]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/tegra_nand.c
socfpga: Move board/socfpga_cyclone5 to board/socfpga
[karo-tx-uboot.git] / drivers / mtd / nand / tegra_nand.c
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
4  * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
5  * (C) Copyright 2006 DENX Software Engineering
6  *
7  * See file CREDITS for list of people who contributed to this
8  * project.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  */
25
26 #include <common.h>
27 #include <asm/io.h>
28 #include <nand.h>
29 #include <asm/arch/clock.h>
30 #include <asm/arch/funcmux.h>
31 #include <asm/arch-tegra/clk_rst.h>
32 #include <asm/errno.h>
33 #include <asm/gpio.h>
34 #include <fdtdec.h>
35 #include "tegra_nand.h"
36
37 DECLARE_GLOBAL_DATA_PTR;
38
39 #define NAND_CMD_TIMEOUT_MS             10
40
41 #define SKIPPED_SPARE_BYTES             4
42
43 /* ECC bytes to be generated for tag data */
44 #define TAG_ECC_BYTES                   4
45
46 /* 64 byte oob block info for large page (== 2KB) device
47  *
48  * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
49  *      Skipped bytes(4)
50  *      Main area Ecc(36)
51  *      Tag data(20)
52  *      Tag data Ecc(4)
53  *
54  * Yaffs2 will use 16 tag bytes.
55  */
56 static struct nand_ecclayout eccoob = {
57         .eccbytes = 36,
58         .eccpos = {
59                 4,  5,  6,  7,  8,  9,  10, 11, 12,
60                 13, 14, 15, 16, 17, 18, 19, 20, 21,
61                 22, 23, 24, 25, 26, 27, 28, 29, 30,
62                 31, 32, 33, 34, 35, 36, 37, 38, 39,
63         },
64         .oobavail = 20,
65         .oobfree = {
66                         {
67                         .offset = 40,
68                         .length = 20,
69                         },
70         }
71 };
72
73 enum {
74         ECC_OK,
75         ECC_TAG_ERROR = 1 << 0,
76         ECC_DATA_ERROR = 1 << 1
77 };
78
79 /* Timing parameters */
80 enum {
81         FDT_NAND_MAX_TRP_TREA,
82         FDT_NAND_TWB,
83         FDT_NAND_MAX_TCR_TAR_TRR,
84         FDT_NAND_TWHR,
85         FDT_NAND_MAX_TCS_TCH_TALS_TALH,
86         FDT_NAND_TWH,
87         FDT_NAND_TWP,
88         FDT_NAND_TRH,
89         FDT_NAND_TADL,
90
91         FDT_NAND_TIMING_COUNT
92 };
93
94 /* Information about an attached NAND chip */
95 struct fdt_nand {
96         struct nand_ctlr *reg;
97         int enabled;            /* 1 to enable, 0 to disable */
98         struct fdt_gpio_state wp_gpio;  /* write-protect GPIO */
99         s32 width;              /* bit width, normally 8 */
100         u32 timing[FDT_NAND_TIMING_COUNT];
101 };
102
103 struct nand_drv {
104         struct nand_ctlr *reg;
105
106         /*
107         * When running in PIO mode to get READ ID bytes from register
108         * RESP_0, we need this variable as an index to know which byte in
109         * register RESP_0 should be read.
110         * Because common code in nand_base.c invokes read_byte function two
111         * times for NAND_CMD_READID.
112         * And our controller returns 4 bytes at once in register RESP_0.
113         */
114         int pio_byte_index;
115         struct fdt_nand config;
116 };
117
118 static struct nand_drv nand_ctrl;
119 static struct mtd_info *our_mtd;
120 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
121
122 #ifdef CONFIG_SYS_DCACHE_OFF
123 static inline void dma_prepare(void *start, unsigned long length,
124                                int is_writing)
125 {
126 }
127 #else
128 /**
129  * Prepare for a DMA transaction
130  *
131  * For a write we flush out our data. For a read we invalidate, since we
132  * need to do this before we read from the buffer after the DMA has
133  * completed, so may as well do it now.
134  *
135  * @param start         Start address for DMA buffer (should be cache-aligned)
136  * @param length        Length of DMA buffer in bytes
137  * @param is_writing    0 if reading, non-zero if writing
138  */
139 static void dma_prepare(void *start, unsigned long length, int is_writing)
140 {
141         unsigned long addr = (unsigned long)start;
142
143         length = ALIGN(length, ARCH_DMA_MINALIGN);
144         if (is_writing)
145                 flush_dcache_range(addr, addr + length);
146         else
147                 invalidate_dcache_range(addr, addr + length);
148 }
149 #endif
150
151 /**
152  * Wait for command completion
153  *
154  * @param reg   nand_ctlr structure
155  * @return
156  *      1 - Command completed
157  *      0 - Timeout
158  */
159 static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
160 {
161         u32 reg_val;
162         int running;
163         int i;
164
165         for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
166                 if ((readl(&reg->command) & CMD_GO) ||
167                                 !(readl(&reg->status) & STATUS_RBSY0) ||
168                                 !(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
169                         udelay(1);
170                         continue;
171                 }
172                 reg_val = readl(&reg->dma_mst_ctrl);
173                 /*
174                  * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
175                  * is set, that means DMA engine is running.
176                  *
177                  * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
178                  * is cleared, indicating DMA transfer completion.
179                  */
180                 running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
181                                 DMA_MST_CTRL_EN_B_ENABLE);
182                 if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
183                         return 1;
184                 udelay(1);
185         }
186         return 0;
187 }
188
189 /**
190  * Read one byte from the chip
191  *
192  * @param mtd   MTD device structure
193  * @return      data byte
194  *
195  * Read function for 8bit bus-width
196  */
197 static uint8_t read_byte(struct mtd_info *mtd)
198 {
199         struct nand_chip *chip = mtd->priv;
200         u32 dword_read;
201         struct nand_drv *info;
202
203         info = (struct nand_drv *)chip->priv;
204
205         /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */
206         if (info->pio_byte_index > 3) {
207                 info->pio_byte_index = 0;
208                 writel(CMD_GO | CMD_PIO
209                         | CMD_RX | CMD_CE0,
210                         &info->reg->command);
211                 if (!nand_waitfor_cmd_completion(info->reg))
212                         printf("Command timeout\n");
213         }
214
215         dword_read = readl(&info->reg->resp);
216         dword_read = dword_read >> (8 * info->pio_byte_index);
217         info->pio_byte_index++;
218         return (uint8_t)dword_read;
219 }
220
221 /**
222  * Read len bytes from the chip into a buffer
223  *
224  * @param mtd   MTD device structure
225  * @param buf   buffer to store data to
226  * @param len   number of bytes to read
227  *
228  * Read function for 8bit bus-width
229  */
230 static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
231 {
232         int i, s;
233         unsigned int reg;
234         struct nand_chip *chip = mtd->priv;
235         struct nand_drv *info = (struct nand_drv *)chip->priv;
236
237         for (i = 0; i < len; i += 4) {
238                 s = (len - i) > 4 ? 4 : len - i;
239                 writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
240                         ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
241                         &info->reg->command);
242                 if (!nand_waitfor_cmd_completion(info->reg))
243                         puts("Command timeout during read_buf\n");
244                 reg = readl(&info->reg->resp);
245                 memcpy(buf + i, &reg, s);
246         }
247 }
248
249 /**
250  * Check NAND status to see if it is ready or not
251  *
252  * @param mtd   MTD device structure
253  * @return
254  *      1 - ready
255  *      0 - not ready
256  */
257 static int nand_dev_ready(struct mtd_info *mtd)
258 {
259         struct nand_chip *chip = mtd->priv;
260         int reg_val;
261         struct nand_drv *info;
262
263         info = (struct nand_drv *)chip->priv;
264
265         reg_val = readl(&info->reg->status);
266         if (reg_val & STATUS_RBSY0)
267                 return 1;
268         else
269                 return 0;
270 }
271
272 /* Dummy implementation: we don't support multiple chips */
273 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
274 {
275         switch (chipnr) {
276         case -1:
277         case 0:
278                 break;
279
280         default:
281                 BUG();
282         }
283 }
284
285 /**
286  * Clear all interrupt status bits
287  *
288  * @param reg   nand_ctlr structure
289  */
290 static void nand_clear_interrupt_status(struct nand_ctlr *reg)
291 {
292         u32 reg_val;
293
294         /* Clear interrupt status */
295         reg_val = readl(&reg->isr);
296         writel(reg_val, &reg->isr);
297 }
298
299 /**
300  * Send command to NAND device
301  *
302  * @param mtd           MTD device structure
303  * @param command       the command to be sent
304  * @param column        the column address for this command, -1 if none
305  * @param page_addr     the page address for this command, -1 if none
306  */
307 static void nand_command(struct mtd_info *mtd, unsigned int command,
308         int column, int page_addr)
309 {
310         struct nand_chip *chip = mtd->priv;
311         struct nand_drv *info;
312
313         info = (struct nand_drv *)chip->priv;
314
315         /*
316          * Write out the command to the device.
317          *
318          * Only command NAND_CMD_RESET or NAND_CMD_READID will come
319          * here before mtd->writesize is initialized.
320          */
321
322         /* Emulate NAND_CMD_READOOB */
323         if (command == NAND_CMD_READOOB) {
324                 assert(mtd->writesize != 0);
325                 column += mtd->writesize;
326                 command = NAND_CMD_READ0;
327         }
328
329         /* Adjust columns for 16 bit bus-width */
330         if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
331                 column >>= 1;
332
333         nand_clear_interrupt_status(info->reg);
334
335         /* Stop DMA engine, clear DMA completion status */
336         writel(DMA_MST_CTRL_EN_A_DISABLE
337                 | DMA_MST_CTRL_EN_B_DISABLE
338                 | DMA_MST_CTRL_IS_DMA_DONE,
339                 &info->reg->dma_mst_ctrl);
340
341         /*
342          * Program and erase have their own busy handlers
343          * status and sequential in needs no delay
344          */
345         switch (command) {
346         case NAND_CMD_READID:
347                 writel(NAND_CMD_READID, &info->reg->cmd_reg1);
348                 writel(column & 0xFF, &info->reg->addr_reg1);
349                 writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO
350                         | CMD_RX |
351                         ((4 - 1) << CMD_TRANS_SIZE_SHIFT)
352                         | CMD_CE0,
353                         &info->reg->command);
354                 info->pio_byte_index = 0;
355                 break;
356         case NAND_CMD_PARAM:
357                 writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
358                 writel(column & 0xFF, &info->reg->addr_reg1);
359                 writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
360                         &info->reg->command);
361                 break;
362         case NAND_CMD_READ0:
363                 writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
364                 writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
365                 writel((page_addr << 16) | (column & 0xFFFF),
366                         &info->reg->addr_reg1);
367                 writel(page_addr >> 16, &info->reg->addr_reg2);
368                 return;
369         case NAND_CMD_SEQIN:
370                 writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
371                 writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
372                 writel((page_addr << 16) | (column & 0xFFFF),
373                         &info->reg->addr_reg1);
374                 writel(page_addr >> 16,
375                         &info->reg->addr_reg2);
376                 return;
377         case NAND_CMD_PAGEPROG:
378                 return;
379         case NAND_CMD_ERASE1:
380                 writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
381                 writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
382                 writel(page_addr, &info->reg->addr_reg1);
383                 writel(CMD_GO | CMD_CLE | CMD_ALE |
384                         CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
385                         &info->reg->command);
386                 break;
387         case NAND_CMD_ERASE2:
388                 return;
389         case NAND_CMD_STATUS:
390                 writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
391                 writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
392                         | ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
393                         | CMD_CE0,
394                         &info->reg->command);
395                 info->pio_byte_index = 0;
396                 break;
397         case NAND_CMD_RESET:
398                 writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
399                 writel(CMD_GO | CMD_CLE | CMD_CE0,
400                         &info->reg->command);
401                 break;
402         case NAND_CMD_RNDOUT:
403         default:
404                 printf("%s: Unsupported command %d\n", __func__, command);
405                 return;
406         }
407         if (!nand_waitfor_cmd_completion(info->reg))
408                 printf("Command 0x%02X timeout\n", command);
409 }
410
411 /**
412  * Check whether the pointed buffer are all 0xff (blank).
413  *
414  * @param buf   data buffer for blank check
415  * @param len   length of the buffer in byte
416  * @return
417  *      1 - blank
418  *      0 - non-blank
419  */
420 static int blank_check(u8 *buf, int len)
421 {
422         int i;
423
424         for (i = 0; i < len; i++)
425                 if (buf[i] != 0xFF)
426                         return 0;
427         return 1;
428 }
429
430 /**
431  * After a DMA transfer for read, we call this function to see whether there
432  * is any uncorrectable error on the pointed data buffer or oob buffer.
433  *
434  * @param reg           nand_ctlr structure
435  * @param databuf       data buffer
436  * @param a_len         data buffer length
437  * @param oobbuf        oob buffer
438  * @param b_len         oob buffer length
439  * @return
440  *      ECC_OK - no ECC error or correctable ECC error
441  *      ECC_TAG_ERROR - uncorrectable tag ECC error
442  *      ECC_DATA_ERROR - uncorrectable data ECC error
443  *      ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
444  */
445 static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
446         int a_len, u8 *oobbuf, int b_len)
447 {
448         int return_val = ECC_OK;
449         u32 reg_val;
450
451         if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
452                 return ECC_OK;
453
454         /*
455          * Area A is used for the data block (databuf). Area B is used for
456          * the spare block (oobbuf)
457          */
458         reg_val = readl(&reg->dec_status);
459         if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
460                 reg_val = readl(&reg->bch_dec_status_buf);
461                 /*
462                  * If uncorrectable error occurs on data area, then see whether
463                  * they are all FF. If all are FF, it's a blank page.
464                  * Not error.
465                  */
466                 if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
467                                 !blank_check(databuf, a_len))
468                         return_val |= ECC_DATA_ERROR;
469         }
470
471         if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
472                 reg_val = readl(&reg->bch_dec_status_buf);
473                 /*
474                  * If uncorrectable error occurs on tag area, then see whether
475                  * they are all FF. If all are FF, it's a blank page.
476                  * Not error.
477                  */
478                 if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
479                                 !blank_check(oobbuf, b_len))
480                         return_val |= ECC_TAG_ERROR;
481         }
482
483         return return_val;
484 }
485
486 /**
487  * Set GO bit to send command to device
488  *
489  * @param reg   nand_ctlr structure
490  */
491 static void start_command(struct nand_ctlr *reg)
492 {
493         u32 reg_val;
494
495         reg_val = readl(&reg->command);
496         reg_val |= CMD_GO;
497         writel(reg_val, &reg->command);
498 }
499
500 /**
501  * Clear command GO bit, DMA GO bit, and DMA completion status
502  *
503  * @param reg   nand_ctlr structure
504  */
505 static void stop_command(struct nand_ctlr *reg)
506 {
507         /* Stop command */
508         writel(0, &reg->command);
509
510         /* Stop DMA engine and clear DMA completion status */
511         writel(DMA_MST_CTRL_GO_DISABLE
512                 | DMA_MST_CTRL_IS_DMA_DONE,
513                 &reg->dma_mst_ctrl);
514 }
515
516 /**
517  * Set up NAND bus width and page size
518  *
519  * @param info          nand_info structure
520  * @param *reg_val      address of reg_val
521  * @return 0 if ok, -1 on error
522  */
523 static int set_bus_width_page_size(struct fdt_nand *config,
524         u32 *reg_val)
525 {
526         if (config->width == 8)
527                 *reg_val = CFG_BUS_WIDTH_8BIT;
528         else if (config->width == 16)
529                 *reg_val = CFG_BUS_WIDTH_16BIT;
530         else {
531                 debug("%s: Unsupported bus width %d\n", __func__,
532                       config->width);
533                 return -1;
534         }
535
536         if (our_mtd->writesize == 512)
537                 *reg_val |= CFG_PAGE_SIZE_512;
538         else if (our_mtd->writesize == 2048)
539                 *reg_val |= CFG_PAGE_SIZE_2048;
540         else if (our_mtd->writesize == 4096)
541                 *reg_val |= CFG_PAGE_SIZE_4096;
542         else {
543                 debug("%s: Unsupported page size %d\n", __func__,
544                       our_mtd->writesize);
545                 return -1;
546         }
547
548         return 0;
549 }
550
551 /**
552  * Page read/write function
553  *
554  * @param mtd           mtd info structure
555  * @param chip          nand chip info structure
556  * @param buf           data buffer
557  * @param page          page number
558  * @param with_ecc      1 to enable ECC, 0 to disable ECC
559  * @param is_writing    0 for read, 1 for write
560  * @return      0 when successfully completed
561  *              -EIO when command timeout
562  */
563 static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
564         uint8_t *buf, int page, int with_ecc, int is_writing)
565 {
566         u32 reg_val;
567         int tag_size;
568         struct nand_oobfree *free = chip->ecc.layout->oobfree;
569         /* 4*128=512 (byte) is the value that our HW can support. */
570         ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
571         char *tag_ptr;
572         struct nand_drv *info;
573         struct fdt_nand *config;
574
575         if ((uintptr_t)buf & 0x03) {
576                 printf("buf %p has to be 4-byte aligned\n", buf);
577                 return -EINVAL;
578         }
579
580         info = (struct nand_drv *)chip->priv;
581         config = &info->config;
582         if (set_bus_width_page_size(config, &reg_val))
583                 return -EINVAL;
584
585         /* Need to be 4-byte aligned */
586         tag_ptr = (char *)tag_buf;
587
588         stop_command(info->reg);
589
590         writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
591         writel(virt_to_phys(buf), &info->reg->data_block_ptr);
592
593         if (with_ecc) {
594                 writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr);
595                 if (is_writing)
596                         memcpy(tag_ptr, chip->oob_poi + free->offset,
597                                 chip->ecc.layout->oobavail +
598                                 TAG_ECC_BYTES);
599         } else {
600                 writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
601         }
602
603         /* Set ECC selection, configure ECC settings */
604         if (with_ecc) {
605                 tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
606                 reg_val |= (CFG_SKIP_SPARE_SEL_4
607                         | CFG_SKIP_SPARE_ENABLE
608                         | CFG_HW_ECC_CORRECTION_ENABLE
609                         | CFG_ECC_EN_TAG_DISABLE
610                         | CFG_HW_ECC_SEL_RS
611                         | CFG_HW_ECC_ENABLE
612                         | CFG_TVAL4
613                         | (tag_size - 1));
614
615                 if (!is_writing)
616                         tag_size += SKIPPED_SPARE_BYTES;
617                 dma_prepare(tag_ptr, tag_size, is_writing);
618         } else {
619                 tag_size = mtd->oobsize;
620                 reg_val |= (CFG_SKIP_SPARE_DISABLE
621                         | CFG_HW_ECC_CORRECTION_DISABLE
622                         | CFG_ECC_EN_TAG_DISABLE
623                         | CFG_HW_ECC_DISABLE
624                         | (tag_size - 1));
625                 dma_prepare(chip->oob_poi, tag_size, is_writing);
626         }
627         writel(reg_val, &info->reg->config);
628
629         dma_prepare(buf, 1 << chip->page_shift, is_writing);
630
631         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
632
633         writel(tag_size - 1, &info->reg->dma_cfg_b);
634
635         nand_clear_interrupt_status(info->reg);
636
637         reg_val = CMD_CLE | CMD_ALE
638                 | CMD_SEC_CMD
639                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
640                 | CMD_A_VALID
641                 | CMD_B_VALID
642                 | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
643                 | CMD_CE0;
644         if (!is_writing)
645                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
646         else
647                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
648         writel(reg_val, &info->reg->command);
649
650         /* Setup DMA engine */
651         reg_val = DMA_MST_CTRL_GO_ENABLE
652                 | DMA_MST_CTRL_BURST_8WORDS
653                 | DMA_MST_CTRL_EN_A_ENABLE
654                 | DMA_MST_CTRL_EN_B_ENABLE;
655
656         if (!is_writing)
657                 reg_val |= DMA_MST_CTRL_DIR_READ;
658         else
659                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
660
661         writel(reg_val, &info->reg->dma_mst_ctrl);
662
663         start_command(info->reg);
664
665         if (!nand_waitfor_cmd_completion(info->reg)) {
666                 if (!is_writing)
667                         printf("Read Page 0x%X timeout ", page);
668                 else
669                         printf("Write Page 0x%X timeout ", page);
670                 if (with_ecc)
671                         printf("with ECC");
672                 else
673                         printf("without ECC");
674                 printf("\n");
675                 return -EIO;
676         }
677
678         if (with_ecc && !is_writing) {
679                 memcpy(chip->oob_poi, tag_ptr,
680                         SKIPPED_SPARE_BYTES);
681                 memcpy(chip->oob_poi + free->offset,
682                         tag_ptr + SKIPPED_SPARE_BYTES,
683                         chip->ecc.layout->oobavail);
684                 reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
685                         1 << chip->page_shift,
686                         (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
687                         chip->ecc.layout->oobavail);
688                 if (reg_val & ECC_TAG_ERROR)
689                         printf("Read Page 0x%X tag ECC error\n", page);
690                 if (reg_val & ECC_DATA_ERROR)
691                         printf("Read Page 0x%X data ECC error\n",
692                                 page);
693                 if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
694                         return -EIO;
695         }
696         return 0;
697 }
698
699 /**
700  * Hardware ecc based page read function
701  *
702  * @param mtd   mtd info structure
703  * @param chip  nand chip info structure
704  * @param buf   buffer to store read data
705  * @param page  page number to read
706  * @return      0 when successfully completed
707  *              -EIO when command timeout
708  */
709 static int nand_read_page_hwecc(struct mtd_info *mtd,
710         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
711 {
712         return nand_rw_page(mtd, chip, buf, page, 1, 0);
713 }
714
715 /**
716  * Hardware ecc based page write function
717  *
718  * @param mtd   mtd info structure
719  * @param chip  nand chip info structure
720  * @param buf   data buffer
721  */
722 static int nand_write_page_hwecc(struct mtd_info *mtd,
723         struct nand_chip *chip, const uint8_t *buf, int oob_required)
724 {
725         int page;
726         struct nand_drv *info;
727
728         info = (struct nand_drv *)chip->priv;
729
730         page = (readl(&info->reg->addr_reg1) >> 16) |
731                 (readl(&info->reg->addr_reg2) << 16);
732
733         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
734         return 0;
735 }
736
737
738 /**
739  * Read raw page data without ecc
740  *
741  * @param mtd   mtd info structure
742  * @param chip  nand chip info structure
743  * @param buf   buffer to store read data
744  * @param page  page number to read
745  * @return      0 when successfully completed
746  *              -EINVAL when chip->oob_poi is not double-word aligned
747  *              -EIO when command timeout
748  */
749 static int nand_read_page_raw(struct mtd_info *mtd,
750         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
751 {
752         return nand_rw_page(mtd, chip, buf, page, 0, 0);
753 }
754
755 /**
756  * Raw page write function
757  *
758  * @param mtd   mtd info structure
759  * @param chip  nand chip info structure
760  * @param buf   data buffer
761  */
762 static int nand_write_page_raw(struct mtd_info *mtd,
763                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
764 {
765         int page;
766         struct nand_drv *info;
767
768         info = (struct nand_drv *)chip->priv;
769         page = (readl(&info->reg->addr_reg1) >> 16) |
770                 (readl(&info->reg->addr_reg2) << 16);
771
772         nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
773         return 0;
774 }
775
776 /**
777  * OOB data read/write function
778  *
779  * @param mtd           mtd info structure
780  * @param chip          nand chip info structure
781  * @param page          page number to read
782  * @param with_ecc      1 to enable ECC, 0 to disable ECC
783  * @param is_writing    0 for read, 1 for write
784  * @return      0 when successfully completed
785  *              -EINVAL when chip->oob_poi is not double-word aligned
786  *              -EIO when command timeout
787  */
788 static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
789         int page, int with_ecc, int is_writing)
790 {
791         u32 reg_val;
792         int tag_size;
793         struct nand_oobfree *free = chip->ecc.layout->oobfree;
794         struct nand_drv *info;
795
796         if (((int)chip->oob_poi) & 0x03)
797                 return -EINVAL;
798         info = (struct nand_drv *)chip->priv;
799         if (set_bus_width_page_size(&info->config, &reg_val))
800                 return -EINVAL;
801
802         stop_command(info->reg);
803
804         writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
805
806         /* Set ECC selection */
807         tag_size = mtd->oobsize;
808         if (with_ecc)
809                 reg_val |= CFG_ECC_EN_TAG_ENABLE;
810         else
811                 reg_val |= (CFG_ECC_EN_TAG_DISABLE);
812
813         reg_val |= ((tag_size - 1) |
814                 CFG_SKIP_SPARE_DISABLE |
815                 CFG_HW_ECC_CORRECTION_DISABLE |
816                 CFG_HW_ECC_DISABLE);
817         writel(reg_val, &info->reg->config);
818
819         dma_prepare(chip->oob_poi, tag_size, is_writing);
820
821         writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
822
823         if (is_writing && with_ecc)
824                 tag_size -= TAG_ECC_BYTES;
825
826         writel(tag_size - 1, &info->reg->dma_cfg_b);
827
828         nand_clear_interrupt_status(info->reg);
829
830         reg_val = CMD_CLE | CMD_ALE
831                 | CMD_SEC_CMD
832                 | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
833                 | CMD_B_VALID
834                 | CMD_CE0;
835         if (!is_writing)
836                 reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
837         else
838                 reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
839         writel(reg_val, &info->reg->command);
840
841         /* Setup DMA engine */
842         reg_val = DMA_MST_CTRL_GO_ENABLE
843                 | DMA_MST_CTRL_BURST_8WORDS
844                 | DMA_MST_CTRL_EN_B_ENABLE;
845         if (!is_writing)
846                 reg_val |= DMA_MST_CTRL_DIR_READ;
847         else
848                 reg_val |= DMA_MST_CTRL_DIR_WRITE;
849
850         writel(reg_val, &info->reg->dma_mst_ctrl);
851
852         start_command(info->reg);
853
854         if (!nand_waitfor_cmd_completion(info->reg)) {
855                 if (!is_writing)
856                         printf("Read OOB of Page 0x%X timeout\n", page);
857                 else
858                         printf("Write OOB of Page 0x%X timeout\n", page);
859                 return -EIO;
860         }
861
862         if (with_ecc && !is_writing) {
863                 reg_val = (u32)check_ecc_error(info->reg, 0, 0,
864                         (u8 *)(chip->oob_poi + free->offset),
865                         chip->ecc.layout->oobavail);
866                 if (reg_val & ECC_TAG_ERROR)
867                         printf("Read OOB of Page 0x%X tag ECC error\n", page);
868         }
869         return 0;
870 }
871
872 /**
873  * OOB data read function
874  *
875  * @param mtd           mtd info structure
876  * @param chip          nand chip info structure
877  * @param page          page number to read
878  */
879 static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
880         int page)
881 {
882         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
883         nand_rw_oob(mtd, chip, page, 0, 0);
884         return 0;
885 }
886
887 /**
888  * OOB data write function
889  *
890  * @param mtd   mtd info structure
891  * @param chip  nand chip info structure
892  * @param page  page number to write
893  * @return      0 when successfully completed
894  *              -EINVAL when chip->oob_poi is not double-word aligned
895  *              -EIO when command timeout
896  */
897 static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
898         int page)
899 {
900         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
901
902         return nand_rw_oob(mtd, chip, page, 0, 1);
903 }
904
905 /**
906  * Set up NAND memory timings according to the provided parameters
907  *
908  * @param timing        Timing parameters
909  * @param reg           NAND controller register address
910  */
911 static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
912                          struct nand_ctlr *reg)
913 {
914         u32 reg_val, clk_rate, clk_period, time_val;
915
916         clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
917                 CLOCK_ID_PERIPH) / 1000000;
918         clk_period = 1000 / clk_rate;
919         reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
920                 TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
921         reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
922                 TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
923         time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
924         if (time_val > 2)
925                 reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
926                         TIMING_TCR_TAR_TRR_CNT_MASK;
927         reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
928                 TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
929         time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
930         if (time_val > 1)
931                 reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
932                         TIMING_TCS_CNT_MASK;
933         reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
934                 TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
935         reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
936                 TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
937         reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
938                 TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
939         reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
940                 TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
941         writel(reg_val, &reg->timing);
942
943         reg_val = 0;
944         time_val = timing[FDT_NAND_TADL] / clk_period;
945         if (time_val > 2)
946                 reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
947         writel(reg_val, &reg->timing2);
948 }
949
950 /**
951  * Decode NAND parameters from the device tree
952  *
953  * @param blob  Device tree blob
954  * @param node  Node containing "nand-flash" compatble node
955  * @return 0 if ok, -ve on error (FDT_ERR_...)
956  */
957 static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config)
958 {
959         int err;
960
961         config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg");
962         config->enabled = fdtdec_get_is_enabled(blob, node);
963         config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8);
964         err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios",
965                                  &config->wp_gpio);
966         if (err)
967                 return err;
968         err = fdtdec_get_int_array(blob, node, "nvidia,timing",
969                         config->timing, FDT_NAND_TIMING_COUNT);
970         if (err < 0)
971                 return err;
972
973         /* Now look up the controller and decode that */
974         node = fdt_next_node(blob, node, NULL);
975         if (node < 0)
976                 return node;
977
978         return 0;
979 }
980
981 /**
982  * Board-specific NAND initialization
983  *
984  * @param nand  nand chip info structure
985  * @return 0, after initialized, -1 on error
986  */
987 int tegra_nand_init(struct nand_chip *nand, int devnum)
988 {
989         struct nand_drv *info = &nand_ctrl;
990         struct fdt_nand *config = &info->config;
991         int node, ret;
992
993         node = fdtdec_next_compatible(gd->fdt_blob, 0,
994                                       COMPAT_NVIDIA_TEGRA20_NAND);
995         if (node < 0)
996                 return -1;
997         if (fdt_decode_nand(gd->fdt_blob, node, config)) {
998                 printf("Could not decode nand-flash in device tree\n");
999                 return -1;
1000         }
1001         if (!config->enabled)
1002                 return -1;
1003         info->reg = config->reg;
1004         nand->ecc.mode = NAND_ECC_HW;
1005         nand->ecc.layout = &eccoob;
1006
1007         nand->options = LP_OPTIONS;
1008         nand->cmdfunc = nand_command;
1009         nand->read_byte = read_byte;
1010         nand->read_buf = read_buf;
1011         nand->ecc.read_page = nand_read_page_hwecc;
1012         nand->ecc.write_page = nand_write_page_hwecc;
1013         nand->ecc.read_page_raw = nand_read_page_raw;
1014         nand->ecc.write_page_raw = nand_write_page_raw;
1015         nand->ecc.read_oob = nand_read_oob;
1016         nand->ecc.write_oob = nand_write_oob;
1017         nand->ecc.strength = 1;
1018         nand->select_chip = nand_select_chip;
1019         nand->dev_ready  = nand_dev_ready;
1020         nand->priv = &nand_ctrl;
1021
1022         /* Adjust controller clock rate */
1023         clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
1024
1025         /* Adjust timing for NAND device */
1026         setup_timing(config->timing, info->reg);
1027
1028         fdtdec_setup_gpio(&config->wp_gpio);
1029         gpio_direction_output(config->wp_gpio.gpio, 1);
1030
1031         our_mtd = &nand_info[devnum];
1032         our_mtd->priv = nand;
1033         ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1034         if (ret)
1035                 return ret;
1036
1037         nand->ecc.size = our_mtd->writesize;
1038         nand->ecc.bytes = our_mtd->oobsize;
1039
1040         ret = nand_scan_tail(our_mtd);
1041         if (ret)
1042                 return ret;
1043
1044         ret = nand_register(devnum);
1045         if (ret)
1046                 return ret;
1047
1048         return 0;
1049 }
1050
1051 void board_nand_init(void)
1052 {
1053         struct nand_chip *nand = &nand_chip[0];
1054
1055         if (tegra_nand_init(nand, 0))
1056                 puts("Tegra NAND init failed\n");
1057 }