]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - security/selinux/hooks.c
Merge branch 'for-davem' into for-next
[karo-tx-linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105         unsigned long enforcing;
106         if (!kstrtoul(str, 0, &enforcing))
107                 selinux_enforcing = enforcing ? 1 : 0;
108         return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118         unsigned long enabled;
119         if (!kstrtoul(str, 0, &enabled))
120                 selinux_enabled = enabled ? 1 : 0;
121         return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132  *
133  * Description:
134  * This function checks the SECMARK reference counter to see if any SECMARK
135  * targets are currently configured, if the reference counter is greater than
136  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
137  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
138  * policy capability is enabled, SECMARK is always considered enabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148  *
149  * Description:
150  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
151  * (1) if any are enabled or false (0) if neither are enabled.  If the
152  * always_check_network policy capability is enabled, peer labeling
153  * is always considered enabled.
154  *
155  */
156 static int selinux_peerlbl_enabled(void)
157 {
158         return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163         if (event == AVC_CALLBACK_RESET) {
164                 sel_netif_flush();
165                 sel_netnode_flush();
166                 sel_netport_flush();
167                 synchronize_net();
168         }
169         return 0;
170 }
171
172 /*
173  * initialise the security for the init task
174  */
175 static void cred_init_security(void)
176 {
177         struct cred *cred = (struct cred *) current->real_cred;
178         struct task_security_struct *tsec;
179
180         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181         if (!tsec)
182                 panic("SELinux:  Failed to initialize initial task.\n");
183
184         tsec->osid = tsec->sid = SECINITSID_KERNEL;
185         cred->security = tsec;
186 }
187
188 /*
189  * get the security ID of a set of credentials
190  */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193         const struct task_security_struct *tsec;
194
195         tsec = cred->security;
196         return tsec->sid;
197 }
198
199 /*
200  * get the objective security ID of a task
201  */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204         u32 sid;
205
206         rcu_read_lock();
207         sid = cred_sid(__task_cred(task));
208         rcu_read_unlock();
209         return sid;
210 }
211
212 /*
213  * get the subjective security ID of the current task
214  */
215 static inline u32 current_sid(void)
216 {
217         const struct task_security_struct *tsec = current_security();
218
219         return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
224 static int inode_alloc_security(struct inode *inode)
225 {
226         struct inode_security_struct *isec;
227         u32 sid = current_sid();
228
229         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230         if (!isec)
231                 return -ENOMEM;
232
233         mutex_init(&isec->lock);
234         INIT_LIST_HEAD(&isec->list);
235         isec->inode = inode;
236         isec->sid = SECINITSID_UNLABELED;
237         isec->sclass = SECCLASS_FILE;
238         isec->task_sid = sid;
239         inode->i_security = isec;
240
241         return 0;
242 }
243
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246         struct inode_security_struct *isec;
247
248         isec = container_of(head, struct inode_security_struct, rcu);
249         kmem_cache_free(sel_inode_cache, isec);
250 }
251
252 static void inode_free_security(struct inode *inode)
253 {
254         struct inode_security_struct *isec = inode->i_security;
255         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257         spin_lock(&sbsec->isec_lock);
258         if (!list_empty(&isec->list))
259                 list_del_init(&isec->list);
260         spin_unlock(&sbsec->isec_lock);
261
262         /*
263          * The inode may still be referenced in a path walk and
264          * a call to selinux_inode_permission() can be made
265          * after inode_free_security() is called. Ideally, the VFS
266          * wouldn't do this, but fixing that is a much harder
267          * job. For now, simply free the i_security via RCU, and
268          * leave the current inode->i_security pointer intact.
269          * The inode will be freed after the RCU grace period too.
270          */
271         call_rcu(&isec->rcu, inode_free_rcu);
272 }
273
274 static int file_alloc_security(struct file *file)
275 {
276         struct file_security_struct *fsec;
277         u32 sid = current_sid();
278
279         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
280         if (!fsec)
281                 return -ENOMEM;
282
283         fsec->sid = sid;
284         fsec->fown_sid = sid;
285         file->f_security = fsec;
286
287         return 0;
288 }
289
290 static void file_free_security(struct file *file)
291 {
292         struct file_security_struct *fsec = file->f_security;
293         file->f_security = NULL;
294         kfree(fsec);
295 }
296
297 static int superblock_alloc_security(struct super_block *sb)
298 {
299         struct superblock_security_struct *sbsec;
300
301         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
302         if (!sbsec)
303                 return -ENOMEM;
304
305         mutex_init(&sbsec->lock);
306         INIT_LIST_HEAD(&sbsec->isec_head);
307         spin_lock_init(&sbsec->isec_lock);
308         sbsec->sb = sb;
309         sbsec->sid = SECINITSID_UNLABELED;
310         sbsec->def_sid = SECINITSID_FILE;
311         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
312         sb->s_security = sbsec;
313
314         return 0;
315 }
316
317 static void superblock_free_security(struct super_block *sb)
318 {
319         struct superblock_security_struct *sbsec = sb->s_security;
320         sb->s_security = NULL;
321         kfree(sbsec);
322 }
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[7] = {
327         "uses xattr",
328         "uses transition SIDs",
329         "uses task SIDs",
330         "uses genfs_contexts",
331         "not configured for labeling",
332         "uses mountpoint labeling",
333         "uses native labeling",
334 };
335
336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
337
338 static inline int inode_doinit(struct inode *inode)
339 {
340         return inode_doinit_with_dentry(inode, NULL);
341 }
342
343 enum {
344         Opt_error = -1,
345         Opt_context = 1,
346         Opt_fscontext = 2,
347         Opt_defcontext = 3,
348         Opt_rootcontext = 4,
349         Opt_labelsupport = 5,
350         Opt_nextmntopt = 6,
351 };
352
353 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
354
355 static const match_table_t tokens = {
356         {Opt_context, CONTEXT_STR "%s"},
357         {Opt_fscontext, FSCONTEXT_STR "%s"},
358         {Opt_defcontext, DEFCONTEXT_STR "%s"},
359         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
360         {Opt_labelsupport, LABELSUPP_STR},
361         {Opt_error, NULL},
362 };
363
364 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
365
366 static int may_context_mount_sb_relabel(u32 sid,
367                         struct superblock_security_struct *sbsec,
368                         const struct cred *cred)
369 {
370         const struct task_security_struct *tsec = cred->security;
371         int rc;
372
373         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374                           FILESYSTEM__RELABELFROM, NULL);
375         if (rc)
376                 return rc;
377
378         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
379                           FILESYSTEM__RELABELTO, NULL);
380         return rc;
381 }
382
383 static int may_context_mount_inode_relabel(u32 sid,
384                         struct superblock_security_struct *sbsec,
385                         const struct cred *cred)
386 {
387         const struct task_security_struct *tsec = cred->security;
388         int rc;
389         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
390                           FILESYSTEM__RELABELFROM, NULL);
391         if (rc)
392                 return rc;
393
394         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
395                           FILESYSTEM__ASSOCIATE, NULL);
396         return rc;
397 }
398
399 static int selinux_is_sblabel_mnt(struct super_block *sb)
400 {
401         struct superblock_security_struct *sbsec = sb->s_security;
402
403         return sbsec->behavior == SECURITY_FS_USE_XATTR ||
404                 sbsec->behavior == SECURITY_FS_USE_TRANS ||
405                 sbsec->behavior == SECURITY_FS_USE_TASK ||
406                 /* Special handling. Genfs but also in-core setxattr handler */
407                 !strcmp(sb->s_type->name, "sysfs") ||
408                 !strcmp(sb->s_type->name, "pstore") ||
409                 !strcmp(sb->s_type->name, "debugfs") ||
410                 !strcmp(sb->s_type->name, "rootfs");
411 }
412
413 static int sb_finish_set_opts(struct super_block *sb)
414 {
415         struct superblock_security_struct *sbsec = sb->s_security;
416         struct dentry *root = sb->s_root;
417         struct inode *root_inode = root->d_inode;
418         int rc = 0;
419
420         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
421                 /* Make sure that the xattr handler exists and that no
422                    error other than -ENODATA is returned by getxattr on
423                    the root directory.  -ENODATA is ok, as this may be
424                    the first boot of the SELinux kernel before we have
425                    assigned xattr values to the filesystem. */
426                 if (!root_inode->i_op->getxattr) {
427                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
428                                "xattr support\n", sb->s_id, sb->s_type->name);
429                         rc = -EOPNOTSUPP;
430                         goto out;
431                 }
432                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
433                 if (rc < 0 && rc != -ENODATA) {
434                         if (rc == -EOPNOTSUPP)
435                                 printk(KERN_WARNING "SELinux: (dev %s, type "
436                                        "%s) has no security xattr handler\n",
437                                        sb->s_id, sb->s_type->name);
438                         else
439                                 printk(KERN_WARNING "SELinux: (dev %s, type "
440                                        "%s) getxattr errno %d\n", sb->s_id,
441                                        sb->s_type->name, -rc);
442                         goto out;
443                 }
444         }
445
446         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
447                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
448                        sb->s_id, sb->s_type->name);
449
450         sbsec->flags |= SE_SBINITIALIZED;
451         if (selinux_is_sblabel_mnt(sb))
452                 sbsec->flags |= SBLABEL_MNT;
453
454         /* Initialize the root inode. */
455         rc = inode_doinit_with_dentry(root_inode, root);
456
457         /* Initialize any other inodes associated with the superblock, e.g.
458            inodes created prior to initial policy load or inodes created
459            during get_sb by a pseudo filesystem that directly
460            populates itself. */
461         spin_lock(&sbsec->isec_lock);
462 next_inode:
463         if (!list_empty(&sbsec->isec_head)) {
464                 struct inode_security_struct *isec =
465                                 list_entry(sbsec->isec_head.next,
466                                            struct inode_security_struct, list);
467                 struct inode *inode = isec->inode;
468                 list_del_init(&isec->list);
469                 spin_unlock(&sbsec->isec_lock);
470                 inode = igrab(inode);
471                 if (inode) {
472                         if (!IS_PRIVATE(inode))
473                                 inode_doinit(inode);
474                         iput(inode);
475                 }
476                 spin_lock(&sbsec->isec_lock);
477                 goto next_inode;
478         }
479         spin_unlock(&sbsec->isec_lock);
480 out:
481         return rc;
482 }
483
484 /*
485  * This function should allow an FS to ask what it's mount security
486  * options were so it can use those later for submounts, displaying
487  * mount options, or whatever.
488  */
489 static int selinux_get_mnt_opts(const struct super_block *sb,
490                                 struct security_mnt_opts *opts)
491 {
492         int rc = 0, i;
493         struct superblock_security_struct *sbsec = sb->s_security;
494         char *context = NULL;
495         u32 len;
496         char tmp;
497
498         security_init_mnt_opts(opts);
499
500         if (!(sbsec->flags & SE_SBINITIALIZED))
501                 return -EINVAL;
502
503         if (!ss_initialized)
504                 return -EINVAL;
505
506         /* make sure we always check enough bits to cover the mask */
507         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
508
509         tmp = sbsec->flags & SE_MNTMASK;
510         /* count the number of mount options for this sb */
511         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
512                 if (tmp & 0x01)
513                         opts->num_mnt_opts++;
514                 tmp >>= 1;
515         }
516         /* Check if the Label support flag is set */
517         if (sbsec->flags & SBLABEL_MNT)
518                 opts->num_mnt_opts++;
519
520         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
521         if (!opts->mnt_opts) {
522                 rc = -ENOMEM;
523                 goto out_free;
524         }
525
526         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
527         if (!opts->mnt_opts_flags) {
528                 rc = -ENOMEM;
529                 goto out_free;
530         }
531
532         i = 0;
533         if (sbsec->flags & FSCONTEXT_MNT) {
534                 rc = security_sid_to_context(sbsec->sid, &context, &len);
535                 if (rc)
536                         goto out_free;
537                 opts->mnt_opts[i] = context;
538                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
539         }
540         if (sbsec->flags & CONTEXT_MNT) {
541                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
542                 if (rc)
543                         goto out_free;
544                 opts->mnt_opts[i] = context;
545                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
546         }
547         if (sbsec->flags & DEFCONTEXT_MNT) {
548                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
549                 if (rc)
550                         goto out_free;
551                 opts->mnt_opts[i] = context;
552                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
553         }
554         if (sbsec->flags & ROOTCONTEXT_MNT) {
555                 struct inode *root = sbsec->sb->s_root->d_inode;
556                 struct inode_security_struct *isec = root->i_security;
557
558                 rc = security_sid_to_context(isec->sid, &context, &len);
559                 if (rc)
560                         goto out_free;
561                 opts->mnt_opts[i] = context;
562                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
563         }
564         if (sbsec->flags & SBLABEL_MNT) {
565                 opts->mnt_opts[i] = NULL;
566                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
567         }
568
569         BUG_ON(i != opts->num_mnt_opts);
570
571         return 0;
572
573 out_free:
574         security_free_mnt_opts(opts);
575         return rc;
576 }
577
578 static int bad_option(struct superblock_security_struct *sbsec, char flag,
579                       u32 old_sid, u32 new_sid)
580 {
581         char mnt_flags = sbsec->flags & SE_MNTMASK;
582
583         /* check if the old mount command had the same options */
584         if (sbsec->flags & SE_SBINITIALIZED)
585                 if (!(sbsec->flags & flag) ||
586                     (old_sid != new_sid))
587                         return 1;
588
589         /* check if we were passed the same options twice,
590          * aka someone passed context=a,context=b
591          */
592         if (!(sbsec->flags & SE_SBINITIALIZED))
593                 if (mnt_flags & flag)
594                         return 1;
595         return 0;
596 }
597
598 /*
599  * Allow filesystems with binary mount data to explicitly set mount point
600  * labeling information.
601  */
602 static int selinux_set_mnt_opts(struct super_block *sb,
603                                 struct security_mnt_opts *opts,
604                                 unsigned long kern_flags,
605                                 unsigned long *set_kern_flags)
606 {
607         const struct cred *cred = current_cred();
608         int rc = 0, i;
609         struct superblock_security_struct *sbsec = sb->s_security;
610         const char *name = sb->s_type->name;
611         struct inode *inode = sbsec->sb->s_root->d_inode;
612         struct inode_security_struct *root_isec = inode->i_security;
613         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
614         u32 defcontext_sid = 0;
615         char **mount_options = opts->mnt_opts;
616         int *flags = opts->mnt_opts_flags;
617         int num_opts = opts->num_mnt_opts;
618
619         mutex_lock(&sbsec->lock);
620
621         if (!ss_initialized) {
622                 if (!num_opts) {
623                         /* Defer initialization until selinux_complete_init,
624                            after the initial policy is loaded and the security
625                            server is ready to handle calls. */
626                         goto out;
627                 }
628                 rc = -EINVAL;
629                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
630                         "before the security server is initialized\n");
631                 goto out;
632         }
633         if (kern_flags && !set_kern_flags) {
634                 /* Specifying internal flags without providing a place to
635                  * place the results is not allowed */
636                 rc = -EINVAL;
637                 goto out;
638         }
639
640         /*
641          * Binary mount data FS will come through this function twice.  Once
642          * from an explicit call and once from the generic calls from the vfs.
643          * Since the generic VFS calls will not contain any security mount data
644          * we need to skip the double mount verification.
645          *
646          * This does open a hole in which we will not notice if the first
647          * mount using this sb set explict options and a second mount using
648          * this sb does not set any security options.  (The first options
649          * will be used for both mounts)
650          */
651         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
652             && (num_opts == 0))
653                 goto out;
654
655         /*
656          * parse the mount options, check if they are valid sids.
657          * also check if someone is trying to mount the same sb more
658          * than once with different security options.
659          */
660         for (i = 0; i < num_opts; i++) {
661                 u32 sid;
662
663                 if (flags[i] == SBLABEL_MNT)
664                         continue;
665                 rc = security_context_to_sid(mount_options[i],
666                                              strlen(mount_options[i]), &sid, GFP_KERNEL);
667                 if (rc) {
668                         printk(KERN_WARNING "SELinux: security_context_to_sid"
669                                "(%s) failed for (dev %s, type %s) errno=%d\n",
670                                mount_options[i], sb->s_id, name, rc);
671                         goto out;
672                 }
673                 switch (flags[i]) {
674                 case FSCONTEXT_MNT:
675                         fscontext_sid = sid;
676
677                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
678                                         fscontext_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= FSCONTEXT_MNT;
682                         break;
683                 case CONTEXT_MNT:
684                         context_sid = sid;
685
686                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
687                                         context_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= CONTEXT_MNT;
691                         break;
692                 case ROOTCONTEXT_MNT:
693                         rootcontext_sid = sid;
694
695                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
696                                         rootcontext_sid))
697                                 goto out_double_mount;
698
699                         sbsec->flags |= ROOTCONTEXT_MNT;
700
701                         break;
702                 case DEFCONTEXT_MNT:
703                         defcontext_sid = sid;
704
705                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
706                                         defcontext_sid))
707                                 goto out_double_mount;
708
709                         sbsec->flags |= DEFCONTEXT_MNT;
710
711                         break;
712                 default:
713                         rc = -EINVAL;
714                         goto out;
715                 }
716         }
717
718         if (sbsec->flags & SE_SBINITIALIZED) {
719                 /* previously mounted with options, but not on this attempt? */
720                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
721                         goto out_double_mount;
722                 rc = 0;
723                 goto out;
724         }
725
726         if (strcmp(sb->s_type->name, "proc") == 0)
727                 sbsec->flags |= SE_SBPROC;
728
729         if (!sbsec->behavior) {
730                 /*
731                  * Determine the labeling behavior to use for this
732                  * filesystem type.
733                  */
734                 rc = security_fs_use(sb);
735                 if (rc) {
736                         printk(KERN_WARNING
737                                 "%s: security_fs_use(%s) returned %d\n",
738                                         __func__, sb->s_type->name, rc);
739                         goto out;
740                 }
741         }
742         /* sets the context of the superblock for the fs being mounted. */
743         if (fscontext_sid) {
744                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
745                 if (rc)
746                         goto out;
747
748                 sbsec->sid = fscontext_sid;
749         }
750
751         /*
752          * Switch to using mount point labeling behavior.
753          * sets the label used on all file below the mountpoint, and will set
754          * the superblock context if not already set.
755          */
756         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
757                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
758                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
759         }
760
761         if (context_sid) {
762                 if (!fscontext_sid) {
763                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
764                                                           cred);
765                         if (rc)
766                                 goto out;
767                         sbsec->sid = context_sid;
768                 } else {
769                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
770                                                              cred);
771                         if (rc)
772                                 goto out;
773                 }
774                 if (!rootcontext_sid)
775                         rootcontext_sid = context_sid;
776
777                 sbsec->mntpoint_sid = context_sid;
778                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
779         }
780
781         if (rootcontext_sid) {
782                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
783                                                      cred);
784                 if (rc)
785                         goto out;
786
787                 root_isec->sid = rootcontext_sid;
788                 root_isec->initialized = 1;
789         }
790
791         if (defcontext_sid) {
792                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
793                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
794                         rc = -EINVAL;
795                         printk(KERN_WARNING "SELinux: defcontext option is "
796                                "invalid for this filesystem type\n");
797                         goto out;
798                 }
799
800                 if (defcontext_sid != sbsec->def_sid) {
801                         rc = may_context_mount_inode_relabel(defcontext_sid,
802                                                              sbsec, cred);
803                         if (rc)
804                                 goto out;
805                 }
806
807                 sbsec->def_sid = defcontext_sid;
808         }
809
810         rc = sb_finish_set_opts(sb);
811 out:
812         mutex_unlock(&sbsec->lock);
813         return rc;
814 out_double_mount:
815         rc = -EINVAL;
816         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
817                "security settings for (dev %s, type %s)\n", sb->s_id, name);
818         goto out;
819 }
820
821 static int selinux_cmp_sb_context(const struct super_block *oldsb,
822                                     const struct super_block *newsb)
823 {
824         struct superblock_security_struct *old = oldsb->s_security;
825         struct superblock_security_struct *new = newsb->s_security;
826         char oldflags = old->flags & SE_MNTMASK;
827         char newflags = new->flags & SE_MNTMASK;
828
829         if (oldflags != newflags)
830                 goto mismatch;
831         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
832                 goto mismatch;
833         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
834                 goto mismatch;
835         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
836                 goto mismatch;
837         if (oldflags & ROOTCONTEXT_MNT) {
838                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
839                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
840                 if (oldroot->sid != newroot->sid)
841                         goto mismatch;
842         }
843         return 0;
844 mismatch:
845         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
846                             "different security settings for (dev %s, "
847                             "type %s)\n", newsb->s_id, newsb->s_type->name);
848         return -EBUSY;
849 }
850
851 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
852                                         struct super_block *newsb)
853 {
854         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
855         struct superblock_security_struct *newsbsec = newsb->s_security;
856
857         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
858         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
859         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
860
861         /*
862          * if the parent was able to be mounted it clearly had no special lsm
863          * mount options.  thus we can safely deal with this superblock later
864          */
865         if (!ss_initialized)
866                 return 0;
867
868         /* how can we clone if the old one wasn't set up?? */
869         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
870
871         /* if fs is reusing a sb, make sure that the contexts match */
872         if (newsbsec->flags & SE_SBINITIALIZED)
873                 return selinux_cmp_sb_context(oldsb, newsb);
874
875         mutex_lock(&newsbsec->lock);
876
877         newsbsec->flags = oldsbsec->flags;
878
879         newsbsec->sid = oldsbsec->sid;
880         newsbsec->def_sid = oldsbsec->def_sid;
881         newsbsec->behavior = oldsbsec->behavior;
882
883         if (set_context) {
884                 u32 sid = oldsbsec->mntpoint_sid;
885
886                 if (!set_fscontext)
887                         newsbsec->sid = sid;
888                 if (!set_rootcontext) {
889                         struct inode *newinode = newsb->s_root->d_inode;
890                         struct inode_security_struct *newisec = newinode->i_security;
891                         newisec->sid = sid;
892                 }
893                 newsbsec->mntpoint_sid = sid;
894         }
895         if (set_rootcontext) {
896                 const struct inode *oldinode = oldsb->s_root->d_inode;
897                 const struct inode_security_struct *oldisec = oldinode->i_security;
898                 struct inode *newinode = newsb->s_root->d_inode;
899                 struct inode_security_struct *newisec = newinode->i_security;
900
901                 newisec->sid = oldisec->sid;
902         }
903
904         sb_finish_set_opts(newsb);
905         mutex_unlock(&newsbsec->lock);
906         return 0;
907 }
908
909 static int selinux_parse_opts_str(char *options,
910                                   struct security_mnt_opts *opts)
911 {
912         char *p;
913         char *context = NULL, *defcontext = NULL;
914         char *fscontext = NULL, *rootcontext = NULL;
915         int rc, num_mnt_opts = 0;
916
917         opts->num_mnt_opts = 0;
918
919         /* Standard string-based options. */
920         while ((p = strsep(&options, "|")) != NULL) {
921                 int token;
922                 substring_t args[MAX_OPT_ARGS];
923
924                 if (!*p)
925                         continue;
926
927                 token = match_token(p, tokens, args);
928
929                 switch (token) {
930                 case Opt_context:
931                         if (context || defcontext) {
932                                 rc = -EINVAL;
933                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
934                                 goto out_err;
935                         }
936                         context = match_strdup(&args[0]);
937                         if (!context) {
938                                 rc = -ENOMEM;
939                                 goto out_err;
940                         }
941                         break;
942
943                 case Opt_fscontext:
944                         if (fscontext) {
945                                 rc = -EINVAL;
946                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
947                                 goto out_err;
948                         }
949                         fscontext = match_strdup(&args[0]);
950                         if (!fscontext) {
951                                 rc = -ENOMEM;
952                                 goto out_err;
953                         }
954                         break;
955
956                 case Opt_rootcontext:
957                         if (rootcontext) {
958                                 rc = -EINVAL;
959                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
960                                 goto out_err;
961                         }
962                         rootcontext = match_strdup(&args[0]);
963                         if (!rootcontext) {
964                                 rc = -ENOMEM;
965                                 goto out_err;
966                         }
967                         break;
968
969                 case Opt_defcontext:
970                         if (context || defcontext) {
971                                 rc = -EINVAL;
972                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
973                                 goto out_err;
974                         }
975                         defcontext = match_strdup(&args[0]);
976                         if (!defcontext) {
977                                 rc = -ENOMEM;
978                                 goto out_err;
979                         }
980                         break;
981                 case Opt_labelsupport:
982                         break;
983                 default:
984                         rc = -EINVAL;
985                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
986                         goto out_err;
987
988                 }
989         }
990
991         rc = -ENOMEM;
992         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
993         if (!opts->mnt_opts)
994                 goto out_err;
995
996         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
997         if (!opts->mnt_opts_flags) {
998                 kfree(opts->mnt_opts);
999                 goto out_err;
1000         }
1001
1002         if (fscontext) {
1003                 opts->mnt_opts[num_mnt_opts] = fscontext;
1004                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1005         }
1006         if (context) {
1007                 opts->mnt_opts[num_mnt_opts] = context;
1008                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1009         }
1010         if (rootcontext) {
1011                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1012                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1013         }
1014         if (defcontext) {
1015                 opts->mnt_opts[num_mnt_opts] = defcontext;
1016                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1017         }
1018
1019         opts->num_mnt_opts = num_mnt_opts;
1020         return 0;
1021
1022 out_err:
1023         kfree(context);
1024         kfree(defcontext);
1025         kfree(fscontext);
1026         kfree(rootcontext);
1027         return rc;
1028 }
1029 /*
1030  * string mount options parsing and call set the sbsec
1031  */
1032 static int superblock_doinit(struct super_block *sb, void *data)
1033 {
1034         int rc = 0;
1035         char *options = data;
1036         struct security_mnt_opts opts;
1037
1038         security_init_mnt_opts(&opts);
1039
1040         if (!data)
1041                 goto out;
1042
1043         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1044
1045         rc = selinux_parse_opts_str(options, &opts);
1046         if (rc)
1047                 goto out_err;
1048
1049 out:
1050         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1051
1052 out_err:
1053         security_free_mnt_opts(&opts);
1054         return rc;
1055 }
1056
1057 static void selinux_write_opts(struct seq_file *m,
1058                                struct security_mnt_opts *opts)
1059 {
1060         int i;
1061         char *prefix;
1062
1063         for (i = 0; i < opts->num_mnt_opts; i++) {
1064                 char *has_comma;
1065
1066                 if (opts->mnt_opts[i])
1067                         has_comma = strchr(opts->mnt_opts[i], ',');
1068                 else
1069                         has_comma = NULL;
1070
1071                 switch (opts->mnt_opts_flags[i]) {
1072                 case CONTEXT_MNT:
1073                         prefix = CONTEXT_STR;
1074                         break;
1075                 case FSCONTEXT_MNT:
1076                         prefix = FSCONTEXT_STR;
1077                         break;
1078                 case ROOTCONTEXT_MNT:
1079                         prefix = ROOTCONTEXT_STR;
1080                         break;
1081                 case DEFCONTEXT_MNT:
1082                         prefix = DEFCONTEXT_STR;
1083                         break;
1084                 case SBLABEL_MNT:
1085                         seq_putc(m, ',');
1086                         seq_puts(m, LABELSUPP_STR);
1087                         continue;
1088                 default:
1089                         BUG();
1090                         return;
1091                 };
1092                 /* we need a comma before each option */
1093                 seq_putc(m, ',');
1094                 seq_puts(m, prefix);
1095                 if (has_comma)
1096                         seq_putc(m, '\"');
1097                 seq_puts(m, opts->mnt_opts[i]);
1098                 if (has_comma)
1099                         seq_putc(m, '\"');
1100         }
1101 }
1102
1103 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1104 {
1105         struct security_mnt_opts opts;
1106         int rc;
1107
1108         rc = selinux_get_mnt_opts(sb, &opts);
1109         if (rc) {
1110                 /* before policy load we may get EINVAL, don't show anything */
1111                 if (rc == -EINVAL)
1112                         rc = 0;
1113                 return rc;
1114         }
1115
1116         selinux_write_opts(m, &opts);
1117
1118         security_free_mnt_opts(&opts);
1119
1120         return rc;
1121 }
1122
1123 static inline u16 inode_mode_to_security_class(umode_t mode)
1124 {
1125         switch (mode & S_IFMT) {
1126         case S_IFSOCK:
1127                 return SECCLASS_SOCK_FILE;
1128         case S_IFLNK:
1129                 return SECCLASS_LNK_FILE;
1130         case S_IFREG:
1131                 return SECCLASS_FILE;
1132         case S_IFBLK:
1133                 return SECCLASS_BLK_FILE;
1134         case S_IFDIR:
1135                 return SECCLASS_DIR;
1136         case S_IFCHR:
1137                 return SECCLASS_CHR_FILE;
1138         case S_IFIFO:
1139                 return SECCLASS_FIFO_FILE;
1140
1141         }
1142
1143         return SECCLASS_FILE;
1144 }
1145
1146 static inline int default_protocol_stream(int protocol)
1147 {
1148         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1149 }
1150
1151 static inline int default_protocol_dgram(int protocol)
1152 {
1153         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1154 }
1155
1156 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1157 {
1158         switch (family) {
1159         case PF_UNIX:
1160                 switch (type) {
1161                 case SOCK_STREAM:
1162                 case SOCK_SEQPACKET:
1163                         return SECCLASS_UNIX_STREAM_SOCKET;
1164                 case SOCK_DGRAM:
1165                         return SECCLASS_UNIX_DGRAM_SOCKET;
1166                 }
1167                 break;
1168         case PF_INET:
1169         case PF_INET6:
1170                 switch (type) {
1171                 case SOCK_STREAM:
1172                         if (default_protocol_stream(protocol))
1173                                 return SECCLASS_TCP_SOCKET;
1174                         else
1175                                 return SECCLASS_RAWIP_SOCKET;
1176                 case SOCK_DGRAM:
1177                         if (default_protocol_dgram(protocol))
1178                                 return SECCLASS_UDP_SOCKET;
1179                         else
1180                                 return SECCLASS_RAWIP_SOCKET;
1181                 case SOCK_DCCP:
1182                         return SECCLASS_DCCP_SOCKET;
1183                 default:
1184                         return SECCLASS_RAWIP_SOCKET;
1185                 }
1186                 break;
1187         case PF_NETLINK:
1188                 switch (protocol) {
1189                 case NETLINK_ROUTE:
1190                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1191                 case NETLINK_FIREWALL:
1192                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1193                 case NETLINK_SOCK_DIAG:
1194                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1195                 case NETLINK_NFLOG:
1196                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1197                 case NETLINK_XFRM:
1198                         return SECCLASS_NETLINK_XFRM_SOCKET;
1199                 case NETLINK_SELINUX:
1200                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1201                 case NETLINK_AUDIT:
1202                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1203                 case NETLINK_IP6_FW:
1204                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1205                 case NETLINK_DNRTMSG:
1206                         return SECCLASS_NETLINK_DNRT_SOCKET;
1207                 case NETLINK_KOBJECT_UEVENT:
1208                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1209                 default:
1210                         return SECCLASS_NETLINK_SOCKET;
1211                 }
1212         case PF_PACKET:
1213                 return SECCLASS_PACKET_SOCKET;
1214         case PF_KEY:
1215                 return SECCLASS_KEY_SOCKET;
1216         case PF_APPLETALK:
1217                 return SECCLASS_APPLETALK_SOCKET;
1218         }
1219
1220         return SECCLASS_SOCKET;
1221 }
1222
1223 #ifdef CONFIG_PROC_FS
1224 static int selinux_proc_get_sid(struct dentry *dentry,
1225                                 u16 tclass,
1226                                 u32 *sid)
1227 {
1228         int rc;
1229         char *buffer, *path;
1230
1231         buffer = (char *)__get_free_page(GFP_KERNEL);
1232         if (!buffer)
1233                 return -ENOMEM;
1234
1235         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1236         if (IS_ERR(path))
1237                 rc = PTR_ERR(path);
1238         else {
1239                 /* each process gets a /proc/PID/ entry. Strip off the
1240                  * PID part to get a valid selinux labeling.
1241                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1242                 while (path[1] >= '0' && path[1] <= '9') {
1243                         path[1] = '/';
1244                         path++;
1245                 }
1246                 rc = security_genfs_sid("proc", path, tclass, sid);
1247         }
1248         free_page((unsigned long)buffer);
1249         return rc;
1250 }
1251 #else
1252 static int selinux_proc_get_sid(struct dentry *dentry,
1253                                 u16 tclass,
1254                                 u32 *sid)
1255 {
1256         return -EINVAL;
1257 }
1258 #endif
1259
1260 /* The inode's security attributes must be initialized before first use. */
1261 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1262 {
1263         struct superblock_security_struct *sbsec = NULL;
1264         struct inode_security_struct *isec = inode->i_security;
1265         u32 sid;
1266         struct dentry *dentry;
1267 #define INITCONTEXTLEN 255
1268         char *context = NULL;
1269         unsigned len = 0;
1270         int rc = 0;
1271
1272         if (isec->initialized)
1273                 goto out;
1274
1275         mutex_lock(&isec->lock);
1276         if (isec->initialized)
1277                 goto out_unlock;
1278
1279         sbsec = inode->i_sb->s_security;
1280         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1281                 /* Defer initialization until selinux_complete_init,
1282                    after the initial policy is loaded and the security
1283                    server is ready to handle calls. */
1284                 spin_lock(&sbsec->isec_lock);
1285                 if (list_empty(&isec->list))
1286                         list_add(&isec->list, &sbsec->isec_head);
1287                 spin_unlock(&sbsec->isec_lock);
1288                 goto out_unlock;
1289         }
1290
1291         switch (sbsec->behavior) {
1292         case SECURITY_FS_USE_NATIVE:
1293                 break;
1294         case SECURITY_FS_USE_XATTR:
1295                 if (!inode->i_op->getxattr) {
1296                         isec->sid = sbsec->def_sid;
1297                         break;
1298                 }
1299
1300                 /* Need a dentry, since the xattr API requires one.
1301                    Life would be simpler if we could just pass the inode. */
1302                 if (opt_dentry) {
1303                         /* Called from d_instantiate or d_splice_alias. */
1304                         dentry = dget(opt_dentry);
1305                 } else {
1306                         /* Called from selinux_complete_init, try to find a dentry. */
1307                         dentry = d_find_alias(inode);
1308                 }
1309                 if (!dentry) {
1310                         /*
1311                          * this is can be hit on boot when a file is accessed
1312                          * before the policy is loaded.  When we load policy we
1313                          * may find inodes that have no dentry on the
1314                          * sbsec->isec_head list.  No reason to complain as these
1315                          * will get fixed up the next time we go through
1316                          * inode_doinit with a dentry, before these inodes could
1317                          * be used again by userspace.
1318                          */
1319                         goto out_unlock;
1320                 }
1321
1322                 len = INITCONTEXTLEN;
1323                 context = kmalloc(len+1, GFP_NOFS);
1324                 if (!context) {
1325                         rc = -ENOMEM;
1326                         dput(dentry);
1327                         goto out_unlock;
1328                 }
1329                 context[len] = '\0';
1330                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1331                                            context, len);
1332                 if (rc == -ERANGE) {
1333                         kfree(context);
1334
1335                         /* Need a larger buffer.  Query for the right size. */
1336                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1337                                                    NULL, 0);
1338                         if (rc < 0) {
1339                                 dput(dentry);
1340                                 goto out_unlock;
1341                         }
1342                         len = rc;
1343                         context = kmalloc(len+1, GFP_NOFS);
1344                         if (!context) {
1345                                 rc = -ENOMEM;
1346                                 dput(dentry);
1347                                 goto out_unlock;
1348                         }
1349                         context[len] = '\0';
1350                         rc = inode->i_op->getxattr(dentry,
1351                                                    XATTR_NAME_SELINUX,
1352                                                    context, len);
1353                 }
1354                 dput(dentry);
1355                 if (rc < 0) {
1356                         if (rc != -ENODATA) {
1357                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1358                                        "%d for dev=%s ino=%ld\n", __func__,
1359                                        -rc, inode->i_sb->s_id, inode->i_ino);
1360                                 kfree(context);
1361                                 goto out_unlock;
1362                         }
1363                         /* Map ENODATA to the default file SID */
1364                         sid = sbsec->def_sid;
1365                         rc = 0;
1366                 } else {
1367                         rc = security_context_to_sid_default(context, rc, &sid,
1368                                                              sbsec->def_sid,
1369                                                              GFP_NOFS);
1370                         if (rc) {
1371                                 char *dev = inode->i_sb->s_id;
1372                                 unsigned long ino = inode->i_ino;
1373
1374                                 if (rc == -EINVAL) {
1375                                         if (printk_ratelimit())
1376                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1377                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1378                                                         "filesystem in question.\n", ino, dev, context);
1379                                 } else {
1380                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1381                                                "returned %d for dev=%s ino=%ld\n",
1382                                                __func__, context, -rc, dev, ino);
1383                                 }
1384                                 kfree(context);
1385                                 /* Leave with the unlabeled SID */
1386                                 rc = 0;
1387                                 break;
1388                         }
1389                 }
1390                 kfree(context);
1391                 isec->sid = sid;
1392                 break;
1393         case SECURITY_FS_USE_TASK:
1394                 isec->sid = isec->task_sid;
1395                 break;
1396         case SECURITY_FS_USE_TRANS:
1397                 /* Default to the fs SID. */
1398                 isec->sid = sbsec->sid;
1399
1400                 /* Try to obtain a transition SID. */
1401                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1403                                              isec->sclass, NULL, &sid);
1404                 if (rc)
1405                         goto out_unlock;
1406                 isec->sid = sid;
1407                 break;
1408         case SECURITY_FS_USE_MNTPOINT:
1409                 isec->sid = sbsec->mntpoint_sid;
1410                 break;
1411         default:
1412                 /* Default to the fs superblock SID. */
1413                 isec->sid = sbsec->sid;
1414
1415                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1416                         /* We must have a dentry to determine the label on
1417                          * procfs inodes */
1418                         if (opt_dentry)
1419                                 /* Called from d_instantiate or
1420                                  * d_splice_alias. */
1421                                 dentry = dget(opt_dentry);
1422                         else
1423                                 /* Called from selinux_complete_init, try to
1424                                  * find a dentry. */
1425                                 dentry = d_find_alias(inode);
1426                         /*
1427                          * This can be hit on boot when a file is accessed
1428                          * before the policy is loaded.  When we load policy we
1429                          * may find inodes that have no dentry on the
1430                          * sbsec->isec_head list.  No reason to complain as
1431                          * these will get fixed up the next time we go through
1432                          * inode_doinit() with a dentry, before these inodes
1433                          * could be used again by userspace.
1434                          */
1435                         if (!dentry)
1436                                 goto out_unlock;
1437                         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1438                         rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1439                         dput(dentry);
1440                         if (rc)
1441                                 goto out_unlock;
1442                         isec->sid = sid;
1443                 }
1444                 break;
1445         }
1446
1447         isec->initialized = 1;
1448
1449 out_unlock:
1450         mutex_unlock(&isec->lock);
1451 out:
1452         if (isec->sclass == SECCLASS_FILE)
1453                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1454         return rc;
1455 }
1456
1457 /* Convert a Linux signal to an access vector. */
1458 static inline u32 signal_to_av(int sig)
1459 {
1460         u32 perm = 0;
1461
1462         switch (sig) {
1463         case SIGCHLD:
1464                 /* Commonly granted from child to parent. */
1465                 perm = PROCESS__SIGCHLD;
1466                 break;
1467         case SIGKILL:
1468                 /* Cannot be caught or ignored */
1469                 perm = PROCESS__SIGKILL;
1470                 break;
1471         case SIGSTOP:
1472                 /* Cannot be caught or ignored */
1473                 perm = PROCESS__SIGSTOP;
1474                 break;
1475         default:
1476                 /* All other signals. */
1477                 perm = PROCESS__SIGNAL;
1478                 break;
1479         }
1480
1481         return perm;
1482 }
1483
1484 /*
1485  * Check permission between a pair of credentials
1486  * fork check, ptrace check, etc.
1487  */
1488 static int cred_has_perm(const struct cred *actor,
1489                          const struct cred *target,
1490                          u32 perms)
1491 {
1492         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1493
1494         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1495 }
1496
1497 /*
1498  * Check permission between a pair of tasks, e.g. signal checks,
1499  * fork check, ptrace check, etc.
1500  * tsk1 is the actor and tsk2 is the target
1501  * - this uses the default subjective creds of tsk1
1502  */
1503 static int task_has_perm(const struct task_struct *tsk1,
1504                          const struct task_struct *tsk2,
1505                          u32 perms)
1506 {
1507         const struct task_security_struct *__tsec1, *__tsec2;
1508         u32 sid1, sid2;
1509
1510         rcu_read_lock();
1511         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1512         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1513         rcu_read_unlock();
1514         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1515 }
1516
1517 /*
1518  * Check permission between current and another task, e.g. signal checks,
1519  * fork check, ptrace check, etc.
1520  * current is the actor and tsk2 is the target
1521  * - this uses current's subjective creds
1522  */
1523 static int current_has_perm(const struct task_struct *tsk,
1524                             u32 perms)
1525 {
1526         u32 sid, tsid;
1527
1528         sid = current_sid();
1529         tsid = task_sid(tsk);
1530         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1531 }
1532
1533 #if CAP_LAST_CAP > 63
1534 #error Fix SELinux to handle capabilities > 63.
1535 #endif
1536
1537 /* Check whether a task is allowed to use a capability. */
1538 static int cred_has_capability(const struct cred *cred,
1539                                int cap, int audit)
1540 {
1541         struct common_audit_data ad;
1542         struct av_decision avd;
1543         u16 sclass;
1544         u32 sid = cred_sid(cred);
1545         u32 av = CAP_TO_MASK(cap);
1546         int rc;
1547
1548         ad.type = LSM_AUDIT_DATA_CAP;
1549         ad.u.cap = cap;
1550
1551         switch (CAP_TO_INDEX(cap)) {
1552         case 0:
1553                 sclass = SECCLASS_CAPABILITY;
1554                 break;
1555         case 1:
1556                 sclass = SECCLASS_CAPABILITY2;
1557                 break;
1558         default:
1559                 printk(KERN_ERR
1560                        "SELinux:  out of range capability %d\n", cap);
1561                 BUG();
1562                 return -EINVAL;
1563         }
1564
1565         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1566         if (audit == SECURITY_CAP_AUDIT) {
1567                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1568                 if (rc2)
1569                         return rc2;
1570         }
1571         return rc;
1572 }
1573
1574 /* Check whether a task is allowed to use a system operation. */
1575 static int task_has_system(struct task_struct *tsk,
1576                            u32 perms)
1577 {
1578         u32 sid = task_sid(tsk);
1579
1580         return avc_has_perm(sid, SECINITSID_KERNEL,
1581                             SECCLASS_SYSTEM, perms, NULL);
1582 }
1583
1584 /* Check whether a task has a particular permission to an inode.
1585    The 'adp' parameter is optional and allows other audit
1586    data to be passed (e.g. the dentry). */
1587 static int inode_has_perm(const struct cred *cred,
1588                           struct inode *inode,
1589                           u32 perms,
1590                           struct common_audit_data *adp)
1591 {
1592         struct inode_security_struct *isec;
1593         u32 sid;
1594
1595         validate_creds(cred);
1596
1597         if (unlikely(IS_PRIVATE(inode)))
1598                 return 0;
1599
1600         sid = cred_sid(cred);
1601         isec = inode->i_security;
1602
1603         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1604 }
1605
1606 /* Same as inode_has_perm, but pass explicit audit data containing
1607    the dentry to help the auditing code to more easily generate the
1608    pathname if needed. */
1609 static inline int dentry_has_perm(const struct cred *cred,
1610                                   struct dentry *dentry,
1611                                   u32 av)
1612 {
1613         struct inode *inode = dentry->d_inode;
1614         struct common_audit_data ad;
1615
1616         ad.type = LSM_AUDIT_DATA_DENTRY;
1617         ad.u.dentry = dentry;
1618         return inode_has_perm(cred, inode, av, &ad);
1619 }
1620
1621 /* Same as inode_has_perm, but pass explicit audit data containing
1622    the path to help the auditing code to more easily generate the
1623    pathname if needed. */
1624 static inline int path_has_perm(const struct cred *cred,
1625                                 const struct path *path,
1626                                 u32 av)
1627 {
1628         struct inode *inode = path->dentry->d_inode;
1629         struct common_audit_data ad;
1630
1631         ad.type = LSM_AUDIT_DATA_PATH;
1632         ad.u.path = *path;
1633         return inode_has_perm(cred, inode, av, &ad);
1634 }
1635
1636 /* Same as path_has_perm, but uses the inode from the file struct. */
1637 static inline int file_path_has_perm(const struct cred *cred,
1638                                      struct file *file,
1639                                      u32 av)
1640 {
1641         struct common_audit_data ad;
1642
1643         ad.type = LSM_AUDIT_DATA_PATH;
1644         ad.u.path = file->f_path;
1645         return inode_has_perm(cred, file_inode(file), av, &ad);
1646 }
1647
1648 /* Check whether a task can use an open file descriptor to
1649    access an inode in a given way.  Check access to the
1650    descriptor itself, and then use dentry_has_perm to
1651    check a particular permission to the file.
1652    Access to the descriptor is implicitly granted if it
1653    has the same SID as the process.  If av is zero, then
1654    access to the file is not checked, e.g. for cases
1655    where only the descriptor is affected like seek. */
1656 static int file_has_perm(const struct cred *cred,
1657                          struct file *file,
1658                          u32 av)
1659 {
1660         struct file_security_struct *fsec = file->f_security;
1661         struct inode *inode = file_inode(file);
1662         struct common_audit_data ad;
1663         u32 sid = cred_sid(cred);
1664         int rc;
1665
1666         ad.type = LSM_AUDIT_DATA_PATH;
1667         ad.u.path = file->f_path;
1668
1669         if (sid != fsec->sid) {
1670                 rc = avc_has_perm(sid, fsec->sid,
1671                                   SECCLASS_FD,
1672                                   FD__USE,
1673                                   &ad);
1674                 if (rc)
1675                         goto out;
1676         }
1677
1678         /* av is zero if only checking access to the descriptor. */
1679         rc = 0;
1680         if (av)
1681                 rc = inode_has_perm(cred, inode, av, &ad);
1682
1683 out:
1684         return rc;
1685 }
1686
1687 /* Check whether a task can create a file. */
1688 static int may_create(struct inode *dir,
1689                       struct dentry *dentry,
1690                       u16 tclass)
1691 {
1692         const struct task_security_struct *tsec = current_security();
1693         struct inode_security_struct *dsec;
1694         struct superblock_security_struct *sbsec;
1695         u32 sid, newsid;
1696         struct common_audit_data ad;
1697         int rc;
1698
1699         dsec = dir->i_security;
1700         sbsec = dir->i_sb->s_security;
1701
1702         sid = tsec->sid;
1703         newsid = tsec->create_sid;
1704
1705         ad.type = LSM_AUDIT_DATA_DENTRY;
1706         ad.u.dentry = dentry;
1707
1708         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1709                           DIR__ADD_NAME | DIR__SEARCH,
1710                           &ad);
1711         if (rc)
1712                 return rc;
1713
1714         if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1715                 rc = security_transition_sid(sid, dsec->sid, tclass,
1716                                              &dentry->d_name, &newsid);
1717                 if (rc)
1718                         return rc;
1719         }
1720
1721         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1722         if (rc)
1723                 return rc;
1724
1725         return avc_has_perm(newsid, sbsec->sid,
1726                             SECCLASS_FILESYSTEM,
1727                             FILESYSTEM__ASSOCIATE, &ad);
1728 }
1729
1730 /* Check whether a task can create a key. */
1731 static int may_create_key(u32 ksid,
1732                           struct task_struct *ctx)
1733 {
1734         u32 sid = task_sid(ctx);
1735
1736         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1737 }
1738
1739 #define MAY_LINK        0
1740 #define MAY_UNLINK      1
1741 #define MAY_RMDIR       2
1742
1743 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1744 static int may_link(struct inode *dir,
1745                     struct dentry *dentry,
1746                     int kind)
1747
1748 {
1749         struct inode_security_struct *dsec, *isec;
1750         struct common_audit_data ad;
1751         u32 sid = current_sid();
1752         u32 av;
1753         int rc;
1754
1755         dsec = dir->i_security;
1756         isec = dentry->d_inode->i_security;
1757
1758         ad.type = LSM_AUDIT_DATA_DENTRY;
1759         ad.u.dentry = dentry;
1760
1761         av = DIR__SEARCH;
1762         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1763         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1764         if (rc)
1765                 return rc;
1766
1767         switch (kind) {
1768         case MAY_LINK:
1769                 av = FILE__LINK;
1770                 break;
1771         case MAY_UNLINK:
1772                 av = FILE__UNLINK;
1773                 break;
1774         case MAY_RMDIR:
1775                 av = DIR__RMDIR;
1776                 break;
1777         default:
1778                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1779                         __func__, kind);
1780                 return 0;
1781         }
1782
1783         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1784         return rc;
1785 }
1786
1787 static inline int may_rename(struct inode *old_dir,
1788                              struct dentry *old_dentry,
1789                              struct inode *new_dir,
1790                              struct dentry *new_dentry)
1791 {
1792         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1793         struct common_audit_data ad;
1794         u32 sid = current_sid();
1795         u32 av;
1796         int old_is_dir, new_is_dir;
1797         int rc;
1798
1799         old_dsec = old_dir->i_security;
1800         old_isec = old_dentry->d_inode->i_security;
1801         old_is_dir = d_is_dir(old_dentry);
1802         new_dsec = new_dir->i_security;
1803
1804         ad.type = LSM_AUDIT_DATA_DENTRY;
1805
1806         ad.u.dentry = old_dentry;
1807         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1808                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1809         if (rc)
1810                 return rc;
1811         rc = avc_has_perm(sid, old_isec->sid,
1812                           old_isec->sclass, FILE__RENAME, &ad);
1813         if (rc)
1814                 return rc;
1815         if (old_is_dir && new_dir != old_dir) {
1816                 rc = avc_has_perm(sid, old_isec->sid,
1817                                   old_isec->sclass, DIR__REPARENT, &ad);
1818                 if (rc)
1819                         return rc;
1820         }
1821
1822         ad.u.dentry = new_dentry;
1823         av = DIR__ADD_NAME | DIR__SEARCH;
1824         if (d_is_positive(new_dentry))
1825                 av |= DIR__REMOVE_NAME;
1826         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1827         if (rc)
1828                 return rc;
1829         if (d_is_positive(new_dentry)) {
1830                 new_isec = new_dentry->d_inode->i_security;
1831                 new_is_dir = d_is_dir(new_dentry);
1832                 rc = avc_has_perm(sid, new_isec->sid,
1833                                   new_isec->sclass,
1834                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1835                 if (rc)
1836                         return rc;
1837         }
1838
1839         return 0;
1840 }
1841
1842 /* Check whether a task can perform a filesystem operation. */
1843 static int superblock_has_perm(const struct cred *cred,
1844                                struct super_block *sb,
1845                                u32 perms,
1846                                struct common_audit_data *ad)
1847 {
1848         struct superblock_security_struct *sbsec;
1849         u32 sid = cred_sid(cred);
1850
1851         sbsec = sb->s_security;
1852         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1853 }
1854
1855 /* Convert a Linux mode and permission mask to an access vector. */
1856 static inline u32 file_mask_to_av(int mode, int mask)
1857 {
1858         u32 av = 0;
1859
1860         if (!S_ISDIR(mode)) {
1861                 if (mask & MAY_EXEC)
1862                         av |= FILE__EXECUTE;
1863                 if (mask & MAY_READ)
1864                         av |= FILE__READ;
1865
1866                 if (mask & MAY_APPEND)
1867                         av |= FILE__APPEND;
1868                 else if (mask & MAY_WRITE)
1869                         av |= FILE__WRITE;
1870
1871         } else {
1872                 if (mask & MAY_EXEC)
1873                         av |= DIR__SEARCH;
1874                 if (mask & MAY_WRITE)
1875                         av |= DIR__WRITE;
1876                 if (mask & MAY_READ)
1877                         av |= DIR__READ;
1878         }
1879
1880         return av;
1881 }
1882
1883 /* Convert a Linux file to an access vector. */
1884 static inline u32 file_to_av(struct file *file)
1885 {
1886         u32 av = 0;
1887
1888         if (file->f_mode & FMODE_READ)
1889                 av |= FILE__READ;
1890         if (file->f_mode & FMODE_WRITE) {
1891                 if (file->f_flags & O_APPEND)
1892                         av |= FILE__APPEND;
1893                 else
1894                         av |= FILE__WRITE;
1895         }
1896         if (!av) {
1897                 /*
1898                  * Special file opened with flags 3 for ioctl-only use.
1899                  */
1900                 av = FILE__IOCTL;
1901         }
1902
1903         return av;
1904 }
1905
1906 /*
1907  * Convert a file to an access vector and include the correct open
1908  * open permission.
1909  */
1910 static inline u32 open_file_to_av(struct file *file)
1911 {
1912         u32 av = file_to_av(file);
1913
1914         if (selinux_policycap_openperm)
1915                 av |= FILE__OPEN;
1916
1917         return av;
1918 }
1919
1920 /* Hook functions begin here. */
1921
1922 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1923 {
1924         u32 mysid = current_sid();
1925         u32 mgrsid = task_sid(mgr);
1926
1927         return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1928                             BINDER__SET_CONTEXT_MGR, NULL);
1929 }
1930
1931 static int selinux_binder_transaction(struct task_struct *from,
1932                                       struct task_struct *to)
1933 {
1934         u32 mysid = current_sid();
1935         u32 fromsid = task_sid(from);
1936         u32 tosid = task_sid(to);
1937         int rc;
1938
1939         if (mysid != fromsid) {
1940                 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1941                                   BINDER__IMPERSONATE, NULL);
1942                 if (rc)
1943                         return rc;
1944         }
1945
1946         return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1947                             NULL);
1948 }
1949
1950 static int selinux_binder_transfer_binder(struct task_struct *from,
1951                                           struct task_struct *to)
1952 {
1953         u32 fromsid = task_sid(from);
1954         u32 tosid = task_sid(to);
1955
1956         return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1957                             NULL);
1958 }
1959
1960 static int selinux_binder_transfer_file(struct task_struct *from,
1961                                         struct task_struct *to,
1962                                         struct file *file)
1963 {
1964         u32 sid = task_sid(to);
1965         struct file_security_struct *fsec = file->f_security;
1966         struct inode *inode = file->f_path.dentry->d_inode;
1967         struct inode_security_struct *isec = inode->i_security;
1968         struct common_audit_data ad;
1969         int rc;
1970
1971         ad.type = LSM_AUDIT_DATA_PATH;
1972         ad.u.path = file->f_path;
1973
1974         if (sid != fsec->sid) {
1975                 rc = avc_has_perm(sid, fsec->sid,
1976                                   SECCLASS_FD,
1977                                   FD__USE,
1978                                   &ad);
1979                 if (rc)
1980                         return rc;
1981         }
1982
1983         if (unlikely(IS_PRIVATE(inode)))
1984                 return 0;
1985
1986         return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
1987                             &ad);
1988 }
1989
1990 static int selinux_ptrace_access_check(struct task_struct *child,
1991                                      unsigned int mode)
1992 {
1993         int rc;
1994
1995         rc = cap_ptrace_access_check(child, mode);
1996         if (rc)
1997                 return rc;
1998
1999         if (mode & PTRACE_MODE_READ) {
2000                 u32 sid = current_sid();
2001                 u32 csid = task_sid(child);
2002                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2003         }
2004
2005         return current_has_perm(child, PROCESS__PTRACE);
2006 }
2007
2008 static int selinux_ptrace_traceme(struct task_struct *parent)
2009 {
2010         int rc;
2011
2012         rc = cap_ptrace_traceme(parent);
2013         if (rc)
2014                 return rc;
2015
2016         return task_has_perm(parent, current, PROCESS__PTRACE);
2017 }
2018
2019 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2020                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2021 {
2022         int error;
2023
2024         error = current_has_perm(target, PROCESS__GETCAP);
2025         if (error)
2026                 return error;
2027
2028         return cap_capget(target, effective, inheritable, permitted);
2029 }
2030
2031 static int selinux_capset(struct cred *new, const struct cred *old,
2032                           const kernel_cap_t *effective,
2033                           const kernel_cap_t *inheritable,
2034                           const kernel_cap_t *permitted)
2035 {
2036         int error;
2037
2038         error = cap_capset(new, old,
2039                                       effective, inheritable, permitted);
2040         if (error)
2041                 return error;
2042
2043         return cred_has_perm(old, new, PROCESS__SETCAP);
2044 }
2045
2046 /*
2047  * (This comment used to live with the selinux_task_setuid hook,
2048  * which was removed).
2049  *
2050  * Since setuid only affects the current process, and since the SELinux
2051  * controls are not based on the Linux identity attributes, SELinux does not
2052  * need to control this operation.  However, SELinux does control the use of
2053  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2054  */
2055
2056 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2057                            int cap, int audit)
2058 {
2059         int rc;
2060
2061         rc = cap_capable(cred, ns, cap, audit);
2062         if (rc)
2063                 return rc;
2064
2065         return cred_has_capability(cred, cap, audit);
2066 }
2067
2068 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2069 {
2070         const struct cred *cred = current_cred();
2071         int rc = 0;
2072
2073         if (!sb)
2074                 return 0;
2075
2076         switch (cmds) {
2077         case Q_SYNC:
2078         case Q_QUOTAON:
2079         case Q_QUOTAOFF:
2080         case Q_SETINFO:
2081         case Q_SETQUOTA:
2082                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2083                 break;
2084         case Q_GETFMT:
2085         case Q_GETINFO:
2086         case Q_GETQUOTA:
2087                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2088                 break;
2089         default:
2090                 rc = 0;  /* let the kernel handle invalid cmds */
2091                 break;
2092         }
2093         return rc;
2094 }
2095
2096 static int selinux_quota_on(struct dentry *dentry)
2097 {
2098         const struct cred *cred = current_cred();
2099
2100         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2101 }
2102
2103 static int selinux_syslog(int type)
2104 {
2105         int rc;
2106
2107         switch (type) {
2108         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2109         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2110                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2111                 break;
2112         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2113         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2114         /* Set level of messages printed to console */
2115         case SYSLOG_ACTION_CONSOLE_LEVEL:
2116                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2117                 break;
2118         case SYSLOG_ACTION_CLOSE:       /* Close log */
2119         case SYSLOG_ACTION_OPEN:        /* Open log */
2120         case SYSLOG_ACTION_READ:        /* Read from log */
2121         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2122         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2123         default:
2124                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2125                 break;
2126         }
2127         return rc;
2128 }
2129
2130 /*
2131  * Check that a process has enough memory to allocate a new virtual
2132  * mapping. 0 means there is enough memory for the allocation to
2133  * succeed and -ENOMEM implies there is not.
2134  *
2135  * Do not audit the selinux permission check, as this is applied to all
2136  * processes that allocate mappings.
2137  */
2138 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2139 {
2140         int rc, cap_sys_admin = 0;
2141
2142         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2143                              SECURITY_CAP_NOAUDIT);
2144         if (rc == 0)
2145                 cap_sys_admin = 1;
2146
2147         return __vm_enough_memory(mm, pages, cap_sys_admin);
2148 }
2149
2150 /* binprm security operations */
2151
2152 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2153                             const struct task_security_struct *old_tsec,
2154                             const struct task_security_struct *new_tsec)
2155 {
2156         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2157         int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2158         int rc;
2159
2160         if (!nnp && !nosuid)
2161                 return 0; /* neither NNP nor nosuid */
2162
2163         if (new_tsec->sid == old_tsec->sid)
2164                 return 0; /* No change in credentials */
2165
2166         /*
2167          * The only transitions we permit under NNP or nosuid
2168          * are transitions to bounded SIDs, i.e. SIDs that are
2169          * guaranteed to only be allowed a subset of the permissions
2170          * of the current SID.
2171          */
2172         rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2173         if (rc) {
2174                 /*
2175                  * On failure, preserve the errno values for NNP vs nosuid.
2176                  * NNP:  Operation not permitted for caller.
2177                  * nosuid:  Permission denied to file.
2178                  */
2179                 if (nnp)
2180                         return -EPERM;
2181                 else
2182                         return -EACCES;
2183         }
2184         return 0;
2185 }
2186
2187 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2188 {
2189         const struct task_security_struct *old_tsec;
2190         struct task_security_struct *new_tsec;
2191         struct inode_security_struct *isec;
2192         struct common_audit_data ad;
2193         struct inode *inode = file_inode(bprm->file);
2194         int rc;
2195
2196         rc = cap_bprm_set_creds(bprm);
2197         if (rc)
2198                 return rc;
2199
2200         /* SELinux context only depends on initial program or script and not
2201          * the script interpreter */
2202         if (bprm->cred_prepared)
2203                 return 0;
2204
2205         old_tsec = current_security();
2206         new_tsec = bprm->cred->security;
2207         isec = inode->i_security;
2208
2209         /* Default to the current task SID. */
2210         new_tsec->sid = old_tsec->sid;
2211         new_tsec->osid = old_tsec->sid;
2212
2213         /* Reset fs, key, and sock SIDs on execve. */
2214         new_tsec->create_sid = 0;
2215         new_tsec->keycreate_sid = 0;
2216         new_tsec->sockcreate_sid = 0;
2217
2218         if (old_tsec->exec_sid) {
2219                 new_tsec->sid = old_tsec->exec_sid;
2220                 /* Reset exec SID on execve. */
2221                 new_tsec->exec_sid = 0;
2222
2223                 /* Fail on NNP or nosuid if not an allowed transition. */
2224                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2225                 if (rc)
2226                         return rc;
2227         } else {
2228                 /* Check for a default transition on this program. */
2229                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2230                                              SECCLASS_PROCESS, NULL,
2231                                              &new_tsec->sid);
2232                 if (rc)
2233                         return rc;
2234
2235                 /*
2236                  * Fallback to old SID on NNP or nosuid if not an allowed
2237                  * transition.
2238                  */
2239                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2240                 if (rc)
2241                         new_tsec->sid = old_tsec->sid;
2242         }
2243
2244         ad.type = LSM_AUDIT_DATA_PATH;
2245         ad.u.path = bprm->file->f_path;
2246
2247         if (new_tsec->sid == old_tsec->sid) {
2248                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2249                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2250                 if (rc)
2251                         return rc;
2252         } else {
2253                 /* Check permissions for the transition. */
2254                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2255                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2256                 if (rc)
2257                         return rc;
2258
2259                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2260                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2261                 if (rc)
2262                         return rc;
2263
2264                 /* Check for shared state */
2265                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2266                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2267                                           SECCLASS_PROCESS, PROCESS__SHARE,
2268                                           NULL);
2269                         if (rc)
2270                                 return -EPERM;
2271                 }
2272
2273                 /* Make sure that anyone attempting to ptrace over a task that
2274                  * changes its SID has the appropriate permit */
2275                 if (bprm->unsafe &
2276                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2277                         struct task_struct *tracer;
2278                         struct task_security_struct *sec;
2279                         u32 ptsid = 0;
2280
2281                         rcu_read_lock();
2282                         tracer = ptrace_parent(current);
2283                         if (likely(tracer != NULL)) {
2284                                 sec = __task_cred(tracer)->security;
2285                                 ptsid = sec->sid;
2286                         }
2287                         rcu_read_unlock();
2288
2289                         if (ptsid != 0) {
2290                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2291                                                   SECCLASS_PROCESS,
2292                                                   PROCESS__PTRACE, NULL);
2293                                 if (rc)
2294                                         return -EPERM;
2295                         }
2296                 }
2297
2298                 /* Clear any possibly unsafe personality bits on exec: */
2299                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2300         }
2301
2302         return 0;
2303 }
2304
2305 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2306 {
2307         const struct task_security_struct *tsec = current_security();
2308         u32 sid, osid;
2309         int atsecure = 0;
2310
2311         sid = tsec->sid;
2312         osid = tsec->osid;
2313
2314         if (osid != sid) {
2315                 /* Enable secure mode for SIDs transitions unless
2316                    the noatsecure permission is granted between
2317                    the two SIDs, i.e. ahp returns 0. */
2318                 atsecure = avc_has_perm(osid, sid,
2319                                         SECCLASS_PROCESS,
2320                                         PROCESS__NOATSECURE, NULL);
2321         }
2322
2323         return (atsecure || cap_bprm_secureexec(bprm));
2324 }
2325
2326 static int match_file(const void *p, struct file *file, unsigned fd)
2327 {
2328         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2329 }
2330
2331 /* Derived from fs/exec.c:flush_old_files. */
2332 static inline void flush_unauthorized_files(const struct cred *cred,
2333                                             struct files_struct *files)
2334 {
2335         struct file *file, *devnull = NULL;
2336         struct tty_struct *tty;
2337         int drop_tty = 0;
2338         unsigned n;
2339
2340         tty = get_current_tty();
2341         if (tty) {
2342                 spin_lock(&tty_files_lock);
2343                 if (!list_empty(&tty->tty_files)) {
2344                         struct tty_file_private *file_priv;
2345
2346                         /* Revalidate access to controlling tty.
2347                            Use file_path_has_perm on the tty path directly
2348                            rather than using file_has_perm, as this particular
2349                            open file may belong to another process and we are
2350                            only interested in the inode-based check here. */
2351                         file_priv = list_first_entry(&tty->tty_files,
2352                                                 struct tty_file_private, list);
2353                         file = file_priv->file;
2354                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2355                                 drop_tty = 1;
2356                 }
2357                 spin_unlock(&tty_files_lock);
2358                 tty_kref_put(tty);
2359         }
2360         /* Reset controlling tty. */
2361         if (drop_tty)
2362                 no_tty();
2363
2364         /* Revalidate access to inherited open files. */
2365         n = iterate_fd(files, 0, match_file, cred);
2366         if (!n) /* none found? */
2367                 return;
2368
2369         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2370         if (IS_ERR(devnull))
2371                 devnull = NULL;
2372         /* replace all the matching ones with this */
2373         do {
2374                 replace_fd(n - 1, devnull, 0);
2375         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2376         if (devnull)
2377                 fput(devnull);
2378 }
2379
2380 /*
2381  * Prepare a process for imminent new credential changes due to exec
2382  */
2383 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2384 {
2385         struct task_security_struct *new_tsec;
2386         struct rlimit *rlim, *initrlim;
2387         int rc, i;
2388
2389         new_tsec = bprm->cred->security;
2390         if (new_tsec->sid == new_tsec->osid)
2391                 return;
2392
2393         /* Close files for which the new task SID is not authorized. */
2394         flush_unauthorized_files(bprm->cred, current->files);
2395
2396         /* Always clear parent death signal on SID transitions. */
2397         current->pdeath_signal = 0;
2398
2399         /* Check whether the new SID can inherit resource limits from the old
2400          * SID.  If not, reset all soft limits to the lower of the current
2401          * task's hard limit and the init task's soft limit.
2402          *
2403          * Note that the setting of hard limits (even to lower them) can be
2404          * controlled by the setrlimit check.  The inclusion of the init task's
2405          * soft limit into the computation is to avoid resetting soft limits
2406          * higher than the default soft limit for cases where the default is
2407          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2408          */
2409         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2410                           PROCESS__RLIMITINH, NULL);
2411         if (rc) {
2412                 /* protect against do_prlimit() */
2413                 task_lock(current);
2414                 for (i = 0; i < RLIM_NLIMITS; i++) {
2415                         rlim = current->signal->rlim + i;
2416                         initrlim = init_task.signal->rlim + i;
2417                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2418                 }
2419                 task_unlock(current);
2420                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2421         }
2422 }
2423
2424 /*
2425  * Clean up the process immediately after the installation of new credentials
2426  * due to exec
2427  */
2428 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2429 {
2430         const struct task_security_struct *tsec = current_security();
2431         struct itimerval itimer;
2432         u32 osid, sid;
2433         int rc, i;
2434
2435         osid = tsec->osid;
2436         sid = tsec->sid;
2437
2438         if (sid == osid)
2439                 return;
2440
2441         /* Check whether the new SID can inherit signal state from the old SID.
2442          * If not, clear itimers to avoid subsequent signal generation and
2443          * flush and unblock signals.
2444          *
2445          * This must occur _after_ the task SID has been updated so that any
2446          * kill done after the flush will be checked against the new SID.
2447          */
2448         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2449         if (rc) {
2450                 memset(&itimer, 0, sizeof itimer);
2451                 for (i = 0; i < 3; i++)
2452                         do_setitimer(i, &itimer, NULL);
2453                 spin_lock_irq(&current->sighand->siglock);
2454                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2455                         __flush_signals(current);
2456                         flush_signal_handlers(current, 1);
2457                         sigemptyset(&current->blocked);
2458                 }
2459                 spin_unlock_irq(&current->sighand->siglock);
2460         }
2461
2462         /* Wake up the parent if it is waiting so that it can recheck
2463          * wait permission to the new task SID. */
2464         read_lock(&tasklist_lock);
2465         __wake_up_parent(current, current->real_parent);
2466         read_unlock(&tasklist_lock);
2467 }
2468
2469 /* superblock security operations */
2470
2471 static int selinux_sb_alloc_security(struct super_block *sb)
2472 {
2473         return superblock_alloc_security(sb);
2474 }
2475
2476 static void selinux_sb_free_security(struct super_block *sb)
2477 {
2478         superblock_free_security(sb);
2479 }
2480
2481 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2482 {
2483         if (plen > olen)
2484                 return 0;
2485
2486         return !memcmp(prefix, option, plen);
2487 }
2488
2489 static inline int selinux_option(char *option, int len)
2490 {
2491         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2492                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2493                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2494                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2495                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2496 }
2497
2498 static inline void take_option(char **to, char *from, int *first, int len)
2499 {
2500         if (!*first) {
2501                 **to = ',';
2502                 *to += 1;
2503         } else
2504                 *first = 0;
2505         memcpy(*to, from, len);
2506         *to += len;
2507 }
2508
2509 static inline void take_selinux_option(char **to, char *from, int *first,
2510                                        int len)
2511 {
2512         int current_size = 0;
2513
2514         if (!*first) {
2515                 **to = '|';
2516                 *to += 1;
2517         } else
2518                 *first = 0;
2519
2520         while (current_size < len) {
2521                 if (*from != '"') {
2522                         **to = *from;
2523                         *to += 1;
2524                 }
2525                 from += 1;
2526                 current_size += 1;
2527         }
2528 }
2529
2530 static int selinux_sb_copy_data(char *orig, char *copy)
2531 {
2532         int fnosec, fsec, rc = 0;
2533         char *in_save, *in_curr, *in_end;
2534         char *sec_curr, *nosec_save, *nosec;
2535         int open_quote = 0;
2536
2537         in_curr = orig;
2538         sec_curr = copy;
2539
2540         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2541         if (!nosec) {
2542                 rc = -ENOMEM;
2543                 goto out;
2544         }
2545
2546         nosec_save = nosec;
2547         fnosec = fsec = 1;
2548         in_save = in_end = orig;
2549
2550         do {
2551                 if (*in_end == '"')
2552                         open_quote = !open_quote;
2553                 if ((*in_end == ',' && open_quote == 0) ||
2554                                 *in_end == '\0') {
2555                         int len = in_end - in_curr;
2556
2557                         if (selinux_option(in_curr, len))
2558                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2559                         else
2560                                 take_option(&nosec, in_curr, &fnosec, len);
2561
2562                         in_curr = in_end + 1;
2563                 }
2564         } while (*in_end++);
2565
2566         strcpy(in_save, nosec_save);
2567         free_page((unsigned long)nosec_save);
2568 out:
2569         return rc;
2570 }
2571
2572 static int selinux_sb_remount(struct super_block *sb, void *data)
2573 {
2574         int rc, i, *flags;
2575         struct security_mnt_opts opts;
2576         char *secdata, **mount_options;
2577         struct superblock_security_struct *sbsec = sb->s_security;
2578
2579         if (!(sbsec->flags & SE_SBINITIALIZED))
2580                 return 0;
2581
2582         if (!data)
2583                 return 0;
2584
2585         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2586                 return 0;
2587
2588         security_init_mnt_opts(&opts);
2589         secdata = alloc_secdata();
2590         if (!secdata)
2591                 return -ENOMEM;
2592         rc = selinux_sb_copy_data(data, secdata);
2593         if (rc)
2594                 goto out_free_secdata;
2595
2596         rc = selinux_parse_opts_str(secdata, &opts);
2597         if (rc)
2598                 goto out_free_secdata;
2599
2600         mount_options = opts.mnt_opts;
2601         flags = opts.mnt_opts_flags;
2602
2603         for (i = 0; i < opts.num_mnt_opts; i++) {
2604                 u32 sid;
2605                 size_t len;
2606
2607                 if (flags[i] == SBLABEL_MNT)
2608                         continue;
2609                 len = strlen(mount_options[i]);
2610                 rc = security_context_to_sid(mount_options[i], len, &sid,
2611                                              GFP_KERNEL);
2612                 if (rc) {
2613                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2614                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2615                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2616                         goto out_free_opts;
2617                 }
2618                 rc = -EINVAL;
2619                 switch (flags[i]) {
2620                 case FSCONTEXT_MNT:
2621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2622                                 goto out_bad_option;
2623                         break;
2624                 case CONTEXT_MNT:
2625                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2626                                 goto out_bad_option;
2627                         break;
2628                 case ROOTCONTEXT_MNT: {
2629                         struct inode_security_struct *root_isec;
2630                         root_isec = sb->s_root->d_inode->i_security;
2631
2632                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2633                                 goto out_bad_option;
2634                         break;
2635                 }
2636                 case DEFCONTEXT_MNT:
2637                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2638                                 goto out_bad_option;
2639                         break;
2640                 default:
2641                         goto out_free_opts;
2642                 }
2643         }
2644
2645         rc = 0;
2646 out_free_opts:
2647         security_free_mnt_opts(&opts);
2648 out_free_secdata:
2649         free_secdata(secdata);
2650         return rc;
2651 out_bad_option:
2652         printk(KERN_WARNING "SELinux: unable to change security options "
2653                "during remount (dev %s, type=%s)\n", sb->s_id,
2654                sb->s_type->name);
2655         goto out_free_opts;
2656 }
2657
2658 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2659 {
2660         const struct cred *cred = current_cred();
2661         struct common_audit_data ad;
2662         int rc;
2663
2664         rc = superblock_doinit(sb, data);
2665         if (rc)
2666                 return rc;
2667
2668         /* Allow all mounts performed by the kernel */
2669         if (flags & MS_KERNMOUNT)
2670                 return 0;
2671
2672         ad.type = LSM_AUDIT_DATA_DENTRY;
2673         ad.u.dentry = sb->s_root;
2674         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2675 }
2676
2677 static int selinux_sb_statfs(struct dentry *dentry)
2678 {
2679         const struct cred *cred = current_cred();
2680         struct common_audit_data ad;
2681
2682         ad.type = LSM_AUDIT_DATA_DENTRY;
2683         ad.u.dentry = dentry->d_sb->s_root;
2684         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2685 }
2686
2687 static int selinux_mount(const char *dev_name,
2688                          struct path *path,
2689                          const char *type,
2690                          unsigned long flags,
2691                          void *data)
2692 {
2693         const struct cred *cred = current_cred();
2694
2695         if (flags & MS_REMOUNT)
2696                 return superblock_has_perm(cred, path->dentry->d_sb,
2697                                            FILESYSTEM__REMOUNT, NULL);
2698         else
2699                 return path_has_perm(cred, path, FILE__MOUNTON);
2700 }
2701
2702 static int selinux_umount(struct vfsmount *mnt, int flags)
2703 {
2704         const struct cred *cred = current_cred();
2705
2706         return superblock_has_perm(cred, mnt->mnt_sb,
2707                                    FILESYSTEM__UNMOUNT, NULL);
2708 }
2709
2710 /* inode security operations */
2711
2712 static int selinux_inode_alloc_security(struct inode *inode)
2713 {
2714         return inode_alloc_security(inode);
2715 }
2716
2717 static void selinux_inode_free_security(struct inode *inode)
2718 {
2719         inode_free_security(inode);
2720 }
2721
2722 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2723                                         struct qstr *name, void **ctx,
2724                                         u32 *ctxlen)
2725 {
2726         const struct cred *cred = current_cred();
2727         struct task_security_struct *tsec;
2728         struct inode_security_struct *dsec;
2729         struct superblock_security_struct *sbsec;
2730         struct inode *dir = dentry->d_parent->d_inode;
2731         u32 newsid;
2732         int rc;
2733
2734         tsec = cred->security;
2735         dsec = dir->i_security;
2736         sbsec = dir->i_sb->s_security;
2737
2738         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2739                 newsid = tsec->create_sid;
2740         } else {
2741                 rc = security_transition_sid(tsec->sid, dsec->sid,
2742                                              inode_mode_to_security_class(mode),
2743                                              name,
2744                                              &newsid);
2745                 if (rc) {
2746                         printk(KERN_WARNING
2747                                 "%s: security_transition_sid failed, rc=%d\n",
2748                                __func__, -rc);
2749                         return rc;
2750                 }
2751         }
2752
2753         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2754 }
2755
2756 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2757                                        const struct qstr *qstr,
2758                                        const char **name,
2759                                        void **value, size_t *len)
2760 {
2761         const struct task_security_struct *tsec = current_security();
2762         struct inode_security_struct *dsec;
2763         struct superblock_security_struct *sbsec;
2764         u32 sid, newsid, clen;
2765         int rc;
2766         char *context;
2767
2768         dsec = dir->i_security;
2769         sbsec = dir->i_sb->s_security;
2770
2771         sid = tsec->sid;
2772         newsid = tsec->create_sid;
2773
2774         if ((sbsec->flags & SE_SBINITIALIZED) &&
2775             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2776                 newsid = sbsec->mntpoint_sid;
2777         else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2778                 rc = security_transition_sid(sid, dsec->sid,
2779                                              inode_mode_to_security_class(inode->i_mode),
2780                                              qstr, &newsid);
2781                 if (rc) {
2782                         printk(KERN_WARNING "%s:  "
2783                                "security_transition_sid failed, rc=%d (dev=%s "
2784                                "ino=%ld)\n",
2785                                __func__,
2786                                -rc, inode->i_sb->s_id, inode->i_ino);
2787                         return rc;
2788                 }
2789         }
2790
2791         /* Possibly defer initialization to selinux_complete_init. */
2792         if (sbsec->flags & SE_SBINITIALIZED) {
2793                 struct inode_security_struct *isec = inode->i_security;
2794                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2795                 isec->sid = newsid;
2796                 isec->initialized = 1;
2797         }
2798
2799         if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2800                 return -EOPNOTSUPP;
2801
2802         if (name)
2803                 *name = XATTR_SELINUX_SUFFIX;
2804
2805         if (value && len) {
2806                 rc = security_sid_to_context_force(newsid, &context, &clen);
2807                 if (rc)
2808                         return rc;
2809                 *value = context;
2810                 *len = clen;
2811         }
2812
2813         return 0;
2814 }
2815
2816 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2817 {
2818         return may_create(dir, dentry, SECCLASS_FILE);
2819 }
2820
2821 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2822 {
2823         return may_link(dir, old_dentry, MAY_LINK);
2824 }
2825
2826 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2827 {
2828         return may_link(dir, dentry, MAY_UNLINK);
2829 }
2830
2831 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2832 {
2833         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2834 }
2835
2836 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2837 {
2838         return may_create(dir, dentry, SECCLASS_DIR);
2839 }
2840
2841 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2842 {
2843         return may_link(dir, dentry, MAY_RMDIR);
2844 }
2845
2846 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2847 {
2848         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2849 }
2850
2851 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2852                                 struct inode *new_inode, struct dentry *new_dentry)
2853 {
2854         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2855 }
2856
2857 static int selinux_inode_readlink(struct dentry *dentry)
2858 {
2859         const struct cred *cred = current_cred();
2860
2861         return dentry_has_perm(cred, dentry, FILE__READ);
2862 }
2863
2864 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2865 {
2866         const struct cred *cred = current_cred();
2867
2868         return dentry_has_perm(cred, dentry, FILE__READ);
2869 }
2870
2871 static noinline int audit_inode_permission(struct inode *inode,
2872                                            u32 perms, u32 audited, u32 denied,
2873                                            int result,
2874                                            unsigned flags)
2875 {
2876         struct common_audit_data ad;
2877         struct inode_security_struct *isec = inode->i_security;
2878         int rc;
2879
2880         ad.type = LSM_AUDIT_DATA_INODE;
2881         ad.u.inode = inode;
2882
2883         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2884                             audited, denied, result, &ad, flags);
2885         if (rc)
2886                 return rc;
2887         return 0;
2888 }
2889
2890 static int selinux_inode_permission(struct inode *inode, int mask)
2891 {
2892         const struct cred *cred = current_cred();
2893         u32 perms;
2894         bool from_access;
2895         unsigned flags = mask & MAY_NOT_BLOCK;
2896         struct inode_security_struct *isec;
2897         u32 sid;
2898         struct av_decision avd;
2899         int rc, rc2;
2900         u32 audited, denied;
2901
2902         from_access = mask & MAY_ACCESS;
2903         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2904
2905         /* No permission to check.  Existence test. */
2906         if (!mask)
2907                 return 0;
2908
2909         validate_creds(cred);
2910
2911         if (unlikely(IS_PRIVATE(inode)))
2912                 return 0;
2913
2914         perms = file_mask_to_av(inode->i_mode, mask);
2915
2916         sid = cred_sid(cred);
2917         isec = inode->i_security;
2918
2919         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2920         audited = avc_audit_required(perms, &avd, rc,
2921                                      from_access ? FILE__AUDIT_ACCESS : 0,
2922                                      &denied);
2923         if (likely(!audited))
2924                 return rc;
2925
2926         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2927         if (rc2)
2928                 return rc2;
2929         return rc;
2930 }
2931
2932 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2933 {
2934         const struct cred *cred = current_cred();
2935         unsigned int ia_valid = iattr->ia_valid;
2936         __u32 av = FILE__WRITE;
2937
2938         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2939         if (ia_valid & ATTR_FORCE) {
2940                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2941                               ATTR_FORCE);
2942                 if (!ia_valid)
2943                         return 0;
2944         }
2945
2946         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2947                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2948                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2949
2950         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2951                 av |= FILE__OPEN;
2952
2953         return dentry_has_perm(cred, dentry, av);
2954 }
2955
2956 static int selinux_inode_getattr(const struct path *path)
2957 {
2958         return path_has_perm(current_cred(), path, FILE__GETATTR);
2959 }
2960
2961 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2962 {
2963         const struct cred *cred = current_cred();
2964
2965         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2966                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2967                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2968                         if (!capable(CAP_SETFCAP))
2969                                 return -EPERM;
2970                 } else if (!capable(CAP_SYS_ADMIN)) {
2971                         /* A different attribute in the security namespace.
2972                            Restrict to administrator. */
2973                         return -EPERM;
2974                 }
2975         }
2976
2977         /* Not an attribute we recognize, so just check the
2978            ordinary setattr permission. */
2979         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2980 }
2981
2982 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2983                                   const void *value, size_t size, int flags)
2984 {
2985         struct inode *inode = dentry->d_inode;
2986         struct inode_security_struct *isec = inode->i_security;
2987         struct superblock_security_struct *sbsec;
2988         struct common_audit_data ad;
2989         u32 newsid, sid = current_sid();
2990         int rc = 0;
2991
2992         if (strcmp(name, XATTR_NAME_SELINUX))
2993                 return selinux_inode_setotherxattr(dentry, name);
2994
2995         sbsec = inode->i_sb->s_security;
2996         if (!(sbsec->flags & SBLABEL_MNT))
2997                 return -EOPNOTSUPP;
2998
2999         if (!inode_owner_or_capable(inode))
3000                 return -EPERM;
3001
3002         ad.type = LSM_AUDIT_DATA_DENTRY;
3003         ad.u.dentry = dentry;
3004
3005         rc = avc_has_perm(sid, isec->sid, isec->sclass,
3006                           FILE__RELABELFROM, &ad);
3007         if (rc)
3008                 return rc;
3009
3010         rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3011         if (rc == -EINVAL) {
3012                 if (!capable(CAP_MAC_ADMIN)) {
3013                         struct audit_buffer *ab;
3014                         size_t audit_size;
3015                         const char *str;
3016
3017                         /* We strip a nul only if it is at the end, otherwise the
3018                          * context contains a nul and we should audit that */
3019                         if (value) {
3020                                 str = value;
3021                                 if (str[size - 1] == '\0')
3022                                         audit_size = size - 1;
3023                                 else
3024                                         audit_size = size;
3025                         } else {
3026                                 str = "";
3027                                 audit_size = 0;
3028                         }
3029                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3030                         audit_log_format(ab, "op=setxattr invalid_context=");
3031                         audit_log_n_untrustedstring(ab, value, audit_size);
3032                         audit_log_end(ab);
3033
3034                         return rc;
3035                 }
3036                 rc = security_context_to_sid_force(value, size, &newsid);
3037         }
3038         if (rc)
3039                 return rc;
3040
3041         rc = avc_has_perm(sid, newsid, isec->sclass,
3042                           FILE__RELABELTO, &ad);
3043         if (rc)
3044                 return rc;
3045
3046         rc = security_validate_transition(isec->sid, newsid, sid,
3047                                           isec->sclass);
3048         if (rc)
3049                 return rc;
3050
3051         return avc_has_perm(newsid,
3052                             sbsec->sid,
3053                             SECCLASS_FILESYSTEM,
3054                             FILESYSTEM__ASSOCIATE,
3055                             &ad);
3056 }
3057
3058 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3059                                         const void *value, size_t size,
3060                                         int flags)
3061 {
3062         struct inode *inode = dentry->d_inode;
3063         struct inode_security_struct *isec = inode->i_security;
3064         u32 newsid;
3065         int rc;
3066
3067         if (strcmp(name, XATTR_NAME_SELINUX)) {
3068                 /* Not an attribute we recognize, so nothing to do. */
3069                 return;
3070         }
3071
3072         rc = security_context_to_sid_force(value, size, &newsid);
3073         if (rc) {
3074                 printk(KERN_ERR "SELinux:  unable to map context to SID"
3075                        "for (%s, %lu), rc=%d\n",
3076                        inode->i_sb->s_id, inode->i_ino, -rc);
3077                 return;
3078         }
3079
3080         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3081         isec->sid = newsid;
3082         isec->initialized = 1;
3083
3084         return;
3085 }
3086
3087 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3088 {
3089         const struct cred *cred = current_cred();
3090
3091         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3092 }
3093
3094 static int selinux_inode_listxattr(struct dentry *dentry)
3095 {
3096         const struct cred *cred = current_cred();
3097
3098         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3099 }
3100
3101 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3102 {
3103         if (strcmp(name, XATTR_NAME_SELINUX))
3104                 return selinux_inode_setotherxattr(dentry, name);
3105
3106         /* No one is allowed to remove a SELinux security label.
3107            You can change the label, but all data must be labeled. */
3108         return -EACCES;
3109 }
3110
3111 /*
3112  * Copy the inode security context value to the user.
3113  *
3114  * Permission check is handled by selinux_inode_getxattr hook.
3115  */
3116 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3117 {
3118         u32 size;
3119         int error;
3120         char *context = NULL;
3121         struct inode_security_struct *isec = inode->i_security;
3122
3123         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3124                 return -EOPNOTSUPP;
3125
3126         /*
3127          * If the caller has CAP_MAC_ADMIN, then get the raw context
3128          * value even if it is not defined by current policy; otherwise,
3129          * use the in-core value under current policy.
3130          * Use the non-auditing forms of the permission checks since
3131          * getxattr may be called by unprivileged processes commonly
3132          * and lack of permission just means that we fall back to the
3133          * in-core context value, not a denial.
3134          */
3135         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3136                                 SECURITY_CAP_NOAUDIT);
3137         if (!error)
3138                 error = security_sid_to_context_force(isec->sid, &context,
3139                                                       &size);
3140         else
3141                 error = security_sid_to_context(isec->sid, &context, &size);
3142         if (error)
3143                 return error;
3144         error = size;
3145         if (alloc) {
3146                 *buffer = context;
3147                 goto out_nofree;
3148         }
3149         kfree(context);
3150 out_nofree:
3151         return error;
3152 }
3153
3154 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3155                                      const void *value, size_t size, int flags)
3156 {
3157         struct inode_security_struct *isec = inode->i_security;
3158         u32 newsid;
3159         int rc;
3160
3161         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3162                 return -EOPNOTSUPP;
3163
3164         if (!value || !size)
3165                 return -EACCES;
3166
3167         rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3168         if (rc)
3169                 return rc;
3170
3171         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3172         isec->sid = newsid;
3173         isec->initialized = 1;
3174         return 0;
3175 }
3176
3177 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3178 {
3179         const int len = sizeof(XATTR_NAME_SELINUX);
3180         if (buffer && len <= buffer_size)
3181                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3182         return len;
3183 }
3184
3185 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3186 {
3187         struct inode_security_struct *isec = inode->i_security;
3188         *secid = isec->sid;
3189 }
3190
3191 /* file security operations */
3192
3193 static int selinux_revalidate_file_permission(struct file *file, int mask)
3194 {
3195         const struct cred *cred = current_cred();
3196         struct inode *inode = file_inode(file);
3197
3198         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3199         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3200                 mask |= MAY_APPEND;
3201
3202         return file_has_perm(cred, file,
3203                              file_mask_to_av(inode->i_mode, mask));
3204 }
3205
3206 static int selinux_file_permission(struct file *file, int mask)
3207 {
3208         struct inode *inode = file_inode(file);
3209         struct file_security_struct *fsec = file->f_security;
3210         struct inode_security_struct *isec = inode->i_security;
3211         u32 sid = current_sid();
3212
3213         if (!mask)
3214                 /* No permission to check.  Existence test. */
3215                 return 0;
3216
3217         if (sid == fsec->sid && fsec->isid == isec->sid &&
3218             fsec->pseqno == avc_policy_seqno())
3219                 /* No change since file_open check. */
3220                 return 0;
3221
3222         return selinux_revalidate_file_permission(file, mask);
3223 }
3224
3225 static int selinux_file_alloc_security(struct file *file)
3226 {
3227         return file_alloc_security(file);
3228 }
3229
3230 static void selinux_file_free_security(struct file *file)
3231 {
3232         file_free_security(file);
3233 }
3234
3235 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3236                               unsigned long arg)
3237 {
3238         const struct cred *cred = current_cred();
3239         int error = 0;
3240
3241         switch (cmd) {
3242         case FIONREAD:
3243         /* fall through */
3244         case FIBMAP:
3245         /* fall through */
3246         case FIGETBSZ:
3247         /* fall through */
3248         case FS_IOC_GETFLAGS:
3249         /* fall through */
3250         case FS_IOC_GETVERSION:
3251                 error = file_has_perm(cred, file, FILE__GETATTR);
3252                 break;
3253
3254         case FS_IOC_SETFLAGS:
3255         /* fall through */
3256         case FS_IOC_SETVERSION:
3257                 error = file_has_perm(cred, file, FILE__SETATTR);
3258                 break;
3259
3260         /* sys_ioctl() checks */
3261         case FIONBIO:
3262         /* fall through */
3263         case FIOASYNC:
3264                 error = file_has_perm(cred, file, 0);
3265                 break;
3266
3267         case KDSKBENT:
3268         case KDSKBSENT:
3269                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3270                                             SECURITY_CAP_AUDIT);
3271                 break;
3272
3273         /* default case assumes that the command will go
3274          * to the file's ioctl() function.
3275          */
3276         default:
3277                 error = file_has_perm(cred, file, FILE__IOCTL);
3278         }
3279         return error;
3280 }
3281
3282 static int default_noexec;
3283
3284 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3285 {
3286         const struct cred *cred = current_cred();
3287         int rc = 0;
3288
3289         if (default_noexec &&
3290             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3291                 /*
3292                  * We are making executable an anonymous mapping or a
3293                  * private file mapping that will also be writable.
3294                  * This has an additional check.
3295                  */
3296                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3297                 if (rc)
3298                         goto error;
3299         }
3300
3301         if (file) {
3302                 /* read access is always possible with a mapping */
3303                 u32 av = FILE__READ;
3304
3305                 /* write access only matters if the mapping is shared */
3306                 if (shared && (prot & PROT_WRITE))
3307                         av |= FILE__WRITE;
3308
3309                 if (prot & PROT_EXEC)
3310                         av |= FILE__EXECUTE;
3311
3312                 return file_has_perm(cred, file, av);
3313         }
3314
3315 error:
3316         return rc;
3317 }
3318
3319 static int selinux_mmap_addr(unsigned long addr)
3320 {
3321         int rc;
3322
3323         /* do DAC check on address space usage */
3324         rc = cap_mmap_addr(addr);
3325         if (rc)
3326                 return rc;
3327
3328         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3329                 u32 sid = current_sid();
3330                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3331                                   MEMPROTECT__MMAP_ZERO, NULL);
3332         }
3333
3334         return rc;
3335 }
3336
3337 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3338                              unsigned long prot, unsigned long flags)
3339 {
3340         if (selinux_checkreqprot)
3341                 prot = reqprot;
3342
3343         return file_map_prot_check(file, prot,
3344                                    (flags & MAP_TYPE) == MAP_SHARED);
3345 }
3346
3347 static int selinux_file_mprotect(struct vm_area_struct *vma,
3348                                  unsigned long reqprot,
3349                                  unsigned long prot)
3350 {
3351         const struct cred *cred = current_cred();
3352
3353         if (selinux_checkreqprot)
3354                 prot = reqprot;
3355
3356         if (default_noexec &&
3357             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3358                 int rc = 0;
3359                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3360                     vma->vm_end <= vma->vm_mm->brk) {
3361                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3362                 } else if (!vma->vm_file &&
3363                            vma->vm_start <= vma->vm_mm->start_stack &&
3364                            vma->vm_end >= vma->vm_mm->start_stack) {
3365                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3366                 } else if (vma->vm_file && vma->anon_vma) {
3367                         /*
3368                          * We are making executable a file mapping that has
3369                          * had some COW done. Since pages might have been
3370                          * written, check ability to execute the possibly
3371                          * modified content.  This typically should only
3372                          * occur for text relocations.
3373                          */
3374                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3375                 }
3376                 if (rc)
3377                         return rc;
3378         }
3379
3380         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3381 }
3382
3383 static int selinux_file_lock(struct file *file, unsigned int cmd)
3384 {
3385         const struct cred *cred = current_cred();
3386
3387         return file_has_perm(cred, file, FILE__LOCK);
3388 }
3389
3390 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3391                               unsigned long arg)
3392 {
3393         const struct cred *cred = current_cred();
3394         int err = 0;
3395
3396         switch (cmd) {
3397         case F_SETFL:
3398                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3399                         err = file_has_perm(cred, file, FILE__WRITE);
3400                         break;
3401                 }
3402                 /* fall through */
3403         case F_SETOWN:
3404         case F_SETSIG:
3405         case F_GETFL:
3406         case F_GETOWN:
3407         case F_GETSIG:
3408         case F_GETOWNER_UIDS:
3409                 /* Just check FD__USE permission */
3410                 err = file_has_perm(cred, file, 0);
3411                 break;
3412         case F_GETLK:
3413         case F_SETLK:
3414         case F_SETLKW:
3415         case F_OFD_GETLK:
3416         case F_OFD_SETLK:
3417         case F_OFD_SETLKW:
3418 #if BITS_PER_LONG == 32
3419         case F_GETLK64:
3420         case F_SETLK64:
3421         case F_SETLKW64:
3422 #endif
3423                 err = file_has_perm(cred, file, FILE__LOCK);
3424                 break;
3425         }
3426
3427         return err;
3428 }
3429
3430 static void selinux_file_set_fowner(struct file *file)
3431 {
3432         struct file_security_struct *fsec;
3433
3434         fsec = file->f_security;
3435         fsec->fown_sid = current_sid();
3436 }
3437
3438 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3439                                        struct fown_struct *fown, int signum)
3440 {
3441         struct file *file;
3442         u32 sid = task_sid(tsk);
3443         u32 perm;
3444         struct file_security_struct *fsec;
3445
3446         /* struct fown_struct is never outside the context of a struct file */
3447         file = container_of(fown, struct file, f_owner);
3448
3449         fsec = file->f_security;
3450
3451         if (!signum)
3452                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3453         else
3454                 perm = signal_to_av(signum);
3455
3456         return avc_has_perm(fsec->fown_sid, sid,
3457                             SECCLASS_PROCESS, perm, NULL);
3458 }
3459
3460 static int selinux_file_receive(struct file *file)
3461 {
3462         const struct cred *cred = current_cred();
3463
3464         return file_has_perm(cred, file, file_to_av(file));
3465 }
3466
3467 static int selinux_file_open(struct file *file, const struct cred *cred)
3468 {
3469         struct file_security_struct *fsec;
3470         struct inode_security_struct *isec;
3471
3472         fsec = file->f_security;
3473         isec = file_inode(file)->i_security;
3474         /*
3475          * Save inode label and policy sequence number
3476          * at open-time so that selinux_file_permission
3477          * can determine whether revalidation is necessary.
3478          * Task label is already saved in the file security
3479          * struct as its SID.
3480          */
3481         fsec->isid = isec->sid;
3482         fsec->pseqno = avc_policy_seqno();
3483         /*
3484          * Since the inode label or policy seqno may have changed
3485          * between the selinux_inode_permission check and the saving
3486          * of state above, recheck that access is still permitted.
3487          * Otherwise, access might never be revalidated against the
3488          * new inode label or new policy.
3489          * This check is not redundant - do not remove.
3490          */
3491         return file_path_has_perm(cred, file, open_file_to_av(file));
3492 }
3493
3494 /* task security operations */
3495
3496 static int selinux_task_create(unsigned long clone_flags)
3497 {
3498         return current_has_perm(current, PROCESS__FORK);
3499 }
3500
3501 /*
3502  * allocate the SELinux part of blank credentials
3503  */
3504 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3505 {
3506         struct task_security_struct *tsec;
3507
3508         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3509         if (!tsec)
3510                 return -ENOMEM;
3511
3512         cred->security = tsec;
3513         return 0;
3514 }
3515
3516 /*
3517  * detach and free the LSM part of a set of credentials
3518  */
3519 static void selinux_cred_free(struct cred *cred)
3520 {
3521         struct task_security_struct *tsec = cred->security;
3522
3523         /*
3524          * cred->security == NULL if security_cred_alloc_blank() or
3525          * security_prepare_creds() returned an error.
3526          */
3527         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3528         cred->security = (void *) 0x7UL;
3529         kfree(tsec);
3530 }
3531
3532 /*
3533  * prepare a new set of credentials for modification
3534  */
3535 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3536                                 gfp_t gfp)
3537 {
3538         const struct task_security_struct *old_tsec;
3539         struct task_security_struct *tsec;
3540
3541         old_tsec = old->security;
3542
3543         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3544         if (!tsec)
3545                 return -ENOMEM;
3546
3547         new->security = tsec;
3548         return 0;
3549 }
3550
3551 /*
3552  * transfer the SELinux data to a blank set of creds
3553  */
3554 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3555 {
3556         const struct task_security_struct *old_tsec = old->security;
3557         struct task_security_struct *tsec = new->security;
3558
3559         *tsec = *old_tsec;
3560 }
3561
3562 /*
3563  * set the security data for a kernel service
3564  * - all the creation contexts are set to unlabelled
3565  */
3566 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3567 {
3568         struct task_security_struct *tsec = new->security;
3569         u32 sid = current_sid();
3570         int ret;
3571
3572         ret = avc_has_perm(sid, secid,
3573                            SECCLASS_KERNEL_SERVICE,
3574                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3575                            NULL);
3576         if (ret == 0) {
3577                 tsec->sid = secid;
3578                 tsec->create_sid = 0;
3579                 tsec->keycreate_sid = 0;
3580                 tsec->sockcreate_sid = 0;
3581         }
3582         return ret;
3583 }
3584
3585 /*
3586  * set the file creation context in a security record to the same as the
3587  * objective context of the specified inode
3588  */
3589 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3590 {
3591         struct inode_security_struct *isec = inode->i_security;
3592         struct task_security_struct *tsec = new->security;
3593         u32 sid = current_sid();
3594         int ret;
3595
3596         ret = avc_has_perm(sid, isec->sid,
3597                            SECCLASS_KERNEL_SERVICE,
3598                            KERNEL_SERVICE__CREATE_FILES_AS,
3599                            NULL);
3600
3601         if (ret == 0)
3602                 tsec->create_sid = isec->sid;
3603         return ret;
3604 }
3605
3606 static int selinux_kernel_module_request(char *kmod_name)
3607 {
3608         u32 sid;
3609         struct common_audit_data ad;
3610
3611         sid = task_sid(current);
3612
3613         ad.type = LSM_AUDIT_DATA_KMOD;
3614         ad.u.kmod_name = kmod_name;
3615
3616         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3617                             SYSTEM__MODULE_REQUEST, &ad);
3618 }
3619
3620 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3621 {
3622         return current_has_perm(p, PROCESS__SETPGID);
3623 }
3624
3625 static int selinux_task_getpgid(struct task_struct *p)
3626 {
3627         return current_has_perm(p, PROCESS__GETPGID);
3628 }
3629
3630 static int selinux_task_getsid(struct task_struct *p)
3631 {
3632         return current_has_perm(p, PROCESS__GETSESSION);
3633 }
3634
3635 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3636 {
3637         *secid = task_sid(p);
3638 }
3639
3640 static int selinux_task_setnice(struct task_struct *p, int nice)
3641 {
3642         int rc;
3643
3644         rc = cap_task_setnice(p, nice);
3645         if (rc)
3646                 return rc;
3647
3648         return current_has_perm(p, PROCESS__SETSCHED);
3649 }
3650
3651 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3652 {
3653         int rc;
3654
3655         rc = cap_task_setioprio(p, ioprio);
3656         if (rc)
3657                 return rc;
3658
3659         return current_has_perm(p, PROCESS__SETSCHED);
3660 }
3661
3662 static int selinux_task_getioprio(struct task_struct *p)
3663 {
3664         return current_has_perm(p, PROCESS__GETSCHED);
3665 }
3666
3667 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3668                 struct rlimit *new_rlim)
3669 {
3670         struct rlimit *old_rlim = p->signal->rlim + resource;
3671
3672         /* Control the ability to change the hard limit (whether
3673            lowering or raising it), so that the hard limit can
3674            later be used as a safe reset point for the soft limit
3675            upon context transitions.  See selinux_bprm_committing_creds. */
3676         if (old_rlim->rlim_max != new_rlim->rlim_max)
3677                 return current_has_perm(p, PROCESS__SETRLIMIT);
3678
3679         return 0;
3680 }
3681
3682 static int selinux_task_setscheduler(struct task_struct *p)
3683 {
3684         int rc;
3685
3686         rc = cap_task_setscheduler(p);
3687         if (rc)
3688                 return rc;
3689
3690         return current_has_perm(p, PROCESS__SETSCHED);
3691 }
3692
3693 static int selinux_task_getscheduler(struct task_struct *p)
3694 {
3695         return current_has_perm(p, PROCESS__GETSCHED);
3696 }
3697
3698 static int selinux_task_movememory(struct task_struct *p)
3699 {
3700         return current_has_perm(p, PROCESS__SETSCHED);
3701 }
3702
3703 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3704                                 int sig, u32 secid)
3705 {
3706         u32 perm;
3707         int rc;
3708
3709         if (!sig)
3710                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3711         else
3712                 perm = signal_to_av(sig);
3713         if (secid)
3714                 rc = avc_has_perm(secid, task_sid(p),
3715                                   SECCLASS_PROCESS, perm, NULL);
3716         else
3717                 rc = current_has_perm(p, perm);
3718         return rc;
3719 }
3720
3721 static int selinux_task_wait(struct task_struct *p)
3722 {
3723         return task_has_perm(p, current, PROCESS__SIGCHLD);
3724 }
3725
3726 static void selinux_task_to_inode(struct task_struct *p,
3727                                   struct inode *inode)
3728 {
3729         struct inode_security_struct *isec = inode->i_security;
3730         u32 sid = task_sid(p);
3731
3732         isec->sid = sid;
3733         isec->initialized = 1;
3734 }
3735
3736 /* Returns error only if unable to parse addresses */
3737 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3738                         struct common_audit_data *ad, u8 *proto)
3739 {
3740         int offset, ihlen, ret = -EINVAL;
3741         struct iphdr _iph, *ih;
3742
3743         offset = skb_network_offset(skb);
3744         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3745         if (ih == NULL)
3746                 goto out;
3747
3748         ihlen = ih->ihl * 4;
3749         if (ihlen < sizeof(_iph))
3750                 goto out;
3751
3752         ad->u.net->v4info.saddr = ih->saddr;
3753         ad->u.net->v4info.daddr = ih->daddr;
3754         ret = 0;
3755
3756         if (proto)
3757                 *proto = ih->protocol;
3758
3759         switch (ih->protocol) {
3760         case IPPROTO_TCP: {
3761                 struct tcphdr _tcph, *th;
3762
3763                 if (ntohs(ih->frag_off) & IP_OFFSET)
3764                         break;
3765
3766                 offset += ihlen;
3767                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3768                 if (th == NULL)
3769                         break;
3770
3771                 ad->u.net->sport = th->source;
3772                 ad->u.net->dport = th->dest;
3773                 break;
3774         }
3775
3776         case IPPROTO_UDP: {
3777                 struct udphdr _udph, *uh;
3778
3779                 if (ntohs(ih->frag_off) & IP_OFFSET)
3780                         break;
3781
3782                 offset += ihlen;
3783                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3784                 if (uh == NULL)
3785                         break;
3786
3787                 ad->u.net->sport = uh->source;
3788                 ad->u.net->dport = uh->dest;
3789                 break;
3790         }
3791
3792         case IPPROTO_DCCP: {
3793                 struct dccp_hdr _dccph, *dh;
3794
3795                 if (ntohs(ih->frag_off) & IP_OFFSET)
3796                         break;
3797
3798                 offset += ihlen;
3799                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3800                 if (dh == NULL)
3801                         break;
3802
3803                 ad->u.net->sport = dh->dccph_sport;
3804                 ad->u.net->dport = dh->dccph_dport;
3805                 break;
3806         }
3807
3808         default:
3809                 break;
3810         }
3811 out:
3812         return ret;
3813 }
3814
3815 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3816
3817 /* Returns error only if unable to parse addresses */
3818 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3819                         struct common_audit_data *ad, u8 *proto)
3820 {
3821         u8 nexthdr;
3822         int ret = -EINVAL, offset;
3823         struct ipv6hdr _ipv6h, *ip6;
3824         __be16 frag_off;
3825
3826         offset = skb_network_offset(skb);
3827         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3828         if (ip6 == NULL)
3829                 goto out;
3830
3831         ad->u.net->v6info.saddr = ip6->saddr;
3832         ad->u.net->v6info.daddr = ip6->daddr;
3833         ret = 0;
3834
3835         nexthdr = ip6->nexthdr;
3836         offset += sizeof(_ipv6h);
3837         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3838         if (offset < 0)
3839                 goto out;
3840
3841         if (proto)
3842                 *proto = nexthdr;
3843
3844         switch (nexthdr) {
3845         case IPPROTO_TCP: {
3846                 struct tcphdr _tcph, *th;
3847
3848                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3849                 if (th == NULL)
3850                         break;
3851
3852                 ad->u.net->sport = th->source;
3853                 ad->u.net->dport = th->dest;
3854                 break;
3855         }
3856
3857         case IPPROTO_UDP: {
3858                 struct udphdr _udph, *uh;
3859
3860                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3861                 if (uh == NULL)
3862                         break;
3863
3864                 ad->u.net->sport = uh->source;
3865                 ad->u.net->dport = uh->dest;
3866                 break;
3867         }
3868
3869         case IPPROTO_DCCP: {
3870                 struct dccp_hdr _dccph, *dh;
3871
3872                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3873                 if (dh == NULL)
3874                         break;
3875
3876                 ad->u.net->sport = dh->dccph_sport;
3877                 ad->u.net->dport = dh->dccph_dport;
3878                 break;
3879         }
3880
3881         /* includes fragments */
3882         default:
3883                 break;
3884         }
3885 out:
3886         return ret;
3887 }
3888
3889 #endif /* IPV6 */
3890
3891 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3892                              char **_addrp, int src, u8 *proto)
3893 {
3894         char *addrp;
3895         int ret;
3896
3897         switch (ad->u.net->family) {
3898         case PF_INET:
3899                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3900                 if (ret)
3901                         goto parse_error;
3902                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3903                                        &ad->u.net->v4info.daddr);
3904                 goto okay;
3905
3906 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3907         case PF_INET6:
3908                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3909                 if (ret)
3910                         goto parse_error;
3911                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3912                                        &ad->u.net->v6info.daddr);
3913                 goto okay;
3914 #endif  /* IPV6 */
3915         default:
3916                 addrp = NULL;
3917                 goto okay;
3918         }
3919
3920 parse_error:
3921         printk(KERN_WARNING
3922                "SELinux: failure in selinux_parse_skb(),"
3923                " unable to parse packet\n");
3924         return ret;
3925
3926 okay:
3927         if (_addrp)
3928                 *_addrp = addrp;
3929         return 0;
3930 }
3931
3932 /**
3933  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3934  * @skb: the packet
3935  * @family: protocol family
3936  * @sid: the packet's peer label SID
3937  *
3938  * Description:
3939  * Check the various different forms of network peer labeling and determine
3940  * the peer label/SID for the packet; most of the magic actually occurs in
3941  * the security server function security_net_peersid_cmp().  The function
3942  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3943  * or -EACCES if @sid is invalid due to inconsistencies with the different
3944  * peer labels.
3945  *
3946  */
3947 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3948 {
3949         int err;
3950         u32 xfrm_sid;
3951         u32 nlbl_sid;
3952         u32 nlbl_type;
3953
3954         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3955         if (unlikely(err))
3956                 return -EACCES;
3957         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3958         if (unlikely(err))
3959                 return -EACCES;
3960
3961         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3962         if (unlikely(err)) {
3963                 printk(KERN_WARNING
3964                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3965                        " unable to determine packet's peer label\n");
3966                 return -EACCES;
3967         }
3968
3969         return 0;
3970 }
3971
3972 /**
3973  * selinux_conn_sid - Determine the child socket label for a connection
3974  * @sk_sid: the parent socket's SID
3975  * @skb_sid: the packet's SID
3976  * @conn_sid: the resulting connection SID
3977  *
3978  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3979  * combined with the MLS information from @skb_sid in order to create
3980  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3981  * of @sk_sid.  Returns zero on success, negative values on failure.
3982  *
3983  */
3984 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3985 {
3986         int err = 0;
3987
3988         if (skb_sid != SECSID_NULL)
3989                 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3990         else
3991                 *conn_sid = sk_sid;
3992
3993         return err;
3994 }
3995
3996 /* socket security operations */
3997
3998 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3999                                  u16 secclass, u32 *socksid)
4000 {
4001         if (tsec->sockcreate_sid > SECSID_NULL) {
4002                 *socksid = tsec->sockcreate_sid;
4003                 return 0;
4004         }
4005
4006         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4007                                        socksid);
4008 }
4009
4010 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4011 {
4012         struct sk_security_struct *sksec = sk->sk_security;
4013         struct common_audit_data ad;
4014         struct lsm_network_audit net = {0,};
4015         u32 tsid = task_sid(task);
4016
4017         if (sksec->sid == SECINITSID_KERNEL)
4018                 return 0;
4019
4020         ad.type = LSM_AUDIT_DATA_NET;
4021         ad.u.net = &net;
4022         ad.u.net->sk = sk;
4023
4024         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4025 }
4026
4027 static int selinux_socket_create(int family, int type,
4028                                  int protocol, int kern)
4029 {
4030         const struct task_security_struct *tsec = current_security();
4031         u32 newsid;
4032         u16 secclass;
4033         int rc;
4034
4035         if (kern)
4036                 return 0;
4037
4038         secclass = socket_type_to_security_class(family, type, protocol);
4039         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4040         if (rc)
4041                 return rc;
4042
4043         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4044 }
4045
4046 static int selinux_socket_post_create(struct socket *sock, int family,
4047                                       int type, int protocol, int kern)
4048 {
4049         const struct task_security_struct *tsec = current_security();
4050         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4051         struct sk_security_struct *sksec;
4052         int err = 0;
4053
4054         isec->sclass = socket_type_to_security_class(family, type, protocol);
4055
4056         if (kern)
4057                 isec->sid = SECINITSID_KERNEL;
4058         else {
4059                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4060                 if (err)
4061                         return err;
4062         }
4063
4064         isec->initialized = 1;
4065
4066         if (sock->sk) {
4067                 sksec = sock->sk->sk_security;
4068                 sksec->sid = isec->sid;
4069                 sksec->sclass = isec->sclass;
4070                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4071         }
4072
4073         return err;
4074 }
4075
4076 /* Range of port numbers used to automatically bind.
4077    Need to determine whether we should perform a name_bind
4078    permission check between the socket and the port number. */
4079
4080 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4081 {
4082         struct sock *sk = sock->sk;
4083         u16 family;
4084         int err;
4085
4086         err = sock_has_perm(current, sk, SOCKET__BIND);
4087         if (err)
4088                 goto out;
4089
4090         /*
4091          * If PF_INET or PF_INET6, check name_bind permission for the port.
4092          * Multiple address binding for SCTP is not supported yet: we just
4093          * check the first address now.
4094          */
4095         family = sk->sk_family;
4096         if (family == PF_INET || family == PF_INET6) {
4097                 char *addrp;
4098                 struct sk_security_struct *sksec = sk->sk_security;
4099                 struct common_audit_data ad;
4100                 struct lsm_network_audit net = {0,};
4101                 struct sockaddr_in *addr4 = NULL;
4102                 struct sockaddr_in6 *addr6 = NULL;
4103                 unsigned short snum;
4104                 u32 sid, node_perm;
4105
4106                 if (family == PF_INET) {
4107                         addr4 = (struct sockaddr_in *)address;
4108                         snum = ntohs(addr4->sin_port);
4109                         addrp = (char *)&addr4->sin_addr.s_addr;
4110                 } else {
4111                         addr6 = (struct sockaddr_in6 *)address;
4112                         snum = ntohs(addr6->sin6_port);
4113                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4114                 }
4115
4116                 if (snum) {
4117                         int low, high;
4118
4119                         inet_get_local_port_range(sock_net(sk), &low, &high);
4120
4121                         if (snum < max(PROT_SOCK, low) || snum > high) {
4122                                 err = sel_netport_sid(sk->sk_protocol,
4123                                                       snum, &sid);
4124                                 if (err)
4125                                         goto out;
4126                                 ad.type = LSM_AUDIT_DATA_NET;
4127                                 ad.u.net = &net;
4128                                 ad.u.net->sport = htons(snum);
4129                                 ad.u.net->family = family;
4130                                 err = avc_has_perm(sksec->sid, sid,
4131                                                    sksec->sclass,
4132                                                    SOCKET__NAME_BIND, &ad);
4133                                 if (err)
4134                                         goto out;
4135                         }
4136                 }
4137
4138                 switch (sksec->sclass) {
4139                 case SECCLASS_TCP_SOCKET:
4140                         node_perm = TCP_SOCKET__NODE_BIND;
4141                         break;
4142
4143                 case SECCLASS_UDP_SOCKET:
4144                         node_perm = UDP_SOCKET__NODE_BIND;
4145                         break;
4146
4147                 case SECCLASS_DCCP_SOCKET:
4148                         node_perm = DCCP_SOCKET__NODE_BIND;
4149                         break;
4150
4151                 default:
4152                         node_perm = RAWIP_SOCKET__NODE_BIND;
4153                         break;
4154                 }
4155
4156                 err = sel_netnode_sid(addrp, family, &sid);
4157                 if (err)
4158                         goto out;
4159
4160                 ad.type = LSM_AUDIT_DATA_NET;
4161                 ad.u.net = &net;
4162                 ad.u.net->sport = htons(snum);
4163                 ad.u.net->family = family;
4164
4165                 if (family == PF_INET)
4166                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4167                 else
4168                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4169
4170                 err = avc_has_perm(sksec->sid, sid,
4171                                    sksec->sclass, node_perm, &ad);
4172                 if (err)
4173                         goto out;
4174         }
4175 out:
4176         return err;
4177 }
4178
4179 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4180 {
4181         struct sock *sk = sock->sk;
4182         struct sk_security_struct *sksec = sk->sk_security;
4183         int err;
4184
4185         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4186         if (err)
4187                 return err;
4188
4189         /*
4190          * If a TCP or DCCP socket, check name_connect permission for the port.
4191          */
4192         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4193             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4194                 struct common_audit_data ad;
4195                 struct lsm_network_audit net = {0,};
4196                 struct sockaddr_in *addr4 = NULL;
4197                 struct sockaddr_in6 *addr6 = NULL;
4198                 unsigned short snum;
4199                 u32 sid, perm;
4200
4201                 if (sk->sk_family == PF_INET) {
4202                         addr4 = (struct sockaddr_in *)address;
4203                         if (addrlen < sizeof(struct sockaddr_in))
4204                                 return -EINVAL;
4205                         snum = ntohs(addr4->sin_port);
4206                 } else {
4207                         addr6 = (struct sockaddr_in6 *)address;
4208                         if (addrlen < SIN6_LEN_RFC2133)
4209                                 return -EINVAL;
4210                         snum = ntohs(addr6->sin6_port);
4211                 }
4212
4213                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4214                 if (err)
4215                         goto out;
4216
4217                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4218                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4219
4220                 ad.type = LSM_AUDIT_DATA_NET;
4221                 ad.u.net = &net;
4222                 ad.u.net->dport = htons(snum);
4223                 ad.u.net->family = sk->sk_family;
4224                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4225                 if (err)
4226                         goto out;
4227         }
4228
4229         err = selinux_netlbl_socket_connect(sk, address);
4230
4231 out:
4232         return err;
4233 }
4234
4235 static int selinux_socket_listen(struct socket *sock, int backlog)
4236 {
4237         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4238 }
4239
4240 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4241 {
4242         int err;
4243         struct inode_security_struct *isec;
4244         struct inode_security_struct *newisec;
4245
4246         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4247         if (err)
4248                 return err;
4249
4250         newisec = SOCK_INODE(newsock)->i_security;
4251
4252         isec = SOCK_INODE(sock)->i_security;
4253         newisec->sclass = isec->sclass;
4254         newisec->sid = isec->sid;
4255         newisec->initialized = 1;
4256
4257         return 0;
4258 }
4259
4260 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4261                                   int size)
4262 {
4263         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4264 }
4265
4266 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4267                                   int size, int flags)
4268 {
4269         return sock_has_perm(current, sock->sk, SOCKET__READ);
4270 }
4271
4272 static int selinux_socket_getsockname(struct socket *sock)
4273 {
4274         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4275 }
4276
4277 static int selinux_socket_getpeername(struct socket *sock)
4278 {
4279         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4280 }
4281
4282 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4283 {
4284         int err;
4285
4286         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4287         if (err)
4288                 return err;
4289
4290         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4291 }
4292
4293 static int selinux_socket_getsockopt(struct socket *sock, int level,
4294                                      int optname)
4295 {
4296         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4297 }
4298
4299 static int selinux_socket_shutdown(struct socket *sock, int how)
4300 {
4301         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4302 }
4303
4304 static int selinux_socket_unix_stream_connect(struct sock *sock,
4305                                               struct sock *other,
4306                                               struct sock *newsk)
4307 {
4308         struct sk_security_struct *sksec_sock = sock->sk_security;
4309         struct sk_security_struct *sksec_other = other->sk_security;
4310         struct sk_security_struct *sksec_new = newsk->sk_security;
4311         struct common_audit_data ad;
4312         struct lsm_network_audit net = {0,};
4313         int err;
4314
4315         ad.type = LSM_AUDIT_DATA_NET;
4316         ad.u.net = &net;
4317         ad.u.net->sk = other;
4318
4319         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4320                            sksec_other->sclass,
4321                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4322         if (err)
4323                 return err;
4324
4325         /* server child socket */
4326         sksec_new->peer_sid = sksec_sock->sid;
4327         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4328                                     &sksec_new->sid);
4329         if (err)
4330                 return err;
4331
4332         /* connecting socket */
4333         sksec_sock->peer_sid = sksec_new->sid;
4334
4335         return 0;
4336 }
4337
4338 static int selinux_socket_unix_may_send(struct socket *sock,
4339                                         struct socket *other)
4340 {
4341         struct sk_security_struct *ssec = sock->sk->sk_security;
4342         struct sk_security_struct *osec = other->sk->sk_security;
4343         struct common_audit_data ad;
4344         struct lsm_network_audit net = {0,};
4345
4346         ad.type = LSM_AUDIT_DATA_NET;
4347         ad.u.net = &net;
4348         ad.u.net->sk = other->sk;
4349
4350         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4351                             &ad);
4352 }
4353
4354 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4355                                     char *addrp, u16 family, u32 peer_sid,
4356                                     struct common_audit_data *ad)
4357 {
4358         int err;
4359         u32 if_sid;
4360         u32 node_sid;
4361
4362         err = sel_netif_sid(ns, ifindex, &if_sid);
4363         if (err)
4364                 return err;
4365         err = avc_has_perm(peer_sid, if_sid,
4366                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4367         if (err)
4368                 return err;
4369
4370         err = sel_netnode_sid(addrp, family, &node_sid);
4371         if (err)
4372                 return err;
4373         return avc_has_perm(peer_sid, node_sid,
4374                             SECCLASS_NODE, NODE__RECVFROM, ad);
4375 }
4376
4377 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4378                                        u16 family)
4379 {
4380         int err = 0;
4381         struct sk_security_struct *sksec = sk->sk_security;
4382         u32 sk_sid = sksec->sid;
4383         struct common_audit_data ad;
4384         struct lsm_network_audit net = {0,};
4385         char *addrp;
4386
4387         ad.type = LSM_AUDIT_DATA_NET;
4388         ad.u.net = &net;
4389         ad.u.net->netif = skb->skb_iif;
4390         ad.u.net->family = family;
4391         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4392         if (err)
4393                 return err;
4394
4395         if (selinux_secmark_enabled()) {
4396                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4397                                    PACKET__RECV, &ad);
4398                 if (err)
4399                         return err;
4400         }
4401
4402         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4403         if (err)
4404                 return err;
4405         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4406
4407         return err;
4408 }
4409
4410 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4411 {
4412         int err;
4413         struct sk_security_struct *sksec = sk->sk_security;
4414         u16 family = sk->sk_family;
4415         u32 sk_sid = sksec->sid;
4416         struct common_audit_data ad;
4417         struct lsm_network_audit net = {0,};
4418         char *addrp;
4419         u8 secmark_active;
4420         u8 peerlbl_active;
4421
4422         if (family != PF_INET && family != PF_INET6)
4423                 return 0;
4424
4425         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4426         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4427                 family = PF_INET;
4428
4429         /* If any sort of compatibility mode is enabled then handoff processing
4430          * to the selinux_sock_rcv_skb_compat() function to deal with the
4431          * special handling.  We do this in an attempt to keep this function
4432          * as fast and as clean as possible. */
4433         if (!selinux_policycap_netpeer)
4434                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4435
4436         secmark_active = selinux_secmark_enabled();
4437         peerlbl_active = selinux_peerlbl_enabled();
4438         if (!secmark_active && !peerlbl_active)
4439                 return 0;
4440
4441         ad.type = LSM_AUDIT_DATA_NET;
4442         ad.u.net = &net;
4443         ad.u.net->netif = skb->skb_iif;
4444         ad.u.net->family = family;
4445         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4446         if (err)
4447                 return err;
4448
4449         if (peerlbl_active) {
4450                 u32 peer_sid;
4451
4452                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4453                 if (err)
4454                         return err;
4455                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4456                                                addrp, family, peer_sid, &ad);
4457                 if (err) {
4458                         selinux_netlbl_err(skb, err, 0);
4459                         return err;
4460                 }
4461                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4462                                    PEER__RECV, &ad);
4463                 if (err) {
4464                         selinux_netlbl_err(skb, err, 0);
4465                         return err;
4466                 }
4467         }
4468
4469         if (secmark_active) {
4470                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4471                                    PACKET__RECV, &ad);
4472                 if (err)
4473                         return err;
4474         }
4475
4476         return err;
4477 }
4478
4479 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4480                                             int __user *optlen, unsigned len)
4481 {
4482         int err = 0;
4483         char *scontext;
4484         u32 scontext_len;
4485         struct sk_security_struct *sksec = sock->sk->sk_security;
4486         u32 peer_sid = SECSID_NULL;
4487
4488         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4489             sksec->sclass == SECCLASS_TCP_SOCKET)
4490                 peer_sid = sksec->peer_sid;
4491         if (peer_sid == SECSID_NULL)
4492                 return -ENOPROTOOPT;
4493
4494         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4495         if (err)
4496                 return err;
4497
4498         if (scontext_len > len) {
4499                 err = -ERANGE;
4500                 goto out_len;
4501         }
4502
4503         if (copy_to_user(optval, scontext, scontext_len))
4504                 err = -EFAULT;
4505
4506 out_len:
4507         if (put_user(scontext_len, optlen))
4508                 err = -EFAULT;
4509         kfree(scontext);
4510         return err;
4511 }
4512
4513 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4514 {
4515         u32 peer_secid = SECSID_NULL;
4516         u16 family;
4517
4518         if (skb && skb->protocol == htons(ETH_P_IP))
4519                 family = PF_INET;
4520         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4521                 family = PF_INET6;
4522         else if (sock)
4523                 family = sock->sk->sk_family;
4524         else
4525                 goto out;
4526
4527         if (sock && family == PF_UNIX)
4528                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4529         else if (skb)
4530                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4531
4532 out:
4533         *secid = peer_secid;
4534         if (peer_secid == SECSID_NULL)
4535                 return -EINVAL;
4536         return 0;
4537 }
4538
4539 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4540 {
4541         struct sk_security_struct *sksec;
4542
4543         sksec = kzalloc(sizeof(*sksec), priority);
4544         if (!sksec)
4545                 return -ENOMEM;
4546
4547         sksec->peer_sid = SECINITSID_UNLABELED;
4548         sksec->sid = SECINITSID_UNLABELED;
4549         selinux_netlbl_sk_security_reset(sksec);
4550         sk->sk_security = sksec;
4551
4552         return 0;
4553 }
4554
4555 static void selinux_sk_free_security(struct sock *sk)
4556 {
4557         struct sk_security_struct *sksec = sk->sk_security;
4558
4559         sk->sk_security = NULL;
4560         selinux_netlbl_sk_security_free(sksec);
4561         kfree(sksec);
4562 }
4563
4564 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4565 {
4566         struct sk_security_struct *sksec = sk->sk_security;
4567         struct sk_security_struct *newsksec = newsk->sk_security;
4568
4569         newsksec->sid = sksec->sid;
4570         newsksec->peer_sid = sksec->peer_sid;
4571         newsksec->sclass = sksec->sclass;
4572
4573         selinux_netlbl_sk_security_reset(newsksec);
4574 }
4575
4576 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4577 {
4578         if (!sk)
4579                 *secid = SECINITSID_ANY_SOCKET;
4580         else {
4581                 struct sk_security_struct *sksec = sk->sk_security;
4582
4583                 *secid = sksec->sid;
4584         }
4585 }
4586
4587 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4588 {
4589         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4590         struct sk_security_struct *sksec = sk->sk_security;
4591
4592         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4593             sk->sk_family == PF_UNIX)
4594                 isec->sid = sksec->sid;
4595         sksec->sclass = isec->sclass;
4596 }
4597
4598 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4599                                      struct request_sock *req)
4600 {
4601         struct sk_security_struct *sksec = sk->sk_security;
4602         int err;
4603         u16 family = req->rsk_ops->family;
4604         u32 connsid;
4605         u32 peersid;
4606
4607         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4608         if (err)
4609                 return err;
4610         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4611         if (err)
4612                 return err;
4613         req->secid = connsid;
4614         req->peer_secid = peersid;
4615
4616         return selinux_netlbl_inet_conn_request(req, family);
4617 }
4618
4619 static void selinux_inet_csk_clone(struct sock *newsk,
4620                                    const struct request_sock *req)
4621 {
4622         struct sk_security_struct *newsksec = newsk->sk_security;
4623
4624         newsksec->sid = req->secid;
4625         newsksec->peer_sid = req->peer_secid;
4626         /* NOTE: Ideally, we should also get the isec->sid for the
4627            new socket in sync, but we don't have the isec available yet.
4628            So we will wait until sock_graft to do it, by which
4629            time it will have been created and available. */
4630
4631         /* We don't need to take any sort of lock here as we are the only
4632          * thread with access to newsksec */
4633         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4634 }
4635
4636 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4637 {
4638         u16 family = sk->sk_family;
4639         struct sk_security_struct *sksec = sk->sk_security;
4640
4641         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4642         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4643                 family = PF_INET;
4644
4645         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4646 }
4647
4648 static int selinux_secmark_relabel_packet(u32 sid)
4649 {
4650         const struct task_security_struct *__tsec;
4651         u32 tsid;
4652
4653         __tsec = current_security();
4654         tsid = __tsec->sid;
4655
4656         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4657 }
4658
4659 static void selinux_secmark_refcount_inc(void)
4660 {
4661         atomic_inc(&selinux_secmark_refcount);
4662 }
4663
4664 static void selinux_secmark_refcount_dec(void)
4665 {
4666         atomic_dec(&selinux_secmark_refcount);
4667 }
4668
4669 static void selinux_req_classify_flow(const struct request_sock *req,
4670                                       struct flowi *fl)
4671 {
4672         fl->flowi_secid = req->secid;
4673 }
4674
4675 static int selinux_tun_dev_alloc_security(void **security)
4676 {
4677         struct tun_security_struct *tunsec;
4678
4679         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4680         if (!tunsec)
4681                 return -ENOMEM;
4682         tunsec->sid = current_sid();
4683
4684         *security = tunsec;
4685         return 0;
4686 }
4687
4688 static void selinux_tun_dev_free_security(void *security)
4689 {
4690         kfree(security);
4691 }
4692
4693 static int selinux_tun_dev_create(void)
4694 {
4695         u32 sid = current_sid();
4696
4697         /* we aren't taking into account the "sockcreate" SID since the socket
4698          * that is being created here is not a socket in the traditional sense,
4699          * instead it is a private sock, accessible only to the kernel, and
4700          * representing a wide range of network traffic spanning multiple
4701          * connections unlike traditional sockets - check the TUN driver to
4702          * get a better understanding of why this socket is special */
4703
4704         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4705                             NULL);
4706 }
4707
4708 static int selinux_tun_dev_attach_queue(void *security)
4709 {
4710         struct tun_security_struct *tunsec = security;
4711
4712         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4713                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4714 }
4715
4716 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4717 {
4718         struct tun_security_struct *tunsec = security;
4719         struct sk_security_struct *sksec = sk->sk_security;
4720
4721         /* we don't currently perform any NetLabel based labeling here and it
4722          * isn't clear that we would want to do so anyway; while we could apply
4723          * labeling without the support of the TUN user the resulting labeled
4724          * traffic from the other end of the connection would almost certainly
4725          * cause confusion to the TUN user that had no idea network labeling
4726          * protocols were being used */
4727
4728         sksec->sid = tunsec->sid;
4729         sksec->sclass = SECCLASS_TUN_SOCKET;
4730
4731         return 0;
4732 }
4733
4734 static int selinux_tun_dev_open(void *security)
4735 {
4736         struct tun_security_struct *tunsec = security;
4737         u32 sid = current_sid();
4738         int err;
4739
4740         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4741                            TUN_SOCKET__RELABELFROM, NULL);
4742         if (err)
4743                 return err;
4744         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4745                            TUN_SOCKET__RELABELTO, NULL);
4746         if (err)
4747                 return err;
4748         tunsec->sid = sid;
4749
4750         return 0;
4751 }
4752
4753 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4754 {
4755         int err = 0;
4756         u32 perm;
4757         struct nlmsghdr *nlh;
4758         struct sk_security_struct *sksec = sk->sk_security;
4759
4760         if (skb->len < NLMSG_HDRLEN) {
4761                 err = -EINVAL;
4762                 goto out;
4763         }
4764         nlh = nlmsg_hdr(skb);
4765
4766         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4767         if (err) {
4768                 if (err == -EINVAL) {
4769                         printk(KERN_WARNING
4770                                "SELinux: unrecognized netlink message:"
4771                                " protocol=%hu nlmsg_type=%hu sclass=%hu\n",
4772                                sk->sk_protocol, nlh->nlmsg_type, sksec->sclass);
4773                         if (!selinux_enforcing || security_get_allow_unknown())
4774                                 err = 0;
4775                 }
4776
4777                 /* Ignore */
4778                 if (err == -ENOENT)
4779                         err = 0;
4780                 goto out;
4781         }
4782
4783         err = sock_has_perm(current, sk, perm);
4784 out:
4785         return err;
4786 }
4787
4788 #ifdef CONFIG_NETFILTER
4789
4790 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4791                                        const struct net_device *indev,
4792                                        u16 family)
4793 {
4794         int err;
4795         char *addrp;
4796         u32 peer_sid;
4797         struct common_audit_data ad;
4798         struct lsm_network_audit net = {0,};
4799         u8 secmark_active;
4800         u8 netlbl_active;
4801         u8 peerlbl_active;
4802
4803         if (!selinux_policycap_netpeer)
4804                 return NF_ACCEPT;
4805
4806         secmark_active = selinux_secmark_enabled();
4807         netlbl_active = netlbl_enabled();
4808         peerlbl_active = selinux_peerlbl_enabled();
4809         if (!secmark_active && !peerlbl_active)
4810                 return NF_ACCEPT;
4811
4812         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4813                 return NF_DROP;
4814
4815         ad.type = LSM_AUDIT_DATA_NET;
4816         ad.u.net = &net;
4817         ad.u.net->netif = indev->ifindex;
4818         ad.u.net->family = family;
4819         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4820                 return NF_DROP;
4821
4822         if (peerlbl_active) {
4823                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4824                                                addrp, family, peer_sid, &ad);
4825                 if (err) {
4826                         selinux_netlbl_err(skb, err, 1);
4827                         return NF_DROP;
4828                 }
4829         }
4830
4831         if (secmark_active)
4832                 if (avc_has_perm(peer_sid, skb->secmark,
4833                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4834                         return NF_DROP;
4835
4836         if (netlbl_active)
4837                 /* we do this in the FORWARD path and not the POST_ROUTING
4838                  * path because we want to make sure we apply the necessary
4839                  * labeling before IPsec is applied so we can leverage AH
4840                  * protection */
4841                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4842                         return NF_DROP;
4843
4844         return NF_ACCEPT;
4845 }
4846
4847 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4848                                          struct sk_buff *skb,
4849                                          const struct nf_hook_state *state)
4850 {
4851         return selinux_ip_forward(skb, state->in, PF_INET);
4852 }
4853
4854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4855 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4856                                          struct sk_buff *skb,
4857                                          const struct nf_hook_state *state)
4858 {
4859         return selinux_ip_forward(skb, state->in, PF_INET6);
4860 }
4861 #endif  /* IPV6 */
4862
4863 static unsigned int selinux_ip_output(struct sk_buff *skb,
4864                                       u16 family)
4865 {
4866         struct sock *sk;
4867         u32 sid;
4868
4869         if (!netlbl_enabled())
4870                 return NF_ACCEPT;
4871
4872         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4873          * because we want to make sure we apply the necessary labeling
4874          * before IPsec is applied so we can leverage AH protection */
4875         sk = skb->sk;
4876         if (sk) {
4877                 struct sk_security_struct *sksec;
4878
4879                 if (sk->sk_state == TCP_LISTEN)
4880                         /* if the socket is the listening state then this
4881                          * packet is a SYN-ACK packet which means it needs to
4882                          * be labeled based on the connection/request_sock and
4883                          * not the parent socket.  unfortunately, we can't
4884                          * lookup the request_sock yet as it isn't queued on
4885                          * the parent socket until after the SYN-ACK is sent.
4886                          * the "solution" is to simply pass the packet as-is
4887                          * as any IP option based labeling should be copied
4888                          * from the initial connection request (in the IP
4889                          * layer).  it is far from ideal, but until we get a
4890                          * security label in the packet itself this is the
4891                          * best we can do. */
4892                         return NF_ACCEPT;
4893
4894                 /* standard practice, label using the parent socket */
4895                 sksec = sk->sk_security;
4896                 sid = sksec->sid;
4897         } else
4898                 sid = SECINITSID_KERNEL;
4899         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4900                 return NF_DROP;
4901
4902         return NF_ACCEPT;
4903 }
4904
4905 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4906                                         struct sk_buff *skb,
4907                                         const struct nf_hook_state *state)
4908 {
4909         return selinux_ip_output(skb, PF_INET);
4910 }
4911
4912 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4913                                                 int ifindex,
4914                                                 u16 family)
4915 {
4916         struct sock *sk = skb->sk;
4917         struct sk_security_struct *sksec;
4918         struct common_audit_data ad;
4919         struct lsm_network_audit net = {0,};
4920         char *addrp;
4921         u8 proto;
4922
4923         if (sk == NULL)
4924                 return NF_ACCEPT;
4925         sksec = sk->sk_security;
4926
4927         ad.type = LSM_AUDIT_DATA_NET;
4928         ad.u.net = &net;
4929         ad.u.net->netif = ifindex;
4930         ad.u.net->family = family;
4931         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4932                 return NF_DROP;
4933
4934         if (selinux_secmark_enabled())
4935                 if (avc_has_perm(sksec->sid, skb->secmark,
4936                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4937                         return NF_DROP_ERR(-ECONNREFUSED);
4938
4939         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4940                 return NF_DROP_ERR(-ECONNREFUSED);
4941
4942         return NF_ACCEPT;
4943 }
4944
4945 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4946                                          const struct net_device *outdev,
4947                                          u16 family)
4948 {
4949         u32 secmark_perm;
4950         u32 peer_sid;
4951         int ifindex = outdev->ifindex;
4952         struct sock *sk;
4953         struct common_audit_data ad;
4954         struct lsm_network_audit net = {0,};
4955         char *addrp;
4956         u8 secmark_active;
4957         u8 peerlbl_active;
4958
4959         /* If any sort of compatibility mode is enabled then handoff processing
4960          * to the selinux_ip_postroute_compat() function to deal with the
4961          * special handling.  We do this in an attempt to keep this function
4962          * as fast and as clean as possible. */
4963         if (!selinux_policycap_netpeer)
4964                 return selinux_ip_postroute_compat(skb, ifindex, family);
4965
4966         secmark_active = selinux_secmark_enabled();
4967         peerlbl_active = selinux_peerlbl_enabled();
4968         if (!secmark_active && !peerlbl_active)
4969                 return NF_ACCEPT;
4970
4971         sk = skb->sk;
4972
4973 #ifdef CONFIG_XFRM
4974         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4975          * packet transformation so allow the packet to pass without any checks
4976          * since we'll have another chance to perform access control checks
4977          * when the packet is on it's final way out.
4978          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4979          *       is NULL, in this case go ahead and apply access control.
4980          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4981          *       TCP listening state we cannot wait until the XFRM processing
4982          *       is done as we will miss out on the SA label if we do;
4983          *       unfortunately, this means more work, but it is only once per
4984          *       connection. */
4985         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4986             !(sk != NULL && sk->sk_state == TCP_LISTEN))
4987                 return NF_ACCEPT;
4988 #endif
4989
4990         if (sk == NULL) {
4991                 /* Without an associated socket the packet is either coming
4992                  * from the kernel or it is being forwarded; check the packet
4993                  * to determine which and if the packet is being forwarded
4994                  * query the packet directly to determine the security label. */
4995                 if (skb->skb_iif) {
4996                         secmark_perm = PACKET__FORWARD_OUT;
4997                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4998                                 return NF_DROP;
4999                 } else {
5000                         secmark_perm = PACKET__SEND;
5001                         peer_sid = SECINITSID_KERNEL;
5002                 }
5003         } else if (sk->sk_state == TCP_LISTEN) {
5004                 /* Locally generated packet but the associated socket is in the
5005                  * listening state which means this is a SYN-ACK packet.  In
5006                  * this particular case the correct security label is assigned
5007                  * to the connection/request_sock but unfortunately we can't
5008                  * query the request_sock as it isn't queued on the parent
5009                  * socket until after the SYN-ACK packet is sent; the only
5010                  * viable choice is to regenerate the label like we do in
5011                  * selinux_inet_conn_request().  See also selinux_ip_output()
5012                  * for similar problems. */
5013                 u32 skb_sid;
5014                 struct sk_security_struct *sksec = sk->sk_security;
5015                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5016                         return NF_DROP;
5017                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5018                  * and the packet has been through at least one XFRM
5019                  * transformation then we must be dealing with the "final"
5020                  * form of labeled IPsec packet; since we've already applied
5021                  * all of our access controls on this packet we can safely
5022                  * pass the packet. */
5023                 if (skb_sid == SECSID_NULL) {
5024                         switch (family) {
5025                         case PF_INET:
5026                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5027                                         return NF_ACCEPT;
5028                                 break;
5029                         case PF_INET6:
5030                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5031                                         return NF_ACCEPT;
5032                                 break;
5033                         default:
5034                                 return NF_DROP_ERR(-ECONNREFUSED);
5035                         }
5036                 }
5037                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5038                         return NF_DROP;
5039                 secmark_perm = PACKET__SEND;
5040         } else {
5041                 /* Locally generated packet, fetch the security label from the
5042                  * associated socket. */
5043                 struct sk_security_struct *sksec = sk->sk_security;
5044                 peer_sid = sksec->sid;
5045                 secmark_perm = PACKET__SEND;
5046         }
5047
5048         ad.type = LSM_AUDIT_DATA_NET;
5049         ad.u.net = &net;
5050         ad.u.net->netif = ifindex;
5051         ad.u.net->family = family;
5052         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5053                 return NF_DROP;
5054
5055         if (secmark_active)
5056                 if (avc_has_perm(peer_sid, skb->secmark,
5057                                  SECCLASS_PACKET, secmark_perm, &ad))
5058                         return NF_DROP_ERR(-ECONNREFUSED);
5059
5060         if (peerlbl_active) {
5061                 u32 if_sid;
5062                 u32 node_sid;
5063
5064                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5065                         return NF_DROP;
5066                 if (avc_has_perm(peer_sid, if_sid,
5067                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5068                         return NF_DROP_ERR(-ECONNREFUSED);
5069
5070                 if (sel_netnode_sid(addrp, family, &node_sid))
5071                         return NF_DROP;
5072                 if (avc_has_perm(peer_sid, node_sid,
5073                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5074                         return NF_DROP_ERR(-ECONNREFUSED);
5075         }
5076
5077         return NF_ACCEPT;
5078 }
5079
5080 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5081                                            struct sk_buff *skb,
5082                                            const struct nf_hook_state *state)
5083 {
5084         return selinux_ip_postroute(skb, state->out, PF_INET);
5085 }
5086
5087 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5088 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5089                                            struct sk_buff *skb,
5090                                            const struct nf_hook_state *state)
5091 {
5092         return selinux_ip_postroute(skb, state->out, PF_INET6);
5093 }
5094 #endif  /* IPV6 */
5095
5096 #endif  /* CONFIG_NETFILTER */
5097
5098 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5099 {
5100         int err;
5101
5102         err = cap_netlink_send(sk, skb);
5103         if (err)
5104                 return err;
5105
5106         return selinux_nlmsg_perm(sk, skb);
5107 }
5108
5109 static int ipc_alloc_security(struct task_struct *task,
5110                               struct kern_ipc_perm *perm,
5111                               u16 sclass)
5112 {
5113         struct ipc_security_struct *isec;
5114         u32 sid;
5115
5116         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5117         if (!isec)
5118                 return -ENOMEM;
5119
5120         sid = task_sid(task);
5121         isec->sclass = sclass;
5122         isec->sid = sid;
5123         perm->security = isec;
5124
5125         return 0;
5126 }
5127
5128 static void ipc_free_security(struct kern_ipc_perm *perm)
5129 {
5130         struct ipc_security_struct *isec = perm->security;
5131         perm->security = NULL;
5132         kfree(isec);
5133 }
5134
5135 static int msg_msg_alloc_security(struct msg_msg *msg)
5136 {
5137         struct msg_security_struct *msec;
5138
5139         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5140         if (!msec)
5141                 return -ENOMEM;
5142
5143         msec->sid = SECINITSID_UNLABELED;
5144         msg->security = msec;
5145
5146         return 0;
5147 }
5148
5149 static void msg_msg_free_security(struct msg_msg *msg)
5150 {
5151         struct msg_security_struct *msec = msg->security;
5152
5153         msg->security = NULL;
5154         kfree(msec);
5155 }
5156
5157 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5158                         u32 perms)
5159 {
5160         struct ipc_security_struct *isec;
5161         struct common_audit_data ad;
5162         u32 sid = current_sid();
5163
5164         isec = ipc_perms->security;
5165
5166         ad.type = LSM_AUDIT_DATA_IPC;
5167         ad.u.ipc_id = ipc_perms->key;
5168
5169         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5170 }
5171
5172 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5173 {
5174         return msg_msg_alloc_security(msg);
5175 }
5176
5177 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5178 {
5179         msg_msg_free_security(msg);
5180 }
5181
5182 /* message queue security operations */
5183 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5184 {
5185         struct ipc_security_struct *isec;
5186         struct common_audit_data ad;
5187         u32 sid = current_sid();
5188         int rc;
5189
5190         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5191         if (rc)
5192                 return rc;
5193
5194         isec = msq->q_perm.security;
5195
5196         ad.type = LSM_AUDIT_DATA_IPC;
5197         ad.u.ipc_id = msq->q_perm.key;
5198
5199         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5200                           MSGQ__CREATE, &ad);
5201         if (rc) {
5202                 ipc_free_security(&msq->q_perm);
5203                 return rc;
5204         }
5205         return 0;
5206 }
5207
5208 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5209 {
5210         ipc_free_security(&msq->q_perm);
5211 }
5212
5213 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5214 {
5215         struct ipc_security_struct *isec;
5216         struct common_audit_data ad;
5217         u32 sid = current_sid();
5218
5219         isec = msq->q_perm.security;
5220
5221         ad.type = LSM_AUDIT_DATA_IPC;
5222         ad.u.ipc_id = msq->q_perm.key;
5223
5224         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5225                             MSGQ__ASSOCIATE, &ad);
5226 }
5227
5228 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5229 {
5230         int err;
5231         int perms;
5232
5233         switch (cmd) {
5234         case IPC_INFO:
5235         case MSG_INFO:
5236                 /* No specific object, just general system-wide information. */
5237                 return task_has_system(current, SYSTEM__IPC_INFO);
5238         case IPC_STAT:
5239         case MSG_STAT:
5240                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5241                 break;
5242         case IPC_SET:
5243                 perms = MSGQ__SETATTR;
5244                 break;
5245         case IPC_RMID:
5246                 perms = MSGQ__DESTROY;
5247                 break;
5248         default:
5249                 return 0;
5250         }
5251
5252         err = ipc_has_perm(&msq->q_perm, perms);
5253         return err;
5254 }
5255
5256 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5257 {
5258         struct ipc_security_struct *isec;
5259         struct msg_security_struct *msec;
5260         struct common_audit_data ad;
5261         u32 sid = current_sid();
5262         int rc;
5263
5264         isec = msq->q_perm.security;
5265         msec = msg->security;
5266
5267         /*
5268          * First time through, need to assign label to the message
5269          */
5270         if (msec->sid == SECINITSID_UNLABELED) {
5271                 /*
5272                  * Compute new sid based on current process and
5273                  * message queue this message will be stored in
5274                  */
5275                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5276                                              NULL, &msec->sid);
5277                 if (rc)
5278                         return rc;
5279         }
5280
5281         ad.type = LSM_AUDIT_DATA_IPC;
5282         ad.u.ipc_id = msq->q_perm.key;
5283
5284         /* Can this process write to the queue? */
5285         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5286                           MSGQ__WRITE, &ad);
5287         if (!rc)
5288                 /* Can this process send the message */
5289                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5290                                   MSG__SEND, &ad);
5291         if (!rc)
5292                 /* Can the message be put in the queue? */
5293                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5294                                   MSGQ__ENQUEUE, &ad);
5295
5296         return rc;
5297 }
5298
5299 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5300                                     struct task_struct *target,
5301                                     long type, int mode)
5302 {
5303         struct ipc_security_struct *isec;
5304         struct msg_security_struct *msec;
5305         struct common_audit_data ad;
5306         u32 sid = task_sid(target);
5307         int rc;
5308
5309         isec = msq->q_perm.security;
5310         msec = msg->security;
5311
5312         ad.type = LSM_AUDIT_DATA_IPC;
5313         ad.u.ipc_id = msq->q_perm.key;
5314
5315         rc = avc_has_perm(sid, isec->sid,
5316                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5317         if (!rc)
5318                 rc = avc_has_perm(sid, msec->sid,
5319                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5320         return rc;
5321 }
5322
5323 /* Shared Memory security operations */
5324 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5325 {
5326         struct ipc_security_struct *isec;
5327         struct common_audit_data ad;
5328         u32 sid = current_sid();
5329         int rc;
5330
5331         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5332         if (rc)
5333                 return rc;
5334
5335         isec = shp->shm_perm.security;
5336
5337         ad.type = LSM_AUDIT_DATA_IPC;
5338         ad.u.ipc_id = shp->shm_perm.key;
5339
5340         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5341                           SHM__CREATE, &ad);
5342         if (rc) {
5343                 ipc_free_security(&shp->shm_perm);
5344                 return rc;
5345         }
5346         return 0;
5347 }
5348
5349 static void selinux_shm_free_security(struct shmid_kernel *shp)
5350 {
5351         ipc_free_security(&shp->shm_perm);
5352 }
5353
5354 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5355 {
5356         struct ipc_security_struct *isec;
5357         struct common_audit_data ad;
5358         u32 sid = current_sid();
5359
5360         isec = shp->shm_perm.security;
5361
5362         ad.type = LSM_AUDIT_DATA_IPC;
5363         ad.u.ipc_id = shp->shm_perm.key;
5364
5365         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5366                             SHM__ASSOCIATE, &ad);
5367 }
5368
5369 /* Note, at this point, shp is locked down */
5370 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5371 {
5372         int perms;
5373         int err;
5374
5375         switch (cmd) {
5376         case IPC_INFO:
5377         case SHM_INFO:
5378                 /* No specific object, just general system-wide information. */
5379                 return task_has_system(current, SYSTEM__IPC_INFO);
5380         case IPC_STAT:
5381         case SHM_STAT:
5382                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5383                 break;
5384         case IPC_SET:
5385                 perms = SHM__SETATTR;
5386                 break;
5387         case SHM_LOCK:
5388         case SHM_UNLOCK:
5389                 perms = SHM__LOCK;
5390                 break;
5391         case IPC_RMID:
5392                 perms = SHM__DESTROY;
5393                 break;
5394         default:
5395                 return 0;
5396         }
5397
5398         err = ipc_has_perm(&shp->shm_perm, perms);
5399         return err;
5400 }
5401
5402 static int selinux_shm_shmat(struct shmid_kernel *shp,
5403                              char __user *shmaddr, int shmflg)
5404 {
5405         u32 perms;
5406
5407         if (shmflg & SHM_RDONLY)
5408                 perms = SHM__READ;
5409         else
5410                 perms = SHM__READ | SHM__WRITE;
5411
5412         return ipc_has_perm(&shp->shm_perm, perms);
5413 }
5414
5415 /* Semaphore security operations */
5416 static int selinux_sem_alloc_security(struct sem_array *sma)
5417 {
5418         struct ipc_security_struct *isec;
5419         struct common_audit_data ad;
5420         u32 sid = current_sid();
5421         int rc;
5422
5423         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5424         if (rc)
5425                 return rc;
5426
5427         isec = sma->sem_perm.security;
5428
5429         ad.type = LSM_AUDIT_DATA_IPC;
5430         ad.u.ipc_id = sma->sem_perm.key;
5431
5432         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5433                           SEM__CREATE, &ad);
5434         if (rc) {
5435                 ipc_free_security(&sma->sem_perm);
5436                 return rc;
5437         }
5438         return 0;
5439 }
5440
5441 static void selinux_sem_free_security(struct sem_array *sma)
5442 {
5443         ipc_free_security(&sma->sem_perm);
5444 }
5445
5446 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5447 {
5448         struct ipc_security_struct *isec;
5449         struct common_audit_data ad;
5450         u32 sid = current_sid();
5451
5452         isec = sma->sem_perm.security;
5453
5454         ad.type = LSM_AUDIT_DATA_IPC;
5455         ad.u.ipc_id = sma->sem_perm.key;
5456
5457         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5458                             SEM__ASSOCIATE, &ad);
5459 }
5460
5461 /* Note, at this point, sma is locked down */
5462 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5463 {
5464         int err;
5465         u32 perms;
5466
5467         switch (cmd) {
5468         case IPC_INFO:
5469         case SEM_INFO:
5470                 /* No specific object, just general system-wide information. */
5471                 return task_has_system(current, SYSTEM__IPC_INFO);
5472         case GETPID:
5473         case GETNCNT:
5474         case GETZCNT:
5475                 perms = SEM__GETATTR;
5476                 break;
5477         case GETVAL:
5478         case GETALL:
5479                 perms = SEM__READ;
5480                 break;
5481         case SETVAL:
5482         case SETALL:
5483                 perms = SEM__WRITE;
5484                 break;
5485         case IPC_RMID:
5486                 perms = SEM__DESTROY;
5487                 break;
5488         case IPC_SET:
5489                 perms = SEM__SETATTR;
5490                 break;
5491         case IPC_STAT:
5492         case SEM_STAT:
5493                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5494                 break;
5495         default:
5496                 return 0;
5497         }
5498
5499         err = ipc_has_perm(&sma->sem_perm, perms);
5500         return err;
5501 }
5502
5503 static int selinux_sem_semop(struct sem_array *sma,
5504                              struct sembuf *sops, unsigned nsops, int alter)
5505 {
5506         u32 perms;
5507
5508         if (alter)
5509                 perms = SEM__READ | SEM__WRITE;
5510         else
5511                 perms = SEM__READ;
5512
5513         return ipc_has_perm(&sma->sem_perm, perms);
5514 }
5515
5516 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5517 {
5518         u32 av = 0;
5519
5520         av = 0;
5521         if (flag & S_IRUGO)
5522                 av |= IPC__UNIX_READ;
5523         if (flag & S_IWUGO)
5524                 av |= IPC__UNIX_WRITE;
5525
5526         if (av == 0)
5527                 return 0;
5528
5529         return ipc_has_perm(ipcp, av);
5530 }
5531
5532 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5533 {
5534         struct ipc_security_struct *isec = ipcp->security;
5535         *secid = isec->sid;
5536 }
5537
5538 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5539 {
5540         if (inode)
5541                 inode_doinit_with_dentry(inode, dentry);
5542 }
5543
5544 static int selinux_getprocattr(struct task_struct *p,
5545                                char *name, char **value)
5546 {
5547         const struct task_security_struct *__tsec;
5548         u32 sid;
5549         int error;
5550         unsigned len;
5551
5552         if (current != p) {
5553                 error = current_has_perm(p, PROCESS__GETATTR);
5554                 if (error)
5555                         return error;
5556         }
5557
5558         rcu_read_lock();
5559         __tsec = __task_cred(p)->security;
5560
5561         if (!strcmp(name, "current"))
5562                 sid = __tsec->sid;
5563         else if (!strcmp(name, "prev"))
5564                 sid = __tsec->osid;
5565         else if (!strcmp(name, "exec"))
5566                 sid = __tsec->exec_sid;
5567         else if (!strcmp(name, "fscreate"))
5568                 sid = __tsec->create_sid;
5569         else if (!strcmp(name, "keycreate"))
5570                 sid = __tsec->keycreate_sid;
5571         else if (!strcmp(name, "sockcreate"))
5572                 sid = __tsec->sockcreate_sid;
5573         else
5574                 goto invalid;
5575         rcu_read_unlock();
5576
5577         if (!sid)
5578                 return 0;
5579
5580         error = security_sid_to_context(sid, value, &len);
5581         if (error)
5582                 return error;
5583         return len;
5584
5585 invalid:
5586         rcu_read_unlock();
5587         return -EINVAL;
5588 }
5589
5590 static int selinux_setprocattr(struct task_struct *p,
5591                                char *name, void *value, size_t size)
5592 {
5593         struct task_security_struct *tsec;
5594         struct task_struct *tracer;
5595         struct cred *new;
5596         u32 sid = 0, ptsid;
5597         int error;
5598         char *str = value;
5599
5600         if (current != p) {
5601                 /* SELinux only allows a process to change its own
5602                    security attributes. */
5603                 return -EACCES;
5604         }
5605
5606         /*
5607          * Basic control over ability to set these attributes at all.
5608          * current == p, but we'll pass them separately in case the
5609          * above restriction is ever removed.
5610          */
5611         if (!strcmp(name, "exec"))
5612                 error = current_has_perm(p, PROCESS__SETEXEC);
5613         else if (!strcmp(name, "fscreate"))
5614                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5615         else if (!strcmp(name, "keycreate"))
5616                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5617         else if (!strcmp(name, "sockcreate"))
5618                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5619         else if (!strcmp(name, "current"))
5620                 error = current_has_perm(p, PROCESS__SETCURRENT);
5621         else
5622                 error = -EINVAL;
5623         if (error)
5624                 return error;
5625
5626         /* Obtain a SID for the context, if one was specified. */
5627         if (size && str[1] && str[1] != '\n') {
5628                 if (str[size-1] == '\n') {
5629                         str[size-1] = 0;
5630                         size--;
5631                 }
5632                 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5633                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5634                         if (!capable(CAP_MAC_ADMIN)) {
5635                                 struct audit_buffer *ab;
5636                                 size_t audit_size;
5637
5638                                 /* We strip a nul only if it is at the end, otherwise the
5639                                  * context contains a nul and we should audit that */
5640                                 if (str[size - 1] == '\0')
5641                                         audit_size = size - 1;
5642                                 else
5643                                         audit_size = size;
5644                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5645                                 audit_log_format(ab, "op=fscreate invalid_context=");
5646                                 audit_log_n_untrustedstring(ab, value, audit_size);
5647                                 audit_log_end(ab);
5648
5649                                 return error;
5650                         }
5651                         error = security_context_to_sid_force(value, size,
5652                                                               &sid);
5653                 }
5654                 if (error)
5655                         return error;
5656         }
5657
5658         new = prepare_creds();
5659         if (!new)
5660                 return -ENOMEM;
5661
5662         /* Permission checking based on the specified context is
5663            performed during the actual operation (execve,
5664            open/mkdir/...), when we know the full context of the
5665            operation.  See selinux_bprm_set_creds for the execve
5666            checks and may_create for the file creation checks. The
5667            operation will then fail if the context is not permitted. */
5668         tsec = new->security;
5669         if (!strcmp(name, "exec")) {
5670                 tsec->exec_sid = sid;
5671         } else if (!strcmp(name, "fscreate")) {
5672                 tsec->create_sid = sid;
5673         } else if (!strcmp(name, "keycreate")) {
5674                 error = may_create_key(sid, p);
5675                 if (error)
5676                         goto abort_change;
5677                 tsec->keycreate_sid = sid;
5678         } else if (!strcmp(name, "sockcreate")) {
5679                 tsec->sockcreate_sid = sid;
5680         } else if (!strcmp(name, "current")) {
5681                 error = -EINVAL;
5682                 if (sid == 0)
5683                         goto abort_change;
5684
5685                 /* Only allow single threaded processes to change context */
5686                 error = -EPERM;
5687                 if (!current_is_single_threaded()) {
5688                         error = security_bounded_transition(tsec->sid, sid);
5689                         if (error)
5690                                 goto abort_change;
5691                 }
5692
5693                 /* Check permissions for the transition. */
5694                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5695                                      PROCESS__DYNTRANSITION, NULL);
5696                 if (error)
5697                         goto abort_change;
5698
5699                 /* Check for ptracing, and update the task SID if ok.
5700                    Otherwise, leave SID unchanged and fail. */
5701                 ptsid = 0;
5702                 rcu_read_lock();
5703                 tracer = ptrace_parent(p);
5704                 if (tracer)
5705                         ptsid = task_sid(tracer);
5706                 rcu_read_unlock();
5707
5708                 if (tracer) {
5709                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5710                                              PROCESS__PTRACE, NULL);
5711                         if (error)
5712                                 goto abort_change;
5713                 }
5714
5715                 tsec->sid = sid;
5716         } else {
5717                 error = -EINVAL;
5718                 goto abort_change;
5719         }
5720
5721         commit_creds(new);
5722         return size;
5723
5724 abort_change:
5725         abort_creds(new);
5726         return error;
5727 }
5728
5729 static int selinux_ismaclabel(const char *name)
5730 {
5731         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5732 }
5733
5734 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5735 {
5736         return security_sid_to_context(secid, secdata, seclen);
5737 }
5738
5739 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5740 {
5741         return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5742 }
5743
5744 static void selinux_release_secctx(char *secdata, u32 seclen)
5745 {
5746         kfree(secdata);
5747 }
5748
5749 /*
5750  *      called with inode->i_mutex locked
5751  */
5752 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5753 {
5754         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5755 }
5756
5757 /*
5758  *      called with inode->i_mutex locked
5759  */
5760 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5761 {
5762         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5763 }
5764
5765 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5766 {
5767         int len = 0;
5768         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5769                                                 ctx, true);
5770         if (len < 0)
5771                 return len;
5772         *ctxlen = len;
5773         return 0;
5774 }
5775 #ifdef CONFIG_KEYS
5776
5777 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5778                              unsigned long flags)
5779 {
5780         const struct task_security_struct *tsec;
5781         struct key_security_struct *ksec;
5782
5783         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5784         if (!ksec)
5785                 return -ENOMEM;
5786
5787         tsec = cred->security;
5788         if (tsec->keycreate_sid)
5789                 ksec->sid = tsec->keycreate_sid;
5790         else
5791                 ksec->sid = tsec->sid;
5792
5793         k->security = ksec;
5794         return 0;
5795 }
5796
5797 static void selinux_key_free(struct key *k)
5798 {
5799         struct key_security_struct *ksec = k->security;
5800
5801         k->security = NULL;
5802         kfree(ksec);
5803 }
5804
5805 static int selinux_key_permission(key_ref_t key_ref,
5806                                   const struct cred *cred,
5807                                   unsigned perm)
5808 {
5809         struct key *key;
5810         struct key_security_struct *ksec;
5811         u32 sid;
5812
5813         /* if no specific permissions are requested, we skip the
5814            permission check. No serious, additional covert channels
5815            appear to be created. */
5816         if (perm == 0)
5817                 return 0;
5818
5819         sid = cred_sid(cred);
5820
5821         key = key_ref_to_ptr(key_ref);
5822         ksec = key->security;
5823
5824         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5825 }
5826
5827 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5828 {
5829         struct key_security_struct *ksec = key->security;
5830         char *context = NULL;
5831         unsigned len;
5832         int rc;
5833
5834         rc = security_sid_to_context(ksec->sid, &context, &len);
5835         if (!rc)
5836                 rc = len;
5837         *_buffer = context;
5838         return rc;
5839 }
5840
5841 #endif
5842
5843 static struct security_operations selinux_ops = {
5844         .name =                         "selinux",
5845
5846         .binder_set_context_mgr =       selinux_binder_set_context_mgr,
5847         .binder_transaction =           selinux_binder_transaction,
5848         .binder_transfer_binder =       selinux_binder_transfer_binder,
5849         .binder_transfer_file =         selinux_binder_transfer_file,
5850
5851         .ptrace_access_check =          selinux_ptrace_access_check,
5852         .ptrace_traceme =               selinux_ptrace_traceme,
5853         .capget =                       selinux_capget,
5854         .capset =                       selinux_capset,
5855         .capable =                      selinux_capable,
5856         .quotactl =                     selinux_quotactl,
5857         .quota_on =                     selinux_quota_on,
5858         .syslog =                       selinux_syslog,
5859         .vm_enough_memory =             selinux_vm_enough_memory,
5860
5861         .netlink_send =                 selinux_netlink_send,
5862
5863         .bprm_set_creds =               selinux_bprm_set_creds,
5864         .bprm_committing_creds =        selinux_bprm_committing_creds,
5865         .bprm_committed_creds =         selinux_bprm_committed_creds,
5866         .bprm_secureexec =              selinux_bprm_secureexec,
5867
5868         .sb_alloc_security =            selinux_sb_alloc_security,
5869         .sb_free_security =             selinux_sb_free_security,
5870         .sb_copy_data =                 selinux_sb_copy_data,
5871         .sb_remount =                   selinux_sb_remount,
5872         .sb_kern_mount =                selinux_sb_kern_mount,
5873         .sb_show_options =              selinux_sb_show_options,
5874         .sb_statfs =                    selinux_sb_statfs,
5875         .sb_mount =                     selinux_mount,
5876         .sb_umount =                    selinux_umount,
5877         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5878         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5879         .sb_parse_opts_str =            selinux_parse_opts_str,
5880
5881         .dentry_init_security =         selinux_dentry_init_security,
5882
5883         .inode_alloc_security =         selinux_inode_alloc_security,
5884         .inode_free_security =          selinux_inode_free_security,
5885         .inode_init_security =          selinux_inode_init_security,
5886         .inode_create =                 selinux_inode_create,
5887         .inode_link =                   selinux_inode_link,
5888         .inode_unlink =                 selinux_inode_unlink,
5889         .inode_symlink =                selinux_inode_symlink,
5890         .inode_mkdir =                  selinux_inode_mkdir,
5891         .inode_rmdir =                  selinux_inode_rmdir,
5892         .inode_mknod =                  selinux_inode_mknod,
5893         .inode_rename =                 selinux_inode_rename,
5894         .inode_readlink =               selinux_inode_readlink,
5895         .inode_follow_link =            selinux_inode_follow_link,
5896         .inode_permission =             selinux_inode_permission,
5897         .inode_setattr =                selinux_inode_setattr,
5898         .inode_getattr =                selinux_inode_getattr,
5899         .inode_setxattr =               selinux_inode_setxattr,
5900         .inode_post_setxattr =          selinux_inode_post_setxattr,
5901         .inode_getxattr =               selinux_inode_getxattr,
5902         .inode_listxattr =              selinux_inode_listxattr,
5903         .inode_removexattr =            selinux_inode_removexattr,
5904         .inode_getsecurity =            selinux_inode_getsecurity,
5905         .inode_setsecurity =            selinux_inode_setsecurity,
5906         .inode_listsecurity =           selinux_inode_listsecurity,
5907         .inode_getsecid =               selinux_inode_getsecid,
5908
5909         .file_permission =              selinux_file_permission,
5910         .file_alloc_security =          selinux_file_alloc_security,
5911         .file_free_security =           selinux_file_free_security,
5912         .file_ioctl =                   selinux_file_ioctl,
5913         .mmap_file =                    selinux_mmap_file,
5914         .mmap_addr =                    selinux_mmap_addr,
5915         .file_mprotect =                selinux_file_mprotect,
5916         .file_lock =                    selinux_file_lock,
5917         .file_fcntl =                   selinux_file_fcntl,
5918         .file_set_fowner =              selinux_file_set_fowner,
5919         .file_send_sigiotask =          selinux_file_send_sigiotask,
5920         .file_receive =                 selinux_file_receive,
5921
5922         .file_open =                    selinux_file_open,
5923
5924         .task_create =                  selinux_task_create,
5925         .cred_alloc_blank =             selinux_cred_alloc_blank,
5926         .cred_free =                    selinux_cred_free,
5927         .cred_prepare =                 selinux_cred_prepare,
5928         .cred_transfer =                selinux_cred_transfer,
5929         .kernel_act_as =                selinux_kernel_act_as,
5930         .kernel_create_files_as =       selinux_kernel_create_files_as,
5931         .kernel_module_request =        selinux_kernel_module_request,
5932         .task_setpgid =                 selinux_task_setpgid,
5933         .task_getpgid =                 selinux_task_getpgid,
5934         .task_getsid =                  selinux_task_getsid,
5935         .task_getsecid =                selinux_task_getsecid,
5936         .task_setnice =                 selinux_task_setnice,
5937         .task_setioprio =               selinux_task_setioprio,
5938         .task_getioprio =               selinux_task_getioprio,
5939         .task_setrlimit =               selinux_task_setrlimit,
5940         .task_setscheduler =            selinux_task_setscheduler,
5941         .task_getscheduler =            selinux_task_getscheduler,
5942         .task_movememory =              selinux_task_movememory,
5943         .task_kill =                    selinux_task_kill,
5944         .task_wait =                    selinux_task_wait,
5945         .task_to_inode =                selinux_task_to_inode,
5946
5947         .ipc_permission =               selinux_ipc_permission,
5948         .ipc_getsecid =                 selinux_ipc_getsecid,
5949
5950         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5951         .msg_msg_free_security =        selinux_msg_msg_free_security,
5952
5953         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5954         .msg_queue_free_security =      selinux_msg_queue_free_security,
5955         .msg_queue_associate =          selinux_msg_queue_associate,
5956         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5957         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5958         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5959
5960         .shm_alloc_security =           selinux_shm_alloc_security,
5961         .shm_free_security =            selinux_shm_free_security,
5962         .shm_associate =                selinux_shm_associate,
5963         .shm_shmctl =                   selinux_shm_shmctl,
5964         .shm_shmat =                    selinux_shm_shmat,
5965
5966         .sem_alloc_security =           selinux_sem_alloc_security,
5967         .sem_free_security =            selinux_sem_free_security,
5968         .sem_associate =                selinux_sem_associate,
5969         .sem_semctl =                   selinux_sem_semctl,
5970         .sem_semop =                    selinux_sem_semop,
5971
5972         .d_instantiate =                selinux_d_instantiate,
5973
5974         .getprocattr =                  selinux_getprocattr,
5975         .setprocattr =                  selinux_setprocattr,
5976
5977         .ismaclabel =                   selinux_ismaclabel,
5978         .secid_to_secctx =              selinux_secid_to_secctx,
5979         .secctx_to_secid =              selinux_secctx_to_secid,
5980         .release_secctx =               selinux_release_secctx,
5981         .inode_notifysecctx =           selinux_inode_notifysecctx,
5982         .inode_setsecctx =              selinux_inode_setsecctx,
5983         .inode_getsecctx =              selinux_inode_getsecctx,
5984
5985         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5986         .unix_may_send =                selinux_socket_unix_may_send,
5987
5988         .socket_create =                selinux_socket_create,
5989         .socket_post_create =           selinux_socket_post_create,
5990         .socket_bind =                  selinux_socket_bind,
5991         .socket_connect =               selinux_socket_connect,
5992         .socket_listen =                selinux_socket_listen,
5993         .socket_accept =                selinux_socket_accept,
5994         .socket_sendmsg =               selinux_socket_sendmsg,
5995         .socket_recvmsg =               selinux_socket_recvmsg,
5996         .socket_getsockname =           selinux_socket_getsockname,
5997         .socket_getpeername =           selinux_socket_getpeername,
5998         .socket_getsockopt =            selinux_socket_getsockopt,
5999         .socket_setsockopt =            selinux_socket_setsockopt,
6000         .socket_shutdown =              selinux_socket_shutdown,
6001         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
6002         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
6003         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
6004         .sk_alloc_security =            selinux_sk_alloc_security,
6005         .sk_free_security =             selinux_sk_free_security,
6006         .sk_clone_security =            selinux_sk_clone_security,
6007         .sk_getsecid =                  selinux_sk_getsecid,
6008         .sock_graft =                   selinux_sock_graft,
6009         .inet_conn_request =            selinux_inet_conn_request,
6010         .inet_csk_clone =               selinux_inet_csk_clone,
6011         .inet_conn_established =        selinux_inet_conn_established,
6012         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
6013         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
6014         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
6015         .req_classify_flow =            selinux_req_classify_flow,
6016         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
6017         .tun_dev_free_security =        selinux_tun_dev_free_security,
6018         .tun_dev_create =               selinux_tun_dev_create,
6019         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
6020         .tun_dev_attach =               selinux_tun_dev_attach,
6021         .tun_dev_open =                 selinux_tun_dev_open,
6022
6023 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6024         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
6025         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
6026         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
6027         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
6028         .xfrm_state_alloc =             selinux_xfrm_state_alloc,
6029         .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
6030         .xfrm_state_free_security =     selinux_xfrm_state_free,
6031         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
6032         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
6033         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
6034         .xfrm_decode_session =          selinux_xfrm_decode_session,
6035 #endif
6036
6037 #ifdef CONFIG_KEYS
6038         .key_alloc =                    selinux_key_alloc,
6039         .key_free =                     selinux_key_free,
6040         .key_permission =               selinux_key_permission,
6041         .key_getsecurity =              selinux_key_getsecurity,
6042 #endif
6043
6044 #ifdef CONFIG_AUDIT
6045         .audit_rule_init =              selinux_audit_rule_init,
6046         .audit_rule_known =             selinux_audit_rule_known,
6047         .audit_rule_match =             selinux_audit_rule_match,
6048         .audit_rule_free =              selinux_audit_rule_free,
6049 #endif
6050 };
6051
6052 static __init int selinux_init(void)
6053 {
6054         if (!security_module_enable(&selinux_ops)) {
6055                 selinux_enabled = 0;
6056                 return 0;
6057         }
6058
6059         if (!selinux_enabled) {
6060                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6061                 return 0;
6062         }
6063
6064         printk(KERN_INFO "SELinux:  Initializing.\n");
6065
6066         /* Set the security state for the initial task. */
6067         cred_init_security();
6068
6069         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6070
6071         sel_inode_cache = kmem_cache_create("selinux_inode_security",
6072                                             sizeof(struct inode_security_struct),
6073                                             0, SLAB_PANIC, NULL);
6074         avc_init();
6075
6076         if (register_security(&selinux_ops))
6077                 panic("SELinux: Unable to register with kernel.\n");
6078
6079         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6080                 panic("SELinux: Unable to register AVC netcache callback\n");
6081
6082         if (selinux_enforcing)
6083                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6084         else
6085                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6086
6087         return 0;
6088 }
6089
6090 static void delayed_superblock_init(struct super_block *sb, void *unused)
6091 {
6092         superblock_doinit(sb, NULL);
6093 }
6094
6095 void selinux_complete_init(void)
6096 {
6097         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6098
6099         /* Set up any superblocks initialized prior to the policy load. */
6100         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6101         iterate_supers(delayed_superblock_init, NULL);
6102 }
6103
6104 /* SELinux requires early initialization in order to label
6105    all processes and objects when they are created. */
6106 security_initcall(selinux_init);
6107
6108 #if defined(CONFIG_NETFILTER)
6109
6110 static struct nf_hook_ops selinux_nf_ops[] = {
6111         {
6112                 .hook =         selinux_ipv4_postroute,
6113                 .owner =        THIS_MODULE,
6114                 .pf =           NFPROTO_IPV4,
6115                 .hooknum =      NF_INET_POST_ROUTING,
6116                 .priority =     NF_IP_PRI_SELINUX_LAST,
6117         },
6118         {
6119                 .hook =         selinux_ipv4_forward,
6120                 .owner =        THIS_MODULE,
6121                 .pf =           NFPROTO_IPV4,
6122                 .hooknum =      NF_INET_FORWARD,
6123                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6124         },
6125         {
6126                 .hook =         selinux_ipv4_output,
6127                 .owner =        THIS_MODULE,
6128                 .pf =           NFPROTO_IPV4,
6129                 .hooknum =      NF_INET_LOCAL_OUT,
6130                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6131         },
6132 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6133         {
6134                 .hook =         selinux_ipv6_postroute,
6135                 .owner =        THIS_MODULE,
6136                 .pf =           NFPROTO_IPV6,
6137                 .hooknum =      NF_INET_POST_ROUTING,
6138                 .priority =     NF_IP6_PRI_SELINUX_LAST,
6139         },
6140         {
6141                 .hook =         selinux_ipv6_forward,
6142                 .owner =        THIS_MODULE,
6143                 .pf =           NFPROTO_IPV6,
6144                 .hooknum =      NF_INET_FORWARD,
6145                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
6146         },
6147 #endif  /* IPV6 */
6148 };
6149
6150 static int __init selinux_nf_ip_init(void)
6151 {
6152         int err;
6153
6154         if (!selinux_enabled)
6155                 return 0;
6156
6157         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6158
6159         err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6160         if (err)
6161                 panic("SELinux: nf_register_hooks: error %d\n", err);
6162
6163         return 0;
6164 }
6165
6166 __initcall(selinux_nf_ip_init);
6167
6168 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6169 static void selinux_nf_ip_exit(void)
6170 {
6171         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6172
6173         nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6174 }
6175 #endif
6176
6177 #else /* CONFIG_NETFILTER */
6178
6179 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6180 #define selinux_nf_ip_exit()
6181 #endif
6182
6183 #endif /* CONFIG_NETFILTER */
6184
6185 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6186 static int selinux_disabled;
6187
6188 int selinux_disable(void)
6189 {
6190         if (ss_initialized) {
6191                 /* Not permitted after initial policy load. */
6192                 return -EINVAL;
6193         }
6194
6195         if (selinux_disabled) {
6196                 /* Only do this once. */
6197                 return -EINVAL;
6198         }
6199
6200         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6201
6202         selinux_disabled = 1;
6203         selinux_enabled = 0;
6204
6205         reset_security_ops();
6206
6207         /* Try to destroy the avc node cache */
6208         avc_disable();
6209
6210         /* Unregister netfilter hooks. */
6211         selinux_nf_ip_exit();
6212
6213         /* Unregister selinuxfs. */
6214         exit_sel_fs();
6215
6216         return 0;
6217 }
6218 #endif