349             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1350                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1351                               "since the driver uses its own custom "
1352                               "regulatory domain\n",
1353                               reg_initiator_name(initiator));
1354                 return true;
1355         }
1356
1357         /*
1358          * wiphy->regd will be set once the device has its own
1359          * desired regulatory domain set
1360          */
1361         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1362             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363             !is_world_regdom(lr->alpha2)) {
1364                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1365                               "since the driver requires its own regulatory "
1366                               "domain to be set first\n",
1367                               reg_initiator_name(initiator));
1368                 return true;
1369         }
1370
1371         if (reg_request_cell_base(lr))
1372                 return reg_dev_ignore_cell_hint(wiphy);
1373
1374         return false;
1375 }
1376
1377 static bool reg_is_world_roaming(struct wiphy *wiphy)
1378 {
1379         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1380         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1381         struct regulatory_request *lr = get_last_request();
1382
1383         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1384                 return true;
1385
1386         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1387             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1388                 return true;
1389
1390         return false;
1391 }
1392
1393 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1394                               struct reg_beacon *reg_beacon)
1395 {
1396         struct ieee80211_supported_band *sband;
1397         struct ieee80211_channel *chan;
1398         bool channel_changed = false;
1399         struct ieee80211_channel chan_before;
1400
1401         sband = wiphy->bands[reg_beacon->chan.band];
1402         chan = &sband->channels[chan_idx];
1403
1404         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1405                 return;
1406
1407         if (chan->beacon_found)
1408                 return;
1409
1410         chan->beacon_found = true;
1411
1412         if (!reg_is_world_roaming(wiphy))
1413                 return;
1414
1415         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1416                 return;
1417
1418         chan_before.center_freq = chan->center_freq;
1419         chan_before.flags = chan->flags;
1420
1421         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1422                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1423                 channel_changed = true;
1424         }
1425
1426         if (channel_changed)
1427                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1428 }
1429
1430 /*
1431  * Called when a scan on a wiphy finds a beacon on
1432  * new channel
1433  */
1434 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1435                                     struct reg_beacon *reg_beacon)
1436 {
1437         unsigned int i;
1438         struct ieee80211_supported_band *sband;
1439
1440         if (!wiphy->bands[reg_beacon->chan.band])
1441                 return;
1442
1443         sband = wiphy->bands[reg_beacon->chan.band];
1444
1445         for (i = 0; i < sband->n_channels; i++)
1446                 handle_reg_beacon(wiphy, i, reg_beacon);
1447 }
1448
1449 /*
1450  * Called upon reg changes or a new wiphy is added
1451  */
1452 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1453 {
1454         unsigned int i;
1455         struct ieee80211_supported_band *sband;
1456         struct reg_beacon *reg_beacon;
1457
1458         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1459                 if (!wiphy->bands[reg_beacon->chan.band])
1460                         continue;
1461                 sband = wiphy->bands[reg_beacon->chan.band];
1462                 for (i = 0; i < sband->n_channels; i++)
1463                         handle_reg_beacon(wiphy, i, reg_beacon);
1464         }
1465 }
1466
1467 /* Reap the advantages of previously found beacons */
1468 static void reg_process_beacons(struct wiphy *wiphy)
1469 {
1470         /*
1471          * Means we are just firing up cfg80211, so no beacons would
1472          * have been processed yet.
1473          */
1474         if (!last_request)
1475                 return;
1476         wiphy_update_beacon_reg(wiphy);
1477 }
1478
1479 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1480 {
1481         if (!chan)
1482                 return false;
1483         if (chan->flags & IEEE80211_CHAN_DISABLED)
1484                 return false;
1485         /* This would happen when regulatory rules disallow HT40 completely */
1486         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1487                 return false;
1488         return true;
1489 }
1490
1491 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1492                                          struct ieee80211_channel *channel)
1493 {
1494         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1495         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1496         unsigned int i;
1497
1498         if (!is_ht40_allowed(channel)) {
1499                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1500                 return;
1501         }
1502
1503         /*
1504          * We need to ensure the extension channels exist to
1505          * be able to use HT40- or HT40+, this finds them (or not)
1506          */
1507         for (i = 0; i < sband->n_channels; i++) {
1508                 struct ieee80211_channel *c = &sband->channels[i];
1509
1510                 if (c->center_freq == (channel->center_freq - 20))
1511                         channel_before = c;
1512                 if (c->center_freq == (channel->center_freq + 20))
1513                         channel_after = c;
1514         }
1515
1516         /*
1517          * Please note that this assumes target bandwidth is 20 MHz,
1518          * if that ever changes we also need to change the below logic
1519          * to include that as well.
1520          */
1521         if (!is_ht40_allowed(channel_before))
1522                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1523         else
1524                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1525
1526         if (!is_ht40_allowed(channel_after))
1527                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1528         else
1529                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1530 }
1531
1532 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1533                                       struct ieee80211_supported_band *sband)
1534 {
1535         unsigned int i;
1536
1537         if (!sband)
1538                 return;
1539
1540         for (i = 0; i < sband->n_channels; i++)
1541                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1542 }
1543
1544 static void reg_process_ht_flags(struct wiphy *wiphy)
1545 {
1546         enum ieee80211_band band;
1547
1548         if (!wiphy)
1549                 return;
1550
1551         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1552                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1553 }
1554
1555 static void reg_call_notifier(struct wiphy *wiphy,
1556                               struct regulatory_request *request)
1557 {
1558         if (wiphy->reg_notifier)
1559                 wiphy->reg_notifier(wiphy, request);
1560 }
1561
1562 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1563 {
1564         struct cfg80211_chan_def chandef;
1565         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1566         enum nl80211_iftype iftype;
1567
1568         wdev_lock(wdev);
1569         iftype = wdev->iftype;
1570
1571         /* make sure the interface is active */
1572         if (!wdev->netdev || !netif_running(wdev->netdev))
1573                 goto wdev_inactive_unlock;
1574
1575         switch (iftype) {
1576         case NL80211_IFTYPE_AP:
1577         case NL80211_IFTYPE_P2P_GO:
1578                 if (!wdev->beacon_interval)
1579                         goto wdev_inactive_unlock;
1580                 chandef = wdev->chandef;
1581                 break;
1582         case NL80211_IFTYPE_ADHOC:
1583                 if (!wdev->ssid_len)
1584                         goto wdev_inactive_unlock;
1585                 chandef = wdev->chandef;
1586                 break;
1587         case NL80211_IFTYPE_STATION:
1588         case NL80211_IFTYPE_P2P_CLIENT:
1589                 if (!wdev->current_bss ||
1590                     !wdev->current_bss->pub.channel)
1591                         goto wdev_inactive_unlock;
1592
1593                 if (!rdev->ops->get_channel ||
1594                     rdev_get_channel(rdev, wdev, &chandef))
1595                         cfg80211_chandef_create(&chandef,
1596                                                 wdev->current_bss->pub.channel,
1597                                                 NL80211_CHAN_NO_HT);
1598                 break;
1599         case NL80211_IFTYPE_MONITOR:
1600         case NL80211_IFTYPE_AP_VLAN:
1601         case NL80211_IFTYPE_P2P_DEVICE:
1602                 /* no enforcement required */
1603                 break;
1604         default:
1605                 /* others not implemented for now */
1606                 WARN_ON(1);
1607                 break;
1608         }
1609
1610         wdev_unlock(wdev);
1611
1612         switch (iftype) {
1613         case NL80211_IFTYPE_AP:
1614         case NL80211_IFTYPE_P2P_GO:
1615         case NL80211_IFTYPE_ADHOC:
1616                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1617         case NL80211_IFTYPE_STATION:
1618         case NL80211_IFTYPE_P2P_CLIENT:
1619                 return cfg80211_chandef_usable(wiphy, &chandef,
1620                                                IEEE80211_CHAN_DISABLED);
1621         default:
1622                 break;
1623         }
1624
1625         return true;
1626
1627 wdev_inactive_unlock:
1628         wdev_unlock(wdev);
1629         return true;
1630 }
1631
1632 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1633 {
1634         struct wireless_dev *wdev;
1635         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1636
1637         ASSERT_RTNL();
1638
1639         list_for_each_entry(wdev, &rdev->wdev_list, list)
1640                 if (!reg_wdev_chan_valid(wiphy, wdev))
1641                         cfg80211_leave(rdev, wdev);
1642 }
1643
1644 static void reg_check_chans_work(struct work_struct *work)
1645 {
1646         struct cfg80211_registered_device *rdev;
1647
1648         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1649         rtnl_lock();
1650
1651         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1652                 if (!(rdev->wiphy.regulatory_flags &
1653                       REGULATORY_IGNORE_STALE_KICKOFF))
1654                         reg_leave_invalid_chans(&rdev->wiphy);
1655
1656         rtnl_unlock();
1657 }
1658
1659 static void reg_check_channels(void)
1660 {
1661         /*
1662          * Give usermode a chance to do something nicer (move to another
1663          * channel, orderly disconnection), before forcing a disconnection.
1664          */
1665         mod_delayed_work(system_power_efficient_wq,
1666                          &reg_check_chans,
1667                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1668 }
1669
1670 static void wiphy_update_regulatory(struct wiphy *wiphy,
1671                                     enum nl80211_reg_initiator initiator)
1672 {
1673         enum ieee80211_band band;
1674         struct regulatory_request *lr = get_last_request();
1675
1676         if (ignore_reg_update(wiphy, initiator)) {
1677                 /*
1678                  * Regulatory updates set by CORE are ignored for custom
1679                  * regulatory cards. Let us notify the changes to the driver,
1680                  * as some drivers used this to restore its orig_* reg domain.
1681                  */
1682                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1683                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1684                         reg_call_notifier(wiphy, lr);
1685                 return;
1686         }
1687
1688         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1689
1690         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1691                 handle_band(wiphy, initiator, wiphy->bands[band]);
1692
1693         reg_process_beacons(wiphy);
1694         reg_process_ht_flags(wiphy);
1695         reg_call_notifier(wiphy, lr);
1696 }
1697
1698 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1699 {
1700         struct cfg80211_registered_device *rdev;
1701         struct wiphy *wiphy;
1702
1703         ASSERT_RTNL();
1704
1705         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1706                 wiphy = &rdev->wiphy;
1707                 wiphy_update_regulatory(wiphy, initiator);
1708         }
1709
1710         reg_check_channels();
1711 }
1712
1713 static void handle_channel_custom(struct wiphy *wiphy,
1714                                   struct ieee80211_channel *chan,
1715                                   const struct ieee80211_regdomain *regd)
1716 {
1717         u32 bw_flags = 0;
1718         const struct ieee80211_reg_rule *reg_rule = NULL;
1719         const struct ieee80211_power_rule *power_rule = NULL;
1720         const struct ieee80211_freq_range *freq_range = NULL;
1721         u32 max_bandwidth_khz;
1722         u32 bw;
1723
1724         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1725                 reg_rule = freq_reg_info_regd(wiphy,
1726                                               MHZ_TO_KHZ(chan->center_freq),
1727                                               regd, bw);
1728                 if (!IS_ERR(reg_rule))
1729                         break;
1730         }
1731
1732         if (IS_ERR(reg_rule)) {
1733                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734                               chan->center_freq);
1735                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736                         chan->flags |= IEEE80211_CHAN_DISABLED;
1737                 } else {
1738                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739                         chan->flags = chan->orig_flags;
1740                 }
1741                 return;
1742         }
1743
1744         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1745
1746         power_rule = &reg_rule->power_rule;
1747         freq_range = &reg_rule->freq_range;
1748
1749         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1750         /* Check if auto calculation requested */
1751         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1752                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1753
1754         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1755         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1756                              MHZ_TO_KHZ(10)))
1757                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1759                              MHZ_TO_KHZ(20)))
1760                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761
1762         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1763                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1764         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1765                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1766         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1767                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1768         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1769                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1770         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1771                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1772
1773         chan->dfs_state_entered = jiffies;
1774         chan->dfs_state = NL80211_DFS_USABLE;
1775
1776         chan->beacon_found = false;
1777
1778         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1779                 chan->flags = chan->orig_flags | bw_flags |
1780                               map_regdom_flags(reg_rule->flags);
1781         else
1782                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1783
1784         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1785         chan->max_reg_power = chan->max_power =
1786                 (int) MBM_TO_DBM(power_rule->max_eirp);
1787
1788         if (chan->flags & IEEE80211_CHAN_RADAR) {
1789                 if (reg_rule->dfs_cac_ms)
1790                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1791                 else
1792                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793         }
1794
1795         chan->max_power = chan->max_reg_power;
1796 }
1797
1798 static void handle_band_custom(struct wiphy *wiphy,
1799                                struct ieee80211_supported_band *sband,
1800                                const struct ieee80211_regdomain *regd)
1801 {
1802         unsigned int i;
1803
1804         if (!sband)
1805                 return;
1806
1807         for (i = 0; i < sband->n_channels; i++)
1808                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1809 }
1810
1811 /* Used by drivers prior to wiphy registration */
1812 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1813                                    const struct ieee80211_regdomain *regd)
1814 {
1815         enum ieee80211_band band;
1816         unsigned int bands_set = 0;
1817
1818         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1819              "wiphy should have REGULATORY_CUSTOM_REG\n");
1820         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1821
1822         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1823                 if (!wiphy->bands[band])
1824                         continue;
1825                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1826                 bands_set++;
1827         }
1828
1829         /*
1830          * no point in calling this if it won't have any effect
1831          * on your device's supported bands.
1832          */
1833         WARN_ON(!bands_set);
1834 }
1835 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1836
1837 static void reg_set_request_processed(void)
1838 {
1839         bool need_more_processing = false;
1840         struct regulatory_request *lr = get_last_request();
1841
1842         lr->processed = true;
1843
1844         spin_lock(&reg_requests_lock);
1845         if (!list_empty(&reg_requests_list))
1846                 need_more_processing = true;
1847         spin_unlock(&reg_requests_lock);
1848
1849         cancel_delayed_work(&reg_timeout);
1850
1851         if (need_more_processing)
1852                 schedule_work(&reg_work);
1853 }
1854
1855 /**
1856  * reg_process_hint_core - process core regulatory requests
1857  * @pending_request: a pending core regulatory request
1858  *
1859  * The wireless subsystem can use this function to process
1860  * a regulatory request issued by the regulatory core.
1861  *
1862  * Returns one of the different reg request treatment values.
1863  */
1864 static enum reg_request_treatment
1865 reg_process_hint_core(struct regulatory_request *core_request)
1866 {
1867
1868         core_request->intersect = false;
1869         core_request->processed = false;
1870
1871         reg_update_last_request(core_request);
1872
1873         return reg_call_crda(core_request);
1874 }
1875
1876 static enum reg_request_treatment
1877 __reg_process_hint_user(struct regulatory_request *user_request)
1878 {
1879         struct regulatory_request *lr = get_last_request();
1880
1881         if (reg_request_cell_base(user_request))
1882                 return reg_ignore_cell_hint(user_request);
1883
1884         if (reg_request_cell_base(lr))
1885                 return REG_REQ_IGNORE;
1886
1887         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1888                 return REG_REQ_INTERSECT;
1889         /*
1890          * If the user knows better the user should set the regdom
1891          * to their country before the IE is picked up
1892          */
1893         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1894             lr->intersect)
1895                 return REG_REQ_IGNORE;
1896         /*
1897          * Process user requests only after previous user/driver/core
1898          * requests have been processed
1899          */
1900         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1901              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1902              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1903             regdom_changes(lr->alpha2))
1904                 return REG_REQ_IGNORE;
1905
1906         if (!regdom_changes(user_request->alpha2))
1907                 return REG_REQ_ALREADY_SET;
1908
1909         return REG_REQ_OK;
1910 }
1911
1912 /**
1913  * reg_process_hint_user - process user regulatory requests
1914  * @user_request: a pending user regulatory request
1915  *
1916  * The wireless subsystem can use this function to process
1917  * a regulatory request initiated by userspace.
1918  *
1919  * Returns one of the different reg request treatment values.
1920  */
1921 static enum reg_request_treatment
1922 reg_process_hint_user(struct regulatory_request *user_request)
1923 {
1924         enum reg_request_treatment treatment;
1925
1926         treatment = __reg_process_hint_user(user_request);
1927         if (treatment == REG_REQ_IGNORE ||
1928             treatment == REG_REQ_ALREADY_SET) {
1929                 reg_free_request(user_request);
1930                 return treatment;
1931         }
1932
1933         user_request->intersect = treatment == REG_REQ_INTERSECT;
1934         user_request->processed = false;
1935
1936         reg_update_last_request(user_request);
1937
1938         user_alpha2[0] = user_request->alpha2[0];
1939         user_alpha2[1] = user_request->alpha2[1];
1940
1941         return reg_call_crda(user_request);
1942 }
1943
1944 static enum reg_request_treatment
1945 __reg_process_hint_driver(struct regulatory_request *driver_request)
1946 {
1947         struct regulatory_request *lr = get_last_request();
1948
1949         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1950                 if (regdom_changes(driver_request->alpha2))
1951                         return REG_REQ_OK;
1952                 return REG_REQ_ALREADY_SET;
1953         }
1954
1955         /*
1956          * This would happen if you unplug and plug your card
1957          * back in or if you add a new device for which the previously
1958          * loaded card also agrees on the regulatory domain.
1959          */
1960         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1961             !regdom_changes(driver_request->alpha2))
1962                 return REG_REQ_ALREADY_SET;
1963
1964         return REG_REQ_INTERSECT;
1965 }
1966
1967 /**
1968  * reg_process_hint_driver - process driver regulatory requests
1969  * @driver_request: a pending driver regulatory request
1970  *
1971  * The wireless subsystem can use this function to process
1972  * a regulatory request issued by an 802.11 driver.
1973  *
1974  * Returns one of the different reg request treatment values.
1975  */
1976 static enum reg_request_treatment
1977 reg_process_hint_driver(struct wiphy *wiphy,
1978                         struct regulatory_request *driver_request)
1979 {
1980         const struct ieee80211_regdomain *regd, *tmp;
1981         enum reg_request_treatment treatment;
1982
1983         treatment = __reg_process_hint_driver(driver_request);
1984
1985         switch (treatment) {
1986         case REG_REQ_OK:
1987                 break;
1988         case REG_REQ_IGNORE:
1989                 reg_free_request(driver_request);
1990                 return treatment;
1991         case REG_REQ_INTERSECT:
1992                 /* fall through */
1993         case REG_REQ_ALREADY_SET:
1994                 regd = reg_copy_regd(get_cfg80211_regdom());
1995                 if (IS_ERR(regd)) {
1996                         reg_free_request(driver_request);
1997                         return REG_REQ_IGNORE;
1998                 }
1999
2000                 tmp = get_wiphy_regdom(wiphy);
2001                 rcu_assign_pointer(wiphy->regd, regd);
2002                 rcu_free_regdom(tmp);
2003         }
2004
2005
2006         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2007         driver_request->processed = false;
2008
2009         reg_update_last_request(driver_request);
2010
2011         /*
2012          * Since CRDA will not be called in this case as we already
2013          * have applied the requested regulatory domain before we just
2014          * inform userspace we have processed the request
2015          */
2016         if (treatment == REG_REQ_ALREADY_SET) {
2017                 nl80211_send_reg_change_event(driver_request);
2018                 reg_set_request_processed();
2019                 return treatment;
2020         }
2021
2022         return reg_call_crda(driver_request);
2023 }
2024
2025 static enum reg_request_treatment
2026 __reg_process_hint_country_ie(struct wiphy *wiphy,
2027                               struct regulatory_request *country_ie_request)
2028 {
2029         struct wiphy *last_wiphy = NULL;
2030         struct regulatory_request *lr = get_last_request();
2031
2032         if (reg_request_cell_base(lr)) {
2033                 /* Trust a Cell base station over the AP's country IE */
2034                 if (regdom_changes(country_ie_request->alpha2))
2035                         return REG_REQ_IGNORE;
2036                 return REG_REQ_ALREADY_SET;
2037         } else {
2038                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2039                         return REG_REQ_IGNORE;
2040         }
2041
2042         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2043                 return -EINVAL;
2044
2045         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2046                 return REG_REQ_OK;
2047
2048         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2049
2050         if (last_wiphy != wiphy) {
2051                 /*
2052                  * Two cards with two APs claiming different
2053                  * Country IE alpha2s. We could
2054                  * intersect them, but that seems unlikely
2055                  * to be correct. Reject second one for now.
2056                  */
2057                 if (regdom_changes(country_ie_request->alpha2))
2058                         return REG_REQ_IGNORE;
2059                 return REG_REQ_ALREADY_SET;
2060         }
2061
2062         if (regdom_changes(country_ie_request->alpha2))
2063                 return REG_REQ_OK;
2064         return REG_REQ_ALREADY_SET;
2065 }
2066
2067 /**
2068  * reg_process_hint_country_ie - process regulatory requests from country IEs
2069  * @country_ie_request: a regulatory request from a country IE
2070  *
2071  * The wireless subsystem can use this function to process
2072  * a regulatory request issued by a country Information Element.
2073  *
2074  * Returns one of the different reg request treatment values.
2075  */
2076 static enum reg_request_treatment
2077 reg_process_hint_country_ie(struct wiphy *wiphy,
2078                             struct regulatory_request *country_ie_request)
2079 {
2080         enum reg_request_treatment treatment;
2081
2082         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2083
2084         switch (treatment) {
2085         case REG_REQ_OK:
2086                 break;
2087         case REG_REQ_IGNORE:
2088                 /* fall through */
2089         case REG_REQ_ALREADY_SET:
2090                 reg_free_request(country_ie_request);
2091                 return treatment;
2092         case REG_REQ_INTERSECT:
2093                 reg_free_request(country_ie_request);
2094                 /*
2095                  * This doesn't happen yet, not sure we
2096                  * ever want to support it for this case.
2097                  */
2098                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2099                 return REG_REQ_IGNORE;
2100         }
2101
2102         country_ie_request->intersect = false;
2103         country_ie_request->processed = false;
2104
2105         reg_update_last_request(country_ie_request);
2106
2107         return reg_call_crda(country_ie_request);
2108 }
2109
2110 /* This processes *all* regulatory hints */
2111 static void reg_process_hint(struct regulatory_request *reg_request)
2112 {
2113         struct wiphy *wiphy = NULL;
2114         enum reg_request_treatment treatment;
2115
2116         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2117                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2118
2119         switch (reg_request->initiator) {
2120         case NL80211_REGDOM_SET_BY_CORE:
2121                 reg_process_hint_core(reg_request);
2122                 return;
2123         case NL80211_REGDOM_SET_BY_USER:
2124                 reg_process_hint_user(reg_request);
2125                 return;
2126         case NL80211_REGDOM_SET_BY_DRIVER:
2127                 if (!wiphy)
2128                         goto out_free;
2129                 treatment = reg_process_hint_driver(wiphy, reg_request);
2130                 break;
2131         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2132                 if (!wiphy)
2133                         goto out_free;
2134                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2135                 break;
2136         default:
2137                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2138                 goto out_free;
2139         }
2140
2141         /* This is required so that the orig_* parameters are saved.
2142          * NOTE: treatment must be set for any case that reaches here!
2143          */
2144         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2145             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2146                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2147                 reg_check_channels();
2148         }
2149
2150         return;
2151
2152 out_free:
2153         reg_free_request(reg_request);
2154 }
2155
2156 static bool reg_only_self_managed_wiphys(void)
2157 {
2158         struct cfg80211_registered_device *rdev;
2159         struct wiphy *wiphy;
2160         bool self_managed_found = false;
2161
2162         ASSERT_RTNL();
2163
2164         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2165                 wiphy = &rdev->wiphy;
2166                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2167                         self_managed_found = true;
2168                 else
2169                         return false;
2170         }
2171
2172         /* make sure at least one self-managed wiphy exists */
2173         return self_managed_found;
2174 }
2175
2176 /*
2177  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2178  * Regulatory hints come on a first come first serve basis and we
2179  * must process each one atomically.
2180  */
2181 static void reg_process_pending_hints(void)
2182 {
2183         struct regulatory_request *reg_request, *lr;
2184
2185         lr = get_last_request();
2186
2187         /* When last_request->processed becomes true this will be rescheduled */
2188         if (lr && !lr->processed) {
2189                 reg_process_hint(lr);
2190                 return;
2191         }
2192
2193         spin_lock(&reg_requests_lock);
2194
2195         if (list_empty(&reg_requests_list)) {
2196                 spin_unlock(&reg_requests_lock);
2197                 return;
2198         }
2199
2200         reg_request = list_first_entry(&reg_requests_list,
2201                                        struct regulatory_request,
2202                                        list);
2203         list_del_init(&reg_request->list);
2204
2205         spin_unlock(&reg_requests_lock);
2206
2207         if (reg_only_self_managed_wiphys()) {
2208                 reg_free_request(reg_request);
2209                 return;
2210         }
2211
2212         reg_process_hint(reg_request);
2213
2214         lr = get_last_request();
2215
2216         spin_lock(&reg_requests_lock);
2217         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2218                 schedule_work(&reg_work);
2219         spin_unlock(&reg_requests_lock);
2220 }
2221
2222 /* Processes beacon hints -- this has nothing to do with country IEs */
2223 static void reg_process_pending_beacon_hints(void)
2224 {
2225         struct cfg80211_registered_device *rdev;
2226         struct reg_beacon *pending_beacon, *tmp;
2227
2228         /* This goes through the _pending_ beacon list */
2229         spin_lock_bh(&reg_pending_beacons_lock);
2230
2231         list_for_each_entry_safe(pending_beacon, tmp,
2232                                  &reg_pending_beacons, list) {
2233                 list_del_init(&pending_beacon->list);
2234
2235                 /* Applies the beacon hint to current wiphys */
2236                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2237                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2238
2239                 /* Remembers the beacon hint for new wiphys or reg changes */
2240                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2241         }
2242
2243         spin_unlock_bh(&reg_pending_beacons_lock);
2244 }
2245
2246 static void reg_process_self_managed_hints(void)
2247 {
2248         struct cfg80211_registered_device *rdev;
2249         struct wiphy *wiphy;
2250         const struct ieee80211_regdomain *tmp;
2251         const struct ieee80211_regdomain *regd;
2252         enum ieee80211_band band;
2253         struct regulatory_request request = {};
2254
2255         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2256                 wiphy = &rdev->wiphy;
2257
2258                 spin_lock(&reg_requests_lock);
2259                 regd = rdev->requested_regd;
2260                 rdev->requested_regd = NULL;
2261                 spin_unlock(&reg_requests_lock);
2262
2263                 if (regd == NULL)
2264                         continue;
2265
2266                 tmp = get_wiphy_regdom(wiphy);
2267                 rcu_assign_pointer(wiphy->regd, regd);
2268                 rcu_free_regdom(tmp);
2269
2270                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2271                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2272
2273                 reg_process_ht_flags(wiphy);
2274
2275                 request.wiphy_idx = get_wiphy_idx(wiphy);
2276                 request.alpha2[0] = regd->alpha2[0];
2277                 request.alpha2[1] = regd->alpha2[1];
2278                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2279
2280                 nl80211_send_wiphy_reg_change_event(&request);
2281         }
2282
2283         reg_check_channels();
2284 }
2285
2286 static void reg_todo(struct work_struct *work)
2287 {
2288         rtnl_lock();
2289         reg_process_pending_hints();
2290         reg_process_pending_beacon_hints();
2291         reg_process_self_managed_hints();
2292         rtnl_unlock();
2293 }
2294
2295 static void queue_regulatory_request(struct regulatory_request *request)
2296 {
2297         request->alpha2[0] = toupper(request->alpha2[0]);
2298         request->alpha2[1] = toupper(request->alpha2[1]);
2299
2300         spin_lock(&reg_requests_lock);
2301         list_add_tail(&request->list, &reg_requests_list);
2302         spin_unlock(&reg_requests_lock);
2303
2304         schedule_work(&reg_work);
2305 }
2306
2307 /*
2308  * Core regulatory hint -- happens during cfg80211_init()
2309  * and when we restore regulatory settings.
2310  */
2311 static int regulatory_hint_core(const char *alpha2)
2312 {
2313         struct regulatory_request *request;
2314
2315         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2316         if (!request)
2317                 return -ENOMEM;
2318
2319         request->alpha2[0] = alpha2[0];
2320         request->alpha2[1] = alpha2[1];
2321         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2322
2323         queue_regulatory_request(request);
2324
2325         return 0;
2326 }
2327
2328 /* User hints */
2329 int regulatory_hint_user(const char *alpha2,
2330                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2331 {
2332         struct regulatory_request *request;
2333
2334         if (WARN_ON(!alpha2))
2335                 return -EINVAL;
2336
2337         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2338         if (!request)
2339                 return -ENOMEM;
2340
2341         request->wiphy_idx = WIPHY_IDX_INVALID;
2342         request->alpha2[0] = alpha2[0];
2343         request->alpha2[1] = alpha2[1];
2344         request->initiator = NL80211_REGDOM_SET_BY_USER;
2345         request->user_reg_hint_type = user_reg_hint_type;
2346
2347         /* Allow calling CRDA again */
2348         reg_crda_timeouts = 0;
2349
2350         queue_regulatory_request(request);
2351
2352         return 0;
2353 }
2354
2355 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2356 {
2357         spin_lock(&reg_indoor_lock);
2358
2359         /* It is possible that more than one user space process is trying to
2360          * configure the indoor setting. To handle such cases, clear the indoor
2361          * setting in case that some process does not think that the device
2362          * is operating in an indoor environment. In addition, if a user space
2363          * process indicates that it is controlling the indoor setting, save its
2364          * portid, i.e., make it the owner.
2365          */
2366         reg_is_indoor = is_indoor;
2367         if (reg_is_indoor) {
2368                 if (!reg_is_indoor_portid)
2369                         reg_is_indoor_portid = portid;
2370         } else {
2371                 reg_is_indoor_portid = 0;
2372         }
2373
2374         spin_unlock(&reg_indoor_lock);
2375
2376         if (!is_indoor)
2377                 reg_check_channels();
2378
2379         return 0;
2380 }
2381
2382 void regulatory_netlink_notify(u32 portid)
2383 {
2384         spin_lock(&reg_indoor_lock);
2385
2386         if (reg_is_indoor_portid != portid) {
2387                 spin_unlock(&reg_indoor_lock);
2388                 return;
2389         }
2390
2391         reg_is_indoor = false;
2392         reg_is_indoor_portid = 0;
2393
2394         spin_unlock(&reg_indoor_lock);
2395
2396         reg_check_channels();
2397 }
2398
2399 /* Driver hints */
2400 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2401 {
2402         struct regulatory_request *request;
2403
2404         if (WARN_ON(!alpha2 || !wiphy))
2405                 return -EINVAL;
2406
2407         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2408
2409         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2410         if (!request)
2411                 return -ENOMEM;
2412
2413         request->wiphy_idx = get_wiphy_idx(wiphy);
2414
2415         request->alpha2[0] = alpha2[0];
2416         request->alpha2[1] = alpha2[1];
2417         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2418
2419         /* Allow calling CRDA again */
2420         reg_crda_timeouts = 0;
2421
2422         queue_regulatory_request(request);
2423
2424         return 0;
2425 }
2426 EXPORT_SYMBOL(regulatory_hint);
2427
2428 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2429                                 const u8 *country_ie, u8 country_ie_len)
2430 {
2431         char alpha2[2];
2432         enum environment_cap env = ENVIRON_ANY;
2433         struct regulatory_request *request = NULL, *lr;
2434
2435         /* IE len must be evenly divisible by 2 */
2436         if (country_ie_len & 0x01)
2437                 return;
2438
2439         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2440                 return;
2441
2442         request = kzalloc(sizeof(*request), GFP_KERNEL);
2443         if (!request)
2444                 return;
2445
2446         alpha2[0] = country_ie[0];
2447         alpha2[1] = country_ie[1];
2448
2449         if (country_ie[2] == 'I')
2450                 env = ENVIRON_INDOOR;
2451         else if (country_ie[2] == 'O')
2452                 env = ENVIRON_OUTDOOR;
2453
2454         rcu_read_lock();
2455         lr = get_last_request();
2456
2457         if (unlikely(!lr))
2458                 goto out;
2459
2460         /*
2461          * We will run this only upon a successful connection on cfg80211.
2462          * We leave conflict resolution to the workqueue, where can hold
2463          * the RTNL.
2464          */
2465         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2466             lr->wiphy_idx != WIPHY_IDX_INVALID)
2467                 goto out;
2468
2469         request->wiphy_idx = get_wiphy_idx(wiphy);
2470         request->alpha2[0] = alpha2[0];
2471         request->alpha2[1] = alpha2[1];
2472         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2473         request->country_ie_env = env;
2474
2475         /* Allow calling CRDA again */
2476         reg_crda_timeouts = 0;
2477
2478         queue_regulatory_request(request);
2479         request = NULL;
2480 out:
2481         kfree(request);
2482         rcu_read_unlock();
2483 }
2484
2485 static void restore_alpha2(char *alpha2, bool reset_user)
2486 {
2487         /* indicates there is no alpha2 to consider for restoration */
2488         alpha2[0] = '9';
2489         alpha2[1] = '7';
2490
2491         /* The user setting has precedence over the module parameter */
2492         if (is_user_regdom_saved()) {
2493                 /* Unless we're asked to ignore it and reset it */
2494                 if (reset_user) {
2495                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2496                         user_alpha2[0] = '9';
2497                         user_alpha2[1] = '7';
2498
2499                         /*
2500                          * If we're ignoring user settings, we still need to
2501                          * check the module parameter to ensure we put things
2502                          * back as they were for a full restore.
2503                          */
2504                         if (!is_world_regdom(ieee80211_regdom)) {
2505                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2506                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2507                                 alpha2[0] = ieee80211_regdom[0];
2508                                 alpha2[1] = ieee80211_regdom[1];
2509                         }
2510                 } else {
2511                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2512                                       user_alpha2[0], user_alpha2[1]);
2513                         alpha2[0] = user_alpha2[0];
2514                         alpha2[1] = user_alpha2[1];
2515                 }
2516         } else if (!is_world_regdom(ieee80211_regdom)) {
2517                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2518                               ieee80211_regdom[0], ieee80211_regdom[1]);
2519                 alpha2[0] = ieee80211_regdom[0];
2520                 alpha2[1] = ieee80211_regdom[1];
2521         } else
2522                 REG_DBG_PRINT("Restoring regulatory settings\n");
2523 }
2524
2525 static void restore_custom_reg_settings(struct wiphy *wiphy)
2526 {
2527         struct ieee80211_supported_band *sband;
2528         enum ieee80211_band band;
2529         struct ieee80211_channel *chan;
2530         int i;
2531
2532         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2533                 sband = wiphy->bands[band];
2534                 if (!sband)
2535                         continue;
2536                 for (i = 0; i < sband->n_channels; i++) {
2537                         chan = &sband->channels[i];
2538                         chan->flags = chan->orig_flags;
2539                         chan->max_antenna_gain = chan->orig_mag;
2540                         chan->max_power = chan->orig_mpwr;
2541                         chan->beacon_found = false;
2542                 }
2543         }
2544 }
2545
2546 /*
2547  * Restoring regulatory settings involves ingoring any
2548  * possibly stale country IE information and user regulatory
2549  * settings if so desired, this includes any beacon hints
2550  * learned as we could have traveled outside to another country
2551  * after disconnection. To restore regulatory settings we do
2552  * exactly what we did at bootup:
2553  *
2554  *   - send a core regulatory hint
2555  *   - send a user regulatory hint if applicable
2556  *
2557  * Device drivers that send a regulatory hint for a specific country
2558  * keep their own regulatory domain on wiphy->regd so that does does
2559  * not need to be remembered.
2560  */
2561 static void restore_regulatory_settings(bool reset_user)
2562 {
2563         char alpha2[2];
2564         char world_alpha2[2];
2565         struct reg_beacon *reg_beacon, *btmp;
2566         LIST_HEAD(tmp_reg_req_list);
2567         struct cfg80211_registered_device *rdev;
2568
2569         ASSERT_RTNL();
2570
2571         /*
2572          * Clear the indoor setting in case that it is not controlled by user
2573          * space, as otherwise there is no guarantee that the device is still
2574          * operating in an indoor environment.
2575          */
2576         spin_lock(&reg_indoor_lock);
2577         if (reg_is_indoor && !reg_is_indoor_portid) {
2578                 reg_is_indoor = false;
2579                 reg_check_channels();
2580         }
2581         spin_unlock(&reg_indoor_lock);
2582
2583         reset_regdomains(true, &world_regdom);
2584         restore_alpha2(alpha2, reset_user);
2585
2586         /*
2587          * If there's any pending requests we simply
2588          * stash them to a temporary pending queue and
2589          * add then after we've restored regulatory
2590          * settings.
2591          */
2592         spin_lock(&reg_requests_lock);
2593         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2594         spin_unlock(&reg_requests_lock);
2595
2596         /* Clear beacon hints */
2597         spin_lock_bh(&reg_pending_beacons_lock);
2598         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2599                 list_del(&reg_beacon->list);
2600                 kfree(reg_beacon);
2601         }
2602         spin_unlock_bh(&reg_pending_beacons_lock);
2603
2604         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2605                 list_del(&reg_beacon->list);
2606                 kfree(reg_beacon);
2607         }
2608
2609         /* First restore to the basic regulatory settings */
2610         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2611         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2612
2613         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2614                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2615                         continue;
2616                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2617                         restore_custom_reg_settings(&rdev->wiphy);
2618         }
2619
2620         regulatory_hint_core(world_alpha2);
2621
2622         /*
2623          * This restores the ieee80211_regdom module parameter
2624          * preference or the last user requested regulatory
2625          * settings, user regulatory settings takes precedence.
2626          */
2627         if (is_an_alpha2(alpha2))
2628                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2629
2630         spin_lock(&reg_requests_lock);
2631         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2632         spin_unlock(&reg_requests_lock);
2633
2634         REG_DBG_PRINT("Kicking the queue\n");
2635
2636         schedule_work(&reg_work);
2637 }
2638
2639 void regulatory_hint_disconnect(void)
2640 {
2641         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2642         restore_regulatory_settings(false);
2643 }
2644
2645 static bool freq_is_chan_12_13_14(u16 freq)
2646 {
2647         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2648             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2649             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2650                 return true;
2651         return false;
2652 }
2653
2654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2655 {
2656         struct reg_beacon *pending_beacon;
2657
2658         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2659                 if (beacon_chan->center_freq ==
2660                     pending_beacon->chan.center_freq)
2661                         return true;
2662         return false;
2663 }
2664
2665 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2666                                  struct ieee80211_channel *beacon_chan,
2667                                  gfp_t gfp)
2668 {
2669         struct reg_beacon *reg_beacon;
2670         bool processing;
2671
2672         if (beacon_chan->beacon_found ||
2673             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2674             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2675              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2676                 return 0;
2677
2678         spin_lock_bh(&reg_pending_beacons_lock);
2679         processing = pending_reg_beacon(beacon_chan);
2680         spin_unlock_bh(&reg_pending_beacons_lock);
2681
2682         if (processing)
2683                 return 0;
2684
2685         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2686         if (!reg_beacon)
2687                 return -ENOMEM;
2688
2689         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2690                       beacon_chan->center_freq,
2691                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2692                       wiphy_name(wiphy));
2693
2694         memcpy(&reg_beacon->chan, beacon_chan,
2695                sizeof(struct ieee80211_channel));
2696
2697         /*
2698          * Since we can be called from BH or and non-BH context
2699          * we must use spin_lock_bh()
2700          */
2701         spin_lock_bh(&reg_pending_beacons_lock);
2702         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2703         spin_unlock_bh(&reg_pending_beacons_lock);
2704
2705         schedule_work(&reg_work);
2706
2707         return 0;
2708 }
2709
2710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2711 {
2712         unsigned int i;
2713         const struct ieee80211_reg_rule *reg_rule = NULL;
2714         const struct ieee80211_freq_range *freq_range = NULL;
2715         const struct ieee80211_power_rule *power_rule = NULL;
2716         char bw[32], cac_time[32];
2717
2718         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2719
2720         for (i = 0; i < rd->n_reg_rules; i++) {
2721                 reg_rule = &rd->reg_rules[i];
2722                 freq_range = &reg_rule->freq_range;
2723                 power_rule = &reg_rule->power_rule;
2724
2725                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2726                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2727                                  freq_range->max_bandwidth_khz,
2728                                  reg_get_max_bandwidth(rd, reg_rule));
2729                 else
2730                         snprintf(bw, sizeof(bw), "%d KHz",
2731                                  freq_range->max_bandwidth_khz);
2732
2733                 if (reg_rule->flags & NL80211_RRF_DFS)
2734                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2735                                   reg_rule->dfs_cac_ms/1000);
2736                 else
2737                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2738
2739
2740                 /*
2741                  * There may not be documentation for max antenna gain
2742                  * in certain regions
2743                  */
2744                 if (power_rule->max_antenna_gain)
2745                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2746                                 freq_range->start_freq_khz,
2747                                 freq_range->end_freq_khz,
2748                                 bw,
2749                                 power_rule->max_antenna_gain,
2750                                 power_rule->max_eirp,
2751                                 cac_time);
2752                 else
2753                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2754                                 freq_range->start_freq_khz,
2755                                 freq_range->end_freq_khz,
2756                                 bw,
2757                                 power_rule->max_eirp,
2758                                 cac_time);
2759         }
2760 }
2761
2762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2763 {
2764         switch (dfs_region) {
2765         case NL80211_DFS_UNSET:
2766         case NL80211_DFS_FCC:
2767         case NL80211_DFS_ETSI:
2768         case NL80211_DFS_JP:
2769                 return true;
2770         default:
2771                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2772                               dfs_region);
2773                 return false;
2774         }
2775 }
2776
2777 static void print_regdomain(const struct ieee80211_regdomain *rd)
2778 {
2779         struct regulatory_request *lr = get_last_request();
2780
2781         if (is_intersected_alpha2(rd->alpha2)) {
2782                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2783                         struct cfg80211_registered_device *rdev;
2784                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2785                         if (rdev) {
2786                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2787                                         rdev->country_ie_alpha2[0],
2788                                         rdev->country_ie_alpha2[1]);
2789                         } else
2790                                 pr_info("Current regulatory domain intersected:\n");
2791                 } else
2792                         pr_info("Current regulatory domain intersected:\n");
2793         } else if (is_world_regdom(rd->alpha2)) {
2794                 pr_info("World regulatory domain updated:\n");
2795         } else {
2796                 if (is_unknown_alpha2(rd->alpha2))
2797                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2798                 else {
2799                         if (reg_request_cell_base(lr))
2800                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2801                                         rd->alpha2[0], rd->alpha2[1]);
2802                         else
2803                                 pr_info("Regulatory domain changed to country: %c%c\n",
2804                                         rd->alpha2[0], rd->alpha2[1]);
2805                 }
2806         }
2807
2808         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2809         print_rd_rules(rd);
2810 }
2811
2812 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2813 {
2814         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2815         print_rd_rules(rd);
2816 }
2817
2818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2819 {
2820         if (!is_world_regdom(rd->alpha2))
2821                 return -EINVAL;
2822         update_world_regdomain(rd);
2823         return 0;
2824 }
2825
2826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2827                            struct regulatory_request *user_request)
2828 {
2829         const struct ieee80211_regdomain *intersected_rd = NULL;
2830
2831         if (!regdom_changes(rd->alpha2))
2832                 return -EALREADY;
2833
2834         if (!is_valid_rd(rd)) {
2835                 pr_err("Invalid regulatory domain detected:\n");
2836                 print_regdomain_info(rd);
2837                 return -EINVAL;
2838         }
2839
2840         if (!user_request->intersect) {
2841                 reset_regdomains(false, rd);
2842                 return 0;
2843         }
2844
2845         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2846         if (!intersected_rd)
2847                 return -EINVAL;
2848
2849         kfree(rd);
2850         rd = NULL;
2851         reset_regdomains(false, intersected_rd);
2852
2853         return 0;
2854 }
2855
2856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2857                              struct regulatory_request *driver_request)
2858 {
2859         const struct ieee80211_regdomain *regd;
2860         const struct ieee80211_regdomain *intersected_rd = NULL;
2861         const struct ieee80211_regdomain *tmp;
2862         struct wiphy *request_wiphy;
2863
2864         if (is_world_regdom(rd->alpha2))
2865                 return -EINVAL;
2866
2867         if (!regdom_changes(rd->alpha2))
2868                 return -EALREADY;
2869
2870         if (!is_valid_rd(rd)) {
2871                 pr_err("Invalid regulatory domain detected:\n");
2872                 print_regdomain_info(rd);
2873                 return -EINVAL;
2874         }
2875
2876         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2877         if (!request_wiphy) {
2878                 queue_delayed_work(system_power_efficient_wq,
2879                                    &reg_timeout, 0);
2880                 return -ENODEV;
2881         }
2882
2883         if (!driver_request->intersect) {
2884                 if (request_wiphy->regd)
2885                         return -EALREADY;
2886
2887                 regd = reg_copy_regd(rd);
2888                 if (IS_ERR(regd))
2889                         return PTR_ERR(regd);
2890
2891                 rcu_assign_pointer(request_wiphy->regd, regd);
2892                 reset_regdomains(false, rd);
2893                 return 0;
2894         }
2895
2896         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2897         if (!intersected_rd)
2898                 return -EINVAL;
2899
2900         /*
2901          * We can trash what CRDA provided now.
2902          * However if a driver requested this specific regulatory
2903          * domain we keep it for its private use
2904          */
2905         tmp = get_wiphy_regdom(request_wiphy);
2906         rcu_assign_pointer(request_wiphy->regd, rd);
2907         rcu_free_regdom(tmp);
2908
2909         rd = NULL;
2910
2911         reset_regdomains(false, intersected_rd);
2912
2913         return 0;
2914 }
2915
2916 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2917                                  struct regulatory_request *country_ie_request)
2918 {
2919         struct wiphy *request_wiphy;
2920
2921         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2922             !is_unknown_alpha2(rd->alpha2))
2923                 return -EINVAL;
2924
2925         /*
2926          * Lets only bother proceeding on the same alpha2 if the current
2927          * rd is non static (it means CRDA was present and was used last)
2928          * and the pending request came in from a country IE
2929          */
2930
2931         if (!is_valid_rd(rd)) {
2932                 pr_err("Invalid regulatory domain detected:\n");
2933                 print_regdomain_info(rd);
2934                 return -EINVAL;
2935         }
2936
2937         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2938         if (!request_wiphy) {
2939                 queue_delayed_work(system_power_efficient_wq,
2940                                    &reg_timeout, 0);
2941                 return -ENODEV;
2942         }
2943
2944         if (country_ie_request->intersect)
2945                 return -EINVAL;
2946
2947         reset_regdomains(false, rd);
2948         return 0;
2949 }
2950
2951 /*
2952  * Use this call to set the current regulatory domain. Conflicts with
2953  * multiple drivers can be ironed out later. Caller must've already
2954  * kmalloc'd the rd structure.
2955  */
2956 int set_regdom(const struct ieee80211_regdomain *rd,
2957                enum ieee80211_regd_source regd_src)
2958 {
2959         struct regulatory_request *lr;
2960         bool user_reset = false;
2961         int r;
2962
2963         if (!reg_is_valid_request(rd->alpha2)) {
2964                 kfree(rd);
2965                 return -EINVAL;
2966         }
2967
2968         if (regd_src == REGD_SOURCE_CRDA)
2969                 reg_crda_timeouts = 0;
2970
2971         lr = get_last_request();
2972
2973         /* Note that this doesn't update the wiphys, this is done below */
2974         switch (lr->initiator) {
2975         case NL80211_REGDOM_SET_BY_CORE:
2976                 r = reg_set_rd_core(rd);
2977                 break;
2978         case NL80211_REGDOM_SET_BY_USER:
2979                 r = reg_set_rd_user(rd, lr);
2980                 user_reset = true;
2981                 break;
2982         case NL80211_REGDOM_SET_BY_DRIVER:
2983                 r = reg_set_rd_driver(rd, lr);
2984                 break;
2985         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2986                 r = reg_set_rd_country_ie(rd, lr);
2987                 break;
2988         default:
2989                 WARN(1, "invalid initiator %d\n", lr->initiator);
2990                 return -EINVAL;
2991         }
2992
2993         if (r) {
2994                 switch (r) {
2995                 case -EALREADY:
2996                         reg_set_request_processed();
2997                         break;
2998                 default:
2999                         /* Back to world regulatory in case of errors */
3000                         restore_regulatory_settings(user_reset);
3001                 }
3002
3003                 kfree(rd);
3004                 return r;
3005         }
3006
3007         /* This would make this whole thing pointless */
3008         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3009                 return -EINVAL;
3010
3011         /* update all wiphys now with the new established regulatory domain */
3012         update_all_wiphy_regulatory(lr->initiator);
3013
3014         print_regdomain(get_cfg80211_regdom());
3015
3016         nl80211_send_reg_change_event(lr);
3017
3018         reg_set_request_processed();
3019
3020         return 0;
3021 }
3022
3023 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3024                                        struct ieee80211_regdomain *rd)
3025 {
3026         const struct ieee80211_regdomain *regd;
3027         const struct ieee80211_regdomain *prev_regd;
3028         struct cfg80211_registered_device *rdev;
3029
3030         if (WARN_ON(!wiphy || !rd))
3031                 return -EINVAL;
3032
3033         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3034                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3035                 return -EPERM;
3036
3037         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3038                 print_regdomain_info(rd);
3039                 return -EINVAL;
3040         }
3041
3042         regd = reg_copy_regd(rd);
3043         if (IS_ERR(regd))
3044                 return PTR_ERR(regd);
3045
3046         rdev = wiphy_to_rdev(wiphy);
3047
3048         spin_lock(&reg_requests_lock);
3049         prev_regd = rdev->requested_regd;
3050         rdev->requested_regd = regd;
3051         spin_unlock(&reg_requests_lock);
3052
3053         kfree(prev_regd);
3054         return 0;
3055 }
3056
3057 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3058                               struct ieee80211_regdomain *rd)
3059 {
3060         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3061
3062         if (ret)
3063                 return ret;
3064
3065         schedule_work(&reg_work);
3066         return 0;
3067 }
3068 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3069
3070 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3071                                         struct ieee80211_regdomain *rd)
3072 {
3073         int ret;
3074
3075         ASSERT_RTNL();
3076
3077         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3078         if (ret)
3079                 return ret;
3080
3081         /* process the request immediately */
3082         reg_process_self_managed_hints();
3083         return 0;
3084 }
3085 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3086
3087 void wiphy_regulatory_register(struct wiphy *wiphy)
3088 {
3089         struct regulatory_request *lr;
3090
3091         /* self-managed devices ignore external hints */
3092         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3093                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3094                                            REGULATORY_COUNTRY_IE_IGNORE;
3095
3096         if (!reg_dev_ignore_cell_hint(wiphy))
3097                 reg_num_devs_support_basehint++;
3098
3099         lr = get_last_request();
3100         wiphy_update_regulatory(wiphy, lr->initiator);
3101 }
3102
3103 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3104 {
3105         struct wiphy *request_wiphy = NULL;
3106         struct regulatory_request *lr;
3107
3108         lr = get_last_request();
3109
3110         if (!reg_dev_ignore_cell_hint(wiphy))
3111                 reg_num_devs_support_basehint--;
3112
3113         rcu_free_regdom(get_wiphy_regdom(wiphy));
3114         RCU_INIT_POINTER(wiphy->regd, NULL);
3115
3116         if (lr)
3117                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3118
3119         if (!request_wiphy || request_wiphy != wiphy)
3120                 return;
3121
3122         lr->wiphy_idx = WIPHY_IDX_INVALID;
3123         lr->country_ie_env = ENVIRON_ANY;
3124 }
3125
3126 static void reg_timeout_work(struct work_struct *work)
3127 {
3128         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3129         rtnl_lock();
3130         reg_crda_timeouts++;
3131         restore_regulatory_settings(true);
3132         rtnl_unlock();
3133 }
3134
3135 /*
3136  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3137  * UNII band definitions
3138  */
3139 int cfg80211_get_unii(int freq)
3140 {
3141         /* UNII-1 */
3142         if (freq >= 5150 && freq <= 5250)
3143                 return 0;
3144
3145         /* UNII-2A */
3146         if (freq > 5250 && freq <= 5350)
3147                 return 1;
3148
3149         /* UNII-2B */
3150         if (freq > 5350 && freq <= 5470)
3151                 return 2;
3152
3153         /* UNII-2C */
3154         if (freq > 5470 && freq <= 5725)
3155                 return 3;
3156
3157         /* UNII-3 */
3158         if (freq > 5725 && freq <= 5825)
3159                 return 4;
3160
3161         return -EINVAL;
3162 }
3163
3164 bool regulatory_indoor_allowed(void)
3165 {
3166         return reg_is_indoor;
3167 }
3168
3169 int __init regulatory_init(void)
3170 {
3171         int err = 0;
3172
3173         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3174         if (IS_ERR(reg_pdev))
3175                 return PTR_ERR(reg_pdev);
3176
3177         spin_lock_init(&reg_requests_lock);
3178         spin_lock_init(&reg_pending_beacons_lock);
3179         spin_lock_init(&reg_indoor_lock);
3180
3181         reg_regdb_size_check();
3182
3183         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3184
3185         user_alpha2[0] = '9';
3186         user_alpha2[1] = '7';
3187
3188         /* We always try to get an update for the static regdomain */
3189         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3190         if (err) {
3191                 if (err == -ENOMEM)
3192                         return err;
3193                 /*
3194                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3195                  * memory which is handled and propagated appropriately above
3196                  * but it can also fail during a netlink_broadcast() or during
3197                  * early boot for call_usermodehelper(). For now treat these
3198                  * errors as non-fatal.
3199                  */
3200                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3201         }
3202
3203         /*
3204          * Finally, if the user set the module parameter treat it
3205          * as a user hint.
3206          */
3207         if (!is_world_regdom(ieee80211_regdom))
3208                 regulatory_hint_user(ieee80211_regdom,
3209                                      NL80211_USER_REG_HINT_USER);
3210
3211         return 0;
3212 }
3213
3214 void regulatory_exit(void)
3215 {
3216         struct regulatory_request *reg_request, *tmp;
3217         struct reg_beacon *reg_beacon, *btmp;
3218
3219         cancel_work_sync(&reg_work);
3220         cancel_delayed_work_sync(&reg_timeout);
3221         cancel_delayed_work_sync(&reg_check_chans);
3222
3223         /* Lock to suppress warnings */
3224         rtnl_lock();
3225         reset_regdomains(true, NULL);
3226         rtnl_unlock();
3227
3228         dev_set_uevent_suppress(&reg_pdev->dev, true);
3229
3230         platform_device_unregister(reg_pdev);
3231
3232         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3233                 list_del(&reg_beacon->list);
3234                 kfree(reg_beacon);
3235         }
3236
3237         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3238                 list_del(&reg_beacon->list);
3239                 kfree(reg_beacon);
3240         }
3241
3242         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3243                 list_del(&reg_request->list);
3244                 kfree(reg_request);
3245         }
3246 }