]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/i2c/mxs_i2c.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / i2c / mxs_i2c.c
1 /*
2  * Freescale i.MX28 I2C Driver
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * Partly based on Linux kernel i2c-mxs.c driver:
8  * Copyright (C) 2011 Wolfram Sang, Pengutronix e.K.
9  *
10  * Which was based on a (non-working) driver which was:
11  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
12  *
13  * SPDX-License-Identifier:     GPL-2.0+
14  */
15
16 #include <common.h>
17 #include <malloc.h>
18 #include <i2c.h>
19 #include <asm/errno.h>
20 #include <asm/io.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/imx-regs.h>
23 #include <asm/arch/sys_proto.h>
24
25 #define MXS_I2C_MAX_TIMEOUT     1000000
26
27 static void mxs_i2c_reset(void)
28 {
29         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
30         int ret;
31         int speed = i2c_get_bus_speed();
32
33         ret = mxs_reset_block(&i2c_regs->hw_i2c_ctrl0_reg);
34         if (ret) {
35                 debug("MXS I2C: Block reset timeout\n");
36                 return;
37         }
38
39         writel(I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | I2C_CTRL1_NO_SLAVE_ACK_IRQ |
40                 I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
41                 I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ,
42                 &i2c_regs->hw_i2c_ctrl1_clr);
43
44         writel(I2C_QUEUECTRL_PIO_QUEUE_MODE, &i2c_regs->hw_i2c_queuectrl_set);
45
46         i2c_set_bus_speed(speed);
47 }
48
49 static void mxs_i2c_setup_read(uint8_t chip, int len)
50 {
51         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
52
53         writel(I2C_QUEUECMD_RETAIN_CLOCK | I2C_QUEUECMD_PRE_SEND_START |
54                 I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
55                 (1 << I2C_QUEUECMD_XFER_COUNT_OFFSET),
56                 &i2c_regs->hw_i2c_queuecmd);
57
58         writel((chip << 1) | 1, &i2c_regs->hw_i2c_data);
59
60         writel(I2C_QUEUECMD_SEND_NAK_ON_LAST | I2C_QUEUECMD_MASTER_MODE |
61                 (len << I2C_QUEUECMD_XFER_COUNT_OFFSET) |
62                 I2C_QUEUECMD_POST_SEND_STOP, &i2c_regs->hw_i2c_queuecmd);
63
64         writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
65 }
66
67 static void mxs_i2c_write(uchar chip, uint addr, int alen,
68                         uchar *buf, int blen, int stop)
69 {
70         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
71         uint32_t data;
72         int i, remain, off;
73
74         if ((alen > 4) || (alen == 0)) {
75                 debug("MXS I2C: Invalid address length\n");
76                 return;
77         }
78
79         if (stop)
80                 stop = I2C_QUEUECMD_POST_SEND_STOP;
81
82         writel(I2C_QUEUECMD_PRE_SEND_START |
83                 I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
84                 ((blen + alen + 1) << I2C_QUEUECMD_XFER_COUNT_OFFSET) | stop,
85                 &i2c_regs->hw_i2c_queuecmd);
86
87         data = (chip << 1) << 24;
88
89         for (i = 0; i < alen; i++) {
90                 data >>= 8;
91                 data |= ((char *)&addr)[alen - i - 1] << 24;
92                 if ((i & 3) == 2)
93                         writel(data, &i2c_regs->hw_i2c_data);
94         }
95
96         off = i;
97         for (; i < off + blen; i++) {
98                 data >>= 8;
99                 data |= buf[i - off] << 24;
100                 if ((i & 3) == 2)
101                         writel(data, &i2c_regs->hw_i2c_data);
102         }
103
104         remain = 24 - ((i & 3) * 8);
105         if (remain)
106                 writel(data >> remain, &i2c_regs->hw_i2c_data);
107
108         writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
109 }
110
111 static int mxs_i2c_wait_for_ack(void)
112 {
113         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
114         uint32_t tmp;
115         int timeout = MXS_I2C_MAX_TIMEOUT;
116
117         for (;;) {
118                 tmp = readl(&i2c_regs->hw_i2c_ctrl1);
119                 if (tmp & I2C_CTRL1_NO_SLAVE_ACK_IRQ) {
120                         debug("MXS I2C: No slave ACK\n");
121                         goto err;
122                 }
123
124                 if (tmp & (
125                         I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
126                         I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ)) {
127                         debug("MXS I2C: Error (CTRL1 = %08x)\n", tmp);
128                         goto err;
129                 }
130
131                 if (tmp & I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)
132                         break;
133
134                 if (!timeout--) {
135                         debug("MXS I2C: Operation timed out\n");
136                         goto err;
137                 }
138
139                 udelay(1);
140         }
141
142         return 0;
143
144 err:
145         mxs_i2c_reset();
146         return 1;
147 }
148
149 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
150 {
151         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
152         uint32_t tmp = 0;
153         int timeout = MXS_I2C_MAX_TIMEOUT;
154         int ret;
155         int i;
156
157         mxs_i2c_write(chip, addr, alen, NULL, 0, 0);
158         ret = mxs_i2c_wait_for_ack();
159         if (ret) {
160                 debug("MXS I2C: Failed writing address\n");
161                 return ret;
162         }
163
164         mxs_i2c_setup_read(chip, len);
165         ret = mxs_i2c_wait_for_ack();
166         if (ret) {
167                 debug("MXS I2C: Failed reading address\n");
168                 return ret;
169         }
170
171         for (i = 0; i < len; i++) {
172                 if (!(i & 3)) {
173                         while (--timeout) {
174                                 tmp = readl(&i2c_regs->hw_i2c_queuestat);
175                                 if (!(tmp & I2C_QUEUESTAT_RD_QUEUE_EMPTY))
176                                         break;
177                         }
178
179                         if (!timeout) {
180                                 debug("MXS I2C: Failed receiving data!\n");
181                                 return -ETIMEDOUT;
182                         }
183
184                         tmp = readl(&i2c_regs->hw_i2c_queuedata);
185                 }
186                 buffer[i] = tmp & 0xff;
187                 tmp >>= 8;
188         }
189
190         return 0;
191 }
192
193 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
194 {
195         int ret;
196         mxs_i2c_write(chip, addr, alen, buffer, len, 1);
197         ret = mxs_i2c_wait_for_ack();
198         if (ret)
199                 debug("MXS I2C: Failed writing address\n");
200
201         return ret;
202 }
203
204 int i2c_probe(uchar chip)
205 {
206         int ret;
207         mxs_i2c_write(chip, 0, 1, NULL, 0, 1);
208         ret = mxs_i2c_wait_for_ack();
209         mxs_i2c_reset();
210         return ret;
211 }
212
213 int i2c_set_bus_speed(unsigned int speed)
214 {
215         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
216         /*
217          * The timing derivation algorithm. There is no documentation for this
218          * algorithm available, it was derived by using the scope and fiddling
219          * with constants until the result observed on the scope was good enough
220          * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be
221          * possible to assume the algorithm works for other frequencies as well.
222          *
223          * Note it was necessary to cap the frequency on both ends as it's not
224          * possible to configure completely arbitrary frequency for the I2C bus
225          * clock.
226          */
227         uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
228         uint32_t base = ((clk / speed) - 38) / 2;
229         uint16_t high_count = base + 3;
230         uint16_t low_count = base - 3;
231         uint16_t rcv_count = (high_count * 3) / 4;
232         uint16_t xmit_count = low_count / 4;
233
234         if (speed > 540000) {
235                 printf("MXS I2C: Speed too high (%d Hz)\n", speed);
236                 return -EINVAL;
237         }
238
239         if (speed < 12000) {
240                 printf("MXS I2C: Speed too low (%d Hz)\n", speed);
241                 return -EINVAL;
242         }
243
244         writel((high_count << 16) | rcv_count, &i2c_regs->hw_i2c_timing0);
245         writel((low_count << 16) | xmit_count, &i2c_regs->hw_i2c_timing1);
246
247         writel((0x0030 << I2C_TIMING2_BUS_FREE_OFFSET) |
248                 (0x0030 << I2C_TIMING2_LEADIN_COUNT_OFFSET),
249                 &i2c_regs->hw_i2c_timing2);
250
251         return 0;
252 }
253
254 unsigned int i2c_get_bus_speed(void)
255 {
256         struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
257         uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
258         uint32_t timing0;
259
260         timing0 = readl(&i2c_regs->hw_i2c_timing0);
261         /*
262          * This is a reverse version of the algorithm presented in
263          * i2c_set_bus_speed(). Please refer there for details.
264          */
265         return clk / ((((timing0 >> 16) - 3) * 2) + 38);
266 }
267
268 void i2c_init(int speed, int slaveadd)
269 {
270         mxs_i2c_reset();
271         i2c_set_bus_speed(speed);
272
273         return;
274 }