]> git.kernelconcepts.de Git - karo-tx-linux.git/commitdiff
NAND Machine support for Integrated Flash Controller
authorPrabhakar Kushwaha <prabhakar@freescale.com>
Thu, 15 Mar 2012 05:34:23 +0000 (11:04 +0530)
committerKumar Gala <galak@kernel.crashing.org>
Fri, 16 Mar 2012 15:46:34 +0000 (10:46 -0500)
Integrated Flash Controller(IFC) can be used to hook NAND Flash
chips using NAND Flash Machine available on it.

Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Liu Shuo <b35362@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
drivers/mtd/nand/Kconfig
drivers/mtd/nand/Makefile
drivers/mtd/nand/fsl_ifc_nand.c [new file with mode: 0644]

index 31b034b7eba3bd5e464c1ba3042a7da9625c2cad..3b1d6da874e03de79e39afcee576d859fac3caa9 100644 (file)
@@ -462,6 +462,16 @@ config MTD_NAND_FSL_ELBC
          Enabling this option will enable you to use this to control
          external NAND devices.
 
          Enabling this option will enable you to use this to control
          external NAND devices.
 
+config MTD_NAND_FSL_IFC
+       tristate "NAND support for Freescale IFC controller"
+       depends on MTD_NAND && FSL_SOC
+       select FSL_IFC
+       help
+         Various Freescale chips e.g P1010, include a NAND Flash machine
+         with built-in hardware ECC capabilities.
+         Enabling this option will enable you to use this to control
+         external NAND devices.
+
 config MTD_NAND_FSL_UPM
        tristate "Support for NAND on Freescale UPM"
        depends on PPC_83xx || PPC_85xx
 config MTD_NAND_FSL_UPM
        tristate "Support for NAND on Freescale UPM"
        depends on PPC_83xx || PPC_85xx
index 618f4ba23699ecbd5115e17f720164fcdaa29c7a..19bc8cb1d1874bf3b64fbd6234258d5142171554 100644 (file)
@@ -37,6 +37,7 @@ obj-$(CONFIG_MTD_ALAUDA)              += alauda.o
 obj-$(CONFIG_MTD_NAND_PASEMI)          += pasemi_nand.o
 obj-$(CONFIG_MTD_NAND_ORION)           += orion_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_ELBC)                += fsl_elbc_nand.o
 obj-$(CONFIG_MTD_NAND_PASEMI)          += pasemi_nand.o
 obj-$(CONFIG_MTD_NAND_ORION)           += orion_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_ELBC)                += fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC)         += fsl_ifc_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_UPM)         += fsl_upm.o
 obj-$(CONFIG_MTD_NAND_SH_FLCTL)                += sh_flctl.o
 obj-$(CONFIG_MTD_NAND_MXC)             += mxc_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_UPM)         += fsl_upm.o
 obj-$(CONFIG_MTD_NAND_SH_FLCTL)                += sh_flctl.o
 obj-$(CONFIG_MTD_NAND_MXC)             += mxc_nand.o
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
new file mode 100644 (file)
index 0000000..c30ac7b
--- /dev/null
@@ -0,0 +1,1072 @@
+/*
+ * Freescale Integrated Flash Controller NAND driver
+ *
+ * Copyright 2011-2012 Freescale Semiconductor, Inc
+ *
+ * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/fsl_ifc.h>
+
+#define ERR_BYTE               0xFF /* Value returned for read
+                                       bytes when read failed  */
+#define IFC_TIMEOUT_MSECS      500  /* Maximum number of mSecs to wait
+                                       for IFC NAND Machine    */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+       struct mtd_info mtd;
+       struct nand_chip chip;
+       struct fsl_ifc_ctrl *ctrl;
+
+       struct device *dev;
+       int bank;               /* Chip select bank number              */
+       unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+       u8 __iomem *vbase;      /* Chip select base virtual address     */
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_nand_ctrl {
+       struct nand_hw_control controller;
+       struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
+
+       u8 __iomem *addr;       /* Address of assigned IFC buffer       */
+       unsigned int page;      /* Last page written to / read from     */
+       unsigned int read_bytes;/* Number of bytes read during command  */
+       unsigned int column;    /* Saved column from SEQIN              */
+       unsigned int index;     /* Pointer to next byte to 'read'       */
+       unsigned int oob;       /* Non zero if operating on OOB data    */
+       unsigned int eccread;   /* Non zero for a full-page ECC read    */
+       unsigned int counter;   /* counter for the initializations      */
+};
+
+static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
+
+/* 512-byte page with 4-bit ECC, 8-bit */
+static struct nand_ecclayout oob_512_8bit_ecc4 = {
+       .eccbytes = 8,
+       .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+       .oobfree = { {0, 5}, {6, 2} },
+};
+
+/* 512-byte page with 4-bit ECC, 16-bit */
+static struct nand_ecclayout oob_512_16bit_ecc4 = {
+       .eccbytes = 8,
+       .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+       .oobfree = { {2, 6}, },
+};
+
+/* 2048-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_2048_ecc4 = {
+       .eccbytes = 32,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+       },
+       .oobfree = { {2, 6}, {40, 24} },
+};
+
+/* 4096-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_4096_ecc4 = {
+       .eccbytes = 64,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+               40, 41, 42, 43, 44, 45, 46, 47,
+               48, 49, 50, 51, 52, 53, 54, 55,
+               56, 57, 58, 59, 60, 61, 62, 63,
+               64, 65, 66, 67, 68, 69, 70, 71,
+       },
+       .oobfree = { {2, 6}, {72, 56} },
+};
+
+/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_4096_ecc8 = {
+       .eccbytes = 128,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+               40, 41, 42, 43, 44, 45, 46, 47,
+               48, 49, 50, 51, 52, 53, 54, 55,
+               56, 57, 58, 59, 60, 61, 62, 63,
+               64, 65, 66, 67, 68, 69, 70, 71,
+               72, 73, 74, 75, 76, 77, 78, 79,
+               80, 81, 82, 83, 84, 85, 86, 87,
+               88, 89, 90, 91, 92, 93, 94, 95,
+               96, 97, 98, 99, 100, 101, 102, 103,
+               104, 105, 106, 107, 108, 109, 110, 111,
+               112, 113, 114, 115, 116, 117, 118, 119,
+               120, 121, 122, 123, 124, 125, 126, 127,
+               128, 129, 130, 131, 132, 133, 134, 135,
+       },
+       .oobfree = { {2, 6}, {136, 82} },
+};
+
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION,
+       .offs = 2, /* 0 on 8-bit small page */
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION,
+       .offs = 2, /* 0 on 8-bit small page */
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = mirror_pattern,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+       int buf_num;
+
+       ifc_nand_ctrl->page = page_addr;
+       /* Program ROW0/COL0 */
+       out_be32(&ifc->ifc_nand.row0, page_addr);
+       out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+       buf_num = page_addr & priv->bufnum_mask;
+
+       ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+       ifc_nand_ctrl->index = column;
+
+       /* for OOB data point to the second half of the buffer */
+       if (oob)
+               ifc_nand_ctrl->index += mtd->writesize;
+}
+
+static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
+       u32 __iomem *mainarea = (u32 *)addr;
+       u8 __iomem *oob = addr + mtd->writesize;
+       int i;
+
+       for (i = 0; i < mtd->writesize / 4; i++) {
+               if (__raw_readl(&mainarea[i]) != 0xffffffff)
+                       return 0;
+       }
+
+       for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
+               int pos = chip->ecc.layout->eccpos[i];
+
+               if (__raw_readb(&oob[pos]) != 0xff)
+                       return 0;
+       }
+
+       return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+                         u32 *eccstat, unsigned int bufnum)
+{
+       u32 reg = eccstat[bufnum / 4];
+       int errors;
+
+       errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+       return errors;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static void fsl_ifc_run_command(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+       u32 eccstat[4];
+       int i;
+
+       /* set the chip select for NAND Transaction */
+       out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
+
+       dev_vdbg(priv->dev,
+                       "%s: fir0=%08x fcr0=%08x\n",
+                       __func__,
+                       in_be32(&ifc->ifc_nand.nand_fir0),
+                       in_be32(&ifc->ifc_nand.nand_fcr0));
+
+       ctrl->nand_stat = 0;
+
+       /* start read/write seq */
+       out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
+
+       /* wait for command complete flag or timeout */
+       wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
+                          IFC_TIMEOUT_MSECS * HZ/1000);
+
+       /* ctrl->nand_stat will be updated from IRQ context */
+       if (!ctrl->nand_stat)
+               dev_err(priv->dev, "Controller is not responding\n");
+       if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
+               dev_err(priv->dev, "NAND Flash Timeout Error\n");
+       if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
+               dev_err(priv->dev, "NAND Flash Write Protect Error\n");
+
+       if (nctrl->eccread) {
+               int errors;
+               int bufnum = nctrl->page & priv->bufnum_mask;
+               int sector = bufnum * chip->ecc.steps;
+               int sector_end = sector + chip->ecc.steps - 1;
+
+               for (i = sector / 4; i <= sector_end / 4; i++)
+                       eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+               for (i = sector; i <= sector_end; i++) {
+                       errors = check_read_ecc(mtd, ctrl, eccstat, i);
+
+                       if (errors == 15) {
+                               /*
+                                * Uncorrectable error.
+                                * OK only if the whole page is blank.
+                                *
+                                * We disable ECCER reporting due to...
+                                * erratum IFC-A002770 -- so report it now if we
+                                * see an uncorrectable error in ECCSTAT.
+                                */
+                               if (!is_blank(mtd, bufnum))
+                                       ctrl->nand_stat |=
+                                               IFC_NAND_EVTER_STAT_ECCER;
+                               break;
+                       }
+
+                       mtd->ecc_stats.corrected += errors;
+               }
+
+               nctrl->eccread = 0;
+       }
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+                           int oob,
+                           struct mtd_info *mtd)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+
+       /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+       if (mtd->writesize > 512) {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+                        (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                       (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+                       (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+       } else {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+               if (oob)
+                       out_be32(&ifc->ifc_nand.nand_fcr0,
+                                NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+               else
+                       out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+       }
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+                            int column, int page_addr) {
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+
+       /* clear the read buffer */
+       ifc_nand_ctrl->read_bytes = 0;
+       if (command != NAND_CMD_PAGEPROG)
+               ifc_nand_ctrl->index = 0;
+
+       switch (command) {
+       /* READ0 read the entire buffer to use hardware ECC. */
+       case NAND_CMD_READ0:
+               out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+               set_addr(mtd, 0, page_addr, 0);
+
+               ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+               ifc_nand_ctrl->index += column;
+
+               if (chip->ecc.mode == NAND_ECC_HW)
+                       ifc_nand_ctrl->eccread = 1;
+
+               fsl_ifc_do_read(chip, 0, mtd);
+               fsl_ifc_run_command(mtd);
+               return;
+
+       /* READOOB reads only the OOB because no ECC is performed. */
+       case NAND_CMD_READOOB:
+               out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+               set_addr(mtd, column, page_addr, 1);
+
+               ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+               fsl_ifc_do_read(chip, 1, mtd);
+               fsl_ifc_run_command(mtd);
+
+               return;
+
+       /* READID must read all 8 possible bytes */
+       case NAND_CMD_READID:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                               (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+                               (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+               /* 8 bytes for manuf, device and exts */
+               out_be32(&ifc->ifc_nand.nand_fbcr, 8);
+               ifc_nand_ctrl->read_bytes = 8;
+
+               set_addr(mtd, 0, 0, 0);
+               fsl_ifc_run_command(mtd);
+               return;
+
+       /* ERASE1 stores the block and page address */
+       case NAND_CMD_ERASE1:
+               set_addr(mtd, 0, page_addr, 0);
+               return;
+
+       /* ERASE2 uses the block and page address from ERASE1 */
+       case NAND_CMD_ERASE2:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                        (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+                        (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+               out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+               ifc_nand_ctrl->read_bytes = 0;
+               fsl_ifc_run_command(mtd);
+               return;
+
+       /* SEQIN sets up the addr buffer and all registers except the length */
+       case NAND_CMD_SEQIN: {
+               u32 nand_fcr0;
+               ifc_nand_ctrl->column = column;
+               ifc_nand_ctrl->oob = 0;
+
+               if (mtd->writesize > 512) {
+                       nand_fcr0 =
+                               (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+                               (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+                       out_be32(&ifc->ifc_nand.nand_fir0,
+                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                                (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
+                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+               } else {
+                       nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+                                       IFC_NAND_FCR0_CMD1_SHIFT) |
+                                   (NAND_CMD_SEQIN <<
+                                       IFC_NAND_FCR0_CMD2_SHIFT));
+
+                       out_be32(&ifc->ifc_nand.nand_fir0,
+                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+                       out_be32(&ifc->ifc_nand.nand_fir1,
+                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+                       if (column >= mtd->writesize)
+                               nand_fcr0 |=
+                               NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
+                       else
+                               nand_fcr0 |=
+                               NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
+               }
+
+               if (column >= mtd->writesize) {
+                       /* OOB area --> READOOB */
+                       column -= mtd->writesize;
+                       ifc_nand_ctrl->oob = 1;
+               }
+               out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+               set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
+               return;
+       }
+
+       /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+       case NAND_CMD_PAGEPROG: {
+               if (ifc_nand_ctrl->oob) {
+                       out_be32(&ifc->ifc_nand.nand_fbcr,
+                               ifc_nand_ctrl->index - ifc_nand_ctrl->column);
+               } else {
+                       out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+               }
+
+               fsl_ifc_run_command(mtd);
+               return;
+       }
+
+       case NAND_CMD_STATUS:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                               (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+               out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+               set_addr(mtd, 0, 0, 0);
+               ifc_nand_ctrl->read_bytes = 1;
+
+               fsl_ifc_run_command(mtd);
+
+               /*
+                * The chip always seems to report that it is
+                * write-protected, even when it is not.
+                */
+               setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
+               return;
+
+       case NAND_CMD_RESET:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+               fsl_ifc_run_command(mtd);
+               return;
+
+       default:
+               dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
+                                       __func__, command);
+       }
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+       /* The hardware does not seem to support multiple
+        * chips per bank.
+        */
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+       if (len <= 0) {
+               dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+               return;
+       }
+
+       if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
+               dev_err(priv->dev,
+                       "%s: beyond end of buffer (%d requested, %u available)\n",
+                       __func__, len, bufsize - ifc_nand_ctrl->index);
+               len = bufsize - ifc_nand_ctrl->index;
+       }
+
+       memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len);
+       ifc_nand_ctrl->index += len;
+}
+
+/*
+ * Read a byte from either the IFC hardware buffer
+ * read function for 8-bit buswidth
+ */
+static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+
+       /*
+        * If there are still bytes in the IFC buffer, then use the
+        * next byte.
+        */
+       if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes)
+               return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]);
+
+       dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+       return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       uint16_t data;
+
+       /*
+        * If there are still bytes in the IFC buffer, then use the
+        * next byte.
+        */
+       if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
+               data = in_be16((uint16_t *)&ifc_nand_ctrl->
+                                       addr[ifc_nand_ctrl->index]);
+               ifc_nand_ctrl->index += 2;
+               return (uint8_t) data;
+       }
+
+       dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+       return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       int avail;
+
+       if (len < 0) {
+               dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+               return;
+       }
+
+       avail = min((unsigned int)len,
+                       ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
+       memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail);
+       ifc_nand_ctrl->index += avail;
+
+       if (len > avail)
+               dev_err(priv->dev,
+                       "%s: beyond end of buffer (%d requested, %d available)\n",
+                       __func__, len, avail);
+}
+
+/*
+ * Verify buffer against the IFC Controller Data Buffer
+ */
+static int fsl_ifc_verify_buf(struct mtd_info *mtd,
+                              const u_char *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+       int i;
+
+       if (len < 0) {
+               dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len);
+               return -EINVAL;
+       }
+
+       if ((unsigned int)len > nctrl->read_bytes - nctrl->index) {
+               dev_err(priv->dev,
+                       "%s: beyond end of buffer (%d requested, %u available)\n",
+                       __func__, len, nctrl->read_bytes - nctrl->index);
+
+               nctrl->index = nctrl->read_bytes;
+               return -EINVAL;
+       }
+
+       for (i = 0; i < len; i++)
+               if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i])
+                       break;
+
+       nctrl->index += len;
+
+       if (i != len)
+               return -EIO;
+       if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+               return -EIO;
+
+       return 0;
+}
+
+/*
+ * This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+       u32 nand_fsr;
+
+       /* Use READ_STATUS command, but wait for the device to be ready */
+       out_be32(&ifc->ifc_nand.nand_fir0,
+                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+       out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+                       IFC_NAND_FCR0_CMD0_SHIFT);
+       out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+       set_addr(mtd, 0, 0, 0);
+       ifc_nand_ctrl->read_bytes = 1;
+
+       fsl_ifc_run_command(mtd);
+
+       nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+       /*
+        * The chip always seems to report that it is
+        * write-protected, even when it is not.
+        */
+       return nand_fsr | NAND_STATUS_WP;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd,
+                             struct nand_chip *chip,
+                             uint8_t *buf, int page)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+       fsl_ifc_read_buf(mtd, buf, mtd->writesize);
+       fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
+               dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
+
+       if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+               mtd->ecc_stats.failed++;
+
+       return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_ifc_write_page(struct mtd_info *mtd,
+                               struct nand_chip *chip,
+                               const uint8_t *buf)
+{
+       fsl_ifc_write_buf(mtd, buf, mtd->writesize);
+       fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+
+       dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
+                                                       chip->numchips);
+       dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
+                                                       chip->chipsize);
+       dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
+                                                       chip->pagemask);
+       dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
+                                                       chip->chip_delay);
+       dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
+                                                       chip->badblockpos);
+       dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
+                                                       chip->chip_shift);
+       dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
+                                                       chip->page_shift);
+       dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
+                                                       chip->phys_erase_shift);
+       dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__,
+                                                       chip->ecclayout);
+       dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
+                                                       chip->ecc.mode);
+       dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
+                                                       chip->ecc.steps);
+       dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
+                                                       chip->ecc.bytes);
+       dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
+                                                       chip->ecc.total);
+       dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__,
+                                                       chip->ecc.layout);
+       dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
+       dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
+       dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
+                                                       mtd->erasesize);
+       dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
+                                                       mtd->writesize);
+       dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
+                                                       mtd->oobsize);
+
+       return 0;
+}
+
+static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
+{
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+       struct nand_chip *chip = &priv->chip;
+       struct nand_ecclayout *layout;
+       u32 csor;
+
+       /* Fill in fsl_ifc_mtd structure */
+       priv->mtd.priv = chip;
+       priv->mtd.owner = THIS_MODULE;
+
+       /* fill in nand_chip structure */
+       /* set up function call table */
+       if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
+               chip->read_byte = fsl_ifc_read_byte16;
+       else
+               chip->read_byte = fsl_ifc_read_byte;
+
+       chip->write_buf = fsl_ifc_write_buf;
+       chip->read_buf = fsl_ifc_read_buf;
+       chip->verify_buf = fsl_ifc_verify_buf;
+       chip->select_chip = fsl_ifc_select_chip;
+       chip->cmdfunc = fsl_ifc_cmdfunc;
+       chip->waitfunc = fsl_ifc_wait;
+
+       chip->bbt_td = &bbt_main_descr;
+       chip->bbt_md = &bbt_mirror_descr;
+
+       out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+       /* set up nand options */
+       chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
+       chip->bbt_options = NAND_BBT_USE_FLASH;
+
+
+       if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
+               chip->read_byte = fsl_ifc_read_byte16;
+               chip->options |= NAND_BUSWIDTH_16;
+       } else {
+               chip->read_byte = fsl_ifc_read_byte;
+       }
+
+       chip->controller = &ifc_nand_ctrl->controller;
+       chip->priv = priv;
+
+       chip->ecc.read_page = fsl_ifc_read_page;
+       chip->ecc.write_page = fsl_ifc_write_page;
+
+       csor = in_be32(&ifc->csor_cs[priv->bank].csor);
+
+       /* Hardware generates ECC per 512 Bytes */
+       chip->ecc.size = 512;
+       chip->ecc.bytes = 8;
+
+       switch (csor & CSOR_NAND_PGS_MASK) {
+       case CSOR_NAND_PGS_512:
+               if (chip->options & NAND_BUSWIDTH_16) {
+                       layout = &oob_512_16bit_ecc4;
+               } else {
+                       layout = &oob_512_8bit_ecc4;
+
+                       /* Avoid conflict with bad block marker */
+                       bbt_main_descr.offs = 0;
+                       bbt_mirror_descr.offs = 0;
+               }
+
+               priv->bufnum_mask = 15;
+               break;
+
+       case CSOR_NAND_PGS_2K:
+               layout = &oob_2048_ecc4;
+               priv->bufnum_mask = 3;
+               break;
+
+       case CSOR_NAND_PGS_4K:
+               if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+                   CSOR_NAND_ECC_MODE_4) {
+                       layout = &oob_4096_ecc4;
+               } else {
+                       layout = &oob_4096_ecc8;
+                       chip->ecc.bytes = 16;
+               }
+
+               priv->bufnum_mask = 1;
+               break;
+
+       default:
+               dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
+               return -ENODEV;
+       }
+
+       /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+       if (csor & CSOR_NAND_ECC_DEC_EN) {
+               chip->ecc.mode = NAND_ECC_HW;
+               chip->ecc.layout = layout;
+       } else {
+               chip->ecc.mode = NAND_ECC_SOFT;
+       }
+
+       return 0;
+}
+
+static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
+{
+       nand_release(&priv->mtd);
+
+       kfree(priv->mtd.name);
+
+       if (priv->vbase)
+               iounmap(priv->vbase);
+
+       ifc_nand_ctrl->chips[priv->bank] = NULL;
+       dev_set_drvdata(priv->dev, NULL);
+       kfree(priv);
+
+       return 0;
+}
+
+static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank,
+                     phys_addr_t addr)
+{
+       u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr);
+
+       if (!(cspr & CSPR_V))
+               return 0;
+       if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
+               return 0;
+
+       return (cspr & CSPR_BA) == convert_ifc_address(addr);
+}
+
+static DEFINE_MUTEX(fsl_ifc_nand_mutex);
+
+static int __devinit fsl_ifc_nand_probe(struct platform_device *dev)
+{
+       struct fsl_ifc_regs __iomem *ifc;
+       struct fsl_ifc_mtd *priv;
+       struct resource res;
+       static const char *part_probe_types[]
+               = { "cmdlinepart", "RedBoot", "ofpart", NULL };
+       int ret;
+       int bank;
+       struct device_node *node = dev->dev.of_node;
+       struct mtd_part_parser_data ppdata;
+
+       ppdata.of_node = dev->dev.of_node;
+       if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
+               return -ENODEV;
+       ifc = fsl_ifc_ctrl_dev->regs;
+
+       /* get, allocate and map the memory resource */
+       ret = of_address_to_resource(node, 0, &res);
+       if (ret) {
+               dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
+               return ret;
+       }
+
+       /* find which chip select it is connected to */
+       for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) {
+               if (match_bank(ifc, bank, res.start))
+                       break;
+       }
+
+       if (bank >= FSL_IFC_BANK_COUNT) {
+               dev_err(&dev->dev, "%s: address did not match any chip selects\n",
+                       __func__);
+               return -ENODEV;
+       }
+
+       priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
+       if (!priv)
+               return -ENOMEM;
+
+       mutex_lock(&fsl_ifc_nand_mutex);
+       if (!fsl_ifc_ctrl_dev->nand) {
+               ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
+               if (!ifc_nand_ctrl) {
+                       dev_err(&dev->dev, "failed to allocate memory\n");
+                       mutex_unlock(&fsl_ifc_nand_mutex);
+                       return -ENOMEM;
+               }
+
+               ifc_nand_ctrl->read_bytes = 0;
+               ifc_nand_ctrl->index = 0;
+               ifc_nand_ctrl->addr = NULL;
+               fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
+
+               spin_lock_init(&ifc_nand_ctrl->controller.lock);
+               init_waitqueue_head(&ifc_nand_ctrl->controller.wq);
+       } else {
+               ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
+       }
+       mutex_unlock(&fsl_ifc_nand_mutex);
+
+       ifc_nand_ctrl->chips[bank] = priv;
+       priv->bank = bank;
+       priv->ctrl = fsl_ifc_ctrl_dev;
+       priv->dev = &dev->dev;
+
+       priv->vbase = ioremap(res.start, resource_size(&res));
+       if (!priv->vbase) {
+               dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
+               ret = -ENOMEM;
+               goto err;
+       }
+
+       dev_set_drvdata(priv->dev, priv);
+
+       out_be32(&ifc->ifc_nand.nand_evter_en,
+                       IFC_NAND_EVTER_EN_OPC_EN |
+                       IFC_NAND_EVTER_EN_FTOER_EN |
+                       IFC_NAND_EVTER_EN_WPER_EN);
+
+       /* enable NAND Machine Interrupts */
+       out_be32(&ifc->ifc_nand.nand_evter_intr_en,
+                       IFC_NAND_EVTER_INTR_OPCIR_EN |
+                       IFC_NAND_EVTER_INTR_FTOERIR_EN |
+                       IFC_NAND_EVTER_INTR_WPERIR_EN);
+
+       priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
+       if (!priv->mtd.name) {
+               ret = -ENOMEM;
+               goto err;
+       }
+
+       ret = fsl_ifc_chip_init(priv);
+       if (ret)
+               goto err;
+
+       ret = nand_scan_ident(&priv->mtd, 1, NULL);
+       if (ret)
+               goto err;
+
+       ret = fsl_ifc_chip_init_tail(&priv->mtd);
+       if (ret)
+               goto err;
+
+       ret = nand_scan_tail(&priv->mtd);
+       if (ret)
+               goto err;
+
+       /* First look for RedBoot table or partitions on the command
+        * line, these take precedence over device tree information */
+       mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
+                                               NULL, 0);
+
+       dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
+                (unsigned long long)res.start, priv->bank);
+       return 0;
+
+err:
+       fsl_ifc_chip_remove(priv);
+       return ret;
+}
+
+static int fsl_ifc_nand_remove(struct platform_device *dev)
+{
+       struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
+
+       fsl_ifc_chip_remove(priv);
+
+       mutex_lock(&fsl_ifc_nand_mutex);
+       ifc_nand_ctrl->counter--;
+       if (!ifc_nand_ctrl->counter) {
+               fsl_ifc_ctrl_dev->nand = NULL;
+               kfree(ifc_nand_ctrl);
+       }
+       mutex_unlock(&fsl_ifc_nand_mutex);
+
+       return 0;
+}
+
+static const struct of_device_id fsl_ifc_nand_match[] = {
+       {
+               .compatible = "fsl,ifc-nand",
+       },
+       {}
+};
+
+static struct platform_driver fsl_ifc_nand_driver = {
+       .driver = {
+               .name   = "fsl,ifc-nand",
+               .owner = THIS_MODULE,
+               .of_match_table = fsl_ifc_nand_match,
+       },
+       .probe       = fsl_ifc_nand_probe,
+       .remove      = fsl_ifc_nand_remove,
+};
+
+static int __init fsl_ifc_nand_init(void)
+{
+       int ret;
+
+       ret = platform_driver_register(&fsl_ifc_nand_driver);
+       if (ret)
+               printk(KERN_ERR "fsl-ifc: Failed to register platform"
+                               "driver\n");
+
+       return ret;
+}
+
+static void __exit fsl_ifc_nand_exit(void)
+{
+       platform_driver_unregister(&fsl_ifc_nand_driver);
+}
+
+module_init(fsl_ifc_nand_init);
+module_exit(fsl_ifc_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");