]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/mxc_nand.c
Merge branch 'u-boot-ti/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18  * MA 02110-1301, USA.
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <linux/err.h>
24 #include <asm/io.h>
25 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
26         defined(CONFIG_MX51) || defined(CONFIG_MX53)
27 #include <asm/arch/imx-regs.h>
28 #endif
29 #include "mxc_nand.h"
30
31 #define DRIVER_NAME "mxc_nand"
32
33 typedef enum {false, true} bool;
34
35 struct mxc_nand_host {
36         struct mtd_info                 mtd;
37         struct nand_chip                *nand;
38
39         struct mxc_nand_regs __iomem    *regs;
40 #ifdef MXC_NFC_V3_2
41         struct mxc_nand_ip_regs __iomem *ip_regs;
42 #endif
43         int                             spare_only;
44         int                             status_request;
45         int                             pagesize_2k;
46         int                             clk_act;
47         uint16_t                        col_addr;
48         unsigned int                    page_addr;
49 };
50
51 static struct mxc_nand_host mxc_host;
52 static struct mxc_nand_host *host = &mxc_host;
53
54 /* Define delays in microsec for NAND device operations */
55 #define TROP_US_DELAY   2000
56 /* Macros to get byte and bit positions of ECC */
57 #define COLPOS(x)  ((x) >> 3)
58 #define BITPOS(x) ((x) & 0xf)
59
60 /* Define single bit Error positions in Main & Spare area */
61 #define MAIN_SINGLEBIT_ERROR 0x4
62 #define SPARE_SINGLEBIT_ERROR 0x1
63
64 /* OOB placement block for use with hardware ecc generation */
65 #if defined(MXC_NFC_V1)
66 #ifndef CONFIG_SYS_NAND_LARGEPAGE
67 static struct nand_ecclayout nand_hw_eccoob = {
68         .eccbytes = 5,
69         .eccpos = {6, 7, 8, 9, 10},
70         .oobfree = { {0, 5}, {11, 5}, }
71 };
72 #else
73 static struct nand_ecclayout nand_hw_eccoob2k = {
74         .eccbytes = 20,
75         .eccpos = {
76                 6, 7, 8, 9, 10,
77                 22, 23, 24, 25, 26,
78                 38, 39, 40, 41, 42,
79                 54, 55, 56, 57, 58,
80         },
81         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
82 };
83 #endif
84 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
85 #ifndef CONFIG_SYS_NAND_LARGEPAGE
86 static struct nand_ecclayout nand_hw_eccoob = {
87         .eccbytes = 9,
88         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
89         .oobfree = { {2, 5} }
90 };
91 #else
92 static struct nand_ecclayout nand_hw_eccoob2k = {
93         .eccbytes = 36,
94         .eccpos = {
95                 7, 8, 9, 10, 11, 12, 13, 14, 15,
96                 23, 24, 25, 26, 27, 28, 29, 30, 31,
97                 39, 40, 41, 42, 43, 44, 45, 46, 47,
98                 55, 56, 57, 58, 59, 60, 61, 62, 63,
99         },
100         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
101 };
102 #endif
103 #endif
104
105 static int is_16bit_nand(void)
106 {
107 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
108         return 1;
109 #else
110         return 0;
111 #endif
112 }
113
114 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
115 {
116         uint32_t *d = dest;
117
118         size >>= 2;
119         while (size--)
120                 __raw_writel(__raw_readl(source++), d++);
121         return dest;
122 }
123
124 /*
125  * This function polls the NANDFC to wait for the basic operation to
126  * complete by checking the INT bit.
127  */
128 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
129                                 uint16_t param)
130 {
131         uint32_t tmp;
132
133         while (max_retries-- > 0) {
134 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
135                 tmp = readnfc(&host->regs->config2);
136                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
137                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
138                         writenfc(tmp, &host->regs->config2);
139 #elif defined(MXC_NFC_V3_2)
140                 tmp = readnfc(&host->ip_regs->ipc);
141                 if (tmp & NFC_V3_IPC_INT) {
142                         tmp &= ~NFC_V3_IPC_INT;
143                         writenfc(tmp, &host->ip_regs->ipc);
144 #endif
145                         break;
146                 }
147                 udelay(1);
148         }
149         if (max_retries < 0) {
150                 MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
151                                 __func__, param);
152         }
153 }
154
155 /*
156  * This function issues the specified command to the NAND device and
157  * waits for completion.
158  */
159 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
160 {
161         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
162
163         writenfc(cmd, &host->regs->flash_cmd);
164         writenfc(NFC_CMD, &host->regs->operation);
165
166         /* Wait for operation to complete */
167         wait_op_done(host, TROP_US_DELAY, cmd);
168 }
169
170 /*
171  * This function sends an address (or partial address) to the
172  * NAND device. The address is used to select the source/destination for
173  * a NAND command.
174  */
175 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
176 {
177         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
178
179         writenfc(addr, &host->regs->flash_addr);
180         writenfc(NFC_ADDR, &host->regs->operation);
181
182         /* Wait for operation to complete */
183         wait_op_done(host, TROP_US_DELAY, addr);
184 }
185
186 /*
187  * This function requests the NANDFC to initiate the transfer
188  * of data currently in the NANDFC RAM buffer to the NAND device.
189  */
190 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
191                         int spare_only)
192 {
193         if (spare_only)
194                 MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
195
196         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
197                 int i;
198                 /*
199                  *  The controller copies the 64 bytes of spare data from
200                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
201                  *  Copy the contiguous data starting in spare_area[0] to
202                  *  the four spare area buffers.
203                  */
204                 for (i = 1; i < 4; i++) {
205                         void __iomem *src = &host->regs->spare_area[0][i * 16];
206                         void __iomem *dst = &host->regs->spare_area[i][0];
207
208                         mxc_nand_memcpy32(dst, src, 16);
209                 }
210         }
211
212 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
213         writenfc(buf_id, &host->regs->buf_addr);
214 #elif defined(MXC_NFC_V3_2)
215         uint32_t tmp = readnfc(&host->regs->config1);
216         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
217         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
218         writenfc(tmp, &host->regs->config1);
219 #endif
220
221         /* Configure spare or page+spare access */
222         if (!host->pagesize_2k) {
223                 uint32_t config1 = readnfc(&host->regs->config1);
224                 if (spare_only)
225                         config1 |= NFC_CONFIG1_SP_EN;
226                 else
227                         config1 &= ~NFC_CONFIG1_SP_EN;
228                 writenfc(config1, &host->regs->config1);
229         }
230
231         writenfc(NFC_INPUT, &host->regs->operation);
232
233         /* Wait for operation to complete */
234         wait_op_done(host, TROP_US_DELAY, spare_only);
235 }
236
237 /*
238  * Requests NANDFC to initiate the transfer of data from the
239  * NAND device into in the NANDFC ram buffer.
240  */
241 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
242                 int spare_only)
243 {
244         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
245
246 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
247         writenfc(buf_id, &host->regs->buf_addr);
248 #elif defined(MXC_NFC_V3_2)
249         uint32_t tmp = readnfc(&host->regs->config1);
250         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
251         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
252         writenfc(tmp, &host->regs->config1);
253 #endif
254
255         /* Configure spare or page+spare access */
256         if (!host->pagesize_2k) {
257                 uint32_t config1 = readnfc(&host->regs->config1);
258                 if (spare_only)
259                         config1 |= NFC_CONFIG1_SP_EN;
260                 else
261                         config1 &= ~NFC_CONFIG1_SP_EN;
262                 writenfc(config1, &host->regs->config1);
263         }
264
265         writenfc(NFC_OUTPUT, &host->regs->operation);
266
267         /* Wait for operation to complete */
268         wait_op_done(host, TROP_US_DELAY, spare_only);
269
270         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
271                 int i;
272
273                 /*
274                  *  The controller copies the 64 bytes of spare data to
275                  *  the first 16 bytes of each of the 4 spare buffers.
276                  *  Make the data contiguous starting in spare_area[0].
277                  */
278                 for (i = 1; i < 4; i++) {
279                         void __iomem *src = &host->regs->spare_area[i][0];
280                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
281
282                         mxc_nand_memcpy32(dst, src, 16);
283                 }
284         }
285 }
286
287 /* Request the NANDFC to perform a read of the NAND device ID. */
288 static void send_read_id(struct mxc_nand_host *host)
289 {
290         uint32_t tmp;
291
292 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
293         /* NANDFC buffer 0 is used for device ID output */
294         writenfc(0x0, &host->regs->buf_addr);
295 #elif defined(MXC_NFC_V3_2)
296         tmp = readnfc(&host->regs->config1);
297         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
298         writenfc(tmp, &host->regs->config1);
299 #endif
300
301         /* Read ID into main buffer */
302         tmp = readnfc(&host->regs->config1);
303         tmp &= ~NFC_CONFIG1_SP_EN;
304         writenfc(tmp, &host->regs->config1);
305
306         writenfc(NFC_ID, &host->regs->operation);
307
308         /* Wait for operation to complete */
309         wait_op_done(host, TROP_US_DELAY, 0);
310 }
311
312 /*
313  * This function requests the NANDFC to perform a read of the
314  * NAND device status and returns the current status.
315  */
316 static uint16_t get_dev_status(struct mxc_nand_host *host)
317 {
318 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
319         void __iomem *main_buf = host->regs->main_area[1];
320         uint32_t store;
321 #endif
322         uint32_t ret, tmp;
323         /* Issue status request to NAND device */
324
325 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
326         /* store the main area1 first word, later do recovery */
327         store = readl(main_buf);
328         /* NANDFC buffer 1 is used for device status */
329         writenfc(1, &host->regs->buf_addr);
330 #endif
331
332         /* Read status into main buffer */
333         tmp = readnfc(&host->regs->config1);
334         tmp &= ~NFC_CONFIG1_SP_EN;
335         writenfc(tmp, &host->regs->config1);
336
337         writenfc(NFC_STATUS, &host->regs->operation);
338
339         /* Wait for operation to complete */
340         wait_op_done(host, TROP_US_DELAY, 0);
341
342 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
343         /*
344          *  Status is placed in first word of main buffer
345          * get status, then recovery area 1 data
346          */
347         ret = readw(main_buf);
348         writel(store, main_buf);
349 #elif defined(MXC_NFC_V3_2)
350         ret = readnfc(&host->regs->config1) >> 16;
351 #endif
352
353         return ret;
354 }
355
356 /* This function is used by upper layer to checks if device is ready */
357 static int mxc_nand_dev_ready(struct mtd_info *mtd)
358 {
359         /*
360          * NFC handles R/B internally. Therefore, this function
361          * always returns status as ready.
362          */
363         return 1;
364 }
365
366 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
367 {
368         struct nand_chip *nand_chip = mtd->priv;
369         struct mxc_nand_host *host = nand_chip->priv;
370 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
371         uint16_t tmp = readnfc(&host->regs->config1);
372
373         if (on)
374                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
375         else
376                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
377         writenfc(tmp, &host->regs->config1);
378 #elif defined(MXC_NFC_V3_2)
379         uint32_t tmp = readnfc(&host->ip_regs->config2);
380
381         if (on)
382                 tmp |= NFC_V3_CONFIG2_ECC_EN;
383         else
384                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
385         writenfc(tmp, &host->ip_regs->config2);
386 #endif
387 }
388
389 #ifdef CONFIG_MXC_NAND_HWECC
390 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
391 {
392         /*
393          * If HW ECC is enabled, we turn it on during init. There is
394          * no need to enable again here.
395          */
396 }
397
398 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
399 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
400                                       struct nand_chip *chip,
401                                       int page, int sndcmd)
402 {
403         struct mxc_nand_host *host = chip->priv;
404         uint8_t *buf = chip->oob_poi;
405         int length = mtd->oobsize;
406         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
407         uint8_t *bufpoi = buf;
408         int i, toread;
409
410         MTDDEBUG(MTD_DEBUG_LEVEL0,
411                         "%s: Reading OOB area of page %u to oob %p\n",
412                          __func__, page, buf);
413
414         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
415         for (i = 0; i < chip->ecc.steps; i++) {
416                 toread = min_t(int, length, chip->ecc.prepad);
417                 if (toread) {
418                         chip->read_buf(mtd, bufpoi, toread);
419                         bufpoi += toread;
420                         length -= toread;
421                 }
422                 bufpoi += chip->ecc.bytes;
423                 host->col_addr += chip->ecc.bytes;
424                 length -= chip->ecc.bytes;
425
426                 toread = min_t(int, length, chip->ecc.postpad);
427                 if (toread) {
428                         chip->read_buf(mtd, bufpoi, toread);
429                         bufpoi += toread;
430                         length -= toread;
431                 }
432         }
433         if (length > 0)
434                 chip->read_buf(mtd, bufpoi, length);
435
436         _mxc_nand_enable_hwecc(mtd, 0);
437         chip->cmdfunc(mtd, NAND_CMD_READOOB,
438                         mtd->writesize + chip->ecc.prepad, page);
439         bufpoi = buf + chip->ecc.prepad;
440         length = mtd->oobsize - chip->ecc.prepad;
441         for (i = 0; i < chip->ecc.steps; i++) {
442                 toread = min_t(int, length, chip->ecc.bytes);
443                 chip->read_buf(mtd, bufpoi, toread);
444                 bufpoi += eccpitch;
445                 length -= eccpitch;
446                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
447         }
448         _mxc_nand_enable_hwecc(mtd, 1);
449         return 1;
450 }
451
452 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
453                                            struct nand_chip *chip,
454                                            uint8_t *buf,
455                                            int page)
456 {
457         struct mxc_nand_host *host = chip->priv;
458         int eccsize = chip->ecc.size;
459         int eccbytes = chip->ecc.bytes;
460         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
461         uint8_t *oob = chip->oob_poi;
462         int steps, size;
463         int n;
464
465         _mxc_nand_enable_hwecc(mtd, 0);
466         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
467
468         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
469                 host->col_addr = n * eccsize;
470                 chip->read_buf(mtd, buf, eccsize);
471                 buf += eccsize;
472
473                 host->col_addr = mtd->writesize + n * eccpitch;
474                 if (chip->ecc.prepad) {
475                         chip->read_buf(mtd, oob, chip->ecc.prepad);
476                         oob += chip->ecc.prepad;
477                 }
478
479                 chip->read_buf(mtd, oob, eccbytes);
480                 oob += eccbytes;
481
482                 if (chip->ecc.postpad) {
483                         chip->read_buf(mtd, oob, chip->ecc.postpad);
484                         oob += chip->ecc.postpad;
485                 }
486         }
487
488         size = mtd->oobsize - (oob - chip->oob_poi);
489         if (size)
490                 chip->read_buf(mtd, oob, size);
491         _mxc_nand_enable_hwecc(mtd, 1);
492
493         return 0;
494 }
495
496 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
497                                        struct nand_chip *chip,
498                                        uint8_t *buf,
499                                        int page)
500 {
501         struct mxc_nand_host *host = chip->priv;
502         int n, eccsize = chip->ecc.size;
503         int eccbytes = chip->ecc.bytes;
504         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
505         int eccsteps = chip->ecc.steps;
506         uint8_t *p = buf;
507         uint8_t *oob = chip->oob_poi;
508
509         MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
510               page, buf, oob);
511
512         /* first read the data area and the available portion of OOB */
513         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
514                 int stat;
515
516                 host->col_addr = n * eccsize;
517
518                 chip->read_buf(mtd, p, eccsize);
519
520                 host->col_addr = mtd->writesize + n * eccpitch;
521
522                 if (chip->ecc.prepad) {
523                         chip->read_buf(mtd, oob, chip->ecc.prepad);
524                         oob += chip->ecc.prepad;
525                 }
526
527                 stat = chip->ecc.correct(mtd, p, oob, NULL);
528
529                 if (stat < 0)
530                         mtd->ecc_stats.failed++;
531                 else
532                         mtd->ecc_stats.corrected += stat;
533                 oob += eccbytes;
534
535                 if (chip->ecc.postpad) {
536                         chip->read_buf(mtd, oob, chip->ecc.postpad);
537                         oob += chip->ecc.postpad;
538                 }
539         }
540
541         /* Calculate remaining oob bytes */
542         n = mtd->oobsize - (oob - chip->oob_poi);
543         if (n)
544                 chip->read_buf(mtd, oob, n);
545
546         /* Then switch ECC off and read the OOB area to get the ECC code */
547         _mxc_nand_enable_hwecc(mtd, 0);
548         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
549         eccsteps = chip->ecc.steps;
550         oob = chip->oob_poi + chip->ecc.prepad;
551         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
552                 host->col_addr = mtd->writesize +
553                                  n * eccpitch +
554                                  chip->ecc.prepad;
555                 chip->read_buf(mtd, oob, eccbytes);
556                 oob += eccbytes + chip->ecc.postpad;
557         }
558         _mxc_nand_enable_hwecc(mtd, 1);
559         return 0;
560 }
561
562 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
563                                        struct nand_chip *chip, int page)
564 {
565         struct mxc_nand_host *host = chip->priv;
566         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
567         int length = mtd->oobsize;
568         int i, len, status, steps = chip->ecc.steps;
569         const uint8_t *bufpoi = chip->oob_poi;
570
571         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
572         for (i = 0; i < steps; i++) {
573                 len = min_t(int, length, eccpitch);
574
575                 chip->write_buf(mtd, bufpoi, len);
576                 bufpoi += len;
577                 length -= len;
578                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
579         }
580         if (length > 0)
581                 chip->write_buf(mtd, bufpoi, length);
582
583         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
584         status = chip->waitfunc(mtd, chip);
585         return status & NAND_STATUS_FAIL ? -EIO : 0;
586 }
587
588 static void mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
589                                              struct nand_chip *chip,
590                                              const uint8_t *buf)
591 {
592         struct mxc_nand_host *host = chip->priv;
593         int eccsize = chip->ecc.size;
594         int eccbytes = chip->ecc.bytes;
595         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
596         uint8_t *oob = chip->oob_poi;
597         int steps, size;
598         int n;
599
600         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
601                 host->col_addr = n * eccsize;
602                 chip->write_buf(mtd, buf, eccsize);
603                 buf += eccsize;
604
605                 host->col_addr = mtd->writesize + n * eccpitch;
606
607                 if (chip->ecc.prepad) {
608                         chip->write_buf(mtd, oob, chip->ecc.prepad);
609                         oob += chip->ecc.prepad;
610                 }
611
612                 host->col_addr += eccbytes;
613                 oob += eccbytes;
614
615                 if (chip->ecc.postpad) {
616                         chip->write_buf(mtd, oob, chip->ecc.postpad);
617                         oob += chip->ecc.postpad;
618                 }
619         }
620
621         size = mtd->oobsize - (oob - chip->oob_poi);
622         if (size)
623                 chip->write_buf(mtd, oob, size);
624 }
625
626 static void mxc_nand_write_page_syndrome(struct mtd_info *mtd,
627                                          struct nand_chip *chip,
628                                          const uint8_t *buf)
629 {
630         struct mxc_nand_host *host = chip->priv;
631         int i, n, eccsize = chip->ecc.size;
632         int eccbytes = chip->ecc.bytes;
633         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
634         int eccsteps = chip->ecc.steps;
635         const uint8_t *p = buf;
636         uint8_t *oob = chip->oob_poi;
637
638         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
639
640         for (i = n = 0;
641              eccsteps;
642              n++, eccsteps--, i += eccbytes, p += eccsize) {
643                 host->col_addr = n * eccsize;
644
645                 chip->write_buf(mtd, p, eccsize);
646
647                 host->col_addr = mtd->writesize + n * eccpitch;
648
649                 if (chip->ecc.prepad) {
650                         chip->write_buf(mtd, oob, chip->ecc.prepad);
651                         oob += chip->ecc.prepad;
652                 }
653
654                 chip->write_buf(mtd, oob, eccbytes);
655                 oob += eccbytes;
656
657                 if (chip->ecc.postpad) {
658                         chip->write_buf(mtd, oob, chip->ecc.postpad);
659                         oob += chip->ecc.postpad;
660                 }
661         }
662
663         /* Calculate remaining oob bytes */
664         i = mtd->oobsize - (oob - chip->oob_poi);
665         if (i)
666                 chip->write_buf(mtd, oob, i);
667 }
668
669 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
670                                  u_char *read_ecc, u_char *calc_ecc)
671 {
672         struct nand_chip *nand_chip = mtd->priv;
673         struct mxc_nand_host *host = nand_chip->priv;
674         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
675         int subpages = mtd->writesize / nand_chip->subpagesize;
676         int pg2blk_shift = nand_chip->phys_erase_shift -
677                            nand_chip->page_shift;
678
679         do {
680                 if ((ecc_status & 0xf) > 4) {
681                         static int last_bad = -1;
682
683                         if (last_bad != host->page_addr >> pg2blk_shift) {
684                                 last_bad = host->page_addr >> pg2blk_shift;
685                                 printk(KERN_DEBUG
686                                        "MXC_NAND: HWECC uncorrectable ECC error"
687                                        " in block %u page %u subpage %d\n",
688                                        last_bad, host->page_addr,
689                                        mtd->writesize / nand_chip->subpagesize
690                                             - subpages);
691                         }
692                         return -1;
693                 }
694                 ecc_status >>= 4;
695                 subpages--;
696         } while (subpages > 0);
697
698         return 0;
699 }
700 #else
701 #define mxc_nand_read_page_syndrome NULL
702 #define mxc_nand_read_page_raw_syndrome NULL
703 #define mxc_nand_read_oob_syndrome NULL
704 #define mxc_nand_write_page_syndrome NULL
705 #define mxc_nand_write_page_raw_syndrome NULL
706 #define mxc_nand_write_oob_syndrome NULL
707
708 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
709                                  u_char *read_ecc, u_char *calc_ecc)
710 {
711         struct nand_chip *nand_chip = mtd->priv;
712         struct mxc_nand_host *host = nand_chip->priv;
713
714         /*
715          * 1-Bit errors are automatically corrected in HW.  No need for
716          * additional correction.  2-Bit errors cannot be corrected by
717          * HW ECC, so we need to return failure
718          */
719         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
720
721         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
722                 MTDDEBUG(MTD_DEBUG_LEVEL0,
723                       "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
724                 return -1;
725         }
726
727         return 0;
728 }
729 #endif
730
731 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
732                                   u_char *ecc_code)
733 {
734         return 0;
735 }
736 #endif
737
738 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
739 {
740         struct nand_chip *nand_chip = mtd->priv;
741         struct mxc_nand_host *host = nand_chip->priv;
742         uint8_t ret = 0;
743         uint16_t col;
744         uint16_t __iomem *main_buf =
745                 (uint16_t __iomem *)host->regs->main_area[0];
746         uint16_t __iomem *spare_buf =
747                 (uint16_t __iomem *)host->regs->spare_area[0];
748         union {
749                 uint16_t word;
750                 uint8_t bytes[2];
751         } nfc_word;
752
753         /* Check for status request */
754         if (host->status_request)
755                 return get_dev_status(host) & 0xFF;
756
757         /* Get column for 16-bit access */
758         col = host->col_addr >> 1;
759
760         /* If we are accessing the spare region */
761         if (host->spare_only)
762                 nfc_word.word = readw(&spare_buf[col]);
763         else
764                 nfc_word.word = readw(&main_buf[col]);
765
766         /* Pick upper/lower byte of word from RAM buffer */
767         ret = nfc_word.bytes[host->col_addr & 0x1];
768
769         /* Update saved column address */
770         if (nand_chip->options & NAND_BUSWIDTH_16)
771                 host->col_addr += 2;
772         else
773                 host->col_addr++;
774
775         return ret;
776 }
777
778 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
779 {
780         struct nand_chip *nand_chip = mtd->priv;
781         struct mxc_nand_host *host = nand_chip->priv;
782         uint16_t col, ret;
783         uint16_t __iomem *p;
784
785         MTDDEBUG(MTD_DEBUG_LEVEL3,
786               "mxc_nand_read_word(col = %d)\n", host->col_addr);
787
788         col = host->col_addr;
789         /* Adjust saved column address */
790         if (col < mtd->writesize && host->spare_only)
791                 col += mtd->writesize;
792
793         if (col < mtd->writesize) {
794                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
795                                 (col >> 1));
796         } else {
797                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
798                                 ((col - mtd->writesize) >> 1));
799         }
800
801         if (col & 1) {
802                 union {
803                         uint16_t word;
804                         uint8_t bytes[2];
805                 } nfc_word[3];
806
807                 nfc_word[0].word = readw(p);
808                 nfc_word[1].word = readw(p + 1);
809
810                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
811                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
812
813                 ret = nfc_word[2].word;
814         } else {
815                 ret = readw(p);
816         }
817
818         /* Update saved column address */
819         host->col_addr = col + 2;
820
821         return ret;
822 }
823
824 /*
825  * Write data of length len to buffer buf. The data to be
826  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
827  * Operation by the NFC, the data is written to NAND Flash
828  */
829 static void mxc_nand_write_buf(struct mtd_info *mtd,
830                                 const u_char *buf, int len)
831 {
832         struct nand_chip *nand_chip = mtd->priv;
833         struct mxc_nand_host *host = nand_chip->priv;
834         int n, col, i = 0;
835
836         MTDDEBUG(MTD_DEBUG_LEVEL3,
837               "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
838               len);
839
840         col = host->col_addr;
841
842         /* Adjust saved column address */
843         if (col < mtd->writesize && host->spare_only)
844                 col += mtd->writesize;
845
846         n = mtd->writesize + mtd->oobsize - col;
847         n = min(len, n);
848
849         MTDDEBUG(MTD_DEBUG_LEVEL3,
850               "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
851
852         while (n > 0) {
853                 void __iomem *p;
854
855                 if (col < mtd->writesize) {
856                         p = host->regs->main_area[0] + (col & ~3);
857                 } else {
858                         p = host->regs->spare_area[0] -
859                                                 mtd->writesize + (col & ~3);
860                 }
861
862                 MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
863                       __LINE__, p);
864
865                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
866                         union {
867                                 uint32_t word;
868                                 uint8_t bytes[4];
869                         } nfc_word;
870
871                         nfc_word.word = readl(p);
872                         nfc_word.bytes[col & 3] = buf[i++];
873                         n--;
874                         col++;
875
876                         writel(nfc_word.word, p);
877                 } else {
878                         int m = mtd->writesize - col;
879
880                         if (col >= mtd->writesize)
881                                 m += mtd->oobsize;
882
883                         m = min(n, m) & ~3;
884
885                         MTDDEBUG(MTD_DEBUG_LEVEL3,
886                               "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
887                               __func__,  __LINE__, n, m, i, col);
888
889                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
890                         col += m;
891                         i += m;
892                         n -= m;
893                 }
894         }
895         /* Update saved column address */
896         host->col_addr = col;
897 }
898
899 /*
900  * Read the data buffer from the NAND Flash. To read the data from NAND
901  * Flash first the data output cycle is initiated by the NFC, which copies
902  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
903  */
904 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
905 {
906         struct nand_chip *nand_chip = mtd->priv;
907         struct mxc_nand_host *host = nand_chip->priv;
908         int n, col, i = 0;
909
910         MTDDEBUG(MTD_DEBUG_LEVEL3,
911               "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
912
913         col = host->col_addr;
914
915         /* Adjust saved column address */
916         if (col < mtd->writesize && host->spare_only)
917                 col += mtd->writesize;
918
919         n = mtd->writesize + mtd->oobsize - col;
920         n = min(len, n);
921
922         while (n > 0) {
923                 void __iomem *p;
924
925                 if (col < mtd->writesize) {
926                         p = host->regs->main_area[0] + (col & ~3);
927                 } else {
928                         p = host->regs->spare_area[0] -
929                                         mtd->writesize + (col & ~3);
930                 }
931
932                 if (((col | (int)&buf[i]) & 3) || n < 4) {
933                         union {
934                                 uint32_t word;
935                                 uint8_t bytes[4];
936                         } nfc_word;
937
938                         nfc_word.word = readl(p);
939                         buf[i++] = nfc_word.bytes[col & 3];
940                         n--;
941                         col++;
942                 } else {
943                         int m = mtd->writesize - col;
944
945                         if (col >= mtd->writesize)
946                                 m += mtd->oobsize;
947
948                         m = min(n, m) & ~3;
949                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
950
951                         col += m;
952                         i += m;
953                         n -= m;
954                 }
955         }
956         /* Update saved column address */
957         host->col_addr = col;
958 }
959
960 /*
961  * Used by the upper layer to verify the data in NAND Flash
962  * with the data in the buf.
963  */
964 static int mxc_nand_verify_buf(struct mtd_info *mtd,
965                                 const u_char *buf, int len)
966 {
967         u_char tmp[256];
968         uint bsize;
969
970         while (len) {
971                 bsize = min(len, 256);
972                 mxc_nand_read_buf(mtd, tmp, bsize);
973
974                 if (memcmp(buf, tmp, bsize))
975                         return 1;
976
977                 buf += bsize;
978                 len -= bsize;
979         }
980
981         return 0;
982 }
983
984 /*
985  * This function is used by upper layer for select and
986  * deselect of the NAND chip
987  */
988 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
989 {
990         struct nand_chip *nand_chip = mtd->priv;
991         struct mxc_nand_host *host = nand_chip->priv;
992
993         switch (chip) {
994         case -1:
995                 /* TODO: Disable the NFC clock */
996                 if (host->clk_act)
997                         host->clk_act = 0;
998                 break;
999         case 0:
1000                 /* TODO: Enable the NFC clock */
1001                 if (!host->clk_act)
1002                         host->clk_act = 1;
1003                 break;
1004
1005         default:
1006                 break;
1007         }
1008 }
1009
1010 /*
1011  * Used by the upper layer to write command to NAND Flash for
1012  * different operations to be carried out on NAND Flash
1013  */
1014 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1015                                 int column, int page_addr)
1016 {
1017         struct nand_chip *nand_chip = mtd->priv;
1018         struct mxc_nand_host *host = nand_chip->priv;
1019
1020         MTDDEBUG(MTD_DEBUG_LEVEL3,
1021               "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1022               command, column, page_addr);
1023
1024         /* Reset command state information */
1025         host->status_request = false;
1026
1027         /* Command pre-processing step */
1028         switch (command) {
1029
1030         case NAND_CMD_STATUS:
1031                 host->col_addr = 0;
1032                 host->status_request = true;
1033                 break;
1034
1035         case NAND_CMD_READ0:
1036                 host->page_addr = page_addr;
1037                 host->col_addr = column;
1038                 host->spare_only = false;
1039                 break;
1040
1041         case NAND_CMD_READOOB:
1042                 host->col_addr = column;
1043                 host->spare_only = true;
1044                 if (host->pagesize_2k)
1045                         command = NAND_CMD_READ0; /* only READ0 is valid */
1046                 break;
1047
1048         case NAND_CMD_SEQIN:
1049                 if (column >= mtd->writesize) {
1050                         /*
1051                          * before sending SEQIN command for partial write,
1052                          * we need read one page out. FSL NFC does not support
1053                          * partial write. It always sends out 512+ecc+512+ecc
1054                          * for large page nand flash. But for small page nand
1055                          * flash, it does support SPARE ONLY operation.
1056                          */
1057                         if (host->pagesize_2k) {
1058                                 /* call ourself to read a page */
1059                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1060                                                 page_addr);
1061                         }
1062
1063                         host->col_addr = column - mtd->writesize;
1064                         host->spare_only = true;
1065
1066                         /* Set program pointer to spare region */
1067                         if (!host->pagesize_2k)
1068                                 send_cmd(host, NAND_CMD_READOOB);
1069                 } else {
1070                         host->spare_only = false;
1071                         host->col_addr = column;
1072
1073                         /* Set program pointer to page start */
1074                         if (!host->pagesize_2k)
1075                                 send_cmd(host, NAND_CMD_READ0);
1076                 }
1077                 break;
1078
1079         case NAND_CMD_PAGEPROG:
1080                 send_prog_page(host, 0, host->spare_only);
1081
1082                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1083                         /* data in 4 areas */
1084                         send_prog_page(host, 1, host->spare_only);
1085                         send_prog_page(host, 2, host->spare_only);
1086                         send_prog_page(host, 3, host->spare_only);
1087                 }
1088
1089                 break;
1090         }
1091
1092         /* Write out the command to the device. */
1093         send_cmd(host, command);
1094
1095         /* Write out column address, if necessary */
1096         if (column != -1) {
1097                 /*
1098                  * MXC NANDFC can only perform full page+spare or
1099                  * spare-only read/write. When the upper layers perform
1100                  * a read/write buffer operation, we will use the saved
1101                  * column address to index into the full page.
1102                  */
1103                 send_addr(host, 0);
1104                 if (host->pagesize_2k)
1105                         /* another col addr cycle for 2k page */
1106                         send_addr(host, 0);
1107         }
1108
1109         /* Write out page address, if necessary */
1110         if (page_addr != -1) {
1111                 u32 page_mask = nand_chip->pagemask;
1112                 do {
1113                         send_addr(host, page_addr & 0xFF);
1114                         page_addr >>= 8;
1115                         page_mask >>= 8;
1116                 } while (page_mask);
1117         }
1118
1119         /* Command post-processing step */
1120         switch (command) {
1121
1122         case NAND_CMD_RESET:
1123                 break;
1124
1125         case NAND_CMD_READOOB:
1126         case NAND_CMD_READ0:
1127                 if (host->pagesize_2k) {
1128                         /* send read confirm command */
1129                         send_cmd(host, NAND_CMD_READSTART);
1130                         /* read for each AREA */
1131                         send_read_page(host, 0, host->spare_only);
1132                         if (is_mxc_nfc_1()) {
1133                                 send_read_page(host, 1, host->spare_only);
1134                                 send_read_page(host, 2, host->spare_only);
1135                                 send_read_page(host, 3, host->spare_only);
1136                         }
1137                 } else {
1138                         send_read_page(host, 0, host->spare_only);
1139                 }
1140                 break;
1141
1142         case NAND_CMD_READID:
1143                 host->col_addr = 0;
1144                 send_read_id(host);
1145                 break;
1146
1147         case NAND_CMD_PAGEPROG:
1148                 break;
1149
1150         case NAND_CMD_STATUS:
1151                 break;
1152
1153         case NAND_CMD_ERASE2:
1154                 break;
1155         }
1156 }
1157
1158 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1159
1160 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1161 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1162
1163 static struct nand_bbt_descr bbt_main_descr = {
1164         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1165                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1166         .offs = 0,
1167         .len = 4,
1168         .veroffs = 4,
1169         .maxblocks = 4,
1170         .pattern = bbt_pattern,
1171 };
1172
1173 static struct nand_bbt_descr bbt_mirror_descr = {
1174         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1175                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1176         .offs = 0,
1177         .len = 4,
1178         .veroffs = 4,
1179         .maxblocks = 4,
1180         .pattern = mirror_pattern,
1181 };
1182
1183 #endif
1184
1185 int board_nand_init(struct nand_chip *this)
1186 {
1187         struct mtd_info *mtd;
1188 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1189         uint32_t tmp;
1190 #endif
1191
1192 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1193         this->options |= NAND_USE_FLASH_BBT;
1194         this->bbt_td = &bbt_main_descr;
1195         this->bbt_md = &bbt_mirror_descr;
1196 #endif
1197
1198         /* structures must be linked */
1199         mtd = &host->mtd;
1200         mtd->priv = this;
1201         host->nand = this;
1202
1203         /* 5 us command delay time */
1204         this->chip_delay = 5;
1205
1206         this->priv = host;
1207         this->dev_ready = mxc_nand_dev_ready;
1208         this->cmdfunc = mxc_nand_command;
1209         this->select_chip = mxc_nand_select_chip;
1210         this->read_byte = mxc_nand_read_byte;
1211         this->read_word = mxc_nand_read_word;
1212         this->write_buf = mxc_nand_write_buf;
1213         this->read_buf = mxc_nand_read_buf;
1214         this->verify_buf = mxc_nand_verify_buf;
1215
1216         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1217 #ifdef MXC_NFC_V3_2
1218         host->ip_regs =
1219                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1220 #endif
1221         host->clk_act = 1;
1222
1223 #ifdef CONFIG_MXC_NAND_HWECC
1224         this->ecc.calculate = mxc_nand_calculate_ecc;
1225         this->ecc.hwctl = mxc_nand_enable_hwecc;
1226         this->ecc.correct = mxc_nand_correct_data;
1227         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1228                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1229                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1230                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1231                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1232                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1233                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1234                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1235                 this->ecc.bytes = 9;
1236                 this->ecc.prepad = 7;
1237         } else {
1238                 this->ecc.mode = NAND_ECC_HW;
1239         }
1240
1241         host->pagesize_2k = 0;
1242
1243         this->ecc.size = 512;
1244         _mxc_nand_enable_hwecc(mtd, 1);
1245 #else
1246         this->ecc.layout = &nand_soft_eccoob;
1247         this->ecc.mode = NAND_ECC_SOFT;
1248         _mxc_nand_enable_hwecc(mtd, 0);
1249 #endif
1250         /* Reset NAND */
1251         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1252
1253         /* NAND bus width determines access functions used by upper layer */
1254         if (is_16bit_nand())
1255                 this->options |= NAND_BUSWIDTH_16;
1256
1257 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1258         host->pagesize_2k = 1;
1259         this->ecc.layout = &nand_hw_eccoob2k;
1260 #else
1261         host->pagesize_2k = 0;
1262         this->ecc.layout = &nand_hw_eccoob;
1263 #endif
1264
1265 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1266 #ifdef MXC_NFC_V2_1
1267         tmp = readnfc(&host->regs->config1);
1268         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1269         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1270         writenfc(tmp, &host->regs->config1);
1271         if (host->pagesize_2k)
1272                 writenfc(64/2, &host->regs->spare_area_size);
1273         else
1274                 writenfc(16/2, &host->regs->spare_area_size);
1275 #endif
1276
1277         /*
1278          * preset operation
1279          * Unlock the internal RAM Buffer
1280          */
1281         writenfc(0x2, &host->regs->config);
1282
1283         /* Blocks to be unlocked */
1284         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1285         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1286          * unlockend_blkaddr, but the magic 0x4000 does not always work
1287          * when writing more than some 32 megabytes (on 2k page nands)
1288          * However 0xFFFF doesn't seem to have this kind
1289          * of limitation (tried it back and forth several times).
1290          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1291          * only, but probably this was not tested there for v1.
1292          * The very same limitation seems to apply to this kernel driver.
1293          * This might be NAND chip specific and the i.MX31 datasheet is
1294          * extremely vague about the semantics of this register.
1295          */
1296         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1297
1298         /* Unlock Block Command for given address range */
1299         writenfc(0x4, &host->regs->wrprot);
1300 #elif defined(MXC_NFC_V3_2)
1301         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1302         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1303
1304         /* Unlock the internal RAM Buffer */
1305         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1306                         &host->ip_regs->wrprot);
1307
1308         /* Blocks to be unlocked */
1309         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1310                 writenfc(0x0 | 0xFFFF << 16,
1311                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1312
1313         writenfc(0, &host->ip_regs->ipc);
1314
1315         tmp = readnfc(&host->ip_regs->config2);
1316         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1317                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1318         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1319
1320         if (host->pagesize_2k) {
1321                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1322                 tmp |= NFC_V3_CONFIG2_PS_2048;
1323         } else {
1324                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1325                 tmp |= NFC_V3_CONFIG2_PS_512;
1326         }
1327
1328         writenfc(tmp, &host->ip_regs->config2);
1329
1330         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1331                         NFC_V3_CONFIG3_NO_SDMA |
1332                         NFC_V3_CONFIG3_RBB_MODE |
1333                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1334                         NFC_V3_CONFIG3_ADD_OP(0);
1335
1336         if (!(this->options & NAND_BUSWIDTH_16))
1337                 tmp |= NFC_V3_CONFIG3_FW8;
1338
1339         writenfc(tmp, &host->ip_regs->config3);
1340
1341         writenfc(0, &host->ip_regs->delay_line);
1342 #endif
1343
1344         return 0;
1345 }