]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - doc/driver-model/README.txt
dm: Add functions to access a device's children
[karo-tx-uboot.git] / doc / driver-model / README.txt
1 Driver Model
2 ============
3
4 This README contains high-level information about driver model, a unified
5 way of declaring and accessing drivers in U-Boot. The original work was done
6 by:
7
8    Marek Vasut <marex@denx.de>
9    Pavel Herrmann <morpheus.ibis@gmail.com>
10    Viktor Křivák <viktor.krivak@gmail.com>
11    Tomas Hlavacek <tmshlvck@gmail.com>
12
13 This has been both simplified and extended into the current implementation
14 by:
15
16    Simon Glass <sjg@chromium.org>
17
18
19 Terminology
20 -----------
21
22 Uclass - a group of devices which operate in the same way. A uclass provides
23         a way of accessing individual devices within the group, but always
24         using the same interface. For example a GPIO uclass provides
25         operations for get/set value. An I2C uclass may have 10 I2C ports,
26         4 with one driver, and 6 with another.
27
28 Driver - some code which talks to a peripheral and presents a higher-level
29         interface to it.
30
31 Device - an instance of a driver, tied to a particular port or peripheral.
32
33
34 How to try it
35 -------------
36
37 Build U-Boot sandbox and run it:
38
39    make sandbox_config
40    make
41    ./u-boot
42
43    (type 'reset' to exit U-Boot)
44
45
46 There is a uclass called 'demo'. This uclass handles
47 saying hello, and reporting its status. There are two drivers in this
48 uclass:
49
50    - simple: Just prints a message for hello, doesn't implement status
51    - shape: Prints shapes and reports number of characters printed as status
52
53 The demo class is pretty simple, but not trivial. The intention is that it
54 can be used for testing, so it will implement all driver model features and
55 provide good code coverage of them. It does have multiple drivers, it
56 handles parameter data and platdata (data which tells the driver how
57 to operate on a particular platform) and it uses private driver data.
58
59 To try it, see the example session below:
60
61 =>demo hello 1
62 Hello '@' from 07981110: red 4
63 =>demo status 2
64 Status: 0
65 =>demo hello 2
66 g
67 r@
68 e@@
69 e@@@
70 n@@@@
71 g@@@@@
72 =>demo status 2
73 Status: 21
74 =>demo hello 4 ^
75   y^^^
76  e^^^^^
77 l^^^^^^^
78 l^^^^^^^
79  o^^^^^
80   w^^^
81 =>demo status 4
82 Status: 36
83 =>
84
85
86 Running the tests
87 -----------------
88
89 The intent with driver model is that the core portion has 100% test coverage
90 in sandbox, and every uclass has its own test. As a move towards this, tests
91 are provided in test/dm. To run them, try:
92
93    ./test/dm/test-dm.sh
94
95 You should see something like this:
96
97     <...U-Boot banner...>
98     Running 19 driver model tests
99     Test: dm_test_autobind
100     Test: dm_test_autoprobe
101     Test: dm_test_bus_children
102     Device 'd-test': seq 3 is in use by 'b-test'
103     Device 'c-test@0': seq 0 is in use by 'a-test'
104     Device 'c-test@1': seq 1 is in use by 'd-test'
105     Test: dm_test_bus_children_funcs
106     Test: dm_test_children
107     Test: dm_test_fdt
108     Device 'd-test': seq 3 is in use by 'b-test'
109     Test: dm_test_fdt_offset
110     Test: dm_test_fdt_pre_reloc
111     Test: dm_test_fdt_uclass_seq
112     Device 'd-test': seq 3 is in use by 'b-test'
113     Device 'a-test': seq 0 is in use by 'd-test'
114     Test: dm_test_gpio
115     sandbox_gpio: sb_gpio_get_value: error: offset 4 not reserved
116     Test: dm_test_leak
117     Test: dm_test_lifecycle
118     Test: dm_test_operations
119     Test: dm_test_ordering
120     Test: dm_test_platdata
121     Test: dm_test_pre_reloc
122     Test: dm_test_remove
123     Test: dm_test_uclass
124     Test: dm_test_uclass_before_ready
125     Failures: 0
126
127
128 What is going on?
129 -----------------
130
131 Let's start at the top. The demo command is in common/cmd_demo.c. It does
132 the usual command processing and then:
133
134         struct udevice *demo_dev;
135
136         ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);
137
138 UCLASS_DEMO means the class of devices which implement 'demo'. Other
139 classes might be MMC, or GPIO, hashing or serial. The idea is that the
140 devices in the class all share a particular way of working. The class
141 presents a unified view of all these devices to U-Boot.
142
143 This function looks up a device for the demo uclass. Given a device
144 number we can find the device because all devices have registered with
145 the UCLASS_DEMO uclass.
146
147 The device is automatically activated ready for use by uclass_get_device().
148
149 Now that we have the device we can do things like:
150
151         return demo_hello(demo_dev, ch);
152
153 This function is in the demo uclass. It takes care of calling the 'hello'
154 method of the relevant driver. Bearing in mind that there are two drivers,
155 this particular device may use one or other of them.
156
157 The code for demo_hello() is in drivers/demo/demo-uclass.c:
158
159 int demo_hello(struct udevice *dev, int ch)
160 {
161         const struct demo_ops *ops = device_get_ops(dev);
162
163         if (!ops->hello)
164                 return -ENOSYS;
165
166         return ops->hello(dev, ch);
167 }
168
169 As you can see it just calls the relevant driver method. One of these is
170 in drivers/demo/demo-simple.c:
171
172 static int simple_hello(struct udevice *dev, int ch)
173 {
174         const struct dm_demo_pdata *pdata = dev_get_platdata(dev);
175
176         printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
177                pdata->colour, pdata->sides);
178
179         return 0;
180 }
181
182
183 So that is a trip from top (command execution) to bottom (driver action)
184 but it leaves a lot of topics to address.
185
186
187 Declaring Drivers
188 -----------------
189
190 A driver declaration looks something like this (see
191 drivers/demo/demo-shape.c):
192
193 static const struct demo_ops shape_ops = {
194         .hello = shape_hello,
195         .status = shape_status,
196 };
197
198 U_BOOT_DRIVER(demo_shape_drv) = {
199         .name   = "demo_shape_drv",
200         .id     = UCLASS_DEMO,
201         .ops    = &shape_ops,
202         .priv_data_size = sizeof(struct shape_data),
203 };
204
205
206 This driver has two methods (hello and status) and requires a bit of
207 private data (accessible through dev_get_priv(dev) once the driver has
208 been probed). It is a member of UCLASS_DEMO so will register itself
209 there.
210
211 In U_BOOT_DRIVER it is also possible to specify special methods for bind
212 and unbind, and these are called at appropriate times. For many drivers
213 it is hoped that only 'probe' and 'remove' will be needed.
214
215 The U_BOOT_DRIVER macro creates a data structure accessible from C,
216 so driver model can find the drivers that are available.
217
218 The methods a device can provide are documented in the device.h header.
219 Briefly, they are:
220
221     bind - make the driver model aware of a device (bind it to its driver)
222     unbind - make the driver model forget the device
223     ofdata_to_platdata - convert device tree data to platdata - see later
224     probe - make a device ready for use
225     remove - remove a device so it cannot be used until probed again
226
227 The sequence to get a device to work is bind, ofdata_to_platdata (if using
228 device tree) and probe.
229
230
231 Platform Data
232 -------------
233
234 Platform data is like Linux platform data, if you are familiar with that.
235 It provides the board-specific information to start up a device.
236
237 Why is this information not just stored in the device driver itself? The
238 idea is that the device driver is generic, and can in principle operate on
239 any board that has that type of device. For example, with modern
240 highly-complex SoCs it is common for the IP to come from an IP vendor, and
241 therefore (for example) the MMC controller may be the same on chips from
242 different vendors. It makes no sense to write independent drivers for the
243 MMC controller on each vendor's SoC, when they are all almost the same.
244 Similarly, we may have 6 UARTs in an SoC, all of which are mostly the same,
245 but lie at different addresses in the address space.
246
247 Using the UART example, we have a single driver and it is instantiated 6
248 times by supplying 6 lots of platform data. Each lot of platform data
249 gives the driver name and a pointer to a structure containing information
250 about this instance - e.g. the address of the register space. It may be that
251 one of the UARTS supports RS-485 operation - this can be added as a flag in
252 the platform data, which is set for this one port and clear for the rest.
253
254 Think of your driver as a generic piece of code which knows how to talk to
255 a device, but needs to know where it is, any variant/option information and
256 so on. Platform data provides this link between the generic piece of code
257 and the specific way it is bound on a particular board.
258
259 Examples of platform data include:
260
261    - The base address of the IP block's register space
262    - Configuration options, like:
263          - the SPI polarity and maximum speed for a SPI controller
264          - the I2C speed to use for an I2C device
265          - the number of GPIOs available in a GPIO device
266
267 Where does the platform data come from? It is either held in a structure
268 which is compiled into U-Boot, or it can be parsed from the Device Tree
269 (see 'Device Tree' below).
270
271 For an example of how it can be compiled in, see demo-pdata.c which
272 sets up a table of driver names and their associated platform data.
273 The data can be interpreted by the drivers however they like - it is
274 basically a communication scheme between the board-specific code and
275 the generic drivers, which are intended to work on any board.
276
277 Drivers can access their data via dev->info->platdata. Here is
278 the declaration for the platform data, which would normally appear
279 in the board file.
280
281         static const struct dm_demo_cdata red_square = {
282                 .colour = "red",
283                 .sides = 4.
284         };
285         static const struct driver_info info[] = {
286                 {
287                         .name = "demo_shape_drv",
288                         .platdata = &red_square,
289                 },
290         };
291
292         demo1 = driver_bind(root, &info[0]);
293
294
295 Device Tree
296 -----------
297
298 While platdata is useful, a more flexible way of providing device data is
299 by using device tree. With device tree we replace the above code with the
300 following device tree fragment:
301
302         red-square {
303                 compatible = "demo-shape";
304                 colour = "red";
305                 sides = <4>;
306         };
307
308 This means that instead of having lots of U_BOOT_DEVICE() declarations in
309 the board file, we put these in the device tree. This approach allows a lot
310 more generality, since the same board file can support many types of boards
311 (e,g. with the same SoC) just by using different device trees. An added
312 benefit is that the Linux device tree can be used, thus further simplifying
313 the task of board-bring up either for U-Boot or Linux devs (whoever gets to
314 the board first!).
315
316 The easiest way to make this work it to add a few members to the driver:
317
318         .platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
319         .ofdata_to_platdata = testfdt_ofdata_to_platdata,
320
321 The 'auto_alloc' feature allowed space for the platdata to be allocated
322 and zeroed before the driver's ofdata_to_platdata() method is called. The
323 ofdata_to_platdata() method, which the driver write supplies, should parse
324 the device tree node for this device and place it in dev->platdata. Thus
325 when the probe method is called later (to set up the device ready for use)
326 the platform data will be present.
327
328 Note that both methods are optional. If you provide an ofdata_to_platdata
329 method then it will be called first (during activation). If you provide a
330 probe method it will be called next. See Driver Lifecycle below for more
331 details.
332
333 If you don't want to have the platdata automatically allocated then you
334 can leave out platdata_auto_alloc_size. In this case you can use malloc
335 in your ofdata_to_platdata (or probe) method to allocate the required memory,
336 and you should free it in the remove method.
337
338
339 Declaring Uclasses
340 ------------------
341
342 The demo uclass is declared like this:
343
344 U_BOOT_CLASS(demo) = {
345         .id             = UCLASS_DEMO,
346 };
347
348 It is also possible to specify special methods for probe, etc. The uclass
349 numbering comes from include/dm/uclass.h. To add a new uclass, add to the
350 end of the enum there, then declare your uclass as above.
351
352
353 Device Sequence Numbers
354 -----------------------
355
356 U-Boot numbers devices from 0 in many situations, such as in the command
357 line for I2C and SPI buses, and the device names for serial ports (serial0,
358 serial1, ...). Driver model supports this numbering and permits devices
359 to be locating by their 'sequence'.
360
361 Sequence numbers start from 0 but gaps are permitted. For example, a board
362 may have I2C buses 0, 1, 4, 5 but no 2 or 3. The choice of how devices are
363 numbered is up to a particular board, and may be set by the SoC in some
364 cases. While it might be tempting to automatically renumber the devices
365 where there are gaps in the sequence, this can lead to confusion and is
366 not the way that U-Boot works.
367
368 Each device can request a sequence number. If none is required then the
369 device will be automatically allocated the next available sequence number.
370
371 To specify the sequence number in the device tree an alias is typically
372 used.
373
374 aliases {
375         serial2 = "/serial@22230000";
376 };
377
378 This indicates that in the uclass called "serial", the named node
379 ("/serial@22230000") will be given sequence number 2. Any command or driver
380 which requests serial device 2 will obtain this device.
381
382 Some devices represent buses where the devices on the bus are numbered or
383 addressed. For example, SPI typically numbers its slaves from 0, and I2C
384 uses a 7-bit address. In these cases the 'reg' property of the subnode is
385 used, for example:
386
387 {
388         aliases {
389                 spi2 = "/spi@22300000";
390         };
391
392         spi@22300000 {
393                 #address-cells = <1>;
394                 #size-cells = <1>;
395                 spi-flash@0 {
396                         reg = <0>;
397                         ...
398                 }
399                 eeprom@1 {
400                         reg = <1>;
401                 };
402         };
403
404 In this case we have a SPI bus with two slaves at 0 and 1. The SPI bus
405 itself is numbered 2. So we might access the SPI flash with:
406
407         sf probe 2:0
408
409 and the eeprom with
410
411         sspi 2:1 32 ef
412
413 These commands simply need to look up the 2nd device in the SPI uclass to
414 find the right SPI bus. Then, they look at the children of that bus for the
415 right sequence number (0 or 1 in this case).
416
417 Typically the alias method is used for top-level nodes and the 'reg' method
418 is used only for buses.
419
420 Device sequence numbers are resolved when a device is probed. Before then
421 the sequence number is only a request which may or may not be honoured,
422 depending on what other devices have been probed. However the numbering is
423 entirely under the control of the board author so a conflict is generally
424 an error.
425
426
427 Driver Lifecycle
428 ----------------
429
430 Here are the stages that a device goes through in driver model. Note that all
431 methods mentioned here are optional - e.g. if there is no probe() method for
432 a device then it will not be called. A simple device may have very few
433 methods actually defined.
434
435 1. Bind stage
436
437 A device and its driver are bound using one of these two methods:
438
439    - Scan the U_BOOT_DEVICE() definitions. U-Boot It looks up the
440 name specified by each, to find the appropriate driver. It then calls
441 device_bind() to create a new device and bind' it to its driver. This will
442 call the device's bind() method.
443
444    - Scan through the device tree definitions. U-Boot looks at top-level
445 nodes in the the device tree. It looks at the compatible string in each node
446 and uses the of_match part of the U_BOOT_DRIVER() structure to find the
447 right driver for each node. It then calls device_bind() to bind the
448 newly-created device to its driver (thereby creating a device structure).
449 This will also call the device's bind() method.
450
451 At this point all the devices are known, and bound to their drivers. There
452 is a 'struct udevice' allocated for all devices. However, nothing has been
453 activated (except for the root device). Each bound device that was created
454 from a U_BOOT_DEVICE() declaration will hold the platdata pointer specified
455 in that declaration. For a bound device created from the device tree,
456 platdata will be NULL, but of_offset will be the offset of the device tree
457 node that caused the device to be created. The uclass is set correctly for
458 the device.
459
460 The device's bind() method is permitted to perform simple actions, but
461 should not scan the device tree node, not initialise hardware, nor set up
462 structures or allocate memory. All of these tasks should be left for
463 the probe() method.
464
465 Note that compared to Linux, U-Boot's driver model has a separate step of
466 probe/remove which is independent of bind/unbind. This is partly because in
467 U-Boot it may be expensive to probe devices and we don't want to do it until
468 they are needed, or perhaps until after relocation.
469
470 2. Activation/probe
471
472 When a device needs to be used, U-Boot activates it, by following these
473 steps (see device_probe()):
474
475    a. If priv_auto_alloc_size is non-zero, then the device-private space
476    is allocated for the device and zeroed. It will be accessible as
477    dev->priv. The driver can put anything it likes in there, but should use
478    it for run-time information, not platform data (which should be static
479    and known before the device is probed).
480
481    b. If platdata_auto_alloc_size is non-zero, then the platform data space
482    is allocated. This is only useful for device tree operation, since
483    otherwise you would have to specific the platform data in the
484    U_BOOT_DEVICE() declaration. The space is allocated for the device and
485    zeroed. It will be accessible as dev->platdata.
486
487    c. If the device's uclass specifies a non-zero per_device_auto_alloc_size,
488    then this space is allocated and zeroed also. It is allocated for and
489    stored in the device, but it is uclass data. owned by the uclass driver.
490    It is possible for the device to access it.
491
492    d. All parent devices are probed. It is not possible to activate a device
493    unless its predecessors (all the way up to the root device) are activated.
494    This means (for example) that an I2C driver will require that its bus
495    be activated.
496
497    e. The device's sequence number is assigned, either the requested one
498    (assuming no conflicts) or the next available one if there is a conflict
499    or nothing particular is requested.
500
501    f. If the driver provides an ofdata_to_platdata() method, then this is
502    called to convert the device tree data into platform data. This should
503    do various calls like fdtdec_get_int(gd->fdt_blob, dev->of_offset, ...)
504    to access the node and store the resulting information into dev->platdata.
505    After this point, the device works the same way whether it was bound
506    using a device tree node or U_BOOT_DEVICE() structure. In either case,
507    the platform data is now stored in the platdata structure. Typically you
508    will use the platdata_auto_alloc_size feature to specify the size of the
509    platform data structure, and U-Boot will automatically allocate and zero
510    it for you before entry to ofdata_to_platdata(). But if not, you can
511    allocate it yourself in ofdata_to_platdata(). Note that it is preferable
512    to do all the device tree decoding in ofdata_to_platdata() rather than
513    in probe(). (Apart from the ugliness of mixing configuration and run-time
514    data, one day it is possible that U-Boot will cache platformat data for
515    devices which are regularly de/activated).
516
517    g. The device's probe() method is called. This should do anything that
518    is required by the device to get it going. This could include checking
519    that the hardware is actually present, setting up clocks for the
520    hardware and setting up hardware registers to initial values. The code
521    in probe() can access:
522
523       - platform data in dev->platdata (for configuration)
524       - private data in dev->priv (for run-time state)
525       - uclass data in dev->uclass_priv (for things the uclass stores
526         about this device)
527
528    Note: If you don't use priv_auto_alloc_size then you will need to
529    allocate the priv space here yourself. The same applies also to
530    platdata_auto_alloc_size. Remember to free them in the remove() method.
531
532    h. The device is marked 'activated'
533
534    i. The uclass's post_probe() method is called, if one exists. This may
535    cause the uclass to do some housekeeping to record the device as
536    activated and 'known' by the uclass.
537
538 3. Running stage
539
540 The device is now activated and can be used. From now until it is removed
541 all of the above structures are accessible. The device appears in the
542 uclass's list of devices (so if the device is in UCLASS_GPIO it will appear
543 as a device in the GPIO uclass). This is the 'running' state of the device.
544
545 4. Removal stage
546
547 When the device is no-longer required, you can call device_remove() to
548 remove it. This performs the probe steps in reverse:
549
550    a. The uclass's pre_remove() method is called, if one exists. This may
551    cause the uclass to do some housekeeping to record the device as
552    deactivated and no-longer 'known' by the uclass.
553
554    b. All the device's children are removed. It is not permitted to have
555    an active child device with a non-active parent. This means that
556    device_remove() is called for all the children recursively at this point.
557
558    c. The device's remove() method is called. At this stage nothing has been
559    deallocated so platform data, private data and the uclass data will all
560    still be present. This is where the hardware can be shut down. It is
561    intended that the device be completely inactive at this point, For U-Boot
562    to be sure that no hardware is running, it should be enough to remove
563    all devices.
564
565    d. The device memory is freed (platform data, private data, uclass data).
566
567    Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
568    static pointer, it is not de-allocated during the remove() method. For
569    a device instantiated using the device tree data, the platform data will
570    be dynamically allocated, and thus needs to be deallocated during the
571    remove() method, either:
572
573       1. if the platdata_auto_alloc_size is non-zero, the deallocation
574       happens automatically within the driver model core; or
575
576       2. when platdata_auto_alloc_size is 0, both the allocation (in probe()
577       or preferably ofdata_to_platdata()) and the deallocation in remove()
578       are the responsibility of the driver author.
579
580    e. The device sequence number is set to -1, meaning that it no longer
581    has an allocated sequence. If the device is later reactivated and that
582    sequence number is still free, it may well receive the name sequence
583    number again. But from this point, the sequence number previously used
584    by this device will no longer exist (think of SPI bus 2 being removed
585    and bus 2 is no longer available for use).
586
587    f. The device is marked inactive. Note that it is still bound, so the
588    device structure itself is not freed at this point. Should the device be
589    activated again, then the cycle starts again at step 2 above.
590
591 5. Unbind stage
592
593 The device is unbound. This is the step that actually destroys the device.
594 If a parent has children these will be destroyed first. After this point
595 the device does not exist and its memory has be deallocated.
596
597
598 Data Structures
599 ---------------
600
601 Driver model uses a doubly-linked list as the basic data structure. Some
602 nodes have several lists running through them. Creating a more efficient
603 data structure might be worthwhile in some rare cases, once we understand
604 what the bottlenecks are.
605
606
607 Changes since v1
608 ----------------
609
610 For the record, this implementation uses a very similar approach to the
611 original patches, but makes at least the following changes:
612
613 - Tried to aggressively remove boilerplate, so that for most drivers there
614 is little or no 'driver model' code to write.
615 - Moved some data from code into data structure - e.g. store a pointer to
616 the driver operations structure in the driver, rather than passing it
617 to the driver bind function.
618 - Rename some structures to make them more similar to Linux (struct udevice
619 instead of struct instance, struct platdata, etc.)
620 - Change the name 'core' to 'uclass', meaning U-Boot class. It seems that
621 this concept relates to a class of drivers (or a subsystem). We shouldn't
622 use 'class' since it is a C++ reserved word, so U-Boot class (uclass) seems
623 better than 'core'.
624 - Remove 'struct driver_instance' and just use a single 'struct udevice'.
625 This removes a level of indirection that doesn't seem necessary.
626 - Built in device tree support, to avoid the need for platdata
627 - Removed the concept of driver relocation, and just make it possible for
628 the new driver (created after relocation) to access the old driver data.
629 I feel that relocation is a very special case and will only apply to a few
630 drivers, many of which can/will just re-init anyway. So the overhead of
631 dealing with this might not be worth it.
632 - Implemented a GPIO system, trying to keep it simple
633
634
635 Pre-Relocation Support
636 ----------------------
637
638 For pre-relocation we simply call the driver model init function. Only
639 drivers marked with DM_FLAG_PRE_RELOC or the device tree
640 'u-boot,dm-pre-reloc' flag are initialised prior to relocation. This helps
641 to reduce the driver model overhead.
642
643 Then post relocation we throw that away and re-init driver model again.
644 For drivers which require some sort of continuity between pre- and
645 post-relocation devices, we can provide access to the pre-relocation
646 device pointers, but this is not currently implemented (the root device
647 pointer is saved but not made available through the driver model API).
648
649
650 Things to punt for later
651 ------------------------
652
653 - SPL support - this will have to be present before many drivers can be
654 converted, but it seems like we can add it once we are happy with the
655 core implementation.
656
657 That is not to say that no thinking has gone into this - in fact there
658 is quite a lot there. However, getting these right is non-trivial and
659 there is a high cost associated with going down the wrong path.
660
661 For SPL, it may be possible to fit in a simplified driver model with only
662 bind and probe methods, to reduce size.
663
664 Uclasses are statically numbered at compile time. It would be possible to
665 change this to dynamic numbering, but then we would require some sort of
666 lookup service, perhaps searching by name. This is slightly less efficient
667 so has been left out for now. One small advantage of dynamic numbering might
668 be fewer merge conflicts in uclass-id.h.
669
670
671 Simon Glass
672 sjg@chromium.org
673 April 2013
674 Updated 7-May-13
675 Updated 14-Jun-13
676 Updated 18-Oct-13
677 Updated 5-Nov-13