]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge tag 'tty-3.12-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105         if (pfn_valid(pfn))
106                 return PageReserved(pfn_to_page(pfn));
107
108         return true;
109 }
110
111 /*
112  * Switches to specified vcpu, until a matching vcpu_put()
113  */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116         int cpu;
117
118         if (mutex_lock_killable(&vcpu->mutex))
119                 return -EINTR;
120         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121                 /* The thread running this VCPU changed. */
122                 struct pid *oldpid = vcpu->pid;
123                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124                 rcu_assign_pointer(vcpu->pid, newpid);
125                 synchronize_rcu();
126                 put_pid(oldpid);
127         }
128         cpu = get_cpu();
129         preempt_notifier_register(&vcpu->preempt_notifier);
130         kvm_arch_vcpu_load(vcpu, cpu);
131         put_cpu();
132         return 0;
133 }
134
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137         preempt_disable();
138         kvm_arch_vcpu_put(vcpu);
139         preempt_notifier_unregister(&vcpu->preempt_notifier);
140         preempt_enable();
141         mutex_unlock(&vcpu->mutex);
142 }
143
144 static void ack_flush(void *_completed)
145 {
146 }
147
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150         int i, cpu, me;
151         cpumask_var_t cpus;
152         bool called = true;
153         struct kvm_vcpu *vcpu;
154
155         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156
157         me = get_cpu();
158         kvm_for_each_vcpu(i, vcpu, kvm) {
159                 kvm_make_request(req, vcpu);
160                 cpu = vcpu->cpu;
161
162                 /* Set ->requests bit before we read ->mode */
163                 smp_mb();
164
165                 if (cpus != NULL && cpu != -1 && cpu != me &&
166                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167                         cpumask_set_cpu(cpu, cpus);
168         }
169         if (unlikely(cpus == NULL))
170                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171         else if (!cpumask_empty(cpus))
172                 smp_call_function_many(cpus, ack_flush, NULL, 1);
173         else
174                 called = false;
175         put_cpu();
176         free_cpumask_var(cpus);
177         return called;
178 }
179
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182         long dirty_count = kvm->tlbs_dirty;
183
184         smp_mb();
185         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186                 ++kvm->stat.remote_tlb_flush;
187         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207         struct page *page;
208         int r;
209
210         mutex_init(&vcpu->mutex);
211         vcpu->cpu = -1;
212         vcpu->kvm = kvm;
213         vcpu->vcpu_id = id;
214         vcpu->pid = NULL;
215         init_waitqueue_head(&vcpu->wq);
216         kvm_async_pf_vcpu_init(vcpu);
217
218         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219         if (!page) {
220                 r = -ENOMEM;
221                 goto fail;
222         }
223         vcpu->run = page_address(page);
224
225         kvm_vcpu_set_in_spin_loop(vcpu, false);
226         kvm_vcpu_set_dy_eligible(vcpu, false);
227         vcpu->preempted = false;
228
229         r = kvm_arch_vcpu_init(vcpu);
230         if (r < 0)
231                 goto fail_free_run;
232         return 0;
233
234 fail_free_run:
235         free_page((unsigned long)vcpu->run);
236 fail:
237         return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243         put_pid(vcpu->pid);
244         kvm_arch_vcpu_uninit(vcpu);
245         free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252         return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256                                              struct mm_struct *mm,
257                                              unsigned long address)
258 {
259         struct kvm *kvm = mmu_notifier_to_kvm(mn);
260         int need_tlb_flush, idx;
261
262         /*
263          * When ->invalidate_page runs, the linux pte has been zapped
264          * already but the page is still allocated until
265          * ->invalidate_page returns. So if we increase the sequence
266          * here the kvm page fault will notice if the spte can't be
267          * established because the page is going to be freed. If
268          * instead the kvm page fault establishes the spte before
269          * ->invalidate_page runs, kvm_unmap_hva will release it
270          * before returning.
271          *
272          * The sequence increase only need to be seen at spin_unlock
273          * time, and not at spin_lock time.
274          *
275          * Increasing the sequence after the spin_unlock would be
276          * unsafe because the kvm page fault could then establish the
277          * pte after kvm_unmap_hva returned, without noticing the page
278          * is going to be freed.
279          */
280         idx = srcu_read_lock(&kvm->srcu);
281         spin_lock(&kvm->mmu_lock);
282
283         kvm->mmu_notifier_seq++;
284         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285         /* we've to flush the tlb before the pages can be freed */
286         if (need_tlb_flush)
287                 kvm_flush_remote_tlbs(kvm);
288
289         spin_unlock(&kvm->mmu_lock);
290         srcu_read_unlock(&kvm->srcu, idx);
291 }
292
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294                                         struct mm_struct *mm,
295                                         unsigned long address,
296                                         pte_t pte)
297 {
298         struct kvm *kvm = mmu_notifier_to_kvm(mn);
299         int idx;
300
301         idx = srcu_read_lock(&kvm->srcu);
302         spin_lock(&kvm->mmu_lock);
303         kvm->mmu_notifier_seq++;
304         kvm_set_spte_hva(kvm, address, pte);
305         spin_unlock(&kvm->mmu_lock);
306         srcu_read_unlock(&kvm->srcu, idx);
307 }
308
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310                                                     struct mm_struct *mm,
311                                                     unsigned long start,
312                                                     unsigned long end)
313 {
314         struct kvm *kvm = mmu_notifier_to_kvm(mn);
315         int need_tlb_flush = 0, idx;
316
317         idx = srcu_read_lock(&kvm->srcu);
318         spin_lock(&kvm->mmu_lock);
319         /*
320          * The count increase must become visible at unlock time as no
321          * spte can be established without taking the mmu_lock and
322          * count is also read inside the mmu_lock critical section.
323          */
324         kvm->mmu_notifier_count++;
325         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326         need_tlb_flush |= kvm->tlbs_dirty;
327         /* we've to flush the tlb before the pages can be freed */
328         if (need_tlb_flush)
329                 kvm_flush_remote_tlbs(kvm);
330
331         spin_unlock(&kvm->mmu_lock);
332         srcu_read_unlock(&kvm->srcu, idx);
333 }
334
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336                                                   struct mm_struct *mm,
337                                                   unsigned long start,
338                                                   unsigned long end)
339 {
340         struct kvm *kvm = mmu_notifier_to_kvm(mn);
341
342         spin_lock(&kvm->mmu_lock);
343         /*
344          * This sequence increase will notify the kvm page fault that
345          * the page that is going to be mapped in the spte could have
346          * been freed.
347          */
348         kvm->mmu_notifier_seq++;
349         smp_wmb();
350         /*
351          * The above sequence increase must be visible before the
352          * below count decrease, which is ensured by the smp_wmb above
353          * in conjunction with the smp_rmb in mmu_notifier_retry().
354          */
355         kvm->mmu_notifier_count--;
356         spin_unlock(&kvm->mmu_lock);
357
358         BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362                                               struct mm_struct *mm,
363                                               unsigned long address)
364 {
365         struct kvm *kvm = mmu_notifier_to_kvm(mn);
366         int young, idx;
367
368         idx = srcu_read_lock(&kvm->srcu);
369         spin_lock(&kvm->mmu_lock);
370
371         young = kvm_age_hva(kvm, address);
372         if (young)
373                 kvm_flush_remote_tlbs(kvm);
374
375         spin_unlock(&kvm->mmu_lock);
376         srcu_read_unlock(&kvm->srcu, idx);
377
378         return young;
379 }
380
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382                                        struct mm_struct *mm,
383                                        unsigned long address)
384 {
385         struct kvm *kvm = mmu_notifier_to_kvm(mn);
386         int young, idx;
387
388         idx = srcu_read_lock(&kvm->srcu);
389         spin_lock(&kvm->mmu_lock);
390         young = kvm_test_age_hva(kvm, address);
391         spin_unlock(&kvm->mmu_lock);
392         srcu_read_unlock(&kvm->srcu, idx);
393
394         return young;
395 }
396
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398                                      struct mm_struct *mm)
399 {
400         struct kvm *kvm = mmu_notifier_to_kvm(mn);
401         int idx;
402
403         idx = srcu_read_lock(&kvm->srcu);
404         kvm_arch_flush_shadow_all(kvm);
405         srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
410         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
411         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
412         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
413         .test_young             = kvm_mmu_notifier_test_young,
414         .change_pte             = kvm_mmu_notifier_change_pte,
415         .release                = kvm_mmu_notifier_release,
416 };
417
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423
424 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428         return 0;
429 }
430
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435         int i;
436         struct kvm_memslots *slots = kvm->memslots;
437
438         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439                 slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444         int r, i;
445         struct kvm *kvm = kvm_arch_alloc_vm();
446
447         if (!kvm)
448                 return ERR_PTR(-ENOMEM);
449
450         r = kvm_arch_init_vm(kvm, type);
451         if (r)
452                 goto out_err_nodisable;
453
454         r = hardware_enable_all();
455         if (r)
456                 goto out_err_nodisable;
457
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462
463         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464
465         r = -ENOMEM;
466         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467         if (!kvm->memslots)
468                 goto out_err_nosrcu;
469         kvm_init_memslots_id(kvm);
470         if (init_srcu_struct(&kvm->srcu))
471                 goto out_err_nosrcu;
472         for (i = 0; i < KVM_NR_BUSES; i++) {
473                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474                                         GFP_KERNEL);
475                 if (!kvm->buses[i])
476                         goto out_err;
477         }
478
479         spin_lock_init(&kvm->mmu_lock);
480         kvm->mm = current->mm;
481         atomic_inc(&kvm->mm->mm_count);
482         kvm_eventfd_init(kvm);
483         mutex_init(&kvm->lock);
484         mutex_init(&kvm->irq_lock);
485         mutex_init(&kvm->slots_lock);
486         atomic_set(&kvm->users_count, 1);
487         INIT_LIST_HEAD(&kvm->devices);
488
489         r = kvm_init_mmu_notifier(kvm);
490         if (r)
491                 goto out_err;
492
493         raw_spin_lock(&kvm_lock);
494         list_add(&kvm->vm_list, &vm_list);
495         raw_spin_unlock(&kvm_lock);
496
497         return kvm;
498
499 out_err:
500         cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502         hardware_disable_all();
503 out_err_nodisable:
504         for (i = 0; i < KVM_NR_BUSES; i++)
505                 kfree(kvm->buses[i]);
506         kfree(kvm->memslots);
507         kvm_arch_free_vm(kvm);
508         return ERR_PTR(r);
509 }
510
511 /*
512  * Avoid using vmalloc for a small buffer.
513  * Should not be used when the size is statically known.
514  */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517         if (size > PAGE_SIZE)
518                 return vzalloc(size);
519         else
520                 return kzalloc(size, GFP_KERNEL);
521 }
522
523 void kvm_kvfree(const void *addr)
524 {
525         if (is_vmalloc_addr(addr))
526                 vfree(addr);
527         else
528                 kfree(addr);
529 }
530
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533         if (!memslot->dirty_bitmap)
534                 return;
535
536         kvm_kvfree(memslot->dirty_bitmap);
537         memslot->dirty_bitmap = NULL;
538 }
539
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544                                   struct kvm_memory_slot *dont)
545 {
546         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547                 kvm_destroy_dirty_bitmap(free);
548
549         kvm_arch_free_memslot(free, dont);
550
551         free->npages = 0;
552 }
553
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556         struct kvm_memslots *slots = kvm->memslots;
557         struct kvm_memory_slot *memslot;
558
559         kvm_for_each_memslot(memslot, slots)
560                 kvm_free_physmem_slot(memslot, NULL);
561
562         kfree(kvm->memslots);
563 }
564
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567         struct list_head *node, *tmp;
568
569         list_for_each_safe(node, tmp, &kvm->devices) {
570                 struct kvm_device *dev =
571                         list_entry(node, struct kvm_device, vm_node);
572
573                 list_del(node);
574                 dev->ops->destroy(dev);
575         }
576 }
577
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580         int i;
581         struct mm_struct *mm = kvm->mm;
582
583         kvm_arch_sync_events(kvm);
584         raw_spin_lock(&kvm_lock);
585         list_del(&kvm->vm_list);
586         raw_spin_unlock(&kvm_lock);
587         kvm_free_irq_routing(kvm);
588         for (i = 0; i < KVM_NR_BUSES; i++)
589                 kvm_io_bus_destroy(kvm->buses[i]);
590         kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594         kvm_arch_flush_shadow_all(kvm);
595 #endif
596         kvm_arch_destroy_vm(kvm);
597         kvm_destroy_devices(kvm);
598         kvm_free_physmem(kvm);
599         cleanup_srcu_struct(&kvm->srcu);
600         kvm_arch_free_vm(kvm);
601         hardware_disable_all();
602         mmdrop(mm);
603 }
604
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607         atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613         if (atomic_dec_and_test(&kvm->users_count))
614                 kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617
618
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621         struct kvm *kvm = filp->private_data;
622
623         kvm_irqfd_release(kvm);
624
625         kvm_put_kvm(kvm);
626         return 0;
627 }
628
629 /*
630  * Allocation size is twice as large as the actual dirty bitmap size.
631  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632  */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637
638         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639         if (!memslot->dirty_bitmap)
640                 return -ENOMEM;
641
642 #endif /* !CONFIG_S390 */
643         return 0;
644 }
645
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648         struct kvm_memory_slot *s1, *s2;
649
650         s1 = (struct kvm_memory_slot *)slot1;
651         s2 = (struct kvm_memory_slot *)slot2;
652
653         if (s1->npages < s2->npages)
654                 return 1;
655         if (s1->npages > s2->npages)
656                 return -1;
657
658         return 0;
659 }
660
661 /*
662  * Sort the memslots base on its size, so the larger slots
663  * will get better fit.
664  */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667         int i;
668
669         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671
672         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673                 slots->id_to_index[slots->memslots[i].id] = i;
674 }
675
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677                      u64 last_generation)
678 {
679         if (new) {
680                 int id = new->id;
681                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
682                 unsigned long npages = old->npages;
683
684                 *old = *new;
685                 if (new->npages != npages)
686                         sort_memslots(slots);
687         }
688
689         slots->generation = last_generation + 1;
690 }
691
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695
696 #ifdef KVM_CAP_READONLY_MEM
697         valid_flags |= KVM_MEM_READONLY;
698 #endif
699
700         if (mem->flags & ~valid_flags)
701                 return -EINVAL;
702
703         return 0;
704 }
705
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709         struct kvm_memslots *old_memslots = kvm->memslots;
710
711         update_memslots(slots, new, kvm->memslots->generation);
712         rcu_assign_pointer(kvm->memslots, slots);
713         synchronize_srcu_expedited(&kvm->srcu);
714
715         kvm_arch_memslots_updated(kvm);
716
717         return old_memslots;
718 }
719
720 /*
721  * Allocate some memory and give it an address in the guest physical address
722  * space.
723  *
724  * Discontiguous memory is allowed, mostly for framebuffers.
725  *
726  * Must be called holding mmap_sem for write.
727  */
728 int __kvm_set_memory_region(struct kvm *kvm,
729                             struct kvm_userspace_memory_region *mem)
730 {
731         int r;
732         gfn_t base_gfn;
733         unsigned long npages;
734         struct kvm_memory_slot *slot;
735         struct kvm_memory_slot old, new;
736         struct kvm_memslots *slots = NULL, *old_memslots;
737         enum kvm_mr_change change;
738
739         r = check_memory_region_flags(mem);
740         if (r)
741                 goto out;
742
743         r = -EINVAL;
744         /* General sanity checks */
745         if (mem->memory_size & (PAGE_SIZE - 1))
746                 goto out;
747         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748                 goto out;
749         /* We can read the guest memory with __xxx_user() later on. */
750         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752              !access_ok(VERIFY_WRITE,
753                         (void __user *)(unsigned long)mem->userspace_addr,
754                         mem->memory_size)))
755                 goto out;
756         if (mem->slot >= KVM_MEM_SLOTS_NUM)
757                 goto out;
758         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759                 goto out;
760
761         slot = id_to_memslot(kvm->memslots, mem->slot);
762         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763         npages = mem->memory_size >> PAGE_SHIFT;
764
765         r = -EINVAL;
766         if (npages > KVM_MEM_MAX_NR_PAGES)
767                 goto out;
768
769         if (!npages)
770                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771
772         new = old = *slot;
773
774         new.id = mem->slot;
775         new.base_gfn = base_gfn;
776         new.npages = npages;
777         new.flags = mem->flags;
778
779         r = -EINVAL;
780         if (npages) {
781                 if (!old.npages)
782                         change = KVM_MR_CREATE;
783                 else { /* Modify an existing slot. */
784                         if ((mem->userspace_addr != old.userspace_addr) ||
785                             (npages != old.npages) ||
786                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787                                 goto out;
788
789                         if (base_gfn != old.base_gfn)
790                                 change = KVM_MR_MOVE;
791                         else if (new.flags != old.flags)
792                                 change = KVM_MR_FLAGS_ONLY;
793                         else { /* Nothing to change. */
794                                 r = 0;
795                                 goto out;
796                         }
797                 }
798         } else if (old.npages) {
799                 change = KVM_MR_DELETE;
800         } else /* Modify a non-existent slot: disallowed. */
801                 goto out;
802
803         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804                 /* Check for overlaps */
805                 r = -EEXIST;
806                 kvm_for_each_memslot(slot, kvm->memslots) {
807                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808                             (slot->id == mem->slot))
809                                 continue;
810                         if (!((base_gfn + npages <= slot->base_gfn) ||
811                               (base_gfn >= slot->base_gfn + slot->npages)))
812                                 goto out;
813                 }
814         }
815
816         /* Free page dirty bitmap if unneeded */
817         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818                 new.dirty_bitmap = NULL;
819
820         r = -ENOMEM;
821         if (change == KVM_MR_CREATE) {
822                 new.userspace_addr = mem->userspace_addr;
823
824                 if (kvm_arch_create_memslot(&new, npages))
825                         goto out_free;
826         }
827
828         /* Allocate page dirty bitmap if needed */
829         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830                 if (kvm_create_dirty_bitmap(&new) < 0)
831                         goto out_free;
832         }
833
834         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835                 r = -ENOMEM;
836                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837                                 GFP_KERNEL);
838                 if (!slots)
839                         goto out_free;
840                 slot = id_to_memslot(slots, mem->slot);
841                 slot->flags |= KVM_MEMSLOT_INVALID;
842
843                 old_memslots = install_new_memslots(kvm, slots, NULL);
844
845                 /* slot was deleted or moved, clear iommu mapping */
846                 kvm_iommu_unmap_pages(kvm, &old);
847                 /* From this point no new shadow pages pointing to a deleted,
848                  * or moved, memslot will be created.
849                  *
850                  * validation of sp->gfn happens in:
851                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852                  *      - kvm_is_visible_gfn (mmu_check_roots)
853                  */
854                 kvm_arch_flush_shadow_memslot(kvm, slot);
855                 slots = old_memslots;
856         }
857
858         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859         if (r)
860                 goto out_slots;
861
862         r = -ENOMEM;
863         /*
864          * We can re-use the old_memslots from above, the only difference
865          * from the currently installed memslots is the invalid flag.  This
866          * will get overwritten by update_memslots anyway.
867          */
868         if (!slots) {
869                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870                                 GFP_KERNEL);
871                 if (!slots)
872                         goto out_free;
873         }
874
875         /*
876          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
877          * un-mapped and re-mapped if their base changes.  Since base change
878          * unmapping is handled above with slot deletion, mapping alone is
879          * needed here.  Anything else the iommu might care about for existing
880          * slots (size changes, userspace addr changes and read-only flag
881          * changes) is disallowed above, so any other attribute changes getting
882          * here can be skipped.
883          */
884         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885                 r = kvm_iommu_map_pages(kvm, &new);
886                 if (r)
887                         goto out_slots;
888         }
889
890         /* actual memory is freed via old in kvm_free_physmem_slot below */
891         if (change == KVM_MR_DELETE) {
892                 new.dirty_bitmap = NULL;
893                 memset(&new.arch, 0, sizeof(new.arch));
894         }
895
896         old_memslots = install_new_memslots(kvm, slots, &new);
897
898         kvm_arch_commit_memory_region(kvm, mem, &old, change);
899
900         kvm_free_physmem_slot(&old, &new);
901         kfree(old_memslots);
902
903         return 0;
904
905 out_slots:
906         kfree(slots);
907 out_free:
908         kvm_free_physmem_slot(&new, &old);
909 out:
910         return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913
914 int kvm_set_memory_region(struct kvm *kvm,
915                           struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918
919         mutex_lock(&kvm->slots_lock);
920         r = __kvm_set_memory_region(kvm, mem);
921         mutex_unlock(&kvm->slots_lock);
922         return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927                                    struct kvm_userspace_memory_region *mem)
928 {
929         if (mem->slot >= KVM_USER_MEM_SLOTS)
930                 return -EINVAL;
931         return kvm_set_memory_region(kvm, mem);
932 }
933
934 int kvm_get_dirty_log(struct kvm *kvm,
935                         struct kvm_dirty_log *log, int *is_dirty)
936 {
937         struct kvm_memory_slot *memslot;
938         int r, i;
939         unsigned long n;
940         unsigned long any = 0;
941
942         r = -EINVAL;
943         if (log->slot >= KVM_USER_MEM_SLOTS)
944                 goto out;
945
946         memslot = id_to_memslot(kvm->memslots, log->slot);
947         r = -ENOENT;
948         if (!memslot->dirty_bitmap)
949                 goto out;
950
951         n = kvm_dirty_bitmap_bytes(memslot);
952
953         for (i = 0; !any && i < n/sizeof(long); ++i)
954                 any = memslot->dirty_bitmap[i];
955
956         r = -EFAULT;
957         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958                 goto out;
959
960         if (any)
961                 *is_dirty = 1;
962
963         r = 0;
964 out:
965         return r;
966 }
967
968 bool kvm_largepages_enabled(void)
969 {
970         return largepages_enabled;
971 }
972
973 void kvm_disable_largepages(void)
974 {
975         largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988
989         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990               memslot->flags & KVM_MEMSLOT_INVALID)
991                 return 0;
992
993         return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999         struct vm_area_struct *vma;
1000         unsigned long addr, size;
1001
1002         size = PAGE_SIZE;
1003
1004         addr = gfn_to_hva(kvm, gfn);
1005         if (kvm_is_error_hva(addr))
1006                 return PAGE_SIZE;
1007
1008         down_read(&current->mm->mmap_sem);
1009         vma = find_vma(current->mm, addr);
1010         if (!vma)
1011                 goto out;
1012
1013         size = vma_kernel_pagesize(vma);
1014
1015 out:
1016         up_read(&current->mm->mmap_sem);
1017
1018         return size;
1019 }
1020
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023         return slot->flags & KVM_MEM_READONLY;
1024 }
1025
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027                                        gfn_t *nr_pages, bool write)
1028 {
1029         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030                 return KVM_HVA_ERR_BAD;
1031
1032         if (memslot_is_readonly(slot) && write)
1033                 return KVM_HVA_ERR_RO_BAD;
1034
1035         if (nr_pages)
1036                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038         return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042                                      gfn_t *nr_pages)
1043 {
1044         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048                                  gfn_t gfn)
1049 {
1050         return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060 /*
1061  * If writable is set to false, the hva returned by this function is only
1062  * allowed to be read.
1063  */
1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065 {
1066         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067         if (writable)
1068                 *writable = !memslot_is_readonly(slot);
1069
1070         return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1071 }
1072
1073 static int kvm_read_hva(void *data, void __user *hva, int len)
1074 {
1075         return __copy_from_user(data, hva, len);
1076 }
1077
1078 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1079 {
1080         return __copy_from_user_inatomic(data, hva, len);
1081 }
1082
1083 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1084         unsigned long start, int write, struct page **page)
1085 {
1086         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1087
1088         if (write)
1089                 flags |= FOLL_WRITE;
1090
1091         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1092 }
1093
1094 static inline int check_user_page_hwpoison(unsigned long addr)
1095 {
1096         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1097
1098         rc = __get_user_pages(current, current->mm, addr, 1,
1099                               flags, NULL, NULL, NULL);
1100         return rc == -EHWPOISON;
1101 }
1102
1103 /*
1104  * The atomic path to get the writable pfn which will be stored in @pfn,
1105  * true indicates success, otherwise false is returned.
1106  */
1107 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1108                             bool write_fault, bool *writable, pfn_t *pfn)
1109 {
1110         struct page *page[1];
1111         int npages;
1112
1113         if (!(async || atomic))
1114                 return false;
1115
1116         /*
1117          * Fast pin a writable pfn only if it is a write fault request
1118          * or the caller allows to map a writable pfn for a read fault
1119          * request.
1120          */
1121         if (!(write_fault || writable))
1122                 return false;
1123
1124         npages = __get_user_pages_fast(addr, 1, 1, page);
1125         if (npages == 1) {
1126                 *pfn = page_to_pfn(page[0]);
1127
1128                 if (writable)
1129                         *writable = true;
1130                 return true;
1131         }
1132
1133         return false;
1134 }
1135
1136 /*
1137  * The slow path to get the pfn of the specified host virtual address,
1138  * 1 indicates success, -errno is returned if error is detected.
1139  */
1140 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1141                            bool *writable, pfn_t *pfn)
1142 {
1143         struct page *page[1];
1144         int npages = 0;
1145
1146         might_sleep();
1147
1148         if (writable)
1149                 *writable = write_fault;
1150
1151         if (async) {
1152                 down_read(&current->mm->mmap_sem);
1153                 npages = get_user_page_nowait(current, current->mm,
1154                                               addr, write_fault, page);
1155                 up_read(&current->mm->mmap_sem);
1156         } else
1157                 npages = get_user_pages_fast(addr, 1, write_fault,
1158                                              page);
1159         if (npages != 1)
1160                 return npages;
1161
1162         /* map read fault as writable if possible */
1163         if (unlikely(!write_fault) && writable) {
1164                 struct page *wpage[1];
1165
1166                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1167                 if (npages == 1) {
1168                         *writable = true;
1169                         put_page(page[0]);
1170                         page[0] = wpage[0];
1171                 }
1172
1173                 npages = 1;
1174         }
1175         *pfn = page_to_pfn(page[0]);
1176         return npages;
1177 }
1178
1179 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1180 {
1181         if (unlikely(!(vma->vm_flags & VM_READ)))
1182                 return false;
1183
1184         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1185                 return false;
1186
1187         return true;
1188 }
1189
1190 /*
1191  * Pin guest page in memory and return its pfn.
1192  * @addr: host virtual address which maps memory to the guest
1193  * @atomic: whether this function can sleep
1194  * @async: whether this function need to wait IO complete if the
1195  *         host page is not in the memory
1196  * @write_fault: whether we should get a writable host page
1197  * @writable: whether it allows to map a writable host page for !@write_fault
1198  *
1199  * The function will map a writable host page for these two cases:
1200  * 1): @write_fault = true
1201  * 2): @write_fault = false && @writable, @writable will tell the caller
1202  *     whether the mapping is writable.
1203  */
1204 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1205                         bool write_fault, bool *writable)
1206 {
1207         struct vm_area_struct *vma;
1208         pfn_t pfn = 0;
1209         int npages;
1210
1211         /* we can do it either atomically or asynchronously, not both */
1212         BUG_ON(atomic && async);
1213
1214         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1215                 return pfn;
1216
1217         if (atomic)
1218                 return KVM_PFN_ERR_FAULT;
1219
1220         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1221         if (npages == 1)
1222                 return pfn;
1223
1224         down_read(&current->mm->mmap_sem);
1225         if (npages == -EHWPOISON ||
1226               (!async && check_user_page_hwpoison(addr))) {
1227                 pfn = KVM_PFN_ERR_HWPOISON;
1228                 goto exit;
1229         }
1230
1231         vma = find_vma_intersection(current->mm, addr, addr + 1);
1232
1233         if (vma == NULL)
1234                 pfn = KVM_PFN_ERR_FAULT;
1235         else if ((vma->vm_flags & VM_PFNMAP)) {
1236                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1237                         vma->vm_pgoff;
1238                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1239         } else {
1240                 if (async && vma_is_valid(vma, write_fault))
1241                         *async = true;
1242                 pfn = KVM_PFN_ERR_FAULT;
1243         }
1244 exit:
1245         up_read(&current->mm->mmap_sem);
1246         return pfn;
1247 }
1248
1249 static pfn_t
1250 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1251                      bool *async, bool write_fault, bool *writable)
1252 {
1253         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1254
1255         if (addr == KVM_HVA_ERR_RO_BAD)
1256                 return KVM_PFN_ERR_RO_FAULT;
1257
1258         if (kvm_is_error_hva(addr))
1259                 return KVM_PFN_NOSLOT;
1260
1261         /* Do not map writable pfn in the readonly memslot. */
1262         if (writable && memslot_is_readonly(slot)) {
1263                 *writable = false;
1264                 writable = NULL;
1265         }
1266
1267         return hva_to_pfn(addr, atomic, async, write_fault,
1268                           writable);
1269 }
1270
1271 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1272                           bool write_fault, bool *writable)
1273 {
1274         struct kvm_memory_slot *slot;
1275
1276         if (async)
1277                 *async = false;
1278
1279         slot = gfn_to_memslot(kvm, gfn);
1280
1281         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1282                                     writable);
1283 }
1284
1285 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1286 {
1287         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1290
1291 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1292                        bool write_fault, bool *writable)
1293 {
1294         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1297
1298 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1299 {
1300         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1303
1304 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1305                       bool *writable)
1306 {
1307         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1310
1311 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1312 {
1313         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1314 }
1315
1316 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1317 {
1318         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1321
1322 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1323                                                                   int nr_pages)
1324 {
1325         unsigned long addr;
1326         gfn_t entry;
1327
1328         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1329         if (kvm_is_error_hva(addr))
1330                 return -1;
1331
1332         if (entry < nr_pages)
1333                 return 0;
1334
1335         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1336 }
1337 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1338
1339 static struct page *kvm_pfn_to_page(pfn_t pfn)
1340 {
1341         if (is_error_noslot_pfn(pfn))
1342                 return KVM_ERR_PTR_BAD_PAGE;
1343
1344         if (kvm_is_mmio_pfn(pfn)) {
1345                 WARN_ON(1);
1346                 return KVM_ERR_PTR_BAD_PAGE;
1347         }
1348
1349         return pfn_to_page(pfn);
1350 }
1351
1352 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1353 {
1354         pfn_t pfn;
1355
1356         pfn = gfn_to_pfn(kvm, gfn);
1357
1358         return kvm_pfn_to_page(pfn);
1359 }
1360
1361 EXPORT_SYMBOL_GPL(gfn_to_page);
1362
1363 void kvm_release_page_clean(struct page *page)
1364 {
1365         WARN_ON(is_error_page(page));
1366
1367         kvm_release_pfn_clean(page_to_pfn(page));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1370
1371 void kvm_release_pfn_clean(pfn_t pfn)
1372 {
1373         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1374                 put_page(pfn_to_page(pfn));
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1377
1378 void kvm_release_page_dirty(struct page *page)
1379 {
1380         WARN_ON(is_error_page(page));
1381
1382         kvm_release_pfn_dirty(page_to_pfn(page));
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1385
1386 void kvm_release_pfn_dirty(pfn_t pfn)
1387 {
1388         kvm_set_pfn_dirty(pfn);
1389         kvm_release_pfn_clean(pfn);
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1392
1393 void kvm_set_page_dirty(struct page *page)
1394 {
1395         kvm_set_pfn_dirty(page_to_pfn(page));
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1398
1399 void kvm_set_pfn_dirty(pfn_t pfn)
1400 {
1401         if (!kvm_is_mmio_pfn(pfn)) {
1402                 struct page *page = pfn_to_page(pfn);
1403                 if (!PageReserved(page))
1404                         SetPageDirty(page);
1405         }
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1408
1409 void kvm_set_pfn_accessed(pfn_t pfn)
1410 {
1411         if (!kvm_is_mmio_pfn(pfn))
1412                 mark_page_accessed(pfn_to_page(pfn));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1415
1416 void kvm_get_pfn(pfn_t pfn)
1417 {
1418         if (!kvm_is_mmio_pfn(pfn))
1419                 get_page(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1422
1423 static int next_segment(unsigned long len, int offset)
1424 {
1425         if (len > PAGE_SIZE - offset)
1426                 return PAGE_SIZE - offset;
1427         else
1428                 return len;
1429 }
1430
1431 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1432                         int len)
1433 {
1434         int r;
1435         unsigned long addr;
1436
1437         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1438         if (kvm_is_error_hva(addr))
1439                 return -EFAULT;
1440         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1441         if (r)
1442                 return -EFAULT;
1443         return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1446
1447 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1448 {
1449         gfn_t gfn = gpa >> PAGE_SHIFT;
1450         int seg;
1451         int offset = offset_in_page(gpa);
1452         int ret;
1453
1454         while ((seg = next_segment(len, offset)) != 0) {
1455                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1456                 if (ret < 0)
1457                         return ret;
1458                 offset = 0;
1459                 len -= seg;
1460                 data += seg;
1461                 ++gfn;
1462         }
1463         return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_read_guest);
1466
1467 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1468                           unsigned long len)
1469 {
1470         int r;
1471         unsigned long addr;
1472         gfn_t gfn = gpa >> PAGE_SHIFT;
1473         int offset = offset_in_page(gpa);
1474
1475         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1476         if (kvm_is_error_hva(addr))
1477                 return -EFAULT;
1478         pagefault_disable();
1479         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1480         pagefault_enable();
1481         if (r)
1482                 return -EFAULT;
1483         return 0;
1484 }
1485 EXPORT_SYMBOL(kvm_read_guest_atomic);
1486
1487 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1488                          int offset, int len)
1489 {
1490         int r;
1491         unsigned long addr;
1492
1493         addr = gfn_to_hva(kvm, gfn);
1494         if (kvm_is_error_hva(addr))
1495                 return -EFAULT;
1496         r = __copy_to_user((void __user *)addr + offset, data, len);
1497         if (r)
1498                 return -EFAULT;
1499         mark_page_dirty(kvm, gfn);
1500         return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1503
1504 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1505                     unsigned long len)
1506 {
1507         gfn_t gfn = gpa >> PAGE_SHIFT;
1508         int seg;
1509         int offset = offset_in_page(gpa);
1510         int ret;
1511
1512         while ((seg = next_segment(len, offset)) != 0) {
1513                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1514                 if (ret < 0)
1515                         return ret;
1516                 offset = 0;
1517                 len -= seg;
1518                 data += seg;
1519                 ++gfn;
1520         }
1521         return 0;
1522 }
1523
1524 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1525                               gpa_t gpa, unsigned long len)
1526 {
1527         struct kvm_memslots *slots = kvm_memslots(kvm);
1528         int offset = offset_in_page(gpa);
1529         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1530         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1531         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1532         gfn_t nr_pages_avail;
1533
1534         ghc->gpa = gpa;
1535         ghc->generation = slots->generation;
1536         ghc->len = len;
1537         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1538         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1539         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1540                 ghc->hva += offset;
1541         } else {
1542                 /*
1543                  * If the requested region crosses two memslots, we still
1544                  * verify that the entire region is valid here.
1545                  */
1546                 while (start_gfn <= end_gfn) {
1547                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1548                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1549                                                    &nr_pages_avail);
1550                         if (kvm_is_error_hva(ghc->hva))
1551                                 return -EFAULT;
1552                         start_gfn += nr_pages_avail;
1553                 }
1554                 /* Use the slow path for cross page reads and writes. */
1555                 ghc->memslot = NULL;
1556         }
1557         return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1560
1561 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1562                            void *data, unsigned long len)
1563 {
1564         struct kvm_memslots *slots = kvm_memslots(kvm);
1565         int r;
1566
1567         BUG_ON(len > ghc->len);
1568
1569         if (slots->generation != ghc->generation)
1570                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1571
1572         if (unlikely(!ghc->memslot))
1573                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1574
1575         if (kvm_is_error_hva(ghc->hva))
1576                 return -EFAULT;
1577
1578         r = __copy_to_user((void __user *)ghc->hva, data, len);
1579         if (r)
1580                 return -EFAULT;
1581         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1582
1583         return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1586
1587 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1588                            void *data, unsigned long len)
1589 {
1590         struct kvm_memslots *slots = kvm_memslots(kvm);
1591         int r;
1592
1593         BUG_ON(len > ghc->len);
1594
1595         if (slots->generation != ghc->generation)
1596                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1597
1598         if (unlikely(!ghc->memslot))
1599                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1600
1601         if (kvm_is_error_hva(ghc->hva))
1602                 return -EFAULT;
1603
1604         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1605         if (r)
1606                 return -EFAULT;
1607
1608         return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1611
1612 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1613 {
1614         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1615                                     offset, len);
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1618
1619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1620 {
1621         gfn_t gfn = gpa >> PAGE_SHIFT;
1622         int seg;
1623         int offset = offset_in_page(gpa);
1624         int ret;
1625
1626         while ((seg = next_segment(len, offset)) != 0) {
1627                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1628                 if (ret < 0)
1629                         return ret;
1630                 offset = 0;
1631                 len -= seg;
1632                 ++gfn;
1633         }
1634         return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1637
1638 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1639                              gfn_t gfn)
1640 {
1641         if (memslot && memslot->dirty_bitmap) {
1642                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1643
1644                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1645         }
1646 }
1647
1648 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1649 {
1650         struct kvm_memory_slot *memslot;
1651
1652         memslot = gfn_to_memslot(kvm, gfn);
1653         mark_page_dirty_in_slot(kvm, memslot, gfn);
1654 }
1655
1656 /*
1657  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1658  */
1659 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1660 {
1661         DEFINE_WAIT(wait);
1662
1663         for (;;) {
1664                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1665
1666                 if (kvm_arch_vcpu_runnable(vcpu)) {
1667                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1668                         break;
1669                 }
1670                 if (kvm_cpu_has_pending_timer(vcpu))
1671                         break;
1672                 if (signal_pending(current))
1673                         break;
1674
1675                 schedule();
1676         }
1677
1678         finish_wait(&vcpu->wq, &wait);
1679 }
1680
1681 #ifndef CONFIG_S390
1682 /*
1683  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1684  */
1685 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1686 {
1687         int me;
1688         int cpu = vcpu->cpu;
1689         wait_queue_head_t *wqp;
1690
1691         wqp = kvm_arch_vcpu_wq(vcpu);
1692         if (waitqueue_active(wqp)) {
1693                 wake_up_interruptible(wqp);
1694                 ++vcpu->stat.halt_wakeup;
1695         }
1696
1697         me = get_cpu();
1698         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1699                 if (kvm_arch_vcpu_should_kick(vcpu))
1700                         smp_send_reschedule(cpu);
1701         put_cpu();
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1704 #endif /* !CONFIG_S390 */
1705
1706 void kvm_resched(struct kvm_vcpu *vcpu)
1707 {
1708         if (!need_resched())
1709                 return;
1710         cond_resched();
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_resched);
1713
1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1715 {
1716         struct pid *pid;
1717         struct task_struct *task = NULL;
1718         bool ret = false;
1719
1720         rcu_read_lock();
1721         pid = rcu_dereference(target->pid);
1722         if (pid)
1723                 task = get_pid_task(target->pid, PIDTYPE_PID);
1724         rcu_read_unlock();
1725         if (!task)
1726                 return ret;
1727         if (task->flags & PF_VCPU) {
1728                 put_task_struct(task);
1729                 return ret;
1730         }
1731         ret = yield_to(task, 1);
1732         put_task_struct(task);
1733
1734         return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1737
1738 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1739 /*
1740  * Helper that checks whether a VCPU is eligible for directed yield.
1741  * Most eligible candidate to yield is decided by following heuristics:
1742  *
1743  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1744  *  (preempted lock holder), indicated by @in_spin_loop.
1745  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1746  *
1747  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1748  *  chance last time (mostly it has become eligible now since we have probably
1749  *  yielded to lockholder in last iteration. This is done by toggling
1750  *  @dy_eligible each time a VCPU checked for eligibility.)
1751  *
1752  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1753  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1754  *  burning. Giving priority for a potential lock-holder increases lock
1755  *  progress.
1756  *
1757  *  Since algorithm is based on heuristics, accessing another VCPU data without
1758  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1759  *  and continue with next VCPU and so on.
1760  */
1761 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1762 {
1763         bool eligible;
1764
1765         eligible = !vcpu->spin_loop.in_spin_loop ||
1766                         (vcpu->spin_loop.in_spin_loop &&
1767                          vcpu->spin_loop.dy_eligible);
1768
1769         if (vcpu->spin_loop.in_spin_loop)
1770                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1771
1772         return eligible;
1773 }
1774 #endif
1775
1776 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1777 {
1778         struct kvm *kvm = me->kvm;
1779         struct kvm_vcpu *vcpu;
1780         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1781         int yielded = 0;
1782         int try = 3;
1783         int pass;
1784         int i;
1785
1786         kvm_vcpu_set_in_spin_loop(me, true);
1787         /*
1788          * We boost the priority of a VCPU that is runnable but not
1789          * currently running, because it got preempted by something
1790          * else and called schedule in __vcpu_run.  Hopefully that
1791          * VCPU is holding the lock that we need and will release it.
1792          * We approximate round-robin by starting at the last boosted VCPU.
1793          */
1794         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1795                 kvm_for_each_vcpu(i, vcpu, kvm) {
1796                         if (!pass && i <= last_boosted_vcpu) {
1797                                 i = last_boosted_vcpu;
1798                                 continue;
1799                         } else if (pass && i > last_boosted_vcpu)
1800                                 break;
1801                         if (!ACCESS_ONCE(vcpu->preempted))
1802                                 continue;
1803                         if (vcpu == me)
1804                                 continue;
1805                         if (waitqueue_active(&vcpu->wq))
1806                                 continue;
1807                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1808                                 continue;
1809
1810                         yielded = kvm_vcpu_yield_to(vcpu);
1811                         if (yielded > 0) {
1812                                 kvm->last_boosted_vcpu = i;
1813                                 break;
1814                         } else if (yielded < 0) {
1815                                 try--;
1816                                 if (!try)
1817                                         break;
1818                         }
1819                 }
1820         }
1821         kvm_vcpu_set_in_spin_loop(me, false);
1822
1823         /* Ensure vcpu is not eligible during next spinloop */
1824         kvm_vcpu_set_dy_eligible(me, false);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1827
1828 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 {
1830         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1831         struct page *page;
1832
1833         if (vmf->pgoff == 0)
1834                 page = virt_to_page(vcpu->run);
1835 #ifdef CONFIG_X86
1836         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1837                 page = virt_to_page(vcpu->arch.pio_data);
1838 #endif
1839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1840         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1841                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1842 #endif
1843         else
1844                 return kvm_arch_vcpu_fault(vcpu, vmf);
1845         get_page(page);
1846         vmf->page = page;
1847         return 0;
1848 }
1849
1850 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1851         .fault = kvm_vcpu_fault,
1852 };
1853
1854 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1855 {
1856         vma->vm_ops = &kvm_vcpu_vm_ops;
1857         return 0;
1858 }
1859
1860 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1861 {
1862         struct kvm_vcpu *vcpu = filp->private_data;
1863
1864         kvm_put_kvm(vcpu->kvm);
1865         return 0;
1866 }
1867
1868 static struct file_operations kvm_vcpu_fops = {
1869         .release        = kvm_vcpu_release,
1870         .unlocked_ioctl = kvm_vcpu_ioctl,
1871 #ifdef CONFIG_COMPAT
1872         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1873 #endif
1874         .mmap           = kvm_vcpu_mmap,
1875         .llseek         = noop_llseek,
1876 };
1877
1878 /*
1879  * Allocates an inode for the vcpu.
1880  */
1881 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1882 {
1883         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1884 }
1885
1886 /*
1887  * Creates some virtual cpus.  Good luck creating more than one.
1888  */
1889 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1890 {
1891         int r;
1892         struct kvm_vcpu *vcpu, *v;
1893
1894         vcpu = kvm_arch_vcpu_create(kvm, id);
1895         if (IS_ERR(vcpu))
1896                 return PTR_ERR(vcpu);
1897
1898         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1899
1900         r = kvm_arch_vcpu_setup(vcpu);
1901         if (r)
1902                 goto vcpu_destroy;
1903
1904         mutex_lock(&kvm->lock);
1905         if (!kvm_vcpu_compatible(vcpu)) {
1906                 r = -EINVAL;
1907                 goto unlock_vcpu_destroy;
1908         }
1909         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1910                 r = -EINVAL;
1911                 goto unlock_vcpu_destroy;
1912         }
1913
1914         kvm_for_each_vcpu(r, v, kvm)
1915                 if (v->vcpu_id == id) {
1916                         r = -EEXIST;
1917                         goto unlock_vcpu_destroy;
1918                 }
1919
1920         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1921
1922         /* Now it's all set up, let userspace reach it */
1923         kvm_get_kvm(kvm);
1924         r = create_vcpu_fd(vcpu);
1925         if (r < 0) {
1926                 kvm_put_kvm(kvm);
1927                 goto unlock_vcpu_destroy;
1928         }
1929
1930         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1931         smp_wmb();
1932         atomic_inc(&kvm->online_vcpus);
1933
1934         mutex_unlock(&kvm->lock);
1935         kvm_arch_vcpu_postcreate(vcpu);
1936         return r;
1937
1938 unlock_vcpu_destroy:
1939         mutex_unlock(&kvm->lock);
1940 vcpu_destroy:
1941         kvm_arch_vcpu_destroy(vcpu);
1942         return r;
1943 }
1944
1945 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1946 {
1947         if (sigset) {
1948                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1949                 vcpu->sigset_active = 1;
1950                 vcpu->sigset = *sigset;
1951         } else
1952                 vcpu->sigset_active = 0;
1953         return 0;
1954 }
1955
1956 static long kvm_vcpu_ioctl(struct file *filp,
1957                            unsigned int ioctl, unsigned long arg)
1958 {
1959         struct kvm_vcpu *vcpu = filp->private_data;
1960         void __user *argp = (void __user *)arg;
1961         int r;
1962         struct kvm_fpu *fpu = NULL;
1963         struct kvm_sregs *kvm_sregs = NULL;
1964
1965         if (vcpu->kvm->mm != current->mm)
1966                 return -EIO;
1967
1968 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1969         /*
1970          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1971          * so vcpu_load() would break it.
1972          */
1973         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1974                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1975 #endif
1976
1977
1978         r = vcpu_load(vcpu);
1979         if (r)
1980                 return r;
1981         switch (ioctl) {
1982         case KVM_RUN:
1983                 r = -EINVAL;
1984                 if (arg)
1985                         goto out;
1986                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1987                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1988                 break;
1989         case KVM_GET_REGS: {
1990                 struct kvm_regs *kvm_regs;
1991
1992                 r = -ENOMEM;
1993                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1994                 if (!kvm_regs)
1995                         goto out;
1996                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1997                 if (r)
1998                         goto out_free1;
1999                 r = -EFAULT;
2000                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2001                         goto out_free1;
2002                 r = 0;
2003 out_free1:
2004                 kfree(kvm_regs);
2005                 break;
2006         }
2007         case KVM_SET_REGS: {
2008                 struct kvm_regs *kvm_regs;
2009
2010                 r = -ENOMEM;
2011                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2012                 if (IS_ERR(kvm_regs)) {
2013                         r = PTR_ERR(kvm_regs);
2014                         goto out;
2015                 }
2016                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2017                 kfree(kvm_regs);
2018                 break;
2019         }
2020         case KVM_GET_SREGS: {
2021                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2022                 r = -ENOMEM;
2023                 if (!kvm_sregs)
2024                         goto out;
2025                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2026                 if (r)
2027                         goto out;
2028                 r = -EFAULT;
2029                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2030                         goto out;
2031                 r = 0;
2032                 break;
2033         }
2034         case KVM_SET_SREGS: {
2035                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2036                 if (IS_ERR(kvm_sregs)) {
2037                         r = PTR_ERR(kvm_sregs);
2038                         kvm_sregs = NULL;
2039                         goto out;
2040                 }
2041                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2042                 break;
2043         }
2044         case KVM_GET_MP_STATE: {
2045                 struct kvm_mp_state mp_state;
2046
2047                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2048                 if (r)
2049                         goto out;
2050                 r = -EFAULT;
2051                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2052                         goto out;
2053                 r = 0;
2054                 break;
2055         }
2056         case KVM_SET_MP_STATE: {
2057                 struct kvm_mp_state mp_state;
2058
2059                 r = -EFAULT;
2060                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2061                         goto out;
2062                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2063                 break;
2064         }
2065         case KVM_TRANSLATE: {
2066                 struct kvm_translation tr;
2067
2068                 r = -EFAULT;
2069                 if (copy_from_user(&tr, argp, sizeof tr))
2070                         goto out;
2071                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2072                 if (r)
2073                         goto out;
2074                 r = -EFAULT;
2075                 if (copy_to_user(argp, &tr, sizeof tr))
2076                         goto out;
2077                 r = 0;
2078                 break;
2079         }
2080         case KVM_SET_GUEST_DEBUG: {
2081                 struct kvm_guest_debug dbg;
2082
2083                 r = -EFAULT;
2084                 if (copy_from_user(&dbg, argp, sizeof dbg))
2085                         goto out;
2086                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2087                 break;
2088         }
2089         case KVM_SET_SIGNAL_MASK: {
2090                 struct kvm_signal_mask __user *sigmask_arg = argp;
2091                 struct kvm_signal_mask kvm_sigmask;
2092                 sigset_t sigset, *p;
2093
2094                 p = NULL;
2095                 if (argp) {
2096                         r = -EFAULT;
2097                         if (copy_from_user(&kvm_sigmask, argp,
2098                                            sizeof kvm_sigmask))
2099                                 goto out;
2100                         r = -EINVAL;
2101                         if (kvm_sigmask.len != sizeof sigset)
2102                                 goto out;
2103                         r = -EFAULT;
2104                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2105                                            sizeof sigset))
2106                                 goto out;
2107                         p = &sigset;
2108                 }
2109                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2110                 break;
2111         }
2112         case KVM_GET_FPU: {
2113                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2114                 r = -ENOMEM;
2115                 if (!fpu)
2116                         goto out;
2117                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2118                 if (r)
2119                         goto out;
2120                 r = -EFAULT;
2121                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2122                         goto out;
2123                 r = 0;
2124                 break;
2125         }
2126         case KVM_SET_FPU: {
2127                 fpu = memdup_user(argp, sizeof(*fpu));
2128                 if (IS_ERR(fpu)) {
2129                         r = PTR_ERR(fpu);
2130                         fpu = NULL;
2131                         goto out;
2132                 }
2133                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2134                 break;
2135         }
2136         default:
2137                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2138         }
2139 out:
2140         vcpu_put(vcpu);
2141         kfree(fpu);
2142         kfree(kvm_sregs);
2143         return r;
2144 }
2145
2146 #ifdef CONFIG_COMPAT
2147 static long kvm_vcpu_compat_ioctl(struct file *filp,
2148                                   unsigned int ioctl, unsigned long arg)
2149 {
2150         struct kvm_vcpu *vcpu = filp->private_data;
2151         void __user *argp = compat_ptr(arg);
2152         int r;
2153
2154         if (vcpu->kvm->mm != current->mm)
2155                 return -EIO;
2156
2157         switch (ioctl) {
2158         case KVM_SET_SIGNAL_MASK: {
2159                 struct kvm_signal_mask __user *sigmask_arg = argp;
2160                 struct kvm_signal_mask kvm_sigmask;
2161                 compat_sigset_t csigset;
2162                 sigset_t sigset;
2163
2164                 if (argp) {
2165                         r = -EFAULT;
2166                         if (copy_from_user(&kvm_sigmask, argp,
2167                                            sizeof kvm_sigmask))
2168                                 goto out;
2169                         r = -EINVAL;
2170                         if (kvm_sigmask.len != sizeof csigset)
2171                                 goto out;
2172                         r = -EFAULT;
2173                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2174                                            sizeof csigset))
2175                                 goto out;
2176                         sigset_from_compat(&sigset, &csigset);
2177                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2178                 } else
2179                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2180                 break;
2181         }
2182         default:
2183                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2184         }
2185
2186 out:
2187         return r;
2188 }
2189 #endif
2190
2191 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2192                                  int (*accessor)(struct kvm_device *dev,
2193                                                  struct kvm_device_attr *attr),
2194                                  unsigned long arg)
2195 {
2196         struct kvm_device_attr attr;
2197
2198         if (!accessor)
2199                 return -EPERM;
2200
2201         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2202                 return -EFAULT;
2203
2204         return accessor(dev, &attr);
2205 }
2206
2207 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2208                              unsigned long arg)
2209 {
2210         struct kvm_device *dev = filp->private_data;
2211
2212         switch (ioctl) {
2213         case KVM_SET_DEVICE_ATTR:
2214                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2215         case KVM_GET_DEVICE_ATTR:
2216                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2217         case KVM_HAS_DEVICE_ATTR:
2218                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2219         default:
2220                 if (dev->ops->ioctl)
2221                         return dev->ops->ioctl(dev, ioctl, arg);
2222
2223                 return -ENOTTY;
2224         }
2225 }
2226
2227 static int kvm_device_release(struct inode *inode, struct file *filp)
2228 {
2229         struct kvm_device *dev = filp->private_data;
2230         struct kvm *kvm = dev->kvm;
2231
2232         kvm_put_kvm(kvm);
2233         return 0;
2234 }
2235
2236 static const struct file_operations kvm_device_fops = {
2237         .unlocked_ioctl = kvm_device_ioctl,
2238 #ifdef CONFIG_COMPAT
2239         .compat_ioctl = kvm_device_ioctl,
2240 #endif
2241         .release = kvm_device_release,
2242 };
2243
2244 struct kvm_device *kvm_device_from_filp(struct file *filp)
2245 {
2246         if (filp->f_op != &kvm_device_fops)
2247                 return NULL;
2248
2249         return filp->private_data;
2250 }
2251
2252 static int kvm_ioctl_create_device(struct kvm *kvm,
2253                                    struct kvm_create_device *cd)
2254 {
2255         struct kvm_device_ops *ops = NULL;
2256         struct kvm_device *dev;
2257         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2258         int ret;
2259
2260         switch (cd->type) {
2261 #ifdef CONFIG_KVM_MPIC
2262         case KVM_DEV_TYPE_FSL_MPIC_20:
2263         case KVM_DEV_TYPE_FSL_MPIC_42:
2264                 ops = &kvm_mpic_ops;
2265                 break;
2266 #endif
2267 #ifdef CONFIG_KVM_XICS
2268         case KVM_DEV_TYPE_XICS:
2269                 ops = &kvm_xics_ops;
2270                 break;
2271 #endif
2272         default:
2273                 return -ENODEV;
2274         }
2275
2276         if (test)
2277                 return 0;
2278
2279         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2280         if (!dev)
2281                 return -ENOMEM;
2282
2283         dev->ops = ops;
2284         dev->kvm = kvm;
2285
2286         ret = ops->create(dev, cd->type);
2287         if (ret < 0) {
2288                 kfree(dev);
2289                 return ret;
2290         }
2291
2292         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2293         if (ret < 0) {
2294                 ops->destroy(dev);
2295                 return ret;
2296         }
2297
2298         list_add(&dev->vm_node, &kvm->devices);
2299         kvm_get_kvm(kvm);
2300         cd->fd = ret;
2301         return 0;
2302 }
2303
2304 static long kvm_vm_ioctl(struct file *filp,
2305                            unsigned int ioctl, unsigned long arg)
2306 {
2307         struct kvm *kvm = filp->private_data;
2308         void __user *argp = (void __user *)arg;
2309         int r;
2310
2311         if (kvm->mm != current->mm)
2312                 return -EIO;
2313         switch (ioctl) {
2314         case KVM_CREATE_VCPU:
2315                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2316                 break;
2317         case KVM_SET_USER_MEMORY_REGION: {
2318                 struct kvm_userspace_memory_region kvm_userspace_mem;
2319
2320                 r = -EFAULT;
2321                 if (copy_from_user(&kvm_userspace_mem, argp,
2322                                                 sizeof kvm_userspace_mem))
2323                         goto out;
2324
2325                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2326                 break;
2327         }
2328         case KVM_GET_DIRTY_LOG: {
2329                 struct kvm_dirty_log log;
2330
2331                 r = -EFAULT;
2332                 if (copy_from_user(&log, argp, sizeof log))
2333                         goto out;
2334                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2335                 break;
2336         }
2337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2338         case KVM_REGISTER_COALESCED_MMIO: {
2339                 struct kvm_coalesced_mmio_zone zone;
2340                 r = -EFAULT;
2341                 if (copy_from_user(&zone, argp, sizeof zone))
2342                         goto out;
2343                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2344                 break;
2345         }
2346         case KVM_UNREGISTER_COALESCED_MMIO: {
2347                 struct kvm_coalesced_mmio_zone zone;
2348                 r = -EFAULT;
2349                 if (copy_from_user(&zone, argp, sizeof zone))
2350                         goto out;
2351                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2352                 break;
2353         }
2354 #endif
2355         case KVM_IRQFD: {
2356                 struct kvm_irqfd data;
2357
2358                 r = -EFAULT;
2359                 if (copy_from_user(&data, argp, sizeof data))
2360                         goto out;
2361                 r = kvm_irqfd(kvm, &data);
2362                 break;
2363         }
2364         case KVM_IOEVENTFD: {
2365                 struct kvm_ioeventfd data;
2366
2367                 r = -EFAULT;
2368                 if (copy_from_user(&data, argp, sizeof data))
2369                         goto out;
2370                 r = kvm_ioeventfd(kvm, &data);
2371                 break;
2372         }
2373 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2374         case KVM_SET_BOOT_CPU_ID:
2375                 r = 0;
2376                 mutex_lock(&kvm->lock);
2377                 if (atomic_read(&kvm->online_vcpus) != 0)
2378                         r = -EBUSY;
2379                 else
2380                         kvm->bsp_vcpu_id = arg;
2381                 mutex_unlock(&kvm->lock);
2382                 break;
2383 #endif
2384 #ifdef CONFIG_HAVE_KVM_MSI
2385         case KVM_SIGNAL_MSI: {
2386                 struct kvm_msi msi;
2387
2388                 r = -EFAULT;
2389                 if (copy_from_user(&msi, argp, sizeof msi))
2390                         goto out;
2391                 r = kvm_send_userspace_msi(kvm, &msi);
2392                 break;
2393         }
2394 #endif
2395 #ifdef __KVM_HAVE_IRQ_LINE
2396         case KVM_IRQ_LINE_STATUS:
2397         case KVM_IRQ_LINE: {
2398                 struct kvm_irq_level irq_event;
2399
2400                 r = -EFAULT;
2401                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2402                         goto out;
2403
2404                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2405                                         ioctl == KVM_IRQ_LINE_STATUS);
2406                 if (r)
2407                         goto out;
2408
2409                 r = -EFAULT;
2410                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2411                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2412                                 goto out;
2413                 }
2414
2415                 r = 0;
2416                 break;
2417         }
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2420         case KVM_SET_GSI_ROUTING: {
2421                 struct kvm_irq_routing routing;
2422                 struct kvm_irq_routing __user *urouting;
2423                 struct kvm_irq_routing_entry *entries;
2424
2425                 r = -EFAULT;
2426                 if (copy_from_user(&routing, argp, sizeof(routing)))
2427                         goto out;
2428                 r = -EINVAL;
2429                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2430                         goto out;
2431                 if (routing.flags)
2432                         goto out;
2433                 r = -ENOMEM;
2434                 entries = vmalloc(routing.nr * sizeof(*entries));
2435                 if (!entries)
2436                         goto out;
2437                 r = -EFAULT;
2438                 urouting = argp;
2439                 if (copy_from_user(entries, urouting->entries,
2440                                    routing.nr * sizeof(*entries)))
2441                         goto out_free_irq_routing;
2442                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2443                                         routing.flags);
2444         out_free_irq_routing:
2445                 vfree(entries);
2446                 break;
2447         }
2448 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2449         case KVM_CREATE_DEVICE: {
2450                 struct kvm_create_device cd;
2451
2452                 r = -EFAULT;
2453                 if (copy_from_user(&cd, argp, sizeof(cd)))
2454                         goto out;
2455
2456                 r = kvm_ioctl_create_device(kvm, &cd);
2457                 if (r)
2458                         goto out;
2459
2460                 r = -EFAULT;
2461                 if (copy_to_user(argp, &cd, sizeof(cd)))
2462                         goto out;
2463
2464                 r = 0;
2465                 break;
2466         }
2467         default:
2468                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2469                 if (r == -ENOTTY)
2470                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2471         }
2472 out:
2473         return r;
2474 }
2475
2476 #ifdef CONFIG_COMPAT
2477 struct compat_kvm_dirty_log {
2478         __u32 slot;
2479         __u32 padding1;
2480         union {
2481                 compat_uptr_t dirty_bitmap; /* one bit per page */
2482                 __u64 padding2;
2483         };
2484 };
2485
2486 static long kvm_vm_compat_ioctl(struct file *filp,
2487                            unsigned int ioctl, unsigned long arg)
2488 {
2489         struct kvm *kvm = filp->private_data;
2490         int r;
2491
2492         if (kvm->mm != current->mm)
2493                 return -EIO;
2494         switch (ioctl) {
2495         case KVM_GET_DIRTY_LOG: {
2496                 struct compat_kvm_dirty_log compat_log;
2497                 struct kvm_dirty_log log;
2498
2499                 r = -EFAULT;
2500                 if (copy_from_user(&compat_log, (void __user *)arg,
2501                                    sizeof(compat_log)))
2502                         goto out;
2503                 log.slot         = compat_log.slot;
2504                 log.padding1     = compat_log.padding1;
2505                 log.padding2     = compat_log.padding2;
2506                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2507
2508                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2509                 break;
2510         }
2511         default:
2512                 r = kvm_vm_ioctl(filp, ioctl, arg);
2513         }
2514
2515 out:
2516         return r;
2517 }
2518 #endif
2519
2520 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2521 {
2522         struct page *page[1];
2523         unsigned long addr;
2524         int npages;
2525         gfn_t gfn = vmf->pgoff;
2526         struct kvm *kvm = vma->vm_file->private_data;
2527
2528         addr = gfn_to_hva(kvm, gfn);
2529         if (kvm_is_error_hva(addr))
2530                 return VM_FAULT_SIGBUS;
2531
2532         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2533                                 NULL);
2534         if (unlikely(npages != 1))
2535                 return VM_FAULT_SIGBUS;
2536
2537         vmf->page = page[0];
2538         return 0;
2539 }
2540
2541 static const struct vm_operations_struct kvm_vm_vm_ops = {
2542         .fault = kvm_vm_fault,
2543 };
2544
2545 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2546 {
2547         vma->vm_ops = &kvm_vm_vm_ops;
2548         return 0;
2549 }
2550
2551 static struct file_operations kvm_vm_fops = {
2552         .release        = kvm_vm_release,
2553         .unlocked_ioctl = kvm_vm_ioctl,
2554 #ifdef CONFIG_COMPAT
2555         .compat_ioctl   = kvm_vm_compat_ioctl,
2556 #endif
2557         .mmap           = kvm_vm_mmap,
2558         .llseek         = noop_llseek,
2559 };
2560
2561 static int kvm_dev_ioctl_create_vm(unsigned long type)
2562 {
2563         int r;
2564         struct kvm *kvm;
2565
2566         kvm = kvm_create_vm(type);
2567         if (IS_ERR(kvm))
2568                 return PTR_ERR(kvm);
2569 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2570         r = kvm_coalesced_mmio_init(kvm);
2571         if (r < 0) {
2572                 kvm_put_kvm(kvm);
2573                 return r;
2574         }
2575 #endif
2576         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2577         if (r < 0)
2578                 kvm_put_kvm(kvm);
2579
2580         return r;
2581 }
2582
2583 static long kvm_dev_ioctl_check_extension_generic(long arg)
2584 {
2585         switch (arg) {
2586         case KVM_CAP_USER_MEMORY:
2587         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2588         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2589 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2590         case KVM_CAP_SET_BOOT_CPU_ID:
2591 #endif
2592         case KVM_CAP_INTERNAL_ERROR_DATA:
2593 #ifdef CONFIG_HAVE_KVM_MSI
2594         case KVM_CAP_SIGNAL_MSI:
2595 #endif
2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2597         case KVM_CAP_IRQFD_RESAMPLE:
2598 #endif
2599                 return 1;
2600 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2601         case KVM_CAP_IRQ_ROUTING:
2602                 return KVM_MAX_IRQ_ROUTES;
2603 #endif
2604         default:
2605                 break;
2606         }
2607         return kvm_dev_ioctl_check_extension(arg);
2608 }
2609
2610 static long kvm_dev_ioctl(struct file *filp,
2611                           unsigned int ioctl, unsigned long arg)
2612 {
2613         long r = -EINVAL;
2614
2615         switch (ioctl) {
2616         case KVM_GET_API_VERSION:
2617                 r = -EINVAL;
2618                 if (arg)
2619                         goto out;
2620                 r = KVM_API_VERSION;
2621                 break;
2622         case KVM_CREATE_VM:
2623                 r = kvm_dev_ioctl_create_vm(arg);
2624                 break;
2625         case KVM_CHECK_EXTENSION:
2626                 r = kvm_dev_ioctl_check_extension_generic(arg);
2627                 break;
2628         case KVM_GET_VCPU_MMAP_SIZE:
2629                 r = -EINVAL;
2630                 if (arg)
2631                         goto out;
2632                 r = PAGE_SIZE;     /* struct kvm_run */
2633 #ifdef CONFIG_X86
2634                 r += PAGE_SIZE;    /* pio data page */
2635 #endif
2636 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2637                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2638 #endif
2639                 break;
2640         case KVM_TRACE_ENABLE:
2641         case KVM_TRACE_PAUSE:
2642         case KVM_TRACE_DISABLE:
2643                 r = -EOPNOTSUPP;
2644                 break;
2645         default:
2646                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2647         }
2648 out:
2649         return r;
2650 }
2651
2652 static struct file_operations kvm_chardev_ops = {
2653         .unlocked_ioctl = kvm_dev_ioctl,
2654         .compat_ioctl   = kvm_dev_ioctl,
2655         .llseek         = noop_llseek,
2656 };
2657
2658 static struct miscdevice kvm_dev = {
2659         KVM_MINOR,
2660         "kvm",
2661         &kvm_chardev_ops,
2662 };
2663
2664 static void hardware_enable_nolock(void *junk)
2665 {
2666         int cpu = raw_smp_processor_id();
2667         int r;
2668
2669         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2670                 return;
2671
2672         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2673
2674         r = kvm_arch_hardware_enable(NULL);
2675
2676         if (r) {
2677                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2678                 atomic_inc(&hardware_enable_failed);
2679                 printk(KERN_INFO "kvm: enabling virtualization on "
2680                                  "CPU%d failed\n", cpu);
2681         }
2682 }
2683
2684 static void hardware_enable(void *junk)
2685 {
2686         raw_spin_lock(&kvm_lock);
2687         hardware_enable_nolock(junk);
2688         raw_spin_unlock(&kvm_lock);
2689 }
2690
2691 static void hardware_disable_nolock(void *junk)
2692 {
2693         int cpu = raw_smp_processor_id();
2694
2695         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2696                 return;
2697         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2698         kvm_arch_hardware_disable(NULL);
2699 }
2700
2701 static void hardware_disable(void *junk)
2702 {
2703         raw_spin_lock(&kvm_lock);
2704         hardware_disable_nolock(junk);
2705         raw_spin_unlock(&kvm_lock);
2706 }
2707
2708 static void hardware_disable_all_nolock(void)
2709 {
2710         BUG_ON(!kvm_usage_count);
2711
2712         kvm_usage_count--;
2713         if (!kvm_usage_count)
2714                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2715 }
2716
2717 static void hardware_disable_all(void)
2718 {
2719         raw_spin_lock(&kvm_lock);
2720         hardware_disable_all_nolock();
2721         raw_spin_unlock(&kvm_lock);
2722 }
2723
2724 static int hardware_enable_all(void)
2725 {
2726         int r = 0;
2727
2728         raw_spin_lock(&kvm_lock);
2729
2730         kvm_usage_count++;
2731         if (kvm_usage_count == 1) {
2732                 atomic_set(&hardware_enable_failed, 0);
2733                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2734
2735                 if (atomic_read(&hardware_enable_failed)) {
2736                         hardware_disable_all_nolock();
2737                         r = -EBUSY;
2738                 }
2739         }
2740
2741         raw_spin_unlock(&kvm_lock);
2742
2743         return r;
2744 }
2745
2746 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2747                            void *v)
2748 {
2749         int cpu = (long)v;
2750
2751         if (!kvm_usage_count)
2752                 return NOTIFY_OK;
2753
2754         val &= ~CPU_TASKS_FROZEN;
2755         switch (val) {
2756         case CPU_DYING:
2757                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2758                        cpu);
2759                 hardware_disable(NULL);
2760                 break;
2761         case CPU_STARTING:
2762                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2763                        cpu);
2764                 hardware_enable(NULL);
2765                 break;
2766         }
2767         return NOTIFY_OK;
2768 }
2769
2770 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2771                       void *v)
2772 {
2773         /*
2774          * Some (well, at least mine) BIOSes hang on reboot if
2775          * in vmx root mode.
2776          *
2777          * And Intel TXT required VMX off for all cpu when system shutdown.
2778          */
2779         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2780         kvm_rebooting = true;
2781         on_each_cpu(hardware_disable_nolock, NULL, 1);
2782         return NOTIFY_OK;
2783 }
2784
2785 static struct notifier_block kvm_reboot_notifier = {
2786         .notifier_call = kvm_reboot,
2787         .priority = 0,
2788 };
2789
2790 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2791 {
2792         int i;
2793
2794         for (i = 0; i < bus->dev_count; i++) {
2795                 struct kvm_io_device *pos = bus->range[i].dev;
2796
2797                 kvm_iodevice_destructor(pos);
2798         }
2799         kfree(bus);
2800 }
2801
2802 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2803                                  const struct kvm_io_range *r2)
2804 {
2805         if (r1->addr < r2->addr)
2806                 return -1;
2807         if (r1->addr + r1->len > r2->addr + r2->len)
2808                 return 1;
2809         return 0;
2810 }
2811
2812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2813 {
2814         return kvm_io_bus_cmp(p1, p2);
2815 }
2816
2817 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2818                           gpa_t addr, int len)
2819 {
2820         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2821                 .addr = addr,
2822                 .len = len,
2823                 .dev = dev,
2824         };
2825
2826         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2827                 kvm_io_bus_sort_cmp, NULL);
2828
2829         return 0;
2830 }
2831
2832 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2833                              gpa_t addr, int len)
2834 {
2835         struct kvm_io_range *range, key;
2836         int off;
2837
2838         key = (struct kvm_io_range) {
2839                 .addr = addr,
2840                 .len = len,
2841         };
2842
2843         range = bsearch(&key, bus->range, bus->dev_count,
2844                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2845         if (range == NULL)
2846                 return -ENOENT;
2847
2848         off = range - bus->range;
2849
2850         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2851                 off--;
2852
2853         return off;
2854 }
2855
2856 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2857                               struct kvm_io_range *range, const void *val)
2858 {
2859         int idx;
2860
2861         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2862         if (idx < 0)
2863                 return -EOPNOTSUPP;
2864
2865         while (idx < bus->dev_count &&
2866                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2867                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2868                                         range->len, val))
2869                         return idx;
2870                 idx++;
2871         }
2872
2873         return -EOPNOTSUPP;
2874 }
2875
2876 /* kvm_io_bus_write - called under kvm->slots_lock */
2877 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878                      int len, const void *val)
2879 {
2880         struct kvm_io_bus *bus;
2881         struct kvm_io_range range;
2882         int r;
2883
2884         range = (struct kvm_io_range) {
2885                 .addr = addr,
2886                 .len = len,
2887         };
2888
2889         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2890         r = __kvm_io_bus_write(bus, &range, val);
2891         return r < 0 ? r : 0;
2892 }
2893
2894 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2895 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896                             int len, const void *val, long cookie)
2897 {
2898         struct kvm_io_bus *bus;
2899         struct kvm_io_range range;
2900
2901         range = (struct kvm_io_range) {
2902                 .addr = addr,
2903                 .len = len,
2904         };
2905
2906         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2907
2908         /* First try the device referenced by cookie. */
2909         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2910             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2911                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2912                                         val))
2913                         return cookie;
2914
2915         /*
2916          * cookie contained garbage; fall back to search and return the
2917          * correct cookie value.
2918          */
2919         return __kvm_io_bus_write(bus, &range, val);
2920 }
2921
2922 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2923                              void *val)
2924 {
2925         int idx;
2926
2927         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2928         if (idx < 0)
2929                 return -EOPNOTSUPP;
2930
2931         while (idx < bus->dev_count &&
2932                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2933                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2934                                        range->len, val))
2935                         return idx;
2936                 idx++;
2937         }
2938
2939         return -EOPNOTSUPP;
2940 }
2941
2942 /* kvm_io_bus_read - called under kvm->slots_lock */
2943 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944                     int len, void *val)
2945 {
2946         struct kvm_io_bus *bus;
2947         struct kvm_io_range range;
2948         int r;
2949
2950         range = (struct kvm_io_range) {
2951                 .addr = addr,
2952                 .len = len,
2953         };
2954
2955         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2956         r = __kvm_io_bus_read(bus, &range, val);
2957         return r < 0 ? r : 0;
2958 }
2959
2960 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2961 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2962                            int len, void *val, long cookie)
2963 {
2964         struct kvm_io_bus *bus;
2965         struct kvm_io_range range;
2966
2967         range = (struct kvm_io_range) {
2968                 .addr = addr,
2969                 .len = len,
2970         };
2971
2972         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2973
2974         /* First try the device referenced by cookie. */
2975         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2976             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2977                 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2978                                        val))
2979                         return cookie;
2980
2981         /*
2982          * cookie contained garbage; fall back to search and return the
2983          * correct cookie value.
2984          */
2985         return __kvm_io_bus_read(bus, &range, val);
2986 }
2987
2988 /* Caller must hold slots_lock. */
2989 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2990                             int len, struct kvm_io_device *dev)
2991 {
2992         struct kvm_io_bus *new_bus, *bus;
2993
2994         bus = kvm->buses[bus_idx];
2995         /* exclude ioeventfd which is limited by maximum fd */
2996         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2997                 return -ENOSPC;
2998
2999         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3000                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3001         if (!new_bus)
3002                 return -ENOMEM;
3003         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3004                sizeof(struct kvm_io_range)));
3005         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3006         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3007         synchronize_srcu_expedited(&kvm->srcu);
3008         kfree(bus);
3009
3010         return 0;
3011 }
3012
3013 /* Caller must hold slots_lock. */
3014 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3015                               struct kvm_io_device *dev)
3016 {
3017         int i, r;
3018         struct kvm_io_bus *new_bus, *bus;
3019
3020         bus = kvm->buses[bus_idx];
3021         r = -ENOENT;
3022         for (i = 0; i < bus->dev_count; i++)
3023                 if (bus->range[i].dev == dev) {
3024                         r = 0;
3025                         break;
3026                 }
3027
3028         if (r)
3029                 return r;
3030
3031         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3032                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3033         if (!new_bus)
3034                 return -ENOMEM;
3035
3036         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3037         new_bus->dev_count--;
3038         memcpy(new_bus->range + i, bus->range + i + 1,
3039                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3040
3041         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3042         synchronize_srcu_expedited(&kvm->srcu);
3043         kfree(bus);
3044         return r;
3045 }
3046
3047 static struct notifier_block kvm_cpu_notifier = {
3048         .notifier_call = kvm_cpu_hotplug,
3049 };
3050
3051 static int vm_stat_get(void *_offset, u64 *val)
3052 {
3053         unsigned offset = (long)_offset;
3054         struct kvm *kvm;
3055
3056         *val = 0;
3057         raw_spin_lock(&kvm_lock);
3058         list_for_each_entry(kvm, &vm_list, vm_list)
3059                 *val += *(u32 *)((void *)kvm + offset);
3060         raw_spin_unlock(&kvm_lock);
3061         return 0;
3062 }
3063
3064 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3065
3066 static int vcpu_stat_get(void *_offset, u64 *val)
3067 {
3068         unsigned offset = (long)_offset;
3069         struct kvm *kvm;
3070         struct kvm_vcpu *vcpu;
3071         int i;
3072
3073         *val = 0;
3074         raw_spin_lock(&kvm_lock);
3075         list_for_each_entry(kvm, &vm_list, vm_list)
3076                 kvm_for_each_vcpu(i, vcpu, kvm)
3077                         *val += *(u32 *)((void *)vcpu + offset);
3078
3079         raw_spin_unlock(&kvm_lock);
3080         return 0;
3081 }
3082
3083 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3084
3085 static const struct file_operations *stat_fops[] = {
3086         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3087         [KVM_STAT_VM]   = &vm_stat_fops,
3088 };
3089
3090 static int kvm_init_debug(void)
3091 {
3092         int r = -EFAULT;
3093         struct kvm_stats_debugfs_item *p;
3094
3095         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3096         if (kvm_debugfs_dir == NULL)
3097                 goto out;
3098
3099         for (p = debugfs_entries; p->name; ++p) {
3100                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3101                                                 (void *)(long)p->offset,
3102                                                 stat_fops[p->kind]);
3103                 if (p->dentry == NULL)
3104                         goto out_dir;
3105         }
3106
3107         return 0;
3108
3109 out_dir:
3110         debugfs_remove_recursive(kvm_debugfs_dir);
3111 out:
3112         return r;
3113 }
3114
3115 static void kvm_exit_debug(void)
3116 {
3117         struct kvm_stats_debugfs_item *p;
3118
3119         for (p = debugfs_entries; p->name; ++p)
3120                 debugfs_remove(p->dentry);
3121         debugfs_remove(kvm_debugfs_dir);
3122 }
3123
3124 static int kvm_suspend(void)
3125 {
3126         if (kvm_usage_count)
3127                 hardware_disable_nolock(NULL);
3128         return 0;
3129 }
3130
3131 static void kvm_resume(void)
3132 {
3133         if (kvm_usage_count) {
3134                 WARN_ON(raw_spin_is_locked(&kvm_lock));
3135                 hardware_enable_nolock(NULL);
3136         }
3137 }
3138
3139 static struct syscore_ops kvm_syscore_ops = {
3140         .suspend = kvm_suspend,
3141         .resume = kvm_resume,
3142 };
3143
3144 static inline
3145 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3146 {
3147         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3148 }
3149
3150 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3151 {
3152         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3153         if (vcpu->preempted)
3154                 vcpu->preempted = false;
3155
3156         kvm_arch_vcpu_load(vcpu, cpu);
3157 }
3158
3159 static void kvm_sched_out(struct preempt_notifier *pn,
3160                           struct task_struct *next)
3161 {
3162         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3163
3164         if (current->state == TASK_RUNNING)
3165                 vcpu->preempted = true;
3166         kvm_arch_vcpu_put(vcpu);
3167 }
3168
3169 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3170                   struct module *module)
3171 {
3172         int r;
3173         int cpu;
3174
3175         r = kvm_arch_init(opaque);
3176         if (r)
3177                 goto out_fail;
3178
3179         /*
3180          * kvm_arch_init makes sure there's at most one caller
3181          * for architectures that support multiple implementations,
3182          * like intel and amd on x86.
3183          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3184          * conflicts in case kvm is already setup for another implementation.
3185          */
3186         r = kvm_irqfd_init();
3187         if (r)
3188                 goto out_irqfd;
3189
3190         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3191                 r = -ENOMEM;
3192                 goto out_free_0;
3193         }
3194
3195         r = kvm_arch_hardware_setup();
3196         if (r < 0)
3197                 goto out_free_0a;
3198
3199         for_each_online_cpu(cpu) {
3200                 smp_call_function_single(cpu,
3201                                 kvm_arch_check_processor_compat,
3202                                 &r, 1);
3203                 if (r < 0)
3204                         goto out_free_1;
3205         }
3206
3207         r = register_cpu_notifier(&kvm_cpu_notifier);
3208         if (r)
3209                 goto out_free_2;
3210         register_reboot_notifier(&kvm_reboot_notifier);
3211
3212         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3213         if (!vcpu_align)
3214                 vcpu_align = __alignof__(struct kvm_vcpu);
3215         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3216                                            0, NULL);
3217         if (!kvm_vcpu_cache) {
3218                 r = -ENOMEM;
3219                 goto out_free_3;
3220         }
3221
3222         r = kvm_async_pf_init();
3223         if (r)
3224                 goto out_free;
3225
3226         kvm_chardev_ops.owner = module;
3227         kvm_vm_fops.owner = module;
3228         kvm_vcpu_fops.owner = module;
3229
3230         r = misc_register(&kvm_dev);
3231         if (r) {
3232                 printk(KERN_ERR "kvm: misc device register failed\n");
3233                 goto out_unreg;
3234         }
3235
3236         register_syscore_ops(&kvm_syscore_ops);
3237
3238         kvm_preempt_ops.sched_in = kvm_sched_in;
3239         kvm_preempt_ops.sched_out = kvm_sched_out;
3240
3241         r = kvm_init_debug();
3242         if (r) {
3243                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3244                 goto out_undebugfs;
3245         }
3246
3247         return 0;
3248
3249 out_undebugfs:
3250         unregister_syscore_ops(&kvm_syscore_ops);
3251         misc_deregister(&kvm_dev);
3252 out_unreg:
3253         kvm_async_pf_deinit();
3254 out_free:
3255         kmem_cache_destroy(kvm_vcpu_cache);
3256 out_free_3:
3257         unregister_reboot_notifier(&kvm_reboot_notifier);
3258         unregister_cpu_notifier(&kvm_cpu_notifier);
3259 out_free_2:
3260 out_free_1:
3261         kvm_arch_hardware_unsetup();
3262 out_free_0a:
3263         free_cpumask_var(cpus_hardware_enabled);
3264 out_free_0:
3265         kvm_irqfd_exit();
3266 out_irqfd:
3267         kvm_arch_exit();
3268 out_fail:
3269         return r;
3270 }
3271 EXPORT_SYMBOL_GPL(kvm_init);
3272
3273 void kvm_exit(void)
3274 {
3275         kvm_exit_debug();
3276         misc_deregister(&kvm_dev);
3277         kmem_cache_destroy(kvm_vcpu_cache);
3278         kvm_async_pf_deinit();
3279         unregister_syscore_ops(&kvm_syscore_ops);
3280         unregister_reboot_notifier(&kvm_reboot_notifier);
3281         unregister_cpu_notifier(&kvm_cpu_notifier);
3282         on_each_cpu(hardware_disable_nolock, NULL, 1);
3283         kvm_arch_hardware_unsetup();
3284         kvm_arch_exit();
3285         kvm_irqfd_exit();
3286         free_cpumask_var(cpus_hardware_enabled);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_exit);