]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/ubi/kapi.c
Merge branch 'u-boot/master' into u-boot-arm/master
[karo-tx-uboot.git] / drivers / mtd / ubi / kapi.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8
9 /* This file mostly implements UBI kernel API functions */
10
11 #ifdef UBI_LINUX
12 #include <linux/module.h>
13 #include <linux/err.h>
14 #include <asm/div64.h>
15 #endif
16
17 #include <ubi_uboot.h>
18 #include "ubi.h"
19
20 /**
21  * ubi_get_device_info - get information about UBI device.
22  * @ubi_num: UBI device number
23  * @di: the information is stored here
24  *
25  * This function returns %0 in case of success, %-EINVAL if the UBI device
26  * number is invalid, and %-ENODEV if there is no such UBI device.
27  */
28 int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
29 {
30         struct ubi_device *ubi;
31
32         if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
33                 return -EINVAL;
34
35         ubi = ubi_get_device(ubi_num);
36         if (!ubi)
37                 return -ENODEV;
38
39         di->ubi_num = ubi->ubi_num;
40         di->leb_size = ubi->leb_size;
41         di->min_io_size = ubi->min_io_size;
42         di->ro_mode = ubi->ro_mode;
43         di->cdev = ubi->cdev.dev;
44
45         ubi_put_device(ubi);
46         return 0;
47 }
48 EXPORT_SYMBOL_GPL(ubi_get_device_info);
49
50 /**
51  * ubi_get_volume_info - get information about UBI volume.
52  * @desc: volume descriptor
53  * @vi: the information is stored here
54  */
55 void ubi_get_volume_info(struct ubi_volume_desc *desc,
56                          struct ubi_volume_info *vi)
57 {
58         const struct ubi_volume *vol = desc->vol;
59         const struct ubi_device *ubi = vol->ubi;
60
61         vi->vol_id = vol->vol_id;
62         vi->ubi_num = ubi->ubi_num;
63         vi->size = vol->reserved_pebs;
64         vi->used_bytes = vol->used_bytes;
65         vi->vol_type = vol->vol_type;
66         vi->corrupted = vol->corrupted;
67         vi->upd_marker = vol->upd_marker;
68         vi->alignment = vol->alignment;
69         vi->usable_leb_size = vol->usable_leb_size;
70         vi->name_len = vol->name_len;
71         vi->name = vol->name;
72         vi->cdev = vol->cdev.dev;
73 }
74 EXPORT_SYMBOL_GPL(ubi_get_volume_info);
75
76 /**
77  * ubi_open_volume - open UBI volume.
78  * @ubi_num: UBI device number
79  * @vol_id: volume ID
80  * @mode: open mode
81  *
82  * The @mode parameter specifies if the volume should be opened in read-only
83  * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
84  * nobody else will be able to open this volume. UBI allows to have many volume
85  * readers and one writer at a time.
86  *
87  * If a static volume is being opened for the first time since boot, it will be
88  * checked by this function, which means it will be fully read and the CRC
89  * checksum of each logical eraseblock will be checked.
90  *
91  * This function returns volume descriptor in case of success and a negative
92  * error code in case of failure.
93  */
94 struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
95 {
96         int err;
97         struct ubi_volume_desc *desc;
98         struct ubi_device *ubi;
99         struct ubi_volume *vol;
100
101         dbg_msg("open device %d volume %d, mode %d", ubi_num, vol_id, mode);
102
103         if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
104                 return ERR_PTR(-EINVAL);
105
106         if (mode != UBI_READONLY && mode != UBI_READWRITE &&
107             mode != UBI_EXCLUSIVE)
108                 return ERR_PTR(-EINVAL);
109
110         /*
111          * First of all, we have to get the UBI device to prevent its removal.
112          */
113         ubi = ubi_get_device(ubi_num);
114         if (!ubi)
115                 return ERR_PTR(-ENODEV);
116
117         if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
118                 err = -EINVAL;
119                 goto out_put_ubi;
120         }
121
122         desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
123         if (!desc) {
124                 err = -ENOMEM;
125                 goto out_put_ubi;
126         }
127
128         err = -ENODEV;
129         if (!try_module_get(THIS_MODULE))
130                 goto out_free;
131
132         spin_lock(&ubi->volumes_lock);
133         vol = ubi->volumes[vol_id];
134         if (!vol)
135                 goto out_unlock;
136
137         err = -EBUSY;
138         switch (mode) {
139         case UBI_READONLY:
140                 if (vol->exclusive)
141                         goto out_unlock;
142                 vol->readers += 1;
143                 break;
144
145         case UBI_READWRITE:
146                 if (vol->exclusive || vol->writers > 0)
147                         goto out_unlock;
148                 vol->writers += 1;
149                 break;
150
151         case UBI_EXCLUSIVE:
152                 if (vol->exclusive || vol->writers || vol->readers)
153                         goto out_unlock;
154                 vol->exclusive = 1;
155                 break;
156         }
157         get_device(&vol->dev);
158         vol->ref_count += 1;
159         spin_unlock(&ubi->volumes_lock);
160
161         desc->vol = vol;
162         desc->mode = mode;
163
164         mutex_lock(&ubi->ckvol_mutex);
165         if (!vol->checked) {
166                 /* This is the first open - check the volume */
167                 err = ubi_check_volume(ubi, vol_id);
168                 if (err < 0) {
169                         mutex_unlock(&ubi->ckvol_mutex);
170                         ubi_close_volume(desc);
171                         return ERR_PTR(err);
172                 }
173                 if (err == 1) {
174                         ubi_warn("volume %d on UBI device %d is corrupted",
175                                  vol_id, ubi->ubi_num);
176                         vol->corrupted = 1;
177                 }
178                 vol->checked = 1;
179         }
180         mutex_unlock(&ubi->ckvol_mutex);
181
182         return desc;
183
184 out_unlock:
185         spin_unlock(&ubi->volumes_lock);
186         module_put(THIS_MODULE);
187 out_free:
188         kfree(desc);
189 out_put_ubi:
190         ubi_put_device(ubi);
191         return ERR_PTR(err);
192 }
193 EXPORT_SYMBOL_GPL(ubi_open_volume);
194
195 /**
196  * ubi_open_volume_nm - open UBI volume by name.
197  * @ubi_num: UBI device number
198  * @name: volume name
199  * @mode: open mode
200  *
201  * This function is similar to 'ubi_open_volume()', but opens a volume by name.
202  */
203 struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
204                                            int mode)
205 {
206         int i, vol_id = -1, len;
207         struct ubi_device *ubi;
208         struct ubi_volume_desc *ret;
209
210         dbg_msg("open volume %s, mode %d", name, mode);
211
212         if (!name)
213                 return ERR_PTR(-EINVAL);
214
215         len = strnlen(name, UBI_VOL_NAME_MAX + 1);
216         if (len > UBI_VOL_NAME_MAX)
217                 return ERR_PTR(-EINVAL);
218
219         if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
220                 return ERR_PTR(-EINVAL);
221
222         ubi = ubi_get_device(ubi_num);
223         if (!ubi)
224                 return ERR_PTR(-ENODEV);
225
226         spin_lock(&ubi->volumes_lock);
227         /* Walk all volumes of this UBI device */
228         for (i = 0; i < ubi->vtbl_slots; i++) {
229                 struct ubi_volume *vol = ubi->volumes[i];
230
231                 if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
232                         vol_id = i;
233                         break;
234                 }
235         }
236         spin_unlock(&ubi->volumes_lock);
237
238         if (vol_id >= 0)
239                 ret = ubi_open_volume(ubi_num, vol_id, mode);
240         else
241                 ret = ERR_PTR(-ENODEV);
242
243         /*
244          * We should put the UBI device even in case of success, because
245          * 'ubi_open_volume()' took a reference as well.
246          */
247         ubi_put_device(ubi);
248         return ret;
249 }
250 EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
251
252 /**
253  * ubi_close_volume - close UBI volume.
254  * @desc: volume descriptor
255  */
256 void ubi_close_volume(struct ubi_volume_desc *desc)
257 {
258         struct ubi_volume *vol = desc->vol;
259         struct ubi_device *ubi = vol->ubi;
260
261         dbg_msg("close volume %d, mode %d", vol->vol_id, desc->mode);
262
263         spin_lock(&ubi->volumes_lock);
264         switch (desc->mode) {
265         case UBI_READONLY:
266                 vol->readers -= 1;
267                 break;
268         case UBI_READWRITE:
269                 vol->writers -= 1;
270                 break;
271         case UBI_EXCLUSIVE:
272                 vol->exclusive = 0;
273         }
274         vol->ref_count -= 1;
275         spin_unlock(&ubi->volumes_lock);
276
277         kfree(desc);
278         put_device(&vol->dev);
279         ubi_put_device(ubi);
280         module_put(THIS_MODULE);
281 }
282 EXPORT_SYMBOL_GPL(ubi_close_volume);
283
284 /**
285  * ubi_leb_read - read data.
286  * @desc: volume descriptor
287  * @lnum: logical eraseblock number to read from
288  * @buf: buffer where to store the read data
289  * @offset: offset within the logical eraseblock to read from
290  * @len: how many bytes to read
291  * @check: whether UBI has to check the read data's CRC or not.
292  *
293  * This function reads data from offset @offset of logical eraseblock @lnum and
294  * stores the data at @buf. When reading from static volumes, @check specifies
295  * whether the data has to be checked or not. If yes, the whole logical
296  * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
297  * checksum is per-eraseblock). So checking may substantially slow down the
298  * read speed. The @check argument is ignored for dynamic volumes.
299  *
300  * In case of success, this function returns zero. In case of failure, this
301  * function returns a negative error code.
302  *
303  * %-EBADMSG error code is returned:
304  * o for both static and dynamic volumes if MTD driver has detected a data
305  *   integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
306  * o for static volumes in case of data CRC mismatch.
307  *
308  * If the volume is damaged because of an interrupted update this function just
309  * returns immediately with %-EBADF error code.
310  */
311 int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
312                  int len, int check)
313 {
314         struct ubi_volume *vol = desc->vol;
315         struct ubi_device *ubi = vol->ubi;
316         int err, vol_id = vol->vol_id;
317
318         dbg_msg("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
319
320         if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
321             lnum >= vol->used_ebs || offset < 0 || len < 0 ||
322             offset + len > vol->usable_leb_size)
323                 return -EINVAL;
324
325         if (vol->vol_type == UBI_STATIC_VOLUME) {
326                 if (vol->used_ebs == 0)
327                         /* Empty static UBI volume */
328                         return 0;
329                 if (lnum == vol->used_ebs - 1 &&
330                     offset + len > vol->last_eb_bytes)
331                         return -EINVAL;
332         }
333
334         if (vol->upd_marker)
335                 return -EBADF;
336         if (len == 0)
337                 return 0;
338
339         err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
340         if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
341                 ubi_warn("mark volume %d as corrupted", vol_id);
342                 vol->corrupted = 1;
343         }
344
345         return err;
346 }
347 EXPORT_SYMBOL_GPL(ubi_leb_read);
348
349 /**
350  * ubi_leb_write - write data.
351  * @desc: volume descriptor
352  * @lnum: logical eraseblock number to write to
353  * @buf: data to write
354  * @offset: offset within the logical eraseblock where to write
355  * @len: how many bytes to write
356  * @dtype: expected data type
357  *
358  * This function writes @len bytes of data from @buf to offset @offset of
359  * logical eraseblock @lnum. The @dtype argument describes expected lifetime of
360  * the data.
361  *
362  * This function takes care of physical eraseblock write failures. If write to
363  * the physical eraseblock write operation fails, the logical eraseblock is
364  * re-mapped to another physical eraseblock, the data is recovered, and the
365  * write finishes. UBI has a pool of reserved physical eraseblocks for this.
366  *
367  * If all the data were successfully written, zero is returned. If an error
368  * occurred and UBI has not been able to recover from it, this function returns
369  * a negative error code. Note, in case of an error, it is possible that
370  * something was still written to the flash media, but that may be some
371  * garbage.
372  *
373  * If the volume is damaged because of an interrupted update this function just
374  * returns immediately with %-EBADF code.
375  */
376 int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
377                   int offset, int len, int dtype)
378 {
379         struct ubi_volume *vol = desc->vol;
380         struct ubi_device *ubi = vol->ubi;
381         int vol_id = vol->vol_id;
382
383         dbg_msg("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
384
385         if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
386                 return -EINVAL;
387
388         if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
389                 return -EROFS;
390
391         if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 ||
392             offset + len > vol->usable_leb_size ||
393             offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
394                 return -EINVAL;
395
396         if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
397             dtype != UBI_UNKNOWN)
398                 return -EINVAL;
399
400         if (vol->upd_marker)
401                 return -EBADF;
402
403         if (len == 0)
404                 return 0;
405
406         return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len, dtype);
407 }
408 EXPORT_SYMBOL_GPL(ubi_leb_write);
409
410 /*
411  * ubi_leb_change - change logical eraseblock atomically.
412  * @desc: volume descriptor
413  * @lnum: logical eraseblock number to change
414  * @buf: data to write
415  * @len: how many bytes to write
416  * @dtype: expected data type
417  *
418  * This function changes the contents of a logical eraseblock atomically. @buf
419  * has to contain new logical eraseblock data, and @len - the length of the
420  * data, which has to be aligned. The length may be shorter then the logical
421  * eraseblock size, ant the logical eraseblock may be appended to more times
422  * later on. This function guarantees that in case of an unclean reboot the old
423  * contents is preserved. Returns zero in case of success and a negative error
424  * code in case of failure.
425  */
426 int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
427                    int len, int dtype)
428 {
429         struct ubi_volume *vol = desc->vol;
430         struct ubi_device *ubi = vol->ubi;
431         int vol_id = vol->vol_id;
432
433         dbg_msg("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
434
435         if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
436                 return -EINVAL;
437
438         if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
439                 return -EROFS;
440
441         if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 ||
442             len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
443                 return -EINVAL;
444
445         if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
446             dtype != UBI_UNKNOWN)
447                 return -EINVAL;
448
449         if (vol->upd_marker)
450                 return -EBADF;
451
452         if (len == 0)
453                 return 0;
454
455         return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len, dtype);
456 }
457 EXPORT_SYMBOL_GPL(ubi_leb_change);
458
459 /**
460  * ubi_leb_erase - erase logical eraseblock.
461  * @desc: volume descriptor
462  * @lnum: logical eraseblock number
463  *
464  * This function un-maps logical eraseblock @lnum and synchronously erases the
465  * correspondent physical eraseblock. Returns zero in case of success and a
466  * negative error code in case of failure.
467  *
468  * If the volume is damaged because of an interrupted update this function just
469  * returns immediately with %-EBADF code.
470  */
471 int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
472 {
473         struct ubi_volume *vol = desc->vol;
474         struct ubi_device *ubi = vol->ubi;
475         int err;
476
477         dbg_msg("erase LEB %d:%d", vol->vol_id, lnum);
478
479         if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
480                 return -EROFS;
481
482         if (lnum < 0 || lnum >= vol->reserved_pebs)
483                 return -EINVAL;
484
485         if (vol->upd_marker)
486                 return -EBADF;
487
488         err = ubi_eba_unmap_leb(ubi, vol, lnum);
489         if (err)
490                 return err;
491
492         return ubi_wl_flush(ubi);
493 }
494 EXPORT_SYMBOL_GPL(ubi_leb_erase);
495
496 /**
497  * ubi_leb_unmap - un-map logical eraseblock.
498  * @desc: volume descriptor
499  * @lnum: logical eraseblock number
500  *
501  * This function un-maps logical eraseblock @lnum and schedules the
502  * corresponding physical eraseblock for erasure, so that it will eventually be
503  * physically erased in background. This operation is much faster then the
504  * erase operation.
505  *
506  * Unlike erase, the un-map operation does not guarantee that the logical
507  * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
508  * example, if several logical eraseblocks are un-mapped, and an unclean reboot
509  * happens after this, the logical eraseblocks will not necessarily be
510  * un-mapped again when this MTD device is attached. They may actually be
511  * mapped to the same physical eraseblocks again. So, this function has to be
512  * used with care.
513  *
514  * In other words, when un-mapping a logical eraseblock, UBI does not store
515  * any information about this on the flash media, it just marks the logical
516  * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
517  * eraseblock is physically erased, it will be mapped again to the same logical
518  * eraseblock when the MTD device is attached again.
519  *
520  * The main and obvious use-case of this function is when the contents of a
521  * logical eraseblock has to be re-written. Then it is much more efficient to
522  * first un-map it, then write new data, rather then first erase it, then write
523  * new data. Note, once new data has been written to the logical eraseblock,
524  * UBI guarantees that the old contents has gone forever. In other words, if an
525  * unclean reboot happens after the logical eraseblock has been un-mapped and
526  * then written to, it will contain the last written data.
527  *
528  * This function returns zero in case of success and a negative error code in
529  * case of failure. If the volume is damaged because of an interrupted update
530  * this function just returns immediately with %-EBADF code.
531  */
532 int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
533 {
534         struct ubi_volume *vol = desc->vol;
535         struct ubi_device *ubi = vol->ubi;
536
537         dbg_msg("unmap LEB %d:%d", vol->vol_id, lnum);
538
539         if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
540                 return -EROFS;
541
542         if (lnum < 0 || lnum >= vol->reserved_pebs)
543                 return -EINVAL;
544
545         if (vol->upd_marker)
546                 return -EBADF;
547
548         return ubi_eba_unmap_leb(ubi, vol, lnum);
549 }
550 EXPORT_SYMBOL_GPL(ubi_leb_unmap);
551
552 /**
553  * ubi_leb_map - map logical erasblock to a physical eraseblock.
554  * @desc: volume descriptor
555  * @lnum: logical eraseblock number
556  * @dtype: expected data type
557  *
558  * This function maps an un-mapped logical eraseblock @lnum to a physical
559  * eraseblock. This means, that after a successfull invocation of this
560  * function the logical eraseblock @lnum will be empty (contain only %0xFF
561  * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
562  * happens.
563  *
564  * This function returns zero in case of success, %-EBADF if the volume is
565  * damaged because of an interrupted update, %-EBADMSG if the logical
566  * eraseblock is already mapped, and other negative error codes in case of
567  * other failures.
568  */
569 int ubi_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
570 {
571         struct ubi_volume *vol = desc->vol;
572         struct ubi_device *ubi = vol->ubi;
573
574         dbg_msg("unmap LEB %d:%d", vol->vol_id, lnum);
575
576         if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
577                 return -EROFS;
578
579         if (lnum < 0 || lnum >= vol->reserved_pebs)
580                 return -EINVAL;
581
582         if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
583             dtype != UBI_UNKNOWN)
584                 return -EINVAL;
585
586         if (vol->upd_marker)
587                 return -EBADF;
588
589         if (vol->eba_tbl[lnum] >= 0)
590                 return -EBADMSG;
591
592         return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
593 }
594 EXPORT_SYMBOL_GPL(ubi_leb_map);
595
596 /**
597  * ubi_is_mapped - check if logical eraseblock is mapped.
598  * @desc: volume descriptor
599  * @lnum: logical eraseblock number
600  *
601  * This function checks if logical eraseblock @lnum is mapped to a physical
602  * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
603  * mean it will still be un-mapped after the UBI device is re-attached. The
604  * logical eraseblock may become mapped to the physical eraseblock it was last
605  * mapped to.
606  *
607  * This function returns %1 if the LEB is mapped, %0 if not, and a negative
608  * error code in case of failure. If the volume is damaged because of an
609  * interrupted update this function just returns immediately with %-EBADF error
610  * code.
611  */
612 int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
613 {
614         struct ubi_volume *vol = desc->vol;
615
616         dbg_msg("test LEB %d:%d", vol->vol_id, lnum);
617
618         if (lnum < 0 || lnum >= vol->reserved_pebs)
619                 return -EINVAL;
620
621         if (vol->upd_marker)
622                 return -EBADF;
623
624         return vol->eba_tbl[lnum] >= 0;
625 }
626 EXPORT_SYMBOL_GPL(ubi_is_mapped);