]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/e1000.c
arm: mx6: add support for i.MX6ULL
[karo-tx-uboot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <pci.h>
36 #include "e1000.h"
37
38 #define TOUT_LOOP   100000
39
40 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
41 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
42
43 #define E1000_DEFAULT_PCI_PBA   0x00000030
44 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
45
46 /* NIC specific static variables go here */
47
48 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
49 #define E1000_BUFFER_ALIGN      128
50
51 /*
52  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
53  * Concurrent receiving on multiple active Ethernet devices will not work.
54  * Normally U-Boot does not support this anyway. To fix it in this driver,
55  * move these buffers and the tx/rx pointers to struct e1000_hw.
56  */
57 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
58 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
59 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
60
61 static int tx_tail;
62 static int rx_tail, rx_last;
63 #ifdef CONFIG_DM_ETH
64 static int num_cards;   /* Number of E1000 devices seen so far */
65 #endif
66
67 static struct pci_device_id e1000_supported[] = {
68         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
69         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
70         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
71         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
72         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
73         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
74         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
75         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
85         /* E1000 PCIe card */
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
88         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
91         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
93         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
116
117         {}
118 };
119
120 /* Function forward declarations */
121 static int e1000_setup_link(struct e1000_hw *hw);
122 static int e1000_setup_fiber_link(struct e1000_hw *hw);
123 static int e1000_setup_copper_link(struct e1000_hw *hw);
124 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
125 static void e1000_config_collision_dist(struct e1000_hw *hw);
126 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
127 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
128 static int e1000_check_for_link(struct e1000_hw *hw);
129 static int e1000_wait_autoneg(struct e1000_hw *hw);
130 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
131                                        uint16_t * duplex);
132 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
133                               uint16_t * phy_data);
134 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
135                                uint16_t phy_data);
136 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
137 static int e1000_phy_reset(struct e1000_hw *hw);
138 static int e1000_detect_gig_phy(struct e1000_hw *hw);
139 static void e1000_set_media_type(struct e1000_hw *hw);
140
141 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
142 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
143 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
144
145 #ifndef CONFIG_E1000_NO_NVM
146 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
147 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
148                 uint16_t words,
149                 uint16_t *data);
150 /******************************************************************************
151  * Raises the EEPROM's clock input.
152  *
153  * hw - Struct containing variables accessed by shared code
154  * eecd - EECD's current value
155  *****************************************************************************/
156 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157 {
158         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
159          * wait 50 microseconds.
160          */
161         *eecd = *eecd | E1000_EECD_SK;
162         E1000_WRITE_REG(hw, EECD, *eecd);
163         E1000_WRITE_FLUSH(hw);
164         udelay(50);
165 }
166
167 /******************************************************************************
168  * Lowers the EEPROM's clock input.
169  *
170  * hw - Struct containing variables accessed by shared code
171  * eecd - EECD's current value
172  *****************************************************************************/
173 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
174 {
175         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
176          * wait 50 microseconds.
177          */
178         *eecd = *eecd & ~E1000_EECD_SK;
179         E1000_WRITE_REG(hw, EECD, *eecd);
180         E1000_WRITE_FLUSH(hw);
181         udelay(50);
182 }
183
184 /******************************************************************************
185  * Shift data bits out to the EEPROM.
186  *
187  * hw - Struct containing variables accessed by shared code
188  * data - data to send to the EEPROM
189  * count - number of bits to shift out
190  *****************************************************************************/
191 static void
192 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
193 {
194         uint32_t eecd;
195         uint32_t mask;
196
197         /* We need to shift "count" bits out to the EEPROM. So, value in the
198          * "data" parameter will be shifted out to the EEPROM one bit at a time.
199          * In order to do this, "data" must be broken down into bits.
200          */
201         mask = 0x01 << (count - 1);
202         eecd = E1000_READ_REG(hw, EECD);
203         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
204         do {
205                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
206                  * and then raising and then lowering the clock (the SK bit controls
207                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
208                  * by setting "DI" to "0" and then raising and then lowering the clock.
209                  */
210                 eecd &= ~E1000_EECD_DI;
211
212                 if (data & mask)
213                         eecd |= E1000_EECD_DI;
214
215                 E1000_WRITE_REG(hw, EECD, eecd);
216                 E1000_WRITE_FLUSH(hw);
217
218                 udelay(50);
219
220                 e1000_raise_ee_clk(hw, &eecd);
221                 e1000_lower_ee_clk(hw, &eecd);
222
223                 mask = mask >> 1;
224
225         } while (mask);
226
227         /* We leave the "DI" bit set to "0" when we leave this routine. */
228         eecd &= ~E1000_EECD_DI;
229         E1000_WRITE_REG(hw, EECD, eecd);
230 }
231
232 /******************************************************************************
233  * Shift data bits in from the EEPROM
234  *
235  * hw - Struct containing variables accessed by shared code
236  *****************************************************************************/
237 static uint16_t
238 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
239 {
240         uint32_t eecd;
241         uint32_t i;
242         uint16_t data;
243
244         /* In order to read a register from the EEPROM, we need to shift 'count'
245          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
246          * input to the EEPROM (setting the SK bit), and then reading the
247          * value of the "DO" bit.  During this "shifting in" process the
248          * "DI" bit should always be clear.
249          */
250
251         eecd = E1000_READ_REG(hw, EECD);
252
253         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
254         data = 0;
255
256         for (i = 0; i < count; i++) {
257                 data = data << 1;
258                 e1000_raise_ee_clk(hw, &eecd);
259
260                 eecd = E1000_READ_REG(hw, EECD);
261
262                 eecd &= ~(E1000_EECD_DI);
263                 if (eecd & E1000_EECD_DO)
264                         data |= 1;
265
266                 e1000_lower_ee_clk(hw, &eecd);
267         }
268
269         return data;
270 }
271
272 /******************************************************************************
273  * Returns EEPROM to a "standby" state
274  *
275  * hw - Struct containing variables accessed by shared code
276  *****************************************************************************/
277 void e1000_standby_eeprom(struct e1000_hw *hw)
278 {
279         struct e1000_eeprom_info *eeprom = &hw->eeprom;
280         uint32_t eecd;
281
282         eecd = E1000_READ_REG(hw, EECD);
283
284         if (eeprom->type == e1000_eeprom_microwire) {
285                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
286                 E1000_WRITE_REG(hw, EECD, eecd);
287                 E1000_WRITE_FLUSH(hw);
288                 udelay(eeprom->delay_usec);
289
290                 /* Clock high */
291                 eecd |= E1000_EECD_SK;
292                 E1000_WRITE_REG(hw, EECD, eecd);
293                 E1000_WRITE_FLUSH(hw);
294                 udelay(eeprom->delay_usec);
295
296                 /* Select EEPROM */
297                 eecd |= E1000_EECD_CS;
298                 E1000_WRITE_REG(hw, EECD, eecd);
299                 E1000_WRITE_FLUSH(hw);
300                 udelay(eeprom->delay_usec);
301
302                 /* Clock low */
303                 eecd &= ~E1000_EECD_SK;
304                 E1000_WRITE_REG(hw, EECD, eecd);
305                 E1000_WRITE_FLUSH(hw);
306                 udelay(eeprom->delay_usec);
307         } else if (eeprom->type == e1000_eeprom_spi) {
308                 /* Toggle CS to flush commands */
309                 eecd |= E1000_EECD_CS;
310                 E1000_WRITE_REG(hw, EECD, eecd);
311                 E1000_WRITE_FLUSH(hw);
312                 udelay(eeprom->delay_usec);
313                 eecd &= ~E1000_EECD_CS;
314                 E1000_WRITE_REG(hw, EECD, eecd);
315                 E1000_WRITE_FLUSH(hw);
316                 udelay(eeprom->delay_usec);
317         }
318 }
319
320 /***************************************************************************
321 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
322 *
323 * hw - Struct containing variables accessed by shared code
324 ****************************************************************************/
325 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
326 {
327         uint32_t eecd = 0;
328
329         DEBUGFUNC();
330
331         if (hw->mac_type == e1000_ich8lan)
332                 return false;
333
334         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
335                 eecd = E1000_READ_REG(hw, EECD);
336
337                 /* Isolate bits 15 & 16 */
338                 eecd = ((eecd >> 15) & 0x03);
339
340                 /* If both bits are set, device is Flash type */
341                 if (eecd == 0x03)
342                         return false;
343         }
344         return true;
345 }
346
347 /******************************************************************************
348  * Prepares EEPROM for access
349  *
350  * hw - Struct containing variables accessed by shared code
351  *
352  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
353  * function should be called before issuing a command to the EEPROM.
354  *****************************************************************************/
355 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
356 {
357         struct e1000_eeprom_info *eeprom = &hw->eeprom;
358         uint32_t eecd, i = 0;
359
360         DEBUGFUNC();
361
362         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
363                 return -E1000_ERR_SWFW_SYNC;
364         eecd = E1000_READ_REG(hw, EECD);
365
366         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
367                 /* Request EEPROM Access */
368                 if (hw->mac_type > e1000_82544) {
369                         eecd |= E1000_EECD_REQ;
370                         E1000_WRITE_REG(hw, EECD, eecd);
371                         eecd = E1000_READ_REG(hw, EECD);
372                         while ((!(eecd & E1000_EECD_GNT)) &&
373                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
374                                 i++;
375                                 udelay(5);
376                                 eecd = E1000_READ_REG(hw, EECD);
377                         }
378                         if (!(eecd & E1000_EECD_GNT)) {
379                                 eecd &= ~E1000_EECD_REQ;
380                                 E1000_WRITE_REG(hw, EECD, eecd);
381                                 DEBUGOUT("Could not acquire EEPROM grant\n");
382                                 return -E1000_ERR_EEPROM;
383                         }
384                 }
385         }
386
387         /* Setup EEPROM for Read/Write */
388
389         if (eeprom->type == e1000_eeprom_microwire) {
390                 /* Clear SK and DI */
391                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
392                 E1000_WRITE_REG(hw, EECD, eecd);
393
394                 /* Set CS */
395                 eecd |= E1000_EECD_CS;
396                 E1000_WRITE_REG(hw, EECD, eecd);
397         } else if (eeprom->type == e1000_eeprom_spi) {
398                 /* Clear SK and CS */
399                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
400                 E1000_WRITE_REG(hw, EECD, eecd);
401                 udelay(1);
402         }
403
404         return E1000_SUCCESS;
405 }
406
407 /******************************************************************************
408  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
409  * is configured.  Additionally, if this is ICH8, the flash controller GbE
410  * registers must be mapped, or this will crash.
411  *
412  * hw - Struct containing variables accessed by shared code
413  *****************************************************************************/
414 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
415 {
416         struct e1000_eeprom_info *eeprom = &hw->eeprom;
417         uint32_t eecd;
418         int32_t ret_val = E1000_SUCCESS;
419         uint16_t eeprom_size;
420
421         if (hw->mac_type == e1000_igb)
422                 eecd = E1000_READ_REG(hw, I210_EECD);
423         else
424                 eecd = E1000_READ_REG(hw, EECD);
425
426         DEBUGFUNC();
427
428         switch (hw->mac_type) {
429         case e1000_82542_rev2_0:
430         case e1000_82542_rev2_1:
431         case e1000_82543:
432         case e1000_82544:
433                 eeprom->type = e1000_eeprom_microwire;
434                 eeprom->word_size = 64;
435                 eeprom->opcode_bits = 3;
436                 eeprom->address_bits = 6;
437                 eeprom->delay_usec = 50;
438                 eeprom->use_eerd = false;
439                 eeprom->use_eewr = false;
440         break;
441         case e1000_82540:
442         case e1000_82545:
443         case e1000_82545_rev_3:
444         case e1000_82546:
445         case e1000_82546_rev_3:
446                 eeprom->type = e1000_eeprom_microwire;
447                 eeprom->opcode_bits = 3;
448                 eeprom->delay_usec = 50;
449                 if (eecd & E1000_EECD_SIZE) {
450                         eeprom->word_size = 256;
451                         eeprom->address_bits = 8;
452                 } else {
453                         eeprom->word_size = 64;
454                         eeprom->address_bits = 6;
455                 }
456                 eeprom->use_eerd = false;
457                 eeprom->use_eewr = false;
458                 break;
459         case e1000_82541:
460         case e1000_82541_rev_2:
461         case e1000_82547:
462         case e1000_82547_rev_2:
463                 if (eecd & E1000_EECD_TYPE) {
464                         eeprom->type = e1000_eeprom_spi;
465                         eeprom->opcode_bits = 8;
466                         eeprom->delay_usec = 1;
467                         if (eecd & E1000_EECD_ADDR_BITS) {
468                                 eeprom->page_size = 32;
469                                 eeprom->address_bits = 16;
470                         } else {
471                                 eeprom->page_size = 8;
472                                 eeprom->address_bits = 8;
473                         }
474                 } else {
475                         eeprom->type = e1000_eeprom_microwire;
476                         eeprom->opcode_bits = 3;
477                         eeprom->delay_usec = 50;
478                         if (eecd & E1000_EECD_ADDR_BITS) {
479                                 eeprom->word_size = 256;
480                                 eeprom->address_bits = 8;
481                         } else {
482                                 eeprom->word_size = 64;
483                                 eeprom->address_bits = 6;
484                         }
485                 }
486                 eeprom->use_eerd = false;
487                 eeprom->use_eewr = false;
488                 break;
489         case e1000_82571:
490         case e1000_82572:
491                 eeprom->type = e1000_eeprom_spi;
492                 eeprom->opcode_bits = 8;
493                 eeprom->delay_usec = 1;
494                 if (eecd & E1000_EECD_ADDR_BITS) {
495                         eeprom->page_size = 32;
496                         eeprom->address_bits = 16;
497                 } else {
498                         eeprom->page_size = 8;
499                         eeprom->address_bits = 8;
500                 }
501                 eeprom->use_eerd = false;
502                 eeprom->use_eewr = false;
503                 break;
504         case e1000_82573:
505         case e1000_82574:
506                 eeprom->type = e1000_eeprom_spi;
507                 eeprom->opcode_bits = 8;
508                 eeprom->delay_usec = 1;
509                 if (eecd & E1000_EECD_ADDR_BITS) {
510                         eeprom->page_size = 32;
511                         eeprom->address_bits = 16;
512                 } else {
513                         eeprom->page_size = 8;
514                         eeprom->address_bits = 8;
515                 }
516                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
517                         eeprom->use_eerd = true;
518                         eeprom->use_eewr = true;
519
520                         eeprom->type = e1000_eeprom_flash;
521                         eeprom->word_size = 2048;
522
523                 /* Ensure that the Autonomous FLASH update bit is cleared due to
524                  * Flash update issue on parts which use a FLASH for NVM. */
525                         eecd &= ~E1000_EECD_AUPDEN;
526                         E1000_WRITE_REG(hw, EECD, eecd);
527                 }
528                 break;
529         case e1000_80003es2lan:
530                 eeprom->type = e1000_eeprom_spi;
531                 eeprom->opcode_bits = 8;
532                 eeprom->delay_usec = 1;
533                 if (eecd & E1000_EECD_ADDR_BITS) {
534                         eeprom->page_size = 32;
535                         eeprom->address_bits = 16;
536                 } else {
537                         eeprom->page_size = 8;
538                         eeprom->address_bits = 8;
539                 }
540                 eeprom->use_eerd = true;
541                 eeprom->use_eewr = false;
542                 break;
543         case e1000_igb:
544                 /* i210 has 4k of iNVM mapped as EEPROM */
545                 eeprom->type = e1000_eeprom_invm;
546                 eeprom->opcode_bits = 8;
547                 eeprom->delay_usec = 1;
548                 eeprom->page_size = 32;
549                 eeprom->address_bits = 16;
550                 eeprom->use_eerd = true;
551                 eeprom->use_eewr = false;
552                 break;
553
554         /* ich8lan does not support currently. if needed, please
555          * add corresponding code and functions.
556          */
557 #if 0
558         case e1000_ich8lan:
559                 {
560                 int32_t  i = 0;
561
562                 eeprom->type = e1000_eeprom_ich8;
563                 eeprom->use_eerd = false;
564                 eeprom->use_eewr = false;
565                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
566                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
567                                 ICH_FLASH_GFPREG);
568                 /* Zero the shadow RAM structure. But don't load it from NVM
569                  * so as to save time for driver init */
570                 if (hw->eeprom_shadow_ram != NULL) {
571                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
572                                 hw->eeprom_shadow_ram[i].modified = false;
573                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
574                         }
575                 }
576
577                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
578                                 ICH_FLASH_SECTOR_SIZE;
579
580                 hw->flash_bank_size = ((flash_size >> 16)
581                                 & ICH_GFPREG_BASE_MASK) + 1;
582                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
583
584                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
585
586                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
587                 break;
588                 }
589 #endif
590         default:
591                 break;
592         }
593
594         if (eeprom->type == e1000_eeprom_spi ||
595             eeprom->type == e1000_eeprom_invm) {
596                 /* eeprom_size will be an enum [0..8] that maps
597                  * to eeprom sizes 128B to
598                  * 32KB (incremented by powers of 2).
599                  */
600                 if (hw->mac_type <= e1000_82547_rev_2) {
601                         /* Set to default value for initial eeprom read. */
602                         eeprom->word_size = 64;
603                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
604                                         &eeprom_size);
605                         if (ret_val)
606                                 return ret_val;
607                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
608                                 >> EEPROM_SIZE_SHIFT;
609                         /* 256B eeprom size was not supported in earlier
610                          * hardware, so we bump eeprom_size up one to
611                          * ensure that "1" (which maps to 256B) is never
612                          * the result used in the shifting logic below. */
613                         if (eeprom_size)
614                                 eeprom_size++;
615                 } else {
616                         eeprom_size = (uint16_t)((eecd &
617                                 E1000_EECD_SIZE_EX_MASK) >>
618                                 E1000_EECD_SIZE_EX_SHIFT);
619                 }
620
621                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
622         }
623         return ret_val;
624 }
625
626 /******************************************************************************
627  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
628  *
629  * hw - Struct containing variables accessed by shared code
630  *****************************************************************************/
631 static int32_t
632 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
633 {
634         uint32_t attempts = 100000;
635         uint32_t i, reg = 0;
636         int32_t done = E1000_ERR_EEPROM;
637
638         for (i = 0; i < attempts; i++) {
639                 if (eerd == E1000_EEPROM_POLL_READ) {
640                         if (hw->mac_type == e1000_igb)
641                                 reg = E1000_READ_REG(hw, I210_EERD);
642                         else
643                                 reg = E1000_READ_REG(hw, EERD);
644                 } else {
645                         if (hw->mac_type == e1000_igb)
646                                 reg = E1000_READ_REG(hw, I210_EEWR);
647                         else
648                                 reg = E1000_READ_REG(hw, EEWR);
649                 }
650
651                 if (reg & E1000_EEPROM_RW_REG_DONE) {
652                         done = E1000_SUCCESS;
653                         break;
654                 }
655                 udelay(5);
656         }
657
658         return done;
659 }
660
661 /******************************************************************************
662  * Reads a 16 bit word from the EEPROM using the EERD register.
663  *
664  * hw - Struct containing variables accessed by shared code
665  * offset - offset of  word in the EEPROM to read
666  * data - word read from the EEPROM
667  * words - number of words to read
668  *****************************************************************************/
669 static int32_t
670 e1000_read_eeprom_eerd(struct e1000_hw *hw,
671                         uint16_t offset,
672                         uint16_t words,
673                         uint16_t *data)
674 {
675         uint32_t i, eerd = 0;
676         int32_t error = 0;
677
678         for (i = 0; i < words; i++) {
679                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
680                         E1000_EEPROM_RW_REG_START;
681
682                 if (hw->mac_type == e1000_igb)
683                         E1000_WRITE_REG(hw, I210_EERD, eerd);
684                 else
685                         E1000_WRITE_REG(hw, EERD, eerd);
686
687                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
688
689                 if (error)
690                         break;
691
692                 if (hw->mac_type == e1000_igb) {
693                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
694                                 E1000_EEPROM_RW_REG_DATA);
695                 } else {
696                         data[i] = (E1000_READ_REG(hw, EERD) >>
697                                 E1000_EEPROM_RW_REG_DATA);
698                 }
699
700         }
701
702         return error;
703 }
704
705 void e1000_release_eeprom(struct e1000_hw *hw)
706 {
707         uint32_t eecd;
708
709         DEBUGFUNC();
710
711         eecd = E1000_READ_REG(hw, EECD);
712
713         if (hw->eeprom.type == e1000_eeprom_spi) {
714                 eecd |= E1000_EECD_CS;  /* Pull CS high */
715                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
716
717                 E1000_WRITE_REG(hw, EECD, eecd);
718
719                 udelay(hw->eeprom.delay_usec);
720         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
721                 /* cleanup eeprom */
722
723                 /* CS on Microwire is active-high */
724                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
725
726                 E1000_WRITE_REG(hw, EECD, eecd);
727
728                 /* Rising edge of clock */
729                 eecd |= E1000_EECD_SK;
730                 E1000_WRITE_REG(hw, EECD, eecd);
731                 E1000_WRITE_FLUSH(hw);
732                 udelay(hw->eeprom.delay_usec);
733
734                 /* Falling edge of clock */
735                 eecd &= ~E1000_EECD_SK;
736                 E1000_WRITE_REG(hw, EECD, eecd);
737                 E1000_WRITE_FLUSH(hw);
738                 udelay(hw->eeprom.delay_usec);
739         }
740
741         /* Stop requesting EEPROM access */
742         if (hw->mac_type > e1000_82544) {
743                 eecd &= ~E1000_EECD_REQ;
744                 E1000_WRITE_REG(hw, EECD, eecd);
745         }
746
747         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
748 }
749
750 /******************************************************************************
751  * Reads a 16 bit word from the EEPROM.
752  *
753  * hw - Struct containing variables accessed by shared code
754  *****************************************************************************/
755 static int32_t
756 e1000_spi_eeprom_ready(struct e1000_hw *hw)
757 {
758         uint16_t retry_count = 0;
759         uint8_t spi_stat_reg;
760
761         DEBUGFUNC();
762
763         /* Read "Status Register" repeatedly until the LSB is cleared.  The
764          * EEPROM will signal that the command has been completed by clearing
765          * bit 0 of the internal status register.  If it's not cleared within
766          * 5 milliseconds, then error out.
767          */
768         retry_count = 0;
769         do {
770                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
771                         hw->eeprom.opcode_bits);
772                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
773                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
774                         break;
775
776                 udelay(5);
777                 retry_count += 5;
778
779                 e1000_standby_eeprom(hw);
780         } while (retry_count < EEPROM_MAX_RETRY_SPI);
781
782         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
783          * only 0-5mSec on 5V devices)
784          */
785         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
786                 DEBUGOUT("SPI EEPROM Status error\n");
787                 return -E1000_ERR_EEPROM;
788         }
789
790         return E1000_SUCCESS;
791 }
792
793 /******************************************************************************
794  * Reads a 16 bit word from the EEPROM.
795  *
796  * hw - Struct containing variables accessed by shared code
797  * offset - offset of  word in the EEPROM to read
798  * data - word read from the EEPROM
799  *****************************************************************************/
800 static int32_t
801 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
802                 uint16_t words, uint16_t *data)
803 {
804         struct e1000_eeprom_info *eeprom = &hw->eeprom;
805         uint32_t i = 0;
806
807         DEBUGFUNC();
808
809         /* If eeprom is not yet detected, do so now */
810         if (eeprom->word_size == 0)
811                 e1000_init_eeprom_params(hw);
812
813         /* A check for invalid values:  offset too large, too many words,
814          * and not enough words.
815          */
816         if ((offset >= eeprom->word_size) ||
817                 (words > eeprom->word_size - offset) ||
818                 (words == 0)) {
819                 DEBUGOUT("\"words\" parameter out of bounds."
820                         "Words = %d, size = %d\n", offset, eeprom->word_size);
821                 return -E1000_ERR_EEPROM;
822         }
823
824         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
825          * directly. In this case, we need to acquire the EEPROM so that
826          * FW or other port software does not interrupt.
827          */
828         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
829                 hw->eeprom.use_eerd == false) {
830
831                 /* Prepare the EEPROM for bit-bang reading */
832                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
833                         return -E1000_ERR_EEPROM;
834         }
835
836         /* Eerd register EEPROM access requires no eeprom aquire/release */
837         if (eeprom->use_eerd == true)
838                 return e1000_read_eeprom_eerd(hw, offset, words, data);
839
840         /* ich8lan does not support currently. if needed, please
841          * add corresponding code and functions.
842          */
843 #if 0
844         /* ICH EEPROM access is done via the ICH flash controller */
845         if (eeprom->type == e1000_eeprom_ich8)
846                 return e1000_read_eeprom_ich8(hw, offset, words, data);
847 #endif
848         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
849          * acquired the EEPROM at this point, so any returns should relase it */
850         if (eeprom->type == e1000_eeprom_spi) {
851                 uint16_t word_in;
852                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
853
854                 if (e1000_spi_eeprom_ready(hw)) {
855                         e1000_release_eeprom(hw);
856                         return -E1000_ERR_EEPROM;
857                 }
858
859                 e1000_standby_eeprom(hw);
860
861                 /* Some SPI eeproms use the 8th address bit embedded in
862                  * the opcode */
863                 if ((eeprom->address_bits == 8) && (offset >= 128))
864                         read_opcode |= EEPROM_A8_OPCODE_SPI;
865
866                 /* Send the READ command (opcode + addr)  */
867                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
868                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
869                                 eeprom->address_bits);
870
871                 /* Read the data.  The address of the eeprom internally
872                  * increments with each byte (spi) being read, saving on the
873                  * overhead of eeprom setup and tear-down.  The address
874                  * counter will roll over if reading beyond the size of
875                  * the eeprom, thus allowing the entire memory to be read
876                  * starting from any offset. */
877                 for (i = 0; i < words; i++) {
878                         word_in = e1000_shift_in_ee_bits(hw, 16);
879                         data[i] = (word_in >> 8) | (word_in << 8);
880                 }
881         } else if (eeprom->type == e1000_eeprom_microwire) {
882                 for (i = 0; i < words; i++) {
883                         /* Send the READ command (opcode + addr)  */
884                         e1000_shift_out_ee_bits(hw,
885                                 EEPROM_READ_OPCODE_MICROWIRE,
886                                 eeprom->opcode_bits);
887                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
888                                 eeprom->address_bits);
889
890                         /* Read the data.  For microwire, each word requires
891                          * the overhead of eeprom setup and tear-down. */
892                         data[i] = e1000_shift_in_ee_bits(hw, 16);
893                         e1000_standby_eeprom(hw);
894                 }
895         }
896
897         /* End this read operation */
898         e1000_release_eeprom(hw);
899
900         return E1000_SUCCESS;
901 }
902
903 /******************************************************************************
904  * Verifies that the EEPROM has a valid checksum
905  *
906  * hw - Struct containing variables accessed by shared code
907  *
908  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
909  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
910  * valid.
911  *****************************************************************************/
912 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
913 {
914         uint16_t i, checksum, checksum_reg, *buf;
915
916         DEBUGFUNC();
917
918         /* Allocate a temporary buffer */
919         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
920         if (!buf) {
921                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
922                 return -E1000_ERR_EEPROM;
923         }
924
925         /* Read the EEPROM */
926         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
927                 E1000_ERR(hw, "Unable to read EEPROM!\n");
928                 return -E1000_ERR_EEPROM;
929         }
930
931         /* Compute the checksum */
932         checksum = 0;
933         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
934                 checksum += buf[i];
935         checksum = ((uint16_t)EEPROM_SUM) - checksum;
936         checksum_reg = buf[i];
937
938         /* Verify it! */
939         if (checksum == checksum_reg)
940                 return 0;
941
942         /* Hrm, verification failed, print an error */
943         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
944         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
945                   checksum_reg, checksum);
946
947         return -E1000_ERR_EEPROM;
948 }
949 #endif /* CONFIG_E1000_NO_NVM */
950
951 /*****************************************************************************
952  * Set PHY to class A mode
953  * Assumes the following operations will follow to enable the new class mode.
954  *  1. Do a PHY soft reset
955  *  2. Restart auto-negotiation or force link.
956  *
957  * hw - Struct containing variables accessed by shared code
958  ****************************************************************************/
959 static int32_t
960 e1000_set_phy_mode(struct e1000_hw *hw)
961 {
962 #ifndef CONFIG_E1000_NO_NVM
963         int32_t ret_val;
964         uint16_t eeprom_data;
965
966         DEBUGFUNC();
967
968         if ((hw->mac_type == e1000_82545_rev_3) &&
969                 (hw->media_type == e1000_media_type_copper)) {
970                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
971                                 1, &eeprom_data);
972                 if (ret_val)
973                         return ret_val;
974
975                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
976                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
977                         ret_val = e1000_write_phy_reg(hw,
978                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
979                         if (ret_val)
980                                 return ret_val;
981                         ret_val = e1000_write_phy_reg(hw,
982                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
983                         if (ret_val)
984                                 return ret_val;
985
986                         hw->phy_reset_disable = false;
987                 }
988         }
989 #endif
990         return E1000_SUCCESS;
991 }
992
993 #ifndef CONFIG_E1000_NO_NVM
994 /***************************************************************************
995  *
996  * Obtaining software semaphore bit (SMBI) before resetting PHY.
997  *
998  * hw: Struct containing variables accessed by shared code
999  *
1000  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1001  *            E1000_SUCCESS at any other case.
1002  *
1003  ***************************************************************************/
1004 static int32_t
1005 e1000_get_software_semaphore(struct e1000_hw *hw)
1006 {
1007          int32_t timeout = hw->eeprom.word_size + 1;
1008          uint32_t swsm;
1009
1010         DEBUGFUNC();
1011
1012         if (hw->mac_type != e1000_80003es2lan)
1013                 return E1000_SUCCESS;
1014
1015         while (timeout) {
1016                 swsm = E1000_READ_REG(hw, SWSM);
1017                 /* If SMBI bit cleared, it is now set and we hold
1018                  * the semaphore */
1019                 if (!(swsm & E1000_SWSM_SMBI))
1020                         break;
1021                 mdelay(1);
1022                 timeout--;
1023         }
1024
1025         if (!timeout) {
1026                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1027                 return -E1000_ERR_RESET;
1028         }
1029
1030         return E1000_SUCCESS;
1031 }
1032 #endif
1033
1034 /***************************************************************************
1035  * This function clears HW semaphore bits.
1036  *
1037  * hw: Struct containing variables accessed by shared code
1038  *
1039  * returns: - None.
1040  *
1041  ***************************************************************************/
1042 static void
1043 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1044 {
1045 #ifndef CONFIG_E1000_NO_NVM
1046          uint32_t swsm;
1047
1048         DEBUGFUNC();
1049
1050         if (!hw->eeprom_semaphore_present)
1051                 return;
1052
1053         swsm = E1000_READ_REG(hw, SWSM);
1054         if (hw->mac_type == e1000_80003es2lan) {
1055                 /* Release both semaphores. */
1056                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1057         } else
1058                 swsm &= ~(E1000_SWSM_SWESMBI);
1059         E1000_WRITE_REG(hw, SWSM, swsm);
1060 #endif
1061 }
1062
1063 /***************************************************************************
1064  *
1065  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1066  * adapter or Eeprom access.
1067  *
1068  * hw: Struct containing variables accessed by shared code
1069  *
1070  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1071  *            E1000_SUCCESS at any other case.
1072  *
1073  ***************************************************************************/
1074 static int32_t
1075 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1076 {
1077 #ifndef CONFIG_E1000_NO_NVM
1078         int32_t timeout;
1079         uint32_t swsm;
1080
1081         DEBUGFUNC();
1082
1083         if (!hw->eeprom_semaphore_present)
1084                 return E1000_SUCCESS;
1085
1086         if (hw->mac_type == e1000_80003es2lan) {
1087                 /* Get the SW semaphore. */
1088                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1089                         return -E1000_ERR_EEPROM;
1090         }
1091
1092         /* Get the FW semaphore. */
1093         timeout = hw->eeprom.word_size + 1;
1094         while (timeout) {
1095                 swsm = E1000_READ_REG(hw, SWSM);
1096                 swsm |= E1000_SWSM_SWESMBI;
1097                 E1000_WRITE_REG(hw, SWSM, swsm);
1098                 /* if we managed to set the bit we got the semaphore. */
1099                 swsm = E1000_READ_REG(hw, SWSM);
1100                 if (swsm & E1000_SWSM_SWESMBI)
1101                         break;
1102
1103                 udelay(50);
1104                 timeout--;
1105         }
1106
1107         if (!timeout) {
1108                 /* Release semaphores */
1109                 e1000_put_hw_eeprom_semaphore(hw);
1110                 DEBUGOUT("Driver can't access the Eeprom - "
1111                                 "SWESMBI bit is set.\n");
1112                 return -E1000_ERR_EEPROM;
1113         }
1114 #endif
1115         return E1000_SUCCESS;
1116 }
1117
1118 /* Take ownership of the PHY */
1119 static int32_t
1120 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1121 {
1122         uint32_t swfw_sync = 0;
1123         uint32_t swmask = mask;
1124         uint32_t fwmask = mask << 16;
1125         int32_t timeout = 200;
1126
1127         DEBUGFUNC();
1128         while (timeout) {
1129                 if (e1000_get_hw_eeprom_semaphore(hw))
1130                         return -E1000_ERR_SWFW_SYNC;
1131
1132                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1133                 if (!(swfw_sync & (fwmask | swmask)))
1134                         break;
1135
1136                 /* firmware currently using resource (fwmask) */
1137                 /* or other software thread currently using resource (swmask) */
1138                 e1000_put_hw_eeprom_semaphore(hw);
1139                 mdelay(5);
1140                 timeout--;
1141         }
1142
1143         if (!timeout) {
1144                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1145                 return -E1000_ERR_SWFW_SYNC;
1146         }
1147
1148         swfw_sync |= swmask;
1149         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1150
1151         e1000_put_hw_eeprom_semaphore(hw);
1152         return E1000_SUCCESS;
1153 }
1154
1155 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1156 {
1157         uint32_t swfw_sync = 0;
1158
1159         DEBUGFUNC();
1160         while (e1000_get_hw_eeprom_semaphore(hw))
1161                 ; /* Empty */
1162
1163         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1164         swfw_sync &= ~mask;
1165         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1166
1167         e1000_put_hw_eeprom_semaphore(hw);
1168 }
1169
1170 static bool e1000_is_second_port(struct e1000_hw *hw)
1171 {
1172         switch (hw->mac_type) {
1173         case e1000_80003es2lan:
1174         case e1000_82546:
1175         case e1000_82571:
1176                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1177                         return true;
1178                 /* Fallthrough */
1179         default:
1180                 return false;
1181         }
1182 }
1183
1184 #ifndef CONFIG_E1000_NO_NVM
1185 /******************************************************************************
1186  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1187  * second function of dual function devices
1188  *
1189  * nic - Struct containing variables accessed by shared code
1190  *****************************************************************************/
1191 static int
1192 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1193 {
1194         uint16_t offset;
1195         uint16_t eeprom_data;
1196         uint32_t reg_data = 0;
1197         int i;
1198
1199         DEBUGFUNC();
1200
1201         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1202                 offset = i >> 1;
1203                 if (hw->mac_type == e1000_igb) {
1204                         /* i210 preloads MAC address into RAL/RAH registers */
1205                         if (offset == 0)
1206                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1207                         else if (offset == 1)
1208                                 reg_data >>= 16;
1209                         else if (offset == 2)
1210                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1211                         eeprom_data = reg_data & 0xffff;
1212                 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1213                         DEBUGOUT("EEPROM Read Error\n");
1214                         return -E1000_ERR_EEPROM;
1215                 }
1216                 enetaddr[i] = eeprom_data & 0xff;
1217                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1218         }
1219
1220         /* Invert the last bit if this is the second device */
1221         if (e1000_is_second_port(hw))
1222                 enetaddr[5] ^= 1;
1223
1224         return 0;
1225 }
1226 #endif
1227
1228 /******************************************************************************
1229  * Initializes receive address filters.
1230  *
1231  * hw - Struct containing variables accessed by shared code
1232  *
1233  * Places the MAC address in receive address register 0 and clears the rest
1234  * of the receive addresss registers. Clears the multicast table. Assumes
1235  * the receiver is in reset when the routine is called.
1236  *****************************************************************************/
1237 static void
1238 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1239 {
1240         uint32_t i;
1241         uint32_t addr_low;
1242         uint32_t addr_high;
1243
1244         DEBUGFUNC();
1245
1246         /* Setup the receive address. */
1247         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1248         addr_low = (enetaddr[0] |
1249                     (enetaddr[1] << 8) |
1250                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1251
1252         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1253
1254         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1255         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1256
1257         /* Zero out the other 15 receive addresses. */
1258         DEBUGOUT("Clearing RAR[1-15]\n");
1259         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1260                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1261                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1262         }
1263 }
1264
1265 /******************************************************************************
1266  * Clears the VLAN filer table
1267  *
1268  * hw - Struct containing variables accessed by shared code
1269  *****************************************************************************/
1270 static void
1271 e1000_clear_vfta(struct e1000_hw *hw)
1272 {
1273         uint32_t offset;
1274
1275         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1276                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1277 }
1278
1279 /******************************************************************************
1280  * Set the mac type member in the hw struct.
1281  *
1282  * hw - Struct containing variables accessed by shared code
1283  *****************************************************************************/
1284 int32_t
1285 e1000_set_mac_type(struct e1000_hw *hw)
1286 {
1287         DEBUGFUNC();
1288
1289         switch (hw->device_id) {
1290         case E1000_DEV_ID_82542:
1291                 switch (hw->revision_id) {
1292                 case E1000_82542_2_0_REV_ID:
1293                         hw->mac_type = e1000_82542_rev2_0;
1294                         break;
1295                 case E1000_82542_2_1_REV_ID:
1296                         hw->mac_type = e1000_82542_rev2_1;
1297                         break;
1298                 default:
1299                         /* Invalid 82542 revision ID */
1300                         return -E1000_ERR_MAC_TYPE;
1301                 }
1302                 break;
1303         case E1000_DEV_ID_82543GC_FIBER:
1304         case E1000_DEV_ID_82543GC_COPPER:
1305                 hw->mac_type = e1000_82543;
1306                 break;
1307         case E1000_DEV_ID_82544EI_COPPER:
1308         case E1000_DEV_ID_82544EI_FIBER:
1309         case E1000_DEV_ID_82544GC_COPPER:
1310         case E1000_DEV_ID_82544GC_LOM:
1311                 hw->mac_type = e1000_82544;
1312                 break;
1313         case E1000_DEV_ID_82540EM:
1314         case E1000_DEV_ID_82540EM_LOM:
1315         case E1000_DEV_ID_82540EP:
1316         case E1000_DEV_ID_82540EP_LOM:
1317         case E1000_DEV_ID_82540EP_LP:
1318                 hw->mac_type = e1000_82540;
1319                 break;
1320         case E1000_DEV_ID_82545EM_COPPER:
1321         case E1000_DEV_ID_82545EM_FIBER:
1322                 hw->mac_type = e1000_82545;
1323                 break;
1324         case E1000_DEV_ID_82545GM_COPPER:
1325         case E1000_DEV_ID_82545GM_FIBER:
1326         case E1000_DEV_ID_82545GM_SERDES:
1327                 hw->mac_type = e1000_82545_rev_3;
1328                 break;
1329         case E1000_DEV_ID_82546EB_COPPER:
1330         case E1000_DEV_ID_82546EB_FIBER:
1331         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1332                 hw->mac_type = e1000_82546;
1333                 break;
1334         case E1000_DEV_ID_82546GB_COPPER:
1335         case E1000_DEV_ID_82546GB_FIBER:
1336         case E1000_DEV_ID_82546GB_SERDES:
1337         case E1000_DEV_ID_82546GB_PCIE:
1338         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1339         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1340                 hw->mac_type = e1000_82546_rev_3;
1341                 break;
1342         case E1000_DEV_ID_82541EI:
1343         case E1000_DEV_ID_82541EI_MOBILE:
1344         case E1000_DEV_ID_82541ER_LOM:
1345                 hw->mac_type = e1000_82541;
1346                 break;
1347         case E1000_DEV_ID_82541ER:
1348         case E1000_DEV_ID_82541GI:
1349         case E1000_DEV_ID_82541GI_LF:
1350         case E1000_DEV_ID_82541GI_MOBILE:
1351                 hw->mac_type = e1000_82541_rev_2;
1352                 break;
1353         case E1000_DEV_ID_82547EI:
1354         case E1000_DEV_ID_82547EI_MOBILE:
1355                 hw->mac_type = e1000_82547;
1356                 break;
1357         case E1000_DEV_ID_82547GI:
1358                 hw->mac_type = e1000_82547_rev_2;
1359                 break;
1360         case E1000_DEV_ID_82571EB_COPPER:
1361         case E1000_DEV_ID_82571EB_FIBER:
1362         case E1000_DEV_ID_82571EB_SERDES:
1363         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1364         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1365         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1366         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1367         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1368         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1369                 hw->mac_type = e1000_82571;
1370                 break;
1371         case E1000_DEV_ID_82572EI_COPPER:
1372         case E1000_DEV_ID_82572EI_FIBER:
1373         case E1000_DEV_ID_82572EI_SERDES:
1374         case E1000_DEV_ID_82572EI:
1375                 hw->mac_type = e1000_82572;
1376                 break;
1377         case E1000_DEV_ID_82573E:
1378         case E1000_DEV_ID_82573E_IAMT:
1379         case E1000_DEV_ID_82573L:
1380                 hw->mac_type = e1000_82573;
1381                 break;
1382         case E1000_DEV_ID_82574L:
1383                 hw->mac_type = e1000_82574;
1384                 break;
1385         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1386         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1387         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1388         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1389                 hw->mac_type = e1000_80003es2lan;
1390                 break;
1391         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1392         case E1000_DEV_ID_ICH8_IGP_AMT:
1393         case E1000_DEV_ID_ICH8_IGP_C:
1394         case E1000_DEV_ID_ICH8_IFE:
1395         case E1000_DEV_ID_ICH8_IFE_GT:
1396         case E1000_DEV_ID_ICH8_IFE_G:
1397         case E1000_DEV_ID_ICH8_IGP_M:
1398                 hw->mac_type = e1000_ich8lan;
1399                 break;
1400         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1401         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1402         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1403         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1404         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1405         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1406         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1407         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1408                 hw->mac_type = e1000_igb;
1409                 break;
1410         default:
1411                 /* Should never have loaded on this device */
1412                 return -E1000_ERR_MAC_TYPE;
1413         }
1414         return E1000_SUCCESS;
1415 }
1416
1417 /******************************************************************************
1418  * Reset the transmit and receive units; mask and clear all interrupts.
1419  *
1420  * hw - Struct containing variables accessed by shared code
1421  *****************************************************************************/
1422 void
1423 e1000_reset_hw(struct e1000_hw *hw)
1424 {
1425         uint32_t ctrl;
1426         uint32_t ctrl_ext;
1427         uint32_t manc;
1428         uint32_t pba = 0;
1429         uint32_t reg;
1430
1431         DEBUGFUNC();
1432
1433         /* get the correct pba value for both PCI and PCIe*/
1434         if (hw->mac_type <  e1000_82571)
1435                 pba = E1000_DEFAULT_PCI_PBA;
1436         else
1437                 pba = E1000_DEFAULT_PCIE_PBA;
1438
1439         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1440         if (hw->mac_type == e1000_82542_rev2_0) {
1441                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1442                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1443                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1444         }
1445
1446         /* Clear interrupt mask to stop board from generating interrupts */
1447         DEBUGOUT("Masking off all interrupts\n");
1448         if (hw->mac_type == e1000_igb)
1449                 E1000_WRITE_REG(hw, I210_IAM, 0);
1450         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1451
1452         /* Disable the Transmit and Receive units.  Then delay to allow
1453          * any pending transactions to complete before we hit the MAC with
1454          * the global reset.
1455          */
1456         E1000_WRITE_REG(hw, RCTL, 0);
1457         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1458         E1000_WRITE_FLUSH(hw);
1459
1460         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1461         hw->tbi_compatibility_on = false;
1462
1463         /* Delay to allow any outstanding PCI transactions to complete before
1464          * resetting the device
1465          */
1466         mdelay(10);
1467
1468         /* Issue a global reset to the MAC.  This will reset the chip's
1469          * transmit, receive, DMA, and link units.  It will not effect
1470          * the current PCI configuration.  The global reset bit is self-
1471          * clearing, and should clear within a microsecond.
1472          */
1473         DEBUGOUT("Issuing a global reset to MAC\n");
1474         ctrl = E1000_READ_REG(hw, CTRL);
1475
1476         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1477
1478         /* Force a reload from the EEPROM if necessary */
1479         if (hw->mac_type == e1000_igb) {
1480                 mdelay(20);
1481                 reg = E1000_READ_REG(hw, STATUS);
1482                 if (reg & E1000_STATUS_PF_RST_DONE)
1483                         DEBUGOUT("PF OK\n");
1484                 reg = E1000_READ_REG(hw, I210_EECD);
1485                 if (reg & E1000_EECD_AUTO_RD)
1486                         DEBUGOUT("EEC OK\n");
1487         } else if (hw->mac_type < e1000_82540) {
1488                 /* Wait for reset to complete */
1489                 udelay(10);
1490                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1491                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1492                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1493                 E1000_WRITE_FLUSH(hw);
1494                 /* Wait for EEPROM reload */
1495                 mdelay(2);
1496         } else {
1497                 /* Wait for EEPROM reload (it happens automatically) */
1498                 mdelay(4);
1499                 /* Dissable HW ARPs on ASF enabled adapters */
1500                 manc = E1000_READ_REG(hw, MANC);
1501                 manc &= ~(E1000_MANC_ARP_EN);
1502                 E1000_WRITE_REG(hw, MANC, manc);
1503         }
1504
1505         /* Clear interrupt mask to stop board from generating interrupts */
1506         DEBUGOUT("Masking off all interrupts\n");
1507         if (hw->mac_type == e1000_igb)
1508                 E1000_WRITE_REG(hw, I210_IAM, 0);
1509         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1510
1511         /* Clear any pending interrupt events. */
1512         E1000_READ_REG(hw, ICR);
1513
1514         /* If MWI was previously enabled, reenable it. */
1515         if (hw->mac_type == e1000_82542_rev2_0) {
1516                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1517         }
1518         if (hw->mac_type != e1000_igb)
1519                 E1000_WRITE_REG(hw, PBA, pba);
1520 }
1521
1522 /******************************************************************************
1523  *
1524  * Initialize a number of hardware-dependent bits
1525  *
1526  * hw: Struct containing variables accessed by shared code
1527  *
1528  * This function contains hardware limitation workarounds for PCI-E adapters
1529  *
1530  *****************************************************************************/
1531 static void
1532 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1533 {
1534         if ((hw->mac_type >= e1000_82571) &&
1535                         (!hw->initialize_hw_bits_disable)) {
1536                 /* Settings common to all PCI-express silicon */
1537                 uint32_t reg_ctrl, reg_ctrl_ext;
1538                 uint32_t reg_tarc0, reg_tarc1;
1539                 uint32_t reg_tctl;
1540                 uint32_t reg_txdctl, reg_txdctl1;
1541
1542                 /* link autonegotiation/sync workarounds */
1543                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1544                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1545
1546                 /* Enable not-done TX descriptor counting */
1547                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1548                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1549                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1550
1551                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1552                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1553                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1554
1555         /* IGB is cool */
1556         if (hw->mac_type == e1000_igb)
1557                 return;
1558
1559                 switch (hw->mac_type) {
1560                 case e1000_82571:
1561                 case e1000_82572:
1562                         /* Clear PHY TX compatible mode bits */
1563                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1564                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1565
1566                         /* link autonegotiation/sync workarounds */
1567                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1568
1569                         /* TX ring control fixes */
1570                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1571
1572                         /* Multiple read bit is reversed polarity */
1573                         reg_tctl = E1000_READ_REG(hw, TCTL);
1574                         if (reg_tctl & E1000_TCTL_MULR)
1575                                 reg_tarc1 &= ~(1 << 28);
1576                         else
1577                                 reg_tarc1 |= (1 << 28);
1578
1579                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1580                         break;
1581                 case e1000_82573:
1582                 case e1000_82574:
1583                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1584                         reg_ctrl_ext &= ~(1 << 23);
1585                         reg_ctrl_ext |= (1 << 22);
1586
1587                         /* TX byte count fix */
1588                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1589                         reg_ctrl &= ~(1 << 29);
1590
1591                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1592                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1593                         break;
1594                 case e1000_80003es2lan:
1595         /* improve small packet performace for fiber/serdes */
1596                         if ((hw->media_type == e1000_media_type_fiber)
1597                         || (hw->media_type ==
1598                                 e1000_media_type_internal_serdes)) {
1599                                 reg_tarc0 &= ~(1 << 20);
1600                         }
1601
1602                 /* Multiple read bit is reversed polarity */
1603                         reg_tctl = E1000_READ_REG(hw, TCTL);
1604                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1605                         if (reg_tctl & E1000_TCTL_MULR)
1606                                 reg_tarc1 &= ~(1 << 28);
1607                         else
1608                                 reg_tarc1 |= (1 << 28);
1609
1610                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1611                         break;
1612                 case e1000_ich8lan:
1613                         /* Reduce concurrent DMA requests to 3 from 4 */
1614                         if ((hw->revision_id < 3) ||
1615                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1616                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1617                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1618
1619                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1620                         reg_ctrl_ext |= (1 << 22);
1621                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1622
1623                         /* workaround TX hang with TSO=on */
1624                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1625
1626                         /* Multiple read bit is reversed polarity */
1627                         reg_tctl = E1000_READ_REG(hw, TCTL);
1628                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1629                         if (reg_tctl & E1000_TCTL_MULR)
1630                                 reg_tarc1 &= ~(1 << 28);
1631                         else
1632                                 reg_tarc1 |= (1 << 28);
1633
1634                         /* workaround TX hang with TSO=on */
1635                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1636
1637                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1638                         break;
1639                 default:
1640                         break;
1641                 }
1642
1643                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1644         }
1645 }
1646
1647 /******************************************************************************
1648  * Performs basic configuration of the adapter.
1649  *
1650  * hw - Struct containing variables accessed by shared code
1651  *
1652  * Assumes that the controller has previously been reset and is in a
1653  * post-reset uninitialized state. Initializes the receive address registers,
1654  * multicast table, and VLAN filter table. Calls routines to setup link
1655  * configuration and flow control settings. Clears all on-chip counters. Leaves
1656  * the transmit and receive units disabled and uninitialized.
1657  *****************************************************************************/
1658 static int
1659 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1660 {
1661         uint32_t ctrl;
1662         uint32_t i;
1663         int32_t ret_val;
1664         uint16_t pcix_cmd_word;
1665         uint16_t pcix_stat_hi_word;
1666         uint16_t cmd_mmrbc;
1667         uint16_t stat_mmrbc;
1668         uint32_t mta_size;
1669         uint32_t reg_data;
1670         uint32_t ctrl_ext;
1671         DEBUGFUNC();
1672         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1673         if ((hw->mac_type == e1000_ich8lan) &&
1674                 ((hw->revision_id < 3) ||
1675                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1676                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1677                         reg_data = E1000_READ_REG(hw, STATUS);
1678                         reg_data &= ~0x80000000;
1679                         E1000_WRITE_REG(hw, STATUS, reg_data);
1680         }
1681         /* Do not need initialize Identification LED */
1682
1683         /* Set the media type and TBI compatibility */
1684         e1000_set_media_type(hw);
1685
1686         /* Must be called after e1000_set_media_type
1687          * because media_type is used */
1688         e1000_initialize_hardware_bits(hw);
1689
1690         /* Disabling VLAN filtering. */
1691         DEBUGOUT("Initializing the IEEE VLAN\n");
1692         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1693         if (hw->mac_type != e1000_ich8lan) {
1694                 if (hw->mac_type < e1000_82545_rev_3)
1695                         E1000_WRITE_REG(hw, VET, 0);
1696                 e1000_clear_vfta(hw);
1697         }
1698
1699         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1700         if (hw->mac_type == e1000_82542_rev2_0) {
1701                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1702                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1703                                       hw->
1704                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1705                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1706                 E1000_WRITE_FLUSH(hw);
1707                 mdelay(5);
1708         }
1709
1710         /* Setup the receive address. This involves initializing all of the Receive
1711          * Address Registers (RARs 0 - 15).
1712          */
1713         e1000_init_rx_addrs(hw, enetaddr);
1714
1715         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1716         if (hw->mac_type == e1000_82542_rev2_0) {
1717                 E1000_WRITE_REG(hw, RCTL, 0);
1718                 E1000_WRITE_FLUSH(hw);
1719                 mdelay(1);
1720                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1721         }
1722
1723         /* Zero out the Multicast HASH table */
1724         DEBUGOUT("Zeroing the MTA\n");
1725         mta_size = E1000_MC_TBL_SIZE;
1726         if (hw->mac_type == e1000_ich8lan)
1727                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1728         for (i = 0; i < mta_size; i++) {
1729                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1730                 /* use write flush to prevent Memory Write Block (MWB) from
1731                  * occuring when accessing our register space */
1732                 E1000_WRITE_FLUSH(hw);
1733         }
1734 #if 0
1735         /* Set the PCI priority bit correctly in the CTRL register.  This
1736          * determines if the adapter gives priority to receives, or if it
1737          * gives equal priority to transmits and receives.  Valid only on
1738          * 82542 and 82543 silicon.
1739          */
1740         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1741                 ctrl = E1000_READ_REG(hw, CTRL);
1742                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1743         }
1744 #endif
1745         switch (hw->mac_type) {
1746         case e1000_82545_rev_3:
1747         case e1000_82546_rev_3:
1748         case e1000_igb:
1749                 break;
1750         default:
1751         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1752         if (hw->bus_type == e1000_bus_type_pcix) {
1753                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1754                                      &pcix_cmd_word);
1755                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1756                                      &pcix_stat_hi_word);
1757                 cmd_mmrbc =
1758                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1759                     PCIX_COMMAND_MMRBC_SHIFT;
1760                 stat_mmrbc =
1761                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1762                     PCIX_STATUS_HI_MMRBC_SHIFT;
1763                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1764                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1765                 if (cmd_mmrbc > stat_mmrbc) {
1766                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1767                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1768                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1769                                               pcix_cmd_word);
1770                 }
1771         }
1772                 break;
1773         }
1774
1775         /* More time needed for PHY to initialize */
1776         if (hw->mac_type == e1000_ich8lan)
1777                 mdelay(15);
1778         if (hw->mac_type == e1000_igb)
1779                 mdelay(15);
1780
1781         /* Call a subroutine to configure the link and setup flow control. */
1782         ret_val = e1000_setup_link(hw);
1783
1784         /* Set the transmit descriptor write-back policy */
1785         if (hw->mac_type > e1000_82544) {
1786                 ctrl = E1000_READ_REG(hw, TXDCTL);
1787                 ctrl =
1788                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1789                     E1000_TXDCTL_FULL_TX_DESC_WB;
1790                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1791         }
1792
1793         /* Set the receive descriptor write back policy */
1794         if (hw->mac_type >= e1000_82571) {
1795                 ctrl = E1000_READ_REG(hw, RXDCTL);
1796                 ctrl =
1797                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1798                     E1000_RXDCTL_FULL_RX_DESC_WB;
1799                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1800         }
1801
1802         switch (hw->mac_type) {
1803         default:
1804                 break;
1805         case e1000_80003es2lan:
1806                 /* Enable retransmit on late collisions */
1807                 reg_data = E1000_READ_REG(hw, TCTL);
1808                 reg_data |= E1000_TCTL_RTLC;
1809                 E1000_WRITE_REG(hw, TCTL, reg_data);
1810
1811                 /* Configure Gigabit Carry Extend Padding */
1812                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1813                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1814                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1815                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1816
1817                 /* Configure Transmit Inter-Packet Gap */
1818                 reg_data = E1000_READ_REG(hw, TIPG);
1819                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1820                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1821                 E1000_WRITE_REG(hw, TIPG, reg_data);
1822
1823                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1824                 reg_data &= ~0x00100000;
1825                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1826                 /* Fall through */
1827         case e1000_82571:
1828         case e1000_82572:
1829         case e1000_ich8lan:
1830                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1831                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1832                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1833                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1834                 break;
1835         case e1000_82573:
1836         case e1000_82574:
1837                 reg_data = E1000_READ_REG(hw, GCR);
1838                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1839                 E1000_WRITE_REG(hw, GCR, reg_data);
1840         case e1000_igb:
1841                 break;
1842         }
1843
1844 #if 0
1845         /* Clear all of the statistics registers (clear on read).  It is
1846          * important that we do this after we have tried to establish link
1847          * because the symbol error count will increment wildly if there
1848          * is no link.
1849          */
1850         e1000_clear_hw_cntrs(hw);
1851
1852         /* ICH8 No-snoop bits are opposite polarity.
1853          * Set to snoop by default after reset. */
1854         if (hw->mac_type == e1000_ich8lan)
1855                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1856 #endif
1857
1858         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1859                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1860                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1861                 /* Relaxed ordering must be disabled to avoid a parity
1862                  * error crash in a PCI slot. */
1863                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1864                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1865         }
1866
1867         return ret_val;
1868 }
1869
1870 /******************************************************************************
1871  * Configures flow control and link settings.
1872  *
1873  * hw - Struct containing variables accessed by shared code
1874  *
1875  * Determines which flow control settings to use. Calls the apropriate media-
1876  * specific link configuration function. Configures the flow control settings.
1877  * Assuming the adapter has a valid link partner, a valid link should be
1878  * established. Assumes the hardware has previously been reset and the
1879  * transmitter and receiver are not enabled.
1880  *****************************************************************************/
1881 static int
1882 e1000_setup_link(struct e1000_hw *hw)
1883 {
1884         int32_t ret_val;
1885 #ifndef CONFIG_E1000_NO_NVM
1886         uint32_t ctrl_ext;
1887         uint16_t eeprom_data;
1888 #endif
1889
1890         DEBUGFUNC();
1891
1892         /* In the case of the phy reset being blocked, we already have a link.
1893          * We do not have to set it up again. */
1894         if (e1000_check_phy_reset_block(hw))
1895                 return E1000_SUCCESS;
1896
1897 #ifndef CONFIG_E1000_NO_NVM
1898         /* Read and store word 0x0F of the EEPROM. This word contains bits
1899          * that determine the hardware's default PAUSE (flow control) mode,
1900          * a bit that determines whether the HW defaults to enabling or
1901          * disabling auto-negotiation, and the direction of the
1902          * SW defined pins. If there is no SW over-ride of the flow
1903          * control setting, then the variable hw->fc will
1904          * be initialized based on a value in the EEPROM.
1905          */
1906         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1907                                 &eeprom_data) < 0) {
1908                 DEBUGOUT("EEPROM Read Error\n");
1909                 return -E1000_ERR_EEPROM;
1910         }
1911 #endif
1912         if (hw->fc == e1000_fc_default) {
1913                 switch (hw->mac_type) {
1914                 case e1000_ich8lan:
1915                 case e1000_82573:
1916                 case e1000_82574:
1917                 case e1000_igb:
1918                         hw->fc = e1000_fc_full;
1919                         break;
1920                 default:
1921 #ifndef CONFIG_E1000_NO_NVM
1922                         ret_val = e1000_read_eeprom(hw,
1923                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1924                         if (ret_val) {
1925                                 DEBUGOUT("EEPROM Read Error\n");
1926                                 return -E1000_ERR_EEPROM;
1927                         }
1928                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1929                                 hw->fc = e1000_fc_none;
1930                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1931                                     EEPROM_WORD0F_ASM_DIR)
1932                                 hw->fc = e1000_fc_tx_pause;
1933                         else
1934 #endif
1935                                 hw->fc = e1000_fc_full;
1936                         break;
1937                 }
1938         }
1939
1940         /* We want to save off the original Flow Control configuration just
1941          * in case we get disconnected and then reconnected into a different
1942          * hub or switch with different Flow Control capabilities.
1943          */
1944         if (hw->mac_type == e1000_82542_rev2_0)
1945                 hw->fc &= (~e1000_fc_tx_pause);
1946
1947         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1948                 hw->fc &= (~e1000_fc_rx_pause);
1949
1950         hw->original_fc = hw->fc;
1951
1952         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1953
1954 #ifndef CONFIG_E1000_NO_NVM
1955         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1956          * polarity value for the SW controlled pins, and setup the
1957          * Extended Device Control reg with that info.
1958          * This is needed because one of the SW controlled pins is used for
1959          * signal detection.  So this should be done before e1000_setup_pcs_link()
1960          * or e1000_phy_setup() is called.
1961          */
1962         if (hw->mac_type == e1000_82543) {
1963                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1964                             SWDPIO__EXT_SHIFT);
1965                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1966         }
1967 #endif
1968
1969         /* Call the necessary subroutine to configure the link. */
1970         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1971             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1972         if (ret_val < 0) {
1973                 return ret_val;
1974         }
1975
1976         /* Initialize the flow control address, type, and PAUSE timer
1977          * registers to their default values.  This is done even if flow
1978          * control is disabled, because it does not hurt anything to
1979          * initialize these registers.
1980          */
1981         DEBUGOUT("Initializing the Flow Control address, type"
1982                         "and timer regs\n");
1983
1984         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1985         if (hw->mac_type != e1000_ich8lan) {
1986                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1987                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1988                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1989         }
1990
1991         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1992
1993         /* Set the flow control receive threshold registers.  Normally,
1994          * these registers will be set to a default threshold that may be
1995          * adjusted later by the driver's runtime code.  However, if the
1996          * ability to transmit pause frames in not enabled, then these
1997          * registers will be set to 0.
1998          */
1999         if (!(hw->fc & e1000_fc_tx_pause)) {
2000                 E1000_WRITE_REG(hw, FCRTL, 0);
2001                 E1000_WRITE_REG(hw, FCRTH, 0);
2002         } else {
2003                 /* We need to set up the Receive Threshold high and low water marks
2004                  * as well as (optionally) enabling the transmission of XON frames.
2005                  */
2006                 if (hw->fc_send_xon) {
2007                         E1000_WRITE_REG(hw, FCRTL,
2008                                         (hw->fc_low_water | E1000_FCRTL_XONE));
2009                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2010                 } else {
2011                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2012                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2013                 }
2014         }
2015         return ret_val;
2016 }
2017
2018 /******************************************************************************
2019  * Sets up link for a fiber based adapter
2020  *
2021  * hw - Struct containing variables accessed by shared code
2022  *
2023  * Manipulates Physical Coding Sublayer functions in order to configure
2024  * link. Assumes the hardware has been previously reset and the transmitter
2025  * and receiver are not enabled.
2026  *****************************************************************************/
2027 static int
2028 e1000_setup_fiber_link(struct e1000_hw *hw)
2029 {
2030         uint32_t ctrl;
2031         uint32_t status;
2032         uint32_t txcw = 0;
2033         uint32_t i;
2034         uint32_t signal;
2035         int32_t ret_val;
2036
2037         DEBUGFUNC();
2038         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2039          * set when the optics detect a signal. On older adapters, it will be
2040          * cleared when there is a signal
2041          */
2042         ctrl = E1000_READ_REG(hw, CTRL);
2043         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2044                 signal = E1000_CTRL_SWDPIN1;
2045         else
2046                 signal = 0;
2047
2048         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2049                ctrl);
2050         /* Take the link out of reset */
2051         ctrl &= ~(E1000_CTRL_LRST);
2052
2053         e1000_config_collision_dist(hw);
2054
2055         /* Check for a software override of the flow control settings, and setup
2056          * the device accordingly.  If auto-negotiation is enabled, then software
2057          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2058          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2059          * auto-negotiation is disabled, then software will have to manually
2060          * configure the two flow control enable bits in the CTRL register.
2061          *
2062          * The possible values of the "fc" parameter are:
2063          *      0:  Flow control is completely disabled
2064          *      1:  Rx flow control is enabled (we can receive pause frames, but
2065          *          not send pause frames).
2066          *      2:  Tx flow control is enabled (we can send pause frames but we do
2067          *          not support receiving pause frames).
2068          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2069          */
2070         switch (hw->fc) {
2071         case e1000_fc_none:
2072                 /* Flow control is completely disabled by a software over-ride. */
2073                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2074                 break;
2075         case e1000_fc_rx_pause:
2076                 /* RX Flow control is enabled and TX Flow control is disabled by a
2077                  * software over-ride. Since there really isn't a way to advertise
2078                  * that we are capable of RX Pause ONLY, we will advertise that we
2079                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2080                  *  disable the adapter's ability to send PAUSE frames.
2081                  */
2082                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2083                 break;
2084         case e1000_fc_tx_pause:
2085                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2086                  * software over-ride.
2087                  */
2088                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2089                 break;
2090         case e1000_fc_full:
2091                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2092                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2093                 break;
2094         default:
2095                 DEBUGOUT("Flow control param set incorrectly\n");
2096                 return -E1000_ERR_CONFIG;
2097                 break;
2098         }
2099
2100         /* Since auto-negotiation is enabled, take the link out of reset (the link
2101          * will be in reset, because we previously reset the chip). This will
2102          * restart auto-negotiation.  If auto-neogtiation is successful then the
2103          * link-up status bit will be set and the flow control enable bits (RFCE
2104          * and TFCE) will be set according to their negotiated value.
2105          */
2106         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2107
2108         E1000_WRITE_REG(hw, TXCW, txcw);
2109         E1000_WRITE_REG(hw, CTRL, ctrl);
2110         E1000_WRITE_FLUSH(hw);
2111
2112         hw->txcw = txcw;
2113         mdelay(1);
2114
2115         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2116          * indication in the Device Status Register.  Time-out if a link isn't
2117          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2118          * less than 500 milliseconds even if the other end is doing it in SW).
2119          */
2120         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2121                 DEBUGOUT("Looking for Link\n");
2122                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2123                         mdelay(10);
2124                         status = E1000_READ_REG(hw, STATUS);
2125                         if (status & E1000_STATUS_LU)
2126                                 break;
2127                 }
2128                 if (i == (LINK_UP_TIMEOUT / 10)) {
2129                         /* AutoNeg failed to achieve a link, so we'll call
2130                          * e1000_check_for_link. This routine will force the link up if we
2131                          * detect a signal. This will allow us to communicate with
2132                          * non-autonegotiating link partners.
2133                          */
2134                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2135                         hw->autoneg_failed = 1;
2136                         ret_val = e1000_check_for_link(hw);
2137                         if (ret_val < 0) {
2138                                 DEBUGOUT("Error while checking for link\n");
2139                                 return ret_val;
2140                         }
2141                         hw->autoneg_failed = 0;
2142                 } else {
2143                         hw->autoneg_failed = 0;
2144                         DEBUGOUT("Valid Link Found\n");
2145                 }
2146         } else {
2147                 DEBUGOUT("No Signal Detected\n");
2148                 return -E1000_ERR_NOLINK;
2149         }
2150         return 0;
2151 }
2152
2153 /******************************************************************************
2154 * Make sure we have a valid PHY and change PHY mode before link setup.
2155 *
2156 * hw - Struct containing variables accessed by shared code
2157 ******************************************************************************/
2158 static int32_t
2159 e1000_copper_link_preconfig(struct e1000_hw *hw)
2160 {
2161         uint32_t ctrl;
2162         int32_t ret_val;
2163         uint16_t phy_data;
2164
2165         DEBUGFUNC();
2166
2167         ctrl = E1000_READ_REG(hw, CTRL);
2168         /* With 82543, we need to force speed and duplex on the MAC equal to what
2169          * the PHY speed and duplex configuration is. In addition, we need to
2170          * perform a hardware reset on the PHY to take it out of reset.
2171          */
2172         if (hw->mac_type > e1000_82543) {
2173                 ctrl |= E1000_CTRL_SLU;
2174                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2175                 E1000_WRITE_REG(hw, CTRL, ctrl);
2176         } else {
2177                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2178                                 | E1000_CTRL_SLU);
2179                 E1000_WRITE_REG(hw, CTRL, ctrl);
2180                 ret_val = e1000_phy_hw_reset(hw);
2181                 if (ret_val)
2182                         return ret_val;
2183         }
2184
2185         /* Make sure we have a valid PHY */
2186         ret_val = e1000_detect_gig_phy(hw);
2187         if (ret_val) {
2188                 DEBUGOUT("Error, did not detect valid phy.\n");
2189                 return ret_val;
2190         }
2191         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2192
2193         /* Set PHY to class A mode (if necessary) */
2194         ret_val = e1000_set_phy_mode(hw);
2195         if (ret_val)
2196                 return ret_val;
2197         if ((hw->mac_type == e1000_82545_rev_3) ||
2198                 (hw->mac_type == e1000_82546_rev_3)) {
2199                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2200                                 &phy_data);
2201                 phy_data |= 0x00000008;
2202                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2203                                 phy_data);
2204         }
2205
2206         if (hw->mac_type <= e1000_82543 ||
2207                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2208                 hw->mac_type == e1000_82541_rev_2
2209                 || hw->mac_type == e1000_82547_rev_2)
2210                         hw->phy_reset_disable = false;
2211
2212         return E1000_SUCCESS;
2213 }
2214
2215 /*****************************************************************************
2216  *
2217  * This function sets the lplu state according to the active flag.  When
2218  * activating lplu this function also disables smart speed and vise versa.
2219  * lplu will not be activated unless the device autonegotiation advertisment
2220  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2221  * hw: Struct containing variables accessed by shared code
2222  * active - true to enable lplu false to disable lplu.
2223  *
2224  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2225  *            E1000_SUCCESS at any other case.
2226  *
2227  ****************************************************************************/
2228
2229 static int32_t
2230 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2231 {
2232         uint32_t phy_ctrl = 0;
2233         int32_t ret_val;
2234         uint16_t phy_data;
2235         DEBUGFUNC();
2236
2237         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2238             && hw->phy_type != e1000_phy_igp_3)
2239                 return E1000_SUCCESS;
2240
2241         /* During driver activity LPLU should not be used or it will attain link
2242          * from the lowest speeds starting from 10Mbps. The capability is used
2243          * for Dx transitions and states */
2244         if (hw->mac_type == e1000_82541_rev_2
2245                         || hw->mac_type == e1000_82547_rev_2) {
2246                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2247                                 &phy_data);
2248                 if (ret_val)
2249                         return ret_val;
2250         } else if (hw->mac_type == e1000_ich8lan) {
2251                 /* MAC writes into PHY register based on the state transition
2252                  * and start auto-negotiation. SW driver can overwrite the
2253                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2254                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2255         } else {
2256                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2257                                 &phy_data);
2258                 if (ret_val)
2259                         return ret_val;
2260         }
2261
2262         if (!active) {
2263                 if (hw->mac_type == e1000_82541_rev_2 ||
2264                         hw->mac_type == e1000_82547_rev_2) {
2265                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2266                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2267                                         phy_data);
2268                         if (ret_val)
2269                                 return ret_val;
2270                 } else {
2271                         if (hw->mac_type == e1000_ich8lan) {
2272                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2273                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2274                         } else {
2275                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2276                                 ret_val = e1000_write_phy_reg(hw,
2277                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2278                                 if (ret_val)
2279                                         return ret_val;
2280                         }
2281                 }
2282
2283         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2284          * Dx states where the power conservation is most important.  During
2285          * driver activity we should enable SmartSpeed, so performance is
2286          * maintained. */
2287                 if (hw->smart_speed == e1000_smart_speed_on) {
2288                         ret_val = e1000_read_phy_reg(hw,
2289                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2290                         if (ret_val)
2291                                 return ret_val;
2292
2293                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2294                         ret_val = e1000_write_phy_reg(hw,
2295                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2296                         if (ret_val)
2297                                 return ret_val;
2298                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2299                         ret_val = e1000_read_phy_reg(hw,
2300                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2301                         if (ret_val)
2302                                 return ret_val;
2303
2304                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2305                         ret_val = e1000_write_phy_reg(hw,
2306                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2307                         if (ret_val)
2308                                 return ret_val;
2309                 }
2310
2311         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2312                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2313                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2314
2315                 if (hw->mac_type == e1000_82541_rev_2 ||
2316                     hw->mac_type == e1000_82547_rev_2) {
2317                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2318                         ret_val = e1000_write_phy_reg(hw,
2319                                         IGP01E1000_GMII_FIFO, phy_data);
2320                         if (ret_val)
2321                                 return ret_val;
2322                 } else {
2323                         if (hw->mac_type == e1000_ich8lan) {
2324                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2325                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2326                         } else {
2327                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2328                                 ret_val = e1000_write_phy_reg(hw,
2329                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2330                                 if (ret_val)
2331                                         return ret_val;
2332                         }
2333                 }
2334
2335                 /* When LPLU is enabled we should disable SmartSpeed */
2336                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2337                                 &phy_data);
2338                 if (ret_val)
2339                         return ret_val;
2340
2341                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2342                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2343                                 phy_data);
2344                 if (ret_val)
2345                         return ret_val;
2346         }
2347         return E1000_SUCCESS;
2348 }
2349
2350 /*****************************************************************************
2351  *
2352  * This function sets the lplu d0 state according to the active flag.  When
2353  * activating lplu this function also disables smart speed and vise versa.
2354  * lplu will not be activated unless the device autonegotiation advertisment
2355  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2356  * hw: Struct containing variables accessed by shared code
2357  * active - true to enable lplu false to disable lplu.
2358  *
2359  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2360  *            E1000_SUCCESS at any other case.
2361  *
2362  ****************************************************************************/
2363
2364 static int32_t
2365 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2366 {
2367         uint32_t phy_ctrl = 0;
2368         int32_t ret_val;
2369         uint16_t phy_data;
2370         DEBUGFUNC();
2371
2372         if (hw->mac_type <= e1000_82547_rev_2)
2373                 return E1000_SUCCESS;
2374
2375         if (hw->mac_type == e1000_ich8lan) {
2376                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2377         } else if (hw->mac_type == e1000_igb) {
2378                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2379         } else {
2380                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2381                                 &phy_data);
2382                 if (ret_val)
2383                         return ret_val;
2384         }
2385
2386         if (!active) {
2387                 if (hw->mac_type == e1000_ich8lan) {
2388                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2389                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2390                 } else if (hw->mac_type == e1000_igb) {
2391                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2392                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2393                 } else {
2394                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2395                         ret_val = e1000_write_phy_reg(hw,
2396                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2397                         if (ret_val)
2398                                 return ret_val;
2399                 }
2400
2401                 if (hw->mac_type == e1000_igb)
2402                         return E1000_SUCCESS;
2403
2404         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2405          * Dx states where the power conservation is most important.  During
2406          * driver activity we should enable SmartSpeed, so performance is
2407          * maintained. */
2408                 if (hw->smart_speed == e1000_smart_speed_on) {
2409                         ret_val = e1000_read_phy_reg(hw,
2410                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2411                         if (ret_val)
2412                                 return ret_val;
2413
2414                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2415                         ret_val = e1000_write_phy_reg(hw,
2416                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2417                         if (ret_val)
2418                                 return ret_val;
2419                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2420                         ret_val = e1000_read_phy_reg(hw,
2421                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2422                         if (ret_val)
2423                                 return ret_val;
2424
2425                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2426                         ret_val = e1000_write_phy_reg(hw,
2427                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2428                         if (ret_val)
2429                                 return ret_val;
2430                 }
2431
2432
2433         } else {
2434
2435                 if (hw->mac_type == e1000_ich8lan) {
2436                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2437                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2438                 } else if (hw->mac_type == e1000_igb) {
2439                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2440                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2441                 } else {
2442                         phy_data |= IGP02E1000_PM_D0_LPLU;
2443                         ret_val = e1000_write_phy_reg(hw,
2444                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2445                         if (ret_val)
2446                                 return ret_val;
2447                 }
2448
2449                 if (hw->mac_type == e1000_igb)
2450                         return E1000_SUCCESS;
2451
2452                 /* When LPLU is enabled we should disable SmartSpeed */
2453                 ret_val = e1000_read_phy_reg(hw,
2454                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2455                 if (ret_val)
2456                         return ret_val;
2457
2458                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2459                 ret_val = e1000_write_phy_reg(hw,
2460                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2461                 if (ret_val)
2462                         return ret_val;
2463
2464         }
2465         return E1000_SUCCESS;
2466 }
2467
2468 /********************************************************************
2469 * Copper link setup for e1000_phy_igp series.
2470 *
2471 * hw - Struct containing variables accessed by shared code
2472 *********************************************************************/
2473 static int32_t
2474 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2475 {
2476         uint32_t led_ctrl;
2477         int32_t ret_val;
2478         uint16_t phy_data;
2479
2480         DEBUGFUNC();
2481
2482         if (hw->phy_reset_disable)
2483                 return E1000_SUCCESS;
2484
2485         ret_val = e1000_phy_reset(hw);
2486         if (ret_val) {
2487                 DEBUGOUT("Error Resetting the PHY\n");
2488                 return ret_val;
2489         }
2490
2491         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2492         mdelay(15);
2493         if (hw->mac_type != e1000_ich8lan) {
2494                 /* Configure activity LED after PHY reset */
2495                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2496                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2497                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2498                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2499         }
2500
2501         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2502         if (hw->phy_type == e1000_phy_igp) {
2503                 /* disable lplu d3 during driver init */
2504                 ret_val = e1000_set_d3_lplu_state(hw, false);
2505                 if (ret_val) {
2506                         DEBUGOUT("Error Disabling LPLU D3\n");
2507                         return ret_val;
2508                 }
2509         }
2510
2511         /* disable lplu d0 during driver init */
2512         ret_val = e1000_set_d0_lplu_state(hw, false);
2513         if (ret_val) {
2514                 DEBUGOUT("Error Disabling LPLU D0\n");
2515                 return ret_val;
2516         }
2517         /* Configure mdi-mdix settings */
2518         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2519         if (ret_val)
2520                 return ret_val;
2521
2522         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2523                 hw->dsp_config_state = e1000_dsp_config_disabled;
2524                 /* Force MDI for earlier revs of the IGP PHY */
2525                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2526                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2527                 hw->mdix = 1;
2528
2529         } else {
2530                 hw->dsp_config_state = e1000_dsp_config_enabled;
2531                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2532
2533                 switch (hw->mdix) {
2534                 case 1:
2535                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2536                         break;
2537                 case 2:
2538                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2539                         break;
2540                 case 0:
2541                 default:
2542                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2543                         break;
2544                 }
2545         }
2546         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2547         if (ret_val)
2548                 return ret_val;
2549
2550         /* set auto-master slave resolution settings */
2551         if (hw->autoneg) {
2552                 e1000_ms_type phy_ms_setting = hw->master_slave;
2553
2554                 if (hw->ffe_config_state == e1000_ffe_config_active)
2555                         hw->ffe_config_state = e1000_ffe_config_enabled;
2556
2557                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2558                         hw->dsp_config_state = e1000_dsp_config_enabled;
2559
2560                 /* when autonegotiation advertisment is only 1000Mbps then we
2561                   * should disable SmartSpeed and enable Auto MasterSlave
2562                   * resolution as hardware default. */
2563                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2564                         /* Disable SmartSpeed */
2565                         ret_val = e1000_read_phy_reg(hw,
2566                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2567                         if (ret_val)
2568                                 return ret_val;
2569                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2570                         ret_val = e1000_write_phy_reg(hw,
2571                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2572                         if (ret_val)
2573                                 return ret_val;
2574                         /* Set auto Master/Slave resolution process */
2575                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2576                                         &phy_data);
2577                         if (ret_val)
2578                                 return ret_val;
2579                         phy_data &= ~CR_1000T_MS_ENABLE;
2580                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2581                                         phy_data);
2582                         if (ret_val)
2583                                 return ret_val;
2584                 }
2585
2586                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2587                 if (ret_val)
2588                         return ret_val;
2589
2590                 /* load defaults for future use */
2591                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2592                                 ((phy_data & CR_1000T_MS_VALUE) ?
2593                                 e1000_ms_force_master :
2594                                 e1000_ms_force_slave) :
2595                                 e1000_ms_auto;
2596
2597                 switch (phy_ms_setting) {
2598                 case e1000_ms_force_master:
2599                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2600                         break;
2601                 case e1000_ms_force_slave:
2602                         phy_data |= CR_1000T_MS_ENABLE;
2603                         phy_data &= ~(CR_1000T_MS_VALUE);
2604                         break;
2605                 case e1000_ms_auto:
2606                         phy_data &= ~CR_1000T_MS_ENABLE;
2607                 default:
2608                         break;
2609                 }
2610                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2611                 if (ret_val)
2612                         return ret_val;
2613         }
2614
2615         return E1000_SUCCESS;
2616 }
2617
2618 /*****************************************************************************
2619  * This function checks the mode of the firmware.
2620  *
2621  * returns  - true when the mode is IAMT or false.
2622  ****************************************************************************/
2623 bool
2624 e1000_check_mng_mode(struct e1000_hw *hw)
2625 {
2626         uint32_t fwsm;
2627         DEBUGFUNC();
2628
2629         fwsm = E1000_READ_REG(hw, FWSM);
2630
2631         if (hw->mac_type == e1000_ich8lan) {
2632                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2633                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2634                         return true;
2635         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2636                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2637                         return true;
2638
2639         return false;
2640 }
2641
2642 static int32_t
2643 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2644 {
2645         uint16_t swfw = E1000_SWFW_PHY0_SM;
2646         uint32_t reg_val;
2647         DEBUGFUNC();
2648
2649         if (e1000_is_second_port(hw))
2650                 swfw = E1000_SWFW_PHY1_SM;
2651
2652         if (e1000_swfw_sync_acquire(hw, swfw))
2653                 return -E1000_ERR_SWFW_SYNC;
2654
2655         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2656                         & E1000_KUMCTRLSTA_OFFSET) | data;
2657         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2658         udelay(2);
2659
2660         return E1000_SUCCESS;
2661 }
2662
2663 static int32_t
2664 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2665 {
2666         uint16_t swfw = E1000_SWFW_PHY0_SM;
2667         uint32_t reg_val;
2668         DEBUGFUNC();
2669
2670         if (e1000_is_second_port(hw))
2671                 swfw = E1000_SWFW_PHY1_SM;
2672
2673         if (e1000_swfw_sync_acquire(hw, swfw)) {
2674                 debug("%s[%i]\n", __func__, __LINE__);
2675                 return -E1000_ERR_SWFW_SYNC;
2676         }
2677
2678         /* Write register address */
2679         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2680                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2681         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2682         udelay(2);
2683
2684         /* Read the data returned */
2685         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2686         *data = (uint16_t)reg_val;
2687
2688         return E1000_SUCCESS;
2689 }
2690
2691 /********************************************************************
2692 * Copper link setup for e1000_phy_gg82563 series.
2693 *
2694 * hw - Struct containing variables accessed by shared code
2695 *********************************************************************/
2696 static int32_t
2697 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2698 {
2699         int32_t ret_val;
2700         uint16_t phy_data;
2701         uint32_t reg_data;
2702
2703         DEBUGFUNC();
2704
2705         if (!hw->phy_reset_disable) {
2706                 /* Enable CRS on TX for half-duplex operation. */
2707                 ret_val = e1000_read_phy_reg(hw,
2708                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2709                 if (ret_val)
2710                         return ret_val;
2711
2712                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2713                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2714                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2715
2716                 ret_val = e1000_write_phy_reg(hw,
2717                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2718                 if (ret_val)
2719                         return ret_val;
2720
2721                 /* Options:
2722                  *   MDI/MDI-X = 0 (default)
2723                  *   0 - Auto for all speeds
2724                  *   1 - MDI mode
2725                  *   2 - MDI-X mode
2726                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2727                  */
2728                 ret_val = e1000_read_phy_reg(hw,
2729                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2730                 if (ret_val)
2731                         return ret_val;
2732
2733                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2734
2735                 switch (hw->mdix) {
2736                 case 1:
2737                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2738                         break;
2739                 case 2:
2740                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2741                         break;
2742                 case 0:
2743                 default:
2744                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2745                         break;
2746                 }
2747
2748                 /* Options:
2749                  *   disable_polarity_correction = 0 (default)
2750                  *       Automatic Correction for Reversed Cable Polarity
2751                  *   0 - Disabled
2752                  *   1 - Enabled
2753                  */
2754                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2755                 ret_val = e1000_write_phy_reg(hw,
2756                                 GG82563_PHY_SPEC_CTRL, phy_data);
2757
2758                 if (ret_val)
2759                         return ret_val;
2760
2761                 /* SW Reset the PHY so all changes take effect */
2762                 ret_val = e1000_phy_reset(hw);
2763                 if (ret_val) {
2764                         DEBUGOUT("Error Resetting the PHY\n");
2765                         return ret_val;
2766                 }
2767         } /* phy_reset_disable */
2768
2769         if (hw->mac_type == e1000_80003es2lan) {
2770                 /* Bypass RX and TX FIFO's */
2771                 ret_val = e1000_write_kmrn_reg(hw,
2772                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2773                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2774                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2775                 if (ret_val)
2776                         return ret_val;
2777
2778                 ret_val = e1000_read_phy_reg(hw,
2779                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2780                 if (ret_val)
2781                         return ret_val;
2782
2783                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2784                 ret_val = e1000_write_phy_reg(hw,
2785                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2786
2787                 if (ret_val)
2788                         return ret_val;
2789
2790                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2791                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2792                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2793
2794                 ret_val = e1000_read_phy_reg(hw,
2795                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2796                 if (ret_val)
2797                         return ret_val;
2798
2799         /* Do not init these registers when the HW is in IAMT mode, since the
2800          * firmware will have already initialized them.  We only initialize
2801          * them if the HW is not in IAMT mode.
2802          */
2803                 if (e1000_check_mng_mode(hw) == false) {
2804                         /* Enable Electrical Idle on the PHY */
2805                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2806                         ret_val = e1000_write_phy_reg(hw,
2807                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2808                         if (ret_val)
2809                                 return ret_val;
2810
2811                         ret_val = e1000_read_phy_reg(hw,
2812                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2813                         if (ret_val)
2814                                 return ret_val;
2815
2816                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2817                         ret_val = e1000_write_phy_reg(hw,
2818                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2819
2820                         if (ret_val)
2821                                 return ret_val;
2822                 }
2823
2824                 /* Workaround: Disable padding in Kumeran interface in the MAC
2825                  * and in the PHY to avoid CRC errors.
2826                  */
2827                 ret_val = e1000_read_phy_reg(hw,
2828                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2829                 if (ret_val)
2830                         return ret_val;
2831                 phy_data |= GG82563_ICR_DIS_PADDING;
2832                 ret_val = e1000_write_phy_reg(hw,
2833                                 GG82563_PHY_INBAND_CTRL, phy_data);
2834                 if (ret_val)
2835                         return ret_val;
2836         }
2837         return E1000_SUCCESS;
2838 }
2839
2840 /********************************************************************
2841 * Copper link setup for e1000_phy_m88 series.
2842 *
2843 * hw - Struct containing variables accessed by shared code
2844 *********************************************************************/
2845 static int32_t
2846 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2847 {
2848         int32_t ret_val;
2849         uint16_t phy_data;
2850
2851         DEBUGFUNC();
2852
2853         if (hw->phy_reset_disable)
2854                 return E1000_SUCCESS;
2855
2856         /* Enable CRS on TX. This must be set for half-duplex operation. */
2857         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2858         if (ret_val)
2859                 return ret_val;
2860
2861         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2862
2863         /* Options:
2864          *   MDI/MDI-X = 0 (default)
2865          *   0 - Auto for all speeds
2866          *   1 - MDI mode
2867          *   2 - MDI-X mode
2868          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2869          */
2870         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2871
2872         switch (hw->mdix) {
2873         case 1:
2874                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2875                 break;
2876         case 2:
2877                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2878                 break;
2879         case 3:
2880                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2881                 break;
2882         case 0:
2883         default:
2884                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2885                 break;
2886         }
2887
2888         /* Options:
2889          *   disable_polarity_correction = 0 (default)
2890          *       Automatic Correction for Reversed Cable Polarity
2891          *   0 - Disabled
2892          *   1 - Enabled
2893          */
2894         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2895         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2896         if (ret_val)
2897                 return ret_val;
2898
2899         if (hw->phy_revision < M88E1011_I_REV_4) {
2900                 /* Force TX_CLK in the Extended PHY Specific Control Register
2901                  * to 25MHz clock.
2902                  */
2903                 ret_val = e1000_read_phy_reg(hw,
2904                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2905                 if (ret_val)
2906                         return ret_val;
2907
2908                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2909
2910                 if ((hw->phy_revision == E1000_REVISION_2) &&
2911                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2912                         /* Vidalia Phy, set the downshift counter to 5x */
2913                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2914                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2915                         ret_val = e1000_write_phy_reg(hw,
2916                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2917                         if (ret_val)
2918                                 return ret_val;
2919                 } else {
2920                         /* Configure Master and Slave downshift values */
2921                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2922                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2923                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2924                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2925                         ret_val = e1000_write_phy_reg(hw,
2926                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2927                         if (ret_val)
2928                                 return ret_val;
2929                 }
2930         }
2931
2932         /* SW Reset the PHY so all changes take effect */
2933         ret_val = e1000_phy_reset(hw);
2934         if (ret_val) {
2935                 DEBUGOUT("Error Resetting the PHY\n");
2936                 return ret_val;
2937         }
2938
2939         return E1000_SUCCESS;
2940 }
2941
2942 /********************************************************************
2943 * Setup auto-negotiation and flow control advertisements,
2944 * and then perform auto-negotiation.
2945 *
2946 * hw - Struct containing variables accessed by shared code
2947 *********************************************************************/
2948 static int32_t
2949 e1000_copper_link_autoneg(struct e1000_hw *hw)
2950 {
2951         int32_t ret_val;
2952         uint16_t phy_data;
2953
2954         DEBUGFUNC();
2955
2956         /* Perform some bounds checking on the hw->autoneg_advertised
2957          * parameter.  If this variable is zero, then set it to the default.
2958          */
2959         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2960
2961         /* If autoneg_advertised is zero, we assume it was not defaulted
2962          * by the calling code so we set to advertise full capability.
2963          */
2964         if (hw->autoneg_advertised == 0)
2965                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2966
2967         /* IFE phy only supports 10/100 */
2968         if (hw->phy_type == e1000_phy_ife)
2969                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2970
2971         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2972         ret_val = e1000_phy_setup_autoneg(hw);
2973         if (ret_val) {
2974                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2975                 return ret_val;
2976         }
2977         DEBUGOUT("Restarting Auto-Neg\n");
2978
2979         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2980          * the Auto Neg Restart bit in the PHY control register.
2981          */
2982         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2983         if (ret_val)
2984                 return ret_val;
2985
2986         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2987         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2988         if (ret_val)
2989                 return ret_val;
2990
2991         /* Does the user want to wait for Auto-Neg to complete here, or
2992          * check at a later time (for example, callback routine).
2993          */
2994         /* If we do not wait for autonegtation to complete I
2995          * do not see a valid link status.
2996          * wait_autoneg_complete = 1 .
2997          */
2998         if (hw->wait_autoneg_complete) {
2999                 ret_val = e1000_wait_autoneg(hw);
3000                 if (ret_val) {
3001                         DEBUGOUT("Error while waiting for autoneg"
3002                                         "to complete\n");
3003                         return ret_val;
3004                 }
3005         }
3006
3007         hw->get_link_status = true;
3008
3009         return E1000_SUCCESS;
3010 }
3011
3012 /******************************************************************************
3013 * Config the MAC and the PHY after link is up.
3014 *   1) Set up the MAC to the current PHY speed/duplex
3015 *      if we are on 82543.  If we
3016 *      are on newer silicon, we only need to configure
3017 *      collision distance in the Transmit Control Register.
3018 *   2) Set up flow control on the MAC to that established with
3019 *      the link partner.
3020 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3021 *
3022 * hw - Struct containing variables accessed by shared code
3023 ******************************************************************************/
3024 static int32_t
3025 e1000_copper_link_postconfig(struct e1000_hw *hw)
3026 {
3027         int32_t ret_val;
3028         DEBUGFUNC();
3029
3030         if (hw->mac_type >= e1000_82544) {
3031                 e1000_config_collision_dist(hw);
3032         } else {
3033                 ret_val = e1000_config_mac_to_phy(hw);
3034                 if (ret_val) {
3035                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3036                         return ret_val;
3037                 }
3038         }
3039         ret_val = e1000_config_fc_after_link_up(hw);
3040         if (ret_val) {
3041                 DEBUGOUT("Error Configuring Flow Control\n");
3042                 return ret_val;
3043         }
3044         return E1000_SUCCESS;
3045 }
3046
3047 /******************************************************************************
3048 * Detects which PHY is present and setup the speed and duplex
3049 *
3050 * hw - Struct containing variables accessed by shared code
3051 ******************************************************************************/
3052 static int
3053 e1000_setup_copper_link(struct e1000_hw *hw)
3054 {
3055         int32_t ret_val;
3056         uint16_t i;
3057         uint16_t phy_data;
3058         uint16_t reg_data;
3059
3060         DEBUGFUNC();
3061
3062         switch (hw->mac_type) {
3063         case e1000_80003es2lan:
3064         case e1000_ich8lan:
3065                 /* Set the mac to wait the maximum time between each
3066                  * iteration and increase the max iterations when
3067                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3068                 ret_val = e1000_write_kmrn_reg(hw,
3069                                 GG82563_REG(0x34, 4), 0xFFFF);
3070                 if (ret_val)
3071                         return ret_val;
3072                 ret_val = e1000_read_kmrn_reg(hw,
3073                                 GG82563_REG(0x34, 9), &reg_data);
3074                 if (ret_val)
3075                         return ret_val;
3076                 reg_data |= 0x3F;
3077                 ret_val = e1000_write_kmrn_reg(hw,
3078                                 GG82563_REG(0x34, 9), reg_data);
3079                 if (ret_val)
3080                         return ret_val;
3081         default:
3082                 break;
3083         }
3084
3085         /* Check if it is a valid PHY and set PHY mode if necessary. */
3086         ret_val = e1000_copper_link_preconfig(hw);
3087         if (ret_val)
3088                 return ret_val;
3089         switch (hw->mac_type) {
3090         case e1000_80003es2lan:
3091                 /* Kumeran registers are written-only */
3092                 reg_data =
3093                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3094                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3095                 ret_val = e1000_write_kmrn_reg(hw,
3096                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3097                 if (ret_val)
3098                         return ret_val;
3099                 break;
3100         default:
3101                 break;
3102         }
3103
3104         if (hw->phy_type == e1000_phy_igp ||
3105                 hw->phy_type == e1000_phy_igp_3 ||
3106                 hw->phy_type == e1000_phy_igp_2) {
3107                 ret_val = e1000_copper_link_igp_setup(hw);
3108                 if (ret_val)
3109                         return ret_val;
3110         } else if (hw->phy_type == e1000_phy_m88 ||
3111                 hw->phy_type == e1000_phy_igb) {
3112                 ret_val = e1000_copper_link_mgp_setup(hw);
3113                 if (ret_val)
3114                         return ret_val;
3115         } else if (hw->phy_type == e1000_phy_gg82563) {
3116                 ret_val = e1000_copper_link_ggp_setup(hw);
3117                 if (ret_val)
3118                         return ret_val;
3119         }
3120
3121         /* always auto */
3122         /* Setup autoneg and flow control advertisement
3123           * and perform autonegotiation */
3124         ret_val = e1000_copper_link_autoneg(hw);
3125         if (ret_val)
3126                 return ret_val;
3127
3128         /* Check link status. Wait up to 100 microseconds for link to become
3129          * valid.
3130          */
3131         for (i = 0; i < 10; i++) {
3132                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3133                 if (ret_val)
3134                         return ret_val;
3135                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3136                 if (ret_val)
3137                         return ret_val;
3138
3139                 if (phy_data & MII_SR_LINK_STATUS) {
3140                         /* Config the MAC and PHY after link is up */
3141                         ret_val = e1000_copper_link_postconfig(hw);
3142                         if (ret_val)
3143                                 return ret_val;
3144
3145                         DEBUGOUT("Valid link established!!!\n");
3146                         return E1000_SUCCESS;
3147                 }
3148                 udelay(10);
3149         }
3150
3151         DEBUGOUT("Unable to establish link!!!\n");
3152         return E1000_SUCCESS;
3153 }
3154
3155 /******************************************************************************
3156 * Configures PHY autoneg and flow control advertisement settings
3157 *
3158 * hw - Struct containing variables accessed by shared code
3159 ******************************************************************************/
3160 int32_t
3161 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3162 {
3163         int32_t ret_val;
3164         uint16_t mii_autoneg_adv_reg;
3165         uint16_t mii_1000t_ctrl_reg;
3166
3167         DEBUGFUNC();
3168
3169         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3170         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3171         if (ret_val)
3172                 return ret_val;
3173
3174         if (hw->phy_type != e1000_phy_ife) {
3175                 /* Read the MII 1000Base-T Control Register (Address 9). */
3176                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3177                                 &mii_1000t_ctrl_reg);
3178                 if (ret_val)
3179                         return ret_val;
3180         } else
3181                 mii_1000t_ctrl_reg = 0;
3182
3183         /* Need to parse both autoneg_advertised and fc and set up
3184          * the appropriate PHY registers.  First we will parse for
3185          * autoneg_advertised software override.  Since we can advertise
3186          * a plethora of combinations, we need to check each bit
3187          * individually.
3188          */
3189
3190         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3191          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3192          * the  1000Base-T Control Register (Address 9).
3193          */
3194         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3195         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3196
3197         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3198
3199         /* Do we want to advertise 10 Mb Half Duplex? */
3200         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3201                 DEBUGOUT("Advertise 10mb Half duplex\n");
3202                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3203         }
3204
3205         /* Do we want to advertise 10 Mb Full Duplex? */
3206         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3207                 DEBUGOUT("Advertise 10mb Full duplex\n");
3208                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3209         }
3210
3211         /* Do we want to advertise 100 Mb Half Duplex? */
3212         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3213                 DEBUGOUT("Advertise 100mb Half duplex\n");
3214                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3215         }
3216
3217         /* Do we want to advertise 100 Mb Full Duplex? */
3218         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3219                 DEBUGOUT("Advertise 100mb Full duplex\n");
3220                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3221         }
3222
3223         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3224         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3225                 DEBUGOUT
3226                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3227         }
3228
3229         /* Do we want to advertise 1000 Mb Full Duplex? */
3230         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3231                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3232                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3233         }
3234
3235         /* Check for a software override of the flow control settings, and
3236          * setup the PHY advertisement registers accordingly.  If
3237          * auto-negotiation is enabled, then software will have to set the
3238          * "PAUSE" bits to the correct value in the Auto-Negotiation
3239          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3240          *
3241          * The possible values of the "fc" parameter are:
3242          *      0:  Flow control is completely disabled
3243          *      1:  Rx flow control is enabled (we can receive pause frames
3244          *          but not send pause frames).
3245          *      2:  Tx flow control is enabled (we can send pause frames
3246          *          but we do not support receiving pause frames).
3247          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3248          *  other:  No software override.  The flow control configuration
3249          *          in the EEPROM is used.
3250          */
3251         switch (hw->fc) {
3252         case e1000_fc_none:     /* 0 */
3253                 /* Flow control (RX & TX) is completely disabled by a
3254                  * software over-ride.
3255                  */
3256                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3257                 break;
3258         case e1000_fc_rx_pause: /* 1 */
3259                 /* RX Flow control is enabled, and TX Flow control is
3260                  * disabled, by a software over-ride.
3261                  */
3262                 /* Since there really isn't a way to advertise that we are
3263                  * capable of RX Pause ONLY, we will advertise that we
3264                  * support both symmetric and asymmetric RX PAUSE.  Later
3265                  * (in e1000_config_fc_after_link_up) we will disable the
3266                  *hw's ability to send PAUSE frames.
3267                  */
3268                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269                 break;
3270         case e1000_fc_tx_pause: /* 2 */
3271                 /* TX Flow control is enabled, and RX Flow control is
3272                  * disabled, by a software over-ride.
3273                  */
3274                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3275                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3276                 break;
3277         case e1000_fc_full:     /* 3 */
3278                 /* Flow control (both RX and TX) is enabled by a software
3279                  * over-ride.
3280                  */
3281                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3282                 break;
3283         default:
3284                 DEBUGOUT("Flow control param set incorrectly\n");
3285                 return -E1000_ERR_CONFIG;
3286         }
3287
3288         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3289         if (ret_val)
3290                 return ret_val;
3291
3292         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3293
3294         if (hw->phy_type != e1000_phy_ife) {
3295                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3296                                 mii_1000t_ctrl_reg);
3297                 if (ret_val)
3298                         return ret_val;
3299         }
3300
3301         return E1000_SUCCESS;
3302 }
3303
3304 /******************************************************************************
3305 * Sets the collision distance in the Transmit Control register
3306 *
3307 * hw - Struct containing variables accessed by shared code
3308 *
3309 * Link should have been established previously. Reads the speed and duplex
3310 * information from the Device Status register.
3311 ******************************************************************************/
3312 static void
3313 e1000_config_collision_dist(struct e1000_hw *hw)
3314 {
3315         uint32_t tctl, coll_dist;
3316
3317         DEBUGFUNC();
3318
3319         if (hw->mac_type < e1000_82543)
3320                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3321         else
3322                 coll_dist = E1000_COLLISION_DISTANCE;
3323
3324         tctl = E1000_READ_REG(hw, TCTL);
3325
3326         tctl &= ~E1000_TCTL_COLD;
3327         tctl |= coll_dist << E1000_COLD_SHIFT;
3328
3329         E1000_WRITE_REG(hw, TCTL, tctl);
3330         E1000_WRITE_FLUSH(hw);
3331 }
3332
3333 /******************************************************************************
3334 * Sets MAC speed and duplex settings to reflect the those in the PHY
3335 *
3336 * hw - Struct containing variables accessed by shared code
3337 * mii_reg - data to write to the MII control register
3338 *
3339 * The contents of the PHY register containing the needed information need to
3340 * be passed in.
3341 ******************************************************************************/
3342 static int
3343 e1000_config_mac_to_phy(struct e1000_hw *hw)
3344 {
3345         uint32_t ctrl;
3346         uint16_t phy_data;
3347
3348         DEBUGFUNC();
3349
3350         /* Read the Device Control Register and set the bits to Force Speed
3351          * and Duplex.
3352          */
3353         ctrl = E1000_READ_REG(hw, CTRL);
3354         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3355         ctrl &= ~(E1000_CTRL_ILOS);
3356         ctrl |= (E1000_CTRL_SPD_SEL);
3357
3358         /* Set up duplex in the Device Control and Transmit Control
3359          * registers depending on negotiated values.
3360          */
3361         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3362                 DEBUGOUT("PHY Read Error\n");
3363                 return -E1000_ERR_PHY;
3364         }
3365         if (phy_data & M88E1000_PSSR_DPLX)
3366                 ctrl |= E1000_CTRL_FD;
3367         else
3368                 ctrl &= ~E1000_CTRL_FD;
3369
3370         e1000_config_collision_dist(hw);
3371
3372         /* Set up speed in the Device Control register depending on
3373          * negotiated values.
3374          */
3375         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3376                 ctrl |= E1000_CTRL_SPD_1000;
3377         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3378                 ctrl |= E1000_CTRL_SPD_100;
3379         /* Write the configured values back to the Device Control Reg. */
3380         E1000_WRITE_REG(hw, CTRL, ctrl);
3381         return 0;
3382 }
3383
3384 /******************************************************************************
3385  * Forces the MAC's flow control settings.
3386  *
3387  * hw - Struct containing variables accessed by shared code
3388  *
3389  * Sets the TFCE and RFCE bits in the device control register to reflect
3390  * the adapter settings. TFCE and RFCE need to be explicitly set by
3391  * software when a Copper PHY is used because autonegotiation is managed
3392  * by the PHY rather than the MAC. Software must also configure these
3393  * bits when link is forced on a fiber connection.
3394  *****************************************************************************/
3395 static int
3396 e1000_force_mac_fc(struct e1000_hw *hw)
3397 {
3398         uint32_t ctrl;
3399
3400         DEBUGFUNC();
3401
3402         /* Get the current configuration of the Device Control Register */
3403         ctrl = E1000_READ_REG(hw, CTRL);
3404
3405         /* Because we didn't get link via the internal auto-negotiation
3406          * mechanism (we either forced link or we got link via PHY
3407          * auto-neg), we have to manually enable/disable transmit an
3408          * receive flow control.
3409          *
3410          * The "Case" statement below enables/disable flow control
3411          * according to the "hw->fc" parameter.
3412          *
3413          * The possible values of the "fc" parameter are:
3414          *      0:  Flow control is completely disabled
3415          *      1:  Rx flow control is enabled (we can receive pause
3416          *          frames but not send pause frames).
3417          *      2:  Tx flow control is enabled (we can send pause frames
3418          *          frames but we do not receive pause frames).
3419          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3420          *  other:  No other values should be possible at this point.
3421          */
3422
3423         switch (hw->fc) {
3424         case e1000_fc_none:
3425                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3426                 break;
3427         case e1000_fc_rx_pause:
3428                 ctrl &= (~E1000_CTRL_TFCE);
3429                 ctrl |= E1000_CTRL_RFCE;
3430                 break;
3431         case e1000_fc_tx_pause:
3432                 ctrl &= (~E1000_CTRL_RFCE);
3433                 ctrl |= E1000_CTRL_TFCE;
3434                 break;
3435         case e1000_fc_full:
3436                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3437                 break;
3438         default:
3439                 DEBUGOUT("Flow control param set incorrectly\n");
3440                 return -E1000_ERR_CONFIG;
3441         }
3442
3443         /* Disable TX Flow Control for 82542 (rev 2.0) */
3444         if (hw->mac_type == e1000_82542_rev2_0)
3445                 ctrl &= (~E1000_CTRL_TFCE);
3446
3447         E1000_WRITE_REG(hw, CTRL, ctrl);
3448         return 0;
3449 }
3450
3451 /******************************************************************************
3452  * Configures flow control settings after link is established
3453  *
3454  * hw - Struct containing variables accessed by shared code
3455  *
3456  * Should be called immediately after a valid link has been established.
3457  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3458  * and autonegotiation is enabled, the MAC flow control settings will be set
3459  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3460  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3461  *****************************************************************************/
3462 static int32_t
3463 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3464 {
3465         int32_t ret_val;
3466         uint16_t mii_status_reg;
3467         uint16_t mii_nway_adv_reg;
3468         uint16_t mii_nway_lp_ability_reg;
3469         uint16_t speed;
3470         uint16_t duplex;
3471
3472         DEBUGFUNC();
3473
3474         /* Check for the case where we have fiber media and auto-neg failed
3475          * so we had to force link.  In this case, we need to force the
3476          * configuration of the MAC to match the "fc" parameter.
3477          */
3478         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3479                 || ((hw->media_type == e1000_media_type_internal_serdes)
3480                 && (hw->autoneg_failed))
3481                 || ((hw->media_type == e1000_media_type_copper)
3482                 && (!hw->autoneg))) {
3483                 ret_val = e1000_force_mac_fc(hw);
3484                 if (ret_val < 0) {
3485                         DEBUGOUT("Error forcing flow control settings\n");
3486                         return ret_val;
3487                 }
3488         }
3489
3490         /* Check for the case where we have copper media and auto-neg is
3491          * enabled.  In this case, we need to check and see if Auto-Neg
3492          * has completed, and if so, how the PHY and link partner has
3493          * flow control configured.
3494          */
3495         if (hw->media_type == e1000_media_type_copper) {
3496                 /* Read the MII Status Register and check to see if AutoNeg
3497                  * has completed.  We read this twice because this reg has
3498                  * some "sticky" (latched) bits.
3499                  */
3500                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3501                         DEBUGOUT("PHY Read Error\n");
3502                         return -E1000_ERR_PHY;
3503                 }
3504                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3505                         DEBUGOUT("PHY Read Error\n");
3506                         return -E1000_ERR_PHY;
3507                 }
3508
3509                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3510                         /* The AutoNeg process has completed, so we now need to
3511                          * read both the Auto Negotiation Advertisement Register
3512                          * (Address 4) and the Auto_Negotiation Base Page Ability
3513                          * Register (Address 5) to determine how flow control was
3514                          * negotiated.
3515                          */
3516                         if (e1000_read_phy_reg
3517                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3518                                 DEBUGOUT("PHY Read Error\n");
3519                                 return -E1000_ERR_PHY;
3520                         }
3521                         if (e1000_read_phy_reg
3522                             (hw, PHY_LP_ABILITY,
3523                              &mii_nway_lp_ability_reg) < 0) {
3524                                 DEBUGOUT("PHY Read Error\n");
3525                                 return -E1000_ERR_PHY;
3526                         }
3527
3528                         /* Two bits in the Auto Negotiation Advertisement Register
3529                          * (Address 4) and two bits in the Auto Negotiation Base
3530                          * Page Ability Register (Address 5) determine flow control
3531                          * for both the PHY and the link partner.  The following
3532                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3533                          * 1999, describes these PAUSE resolution bits and how flow
3534                          * control is determined based upon these settings.
3535                          * NOTE:  DC = Don't Care
3536                          *
3537                          *   LOCAL DEVICE  |   LINK PARTNER
3538                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3539                          *-------|---------|-------|---------|--------------------
3540                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3541                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3542                          *   0   |    1    |   1   |    0    | e1000_fc_none
3543                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3544                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3545                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3546                          *   1   |    1    |   0   |    0    | e1000_fc_none
3547                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3548                          *
3549                          */
3550                         /* Are both PAUSE bits set to 1?  If so, this implies
3551                          * Symmetric Flow Control is enabled at both ends.  The
3552                          * ASM_DIR bits are irrelevant per the spec.
3553                          *
3554                          * For Symmetric Flow Control:
3555                          *
3556                          *   LOCAL DEVICE  |   LINK PARTNER
3557                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3558                          *-------|---------|-------|---------|--------------------
3559                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3560                          *
3561                          */
3562                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3563                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3564                                 /* Now we need to check if the user selected RX ONLY
3565                                  * of pause frames.  In this case, we had to advertise
3566                                  * FULL flow control because we could not advertise RX
3567                                  * ONLY. Hence, we must now check to see if we need to
3568                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3569                                  */
3570                                 if (hw->original_fc == e1000_fc_full) {
3571                                         hw->fc = e1000_fc_full;
3572                                         DEBUGOUT("Flow Control = FULL.\r\n");
3573                                 } else {
3574                                         hw->fc = e1000_fc_rx_pause;
3575                                         DEBUGOUT
3576                                             ("Flow Control = RX PAUSE frames only.\r\n");
3577                                 }
3578                         }
3579                         /* For receiving PAUSE frames ONLY.
3580                          *
3581                          *   LOCAL DEVICE  |   LINK PARTNER
3582                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3583                          *-------|---------|-------|---------|--------------------
3584                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3585                          *
3586                          */
3587                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3588                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3589                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3590                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3591                         {
3592                                 hw->fc = e1000_fc_tx_pause;
3593                                 DEBUGOUT
3594                                     ("Flow Control = TX PAUSE frames only.\r\n");
3595                         }
3596                         /* For transmitting PAUSE frames ONLY.
3597                          *
3598                          *   LOCAL DEVICE  |   LINK PARTNER
3599                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3600                          *-------|---------|-------|---------|--------------------
3601                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3602                          *
3603                          */
3604                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3605                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3606                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3607                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3608                         {
3609                                 hw->fc = e1000_fc_rx_pause;
3610                                 DEBUGOUT
3611                                     ("Flow Control = RX PAUSE frames only.\r\n");
3612                         }
3613                         /* Per the IEEE spec, at this point flow control should be
3614                          * disabled.  However, we want to consider that we could
3615                          * be connected to a legacy switch that doesn't advertise
3616                          * desired flow control, but can be forced on the link
3617                          * partner.  So if we advertised no flow control, that is
3618                          * what we will resolve to.  If we advertised some kind of
3619                          * receive capability (Rx Pause Only or Full Flow Control)
3620                          * and the link partner advertised none, we will configure
3621                          * ourselves to enable Rx Flow Control only.  We can do
3622                          * this safely for two reasons:  If the link partner really
3623                          * didn't want flow control enabled, and we enable Rx, no
3624                          * harm done since we won't be receiving any PAUSE frames
3625                          * anyway.  If the intent on the link partner was to have
3626                          * flow control enabled, then by us enabling RX only, we
3627                          * can at least receive pause frames and process them.
3628                          * This is a good idea because in most cases, since we are
3629                          * predominantly a server NIC, more times than not we will
3630                          * be asked to delay transmission of packets than asking
3631                          * our link partner to pause transmission of frames.
3632                          */
3633                         else if (hw->original_fc == e1000_fc_none ||
3634                                  hw->original_fc == e1000_fc_tx_pause) {
3635                                 hw->fc = e1000_fc_none;
3636                                 DEBUGOUT("Flow Control = NONE.\r\n");
3637                         } else {
3638                                 hw->fc = e1000_fc_rx_pause;
3639                                 DEBUGOUT
3640                                     ("Flow Control = RX PAUSE frames only.\r\n");
3641                         }
3642
3643                         /* Now we need to do one last check...  If we auto-
3644                          * negotiated to HALF DUPLEX, flow control should not be
3645                          * enabled per IEEE 802.3 spec.
3646                          */
3647                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3648
3649                         if (duplex == HALF_DUPLEX)
3650                                 hw->fc = e1000_fc_none;
3651
3652                         /* Now we call a subroutine to actually force the MAC
3653                          * controller to use the correct flow control settings.
3654                          */
3655                         ret_val = e1000_force_mac_fc(hw);
3656                         if (ret_val < 0) {
3657                                 DEBUGOUT
3658                                     ("Error forcing flow control settings\n");
3659                                 return ret_val;
3660                         }
3661                 } else {
3662                         DEBUGOUT
3663                             ("Copper PHY and Auto Neg has not completed.\r\n");
3664                 }
3665         }
3666         return E1000_SUCCESS;
3667 }
3668
3669 /******************************************************************************
3670  * Checks to see if the link status of the hardware has changed.
3671  *
3672  * hw - Struct containing variables accessed by shared code
3673  *
3674  * Called by any function that needs to check the link status of the adapter.
3675  *****************************************************************************/
3676 static int
3677 e1000_check_for_link(struct e1000_hw *hw)
3678 {
3679         uint32_t rxcw;
3680         uint32_t ctrl;
3681         uint32_t status;
3682         uint32_t rctl;
3683         uint32_t signal;
3684         int32_t ret_val;
3685         uint16_t phy_data;
3686         uint16_t lp_capability;
3687
3688         DEBUGFUNC();
3689
3690         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3691          * set when the optics detect a signal. On older adapters, it will be
3692          * cleared when there is a signal
3693          */
3694         ctrl = E1000_READ_REG(hw, CTRL);
3695         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3696                 signal = E1000_CTRL_SWDPIN1;
3697         else
3698                 signal = 0;
3699
3700         status = E1000_READ_REG(hw, STATUS);
3701         rxcw = E1000_READ_REG(hw, RXCW);
3702         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3703
3704         /* If we have a copper PHY then we only want to go out to the PHY
3705          * registers to see if Auto-Neg has completed and/or if our link
3706          * status has changed.  The get_link_status flag will be set if we
3707          * receive a Link Status Change interrupt or we have Rx Sequence
3708          * Errors.
3709          */
3710         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3711                 /* First we want to see if the MII Status Register reports
3712                  * link.  If so, then we want to get the current speed/duplex
3713                  * of the PHY.
3714                  * Read the register twice since the link bit is sticky.
3715                  */
3716                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3717                         DEBUGOUT("PHY Read Error\n");
3718                         return -E1000_ERR_PHY;
3719                 }
3720                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3721                         DEBUGOUT("PHY Read Error\n");
3722                         return -E1000_ERR_PHY;
3723                 }
3724
3725                 if (phy_data & MII_SR_LINK_STATUS) {
3726                         hw->get_link_status = false;
3727                 } else {
3728                         /* No link detected */
3729                         return -E1000_ERR_NOLINK;
3730                 }
3731
3732                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3733                  * have Si on board that is 82544 or newer, Auto
3734                  * Speed Detection takes care of MAC speed/duplex
3735                  * configuration.  So we only need to configure Collision
3736                  * Distance in the MAC.  Otherwise, we need to force
3737                  * speed/duplex on the MAC to the current PHY speed/duplex
3738                  * settings.
3739                  */
3740                 if (hw->mac_type >= e1000_82544)
3741                         e1000_config_collision_dist(hw);
3742                 else {
3743                         ret_val = e1000_config_mac_to_phy(hw);
3744                         if (ret_val < 0) {
3745                                 DEBUGOUT
3746                                     ("Error configuring MAC to PHY settings\n");
3747                                 return ret_val;
3748                         }
3749                 }
3750
3751                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3752                  * need to restore the desired flow control settings because we may
3753                  * have had to re-autoneg with a different link partner.
3754                  */
3755                 ret_val = e1000_config_fc_after_link_up(hw);
3756                 if (ret_val < 0) {
3757                         DEBUGOUT("Error configuring flow control\n");
3758                         return ret_val;
3759                 }
3760
3761                 /* At this point we know that we are on copper and we have
3762                  * auto-negotiated link.  These are conditions for checking the link
3763                  * parter capability register.  We use the link partner capability to
3764                  * determine if TBI Compatibility needs to be turned on or off.  If
3765                  * the link partner advertises any speed in addition to Gigabit, then
3766                  * we assume that they are GMII-based, and TBI compatibility is not
3767                  * needed. If no other speeds are advertised, we assume the link
3768                  * partner is TBI-based, and we turn on TBI Compatibility.
3769                  */
3770                 if (hw->tbi_compatibility_en) {
3771                         if (e1000_read_phy_reg
3772                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3773                                 DEBUGOUT("PHY Read Error\n");
3774                                 return -E1000_ERR_PHY;
3775                         }
3776                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3777                                              NWAY_LPAR_10T_FD_CAPS |
3778                                              NWAY_LPAR_100TX_HD_CAPS |
3779                                              NWAY_LPAR_100TX_FD_CAPS |
3780                                              NWAY_LPAR_100T4_CAPS)) {
3781                                 /* If our link partner advertises anything in addition to
3782                                  * gigabit, we do not need to enable TBI compatibility.
3783                                  */
3784                                 if (hw->tbi_compatibility_on) {
3785                                         /* If we previously were in the mode, turn it off. */
3786                                         rctl = E1000_READ_REG(hw, RCTL);
3787                                         rctl &= ~E1000_RCTL_SBP;
3788                                         E1000_WRITE_REG(hw, RCTL, rctl);
3789                                         hw->tbi_compatibility_on = false;
3790                                 }
3791                         } else {
3792                                 /* If TBI compatibility is was previously off, turn it on. For
3793                                  * compatibility with a TBI link partner, we will store bad
3794                                  * packets. Some frames have an additional byte on the end and
3795                                  * will look like CRC errors to to the hardware.
3796                                  */
3797                                 if (!hw->tbi_compatibility_on) {
3798                                         hw->tbi_compatibility_on = true;
3799                                         rctl = E1000_READ_REG(hw, RCTL);
3800                                         rctl |= E1000_RCTL_SBP;
3801                                         E1000_WRITE_REG(hw, RCTL, rctl);
3802                                 }
3803                         }
3804                 }
3805         }
3806         /* If we don't have link (auto-negotiation failed or link partner cannot
3807          * auto-negotiate), the cable is plugged in (we have signal), and our
3808          * link partner is not trying to auto-negotiate with us (we are receiving
3809          * idles or data), we need to force link up. We also need to give
3810          * auto-negotiation time to complete, in case the cable was just plugged
3811          * in. The autoneg_failed flag does this.
3812          */
3813         else if ((hw->media_type == e1000_media_type_fiber) &&
3814                  (!(status & E1000_STATUS_LU)) &&
3815                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3816                  (!(rxcw & E1000_RXCW_C))) {
3817                 if (hw->autoneg_failed == 0) {
3818                         hw->autoneg_failed = 1;
3819                         return 0;
3820                 }
3821                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3822
3823                 /* Disable auto-negotiation in the TXCW register */
3824                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3825
3826                 /* Force link-up and also force full-duplex. */
3827                 ctrl = E1000_READ_REG(hw, CTRL);
3828                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3829                 E1000_WRITE_REG(hw, CTRL, ctrl);
3830
3831                 /* Configure Flow Control after forcing link up. */
3832                 ret_val = e1000_config_fc_after_link_up(hw);
3833                 if (ret_val < 0) {
3834                         DEBUGOUT("Error configuring flow control\n");
3835                         return ret_val;
3836                 }
3837         }
3838         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3839          * auto-negotiation in the TXCW register and disable forced link in the
3840          * Device Control register in an attempt to auto-negotiate with our link
3841          * partner.
3842          */
3843         else if ((hw->media_type == e1000_media_type_fiber) &&
3844                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3845                 DEBUGOUT
3846                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3847                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3848                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3849         }
3850         return 0;
3851 }
3852
3853 /******************************************************************************
3854 * Configure the MAC-to-PHY interface for 10/100Mbps
3855 *
3856 * hw - Struct containing variables accessed by shared code
3857 ******************************************************************************/
3858 static int32_t
3859 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3860 {
3861         int32_t ret_val = E1000_SUCCESS;
3862         uint32_t tipg;
3863         uint16_t reg_data;
3864
3865         DEBUGFUNC();
3866
3867         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3868         ret_val = e1000_write_kmrn_reg(hw,
3869                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3870         if (ret_val)
3871                 return ret_val;
3872
3873         /* Configure Transmit Inter-Packet Gap */
3874         tipg = E1000_READ_REG(hw, TIPG);
3875         tipg &= ~E1000_TIPG_IPGT_MASK;
3876         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3877         E1000_WRITE_REG(hw, TIPG, tipg);
3878
3879         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3880
3881         if (ret_val)
3882                 return ret_val;
3883
3884         if (duplex == HALF_DUPLEX)
3885                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3886         else
3887                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3888
3889         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3890
3891         return ret_val;
3892 }
3893
3894 static int32_t
3895 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3896 {
3897         int32_t ret_val = E1000_SUCCESS;
3898         uint16_t reg_data;
3899         uint32_t tipg;
3900
3901         DEBUGFUNC();
3902
3903         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3904         ret_val = e1000_write_kmrn_reg(hw,
3905                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3906         if (ret_val)
3907                 return ret_val;
3908
3909         /* Configure Transmit Inter-Packet Gap */
3910         tipg = E1000_READ_REG(hw, TIPG);
3911         tipg &= ~E1000_TIPG_IPGT_MASK;
3912         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3913         E1000_WRITE_REG(hw, TIPG, tipg);
3914
3915         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3916
3917         if (ret_val)
3918                 return ret_val;
3919
3920         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3921         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3922
3923         return ret_val;
3924 }
3925
3926 /******************************************************************************
3927  * Detects the current speed and duplex settings of the hardware.
3928  *
3929  * hw - Struct containing variables accessed by shared code
3930  * speed - Speed of the connection
3931  * duplex - Duplex setting of the connection
3932  *****************************************************************************/
3933 static int
3934 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3935                 uint16_t *duplex)
3936 {
3937         uint32_t status;
3938         int32_t ret_val;
3939         uint16_t phy_data;
3940
3941         DEBUGFUNC();
3942
3943         if (hw->mac_type >= e1000_82543) {
3944                 status = E1000_READ_REG(hw, STATUS);
3945                 if (status & E1000_STATUS_SPEED_1000) {
3946                         *speed = SPEED_1000;
3947                         DEBUGOUT("1000 Mbs, ");
3948                 } else if (status & E1000_STATUS_SPEED_100) {
3949                         *speed = SPEED_100;
3950                         DEBUGOUT("100 Mbs, ");
3951                 } else {
3952                         *speed = SPEED_10;
3953                         DEBUGOUT("10 Mbs, ");
3954                 }
3955
3956                 if (status & E1000_STATUS_FD) {
3957                         *duplex = FULL_DUPLEX;
3958                         DEBUGOUT("Full Duplex\r\n");
3959                 } else {
3960                         *duplex = HALF_DUPLEX;
3961                         DEBUGOUT(" Half Duplex\r\n");
3962                 }
3963         } else {
3964                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3965                 *speed = SPEED_1000;
3966                 *duplex = FULL_DUPLEX;
3967         }
3968
3969         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3970          * even if it is operating at half duplex.  Here we set the duplex
3971          * settings to match the duplex in the link partner's capabilities.
3972          */
3973         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3974                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3975                 if (ret_val)
3976                         return ret_val;
3977
3978                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3979                         *duplex = HALF_DUPLEX;
3980                 else {
3981                         ret_val = e1000_read_phy_reg(hw,
3982                                         PHY_LP_ABILITY, &phy_data);
3983                         if (ret_val)
3984                                 return ret_val;
3985                         if ((*speed == SPEED_100 &&
3986                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3987                                 || (*speed == SPEED_10
3988                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3989                                 *duplex = HALF_DUPLEX;
3990                 }
3991         }
3992
3993         if ((hw->mac_type == e1000_80003es2lan) &&
3994                 (hw->media_type == e1000_media_type_copper)) {
3995                 if (*speed == SPEED_1000)
3996                         ret_val = e1000_configure_kmrn_for_1000(hw);
3997                 else
3998                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3999                 if (ret_val)
4000                         return ret_val;
4001         }
4002         return E1000_SUCCESS;
4003 }
4004
4005 /******************************************************************************
4006 * Blocks until autoneg completes or times out (~4.5 seconds)
4007 *
4008 * hw - Struct containing variables accessed by shared code
4009 ******************************************************************************/
4010 static int
4011 e1000_wait_autoneg(struct e1000_hw *hw)
4012 {
4013         uint16_t i;
4014         uint16_t phy_data;
4015
4016         DEBUGFUNC();
4017         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4018
4019         /* We will wait for autoneg to complete or timeout to expire. */
4020         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4021                 /* Read the MII Status Register and wait for Auto-Neg
4022                  * Complete bit to be set.
4023                  */
4024                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4025                         DEBUGOUT("PHY Read Error\n");
4026                         return -E1000_ERR_PHY;
4027                 }
4028                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4029                         DEBUGOUT("PHY Read Error\n");
4030                         return -E1000_ERR_PHY;
4031                 }
4032                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4033                         DEBUGOUT("Auto-Neg complete.\n");
4034                         return 0;
4035                 }
4036                 mdelay(100);
4037         }
4038         DEBUGOUT("Auto-Neg timedout.\n");
4039         return -E1000_ERR_TIMEOUT;
4040 }
4041
4042 /******************************************************************************
4043 * Raises the Management Data Clock
4044 *
4045 * hw - Struct containing variables accessed by shared code
4046 * ctrl - Device control register's current value
4047 ******************************************************************************/
4048 static void
4049 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4050 {
4051         /* Raise the clock input to the Management Data Clock (by setting the MDC
4052          * bit), and then delay 2 microseconds.
4053          */
4054         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4055         E1000_WRITE_FLUSH(hw);
4056         udelay(2);
4057 }
4058
4059 /******************************************************************************
4060 * Lowers the Management Data Clock
4061 *
4062 * hw - Struct containing variables accessed by shared code
4063 * ctrl - Device control register's current value
4064 ******************************************************************************/
4065 static void
4066 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4067 {
4068         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4069          * bit), and then delay 2 microseconds.
4070          */
4071         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4072         E1000_WRITE_FLUSH(hw);
4073         udelay(2);
4074 }
4075
4076 /******************************************************************************
4077 * Shifts data bits out to the PHY
4078 *
4079 * hw - Struct containing variables accessed by shared code
4080 * data - Data to send out to the PHY
4081 * count - Number of bits to shift out
4082 *
4083 * Bits are shifted out in MSB to LSB order.
4084 ******************************************************************************/
4085 static void
4086 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4087 {
4088         uint32_t ctrl;
4089         uint32_t mask;
4090
4091         /* We need to shift "count" number of bits out to the PHY. So, the value
4092          * in the "data" parameter will be shifted out to the PHY one bit at a
4093          * time. In order to do this, "data" must be broken down into bits.
4094          */
4095         mask = 0x01;
4096         mask <<= (count - 1);
4097
4098         ctrl = E1000_READ_REG(hw, CTRL);
4099
4100         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4101         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4102
4103         while (mask) {
4104                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4105                  * then raising and lowering the Management Data Clock. A "0" is
4106                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4107                  * raising and lowering the clock.
4108                  */
4109                 if (data & mask)
4110                         ctrl |= E1000_CTRL_MDIO;
4111                 else
4112                         ctrl &= ~E1000_CTRL_MDIO;
4113
4114                 E1000_WRITE_REG(hw, CTRL, ctrl);
4115                 E1000_WRITE_FLUSH(hw);
4116
4117                 udelay(2);
4118
4119                 e1000_raise_mdi_clk(hw, &ctrl);
4120                 e1000_lower_mdi_clk(hw, &ctrl);
4121
4122                 mask = mask >> 1;
4123         }
4124 }
4125
4126 /******************************************************************************
4127 * Shifts data bits in from the PHY
4128 *
4129 * hw - Struct containing variables accessed by shared code
4130 *
4131 * Bits are shifted in in MSB to LSB order.
4132 ******************************************************************************/
4133 static uint16_t
4134 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4135 {
4136         uint32_t ctrl;
4137         uint16_t data = 0;
4138         uint8_t i;
4139
4140         /* In order to read a register from the PHY, we need to shift in a total
4141          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4142          * to avoid contention on the MDIO pin when a read operation is performed.
4143          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4144          * by raising the input to the Management Data Clock (setting the MDC bit),
4145          * and then reading the value of the MDIO bit.
4146          */
4147         ctrl = E1000_READ_REG(hw, CTRL);
4148
4149         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4150         ctrl &= ~E1000_CTRL_MDIO_DIR;
4151         ctrl &= ~E1000_CTRL_MDIO;
4152
4153         E1000_WRITE_REG(hw, CTRL, ctrl);
4154         E1000_WRITE_FLUSH(hw);
4155
4156         /* Raise and Lower the clock before reading in the data. This accounts for
4157          * the turnaround bits. The first clock occurred when we clocked out the
4158          * last bit of the Register Address.
4159          */
4160         e1000_raise_mdi_clk(hw, &ctrl);
4161         e1000_lower_mdi_clk(hw, &ctrl);
4162
4163         for (data = 0, i = 0; i < 16; i++) {
4164                 data = data << 1;
4165                 e1000_raise_mdi_clk(hw, &ctrl);
4166                 ctrl = E1000_READ_REG(hw, CTRL);
4167                 /* Check to see if we shifted in a "1". */
4168                 if (ctrl & E1000_CTRL_MDIO)
4169                         data |= 1;
4170                 e1000_lower_mdi_clk(hw, &ctrl);
4171         }
4172
4173         e1000_raise_mdi_clk(hw, &ctrl);
4174         e1000_lower_mdi_clk(hw, &ctrl);
4175
4176         return data;
4177 }
4178
4179 /*****************************************************************************
4180 * Reads the value from a PHY register
4181 *
4182 * hw - Struct containing variables accessed by shared code
4183 * reg_addr - address of the PHY register to read
4184 ******************************************************************************/
4185 static int
4186 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4187 {
4188         uint32_t i;
4189         uint32_t mdic = 0;
4190         const uint32_t phy_addr = 1;
4191
4192         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4193                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4194                 return -E1000_ERR_PARAM;
4195         }
4196
4197         if (hw->mac_type > e1000_82543) {
4198                 /* Set up Op-code, Phy Address, and register address in the MDI
4199                  * Control register.  The MAC will take care of interfacing with the
4200                  * PHY to retrieve the desired data.
4201                  */
4202                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4203                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4204                         (E1000_MDIC_OP_READ));
4205
4206                 E1000_WRITE_REG(hw, MDIC, mdic);
4207
4208                 /* Poll the ready bit to see if the MDI read completed */
4209                 for (i = 0; i < 64; i++) {
4210                         udelay(10);
4211                         mdic = E1000_READ_REG(hw, MDIC);
4212                         if (mdic & E1000_MDIC_READY)
4213                                 break;
4214                 }
4215                 if (!(mdic & E1000_MDIC_READY)) {
4216                         DEBUGOUT("MDI Read did not complete\n");
4217                         return -E1000_ERR_PHY;
4218                 }
4219                 if (mdic & E1000_MDIC_ERROR) {
4220                         DEBUGOUT("MDI Error\n");
4221                         return -E1000_ERR_PHY;
4222                 }
4223                 *phy_data = (uint16_t) mdic;
4224         } else {
4225                 /* We must first send a preamble through the MDIO pin to signal the
4226                  * beginning of an MII instruction.  This is done by sending 32
4227                  * consecutive "1" bits.
4228                  */
4229                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4230
4231                 /* Now combine the next few fields that are required for a read
4232                  * operation.  We use this method instead of calling the
4233                  * e1000_shift_out_mdi_bits routine five different times. The format of
4234                  * a MII read instruction consists of a shift out of 14 bits and is
4235                  * defined as follows:
4236                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4237                  * followed by a shift in of 18 bits.  This first two bits shifted in
4238                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4239                  * READ operation is performed.  These two bits are thrown away
4240                  * followed by a shift in of 16 bits which contains the desired data.
4241                  */
4242                 mdic = ((reg_addr) | (phy_addr << 5) |
4243                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4244
4245                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4246
4247                 /* Now that we've shifted out the read command to the MII, we need to
4248                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4249                  * register address.
4250                  */
4251                 *phy_data = e1000_shift_in_mdi_bits(hw);
4252         }
4253         return 0;
4254 }
4255
4256 /******************************************************************************
4257 * Writes a value to a PHY register
4258 *
4259 * hw - Struct containing variables accessed by shared code
4260 * reg_addr - address of the PHY register to write
4261 * data - data to write to the PHY
4262 ******************************************************************************/
4263 static int
4264 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4265 {
4266         uint32_t i;
4267         uint32_t mdic = 0;
4268         const uint32_t phy_addr = 1;
4269
4270         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4271                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4272                 return -E1000_ERR_PARAM;
4273         }
4274
4275         if (hw->mac_type > e1000_82543) {
4276                 /* Set up Op-code, Phy Address, register address, and data intended
4277                  * for the PHY register in the MDI Control register.  The MAC will take
4278                  * care of interfacing with the PHY to send the desired data.
4279                  */
4280                 mdic = (((uint32_t) phy_data) |
4281                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4282                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4283                         (E1000_MDIC_OP_WRITE));
4284
4285                 E1000_WRITE_REG(hw, MDIC, mdic);
4286
4287                 /* Poll the ready bit to see if the MDI read completed */
4288                 for (i = 0; i < 64; i++) {
4289                         udelay(10);
4290                         mdic = E1000_READ_REG(hw, MDIC);
4291                         if (mdic & E1000_MDIC_READY)
4292                                 break;
4293                 }
4294                 if (!(mdic & E1000_MDIC_READY)) {
4295                         DEBUGOUT("MDI Write did not complete\n");
4296                         return -E1000_ERR_PHY;
4297                 }
4298         } else {
4299                 /* We'll need to use the SW defined pins to shift the write command
4300                  * out to the PHY. We first send a preamble to the PHY to signal the
4301                  * beginning of the MII instruction.  This is done by sending 32
4302                  * consecutive "1" bits.
4303                  */
4304                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4305
4306                 /* Now combine the remaining required fields that will indicate a
4307                  * write operation. We use this method instead of calling the
4308                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4309                  * format of a MII write instruction is as follows:
4310                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4311                  */
4312                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4313                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4314                 mdic <<= 16;
4315                 mdic |= (uint32_t) phy_data;
4316
4317                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4318         }
4319         return 0;
4320 }
4321
4322 /******************************************************************************
4323  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4324  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4325  * the caller to figure out how to deal with it.
4326  *
4327  * hw - Struct containing variables accessed by shared code
4328  *
4329  * returns: - E1000_BLK_PHY_RESET
4330  *            E1000_SUCCESS
4331  *
4332  *****************************************************************************/
4333 int32_t
4334 e1000_check_phy_reset_block(struct e1000_hw *hw)
4335 {
4336         uint32_t manc = 0;
4337         uint32_t fwsm = 0;
4338
4339         if (hw->mac_type == e1000_ich8lan) {
4340                 fwsm = E1000_READ_REG(hw, FWSM);
4341                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4342                                                 : E1000_BLK_PHY_RESET;
4343         }
4344
4345         if (hw->mac_type > e1000_82547_rev_2)
4346                 manc = E1000_READ_REG(hw, MANC);
4347         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4348                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4349 }
4350
4351 /***************************************************************************
4352  * Checks if the PHY configuration is done
4353  *
4354  * hw: Struct containing variables accessed by shared code
4355  *
4356  * returns: - E1000_ERR_RESET if fail to reset MAC
4357  *            E1000_SUCCESS at any other case.
4358  *
4359  ***************************************************************************/
4360 static int32_t
4361 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4362 {
4363         int32_t timeout = PHY_CFG_TIMEOUT;
4364         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4365
4366         DEBUGFUNC();
4367
4368         switch (hw->mac_type) {
4369         default:
4370                 mdelay(10);
4371                 break;
4372
4373         case e1000_80003es2lan:
4374                 /* Separate *_CFG_DONE_* bit for each port */
4375                 if (e1000_is_second_port(hw))
4376                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4377                 /* Fall Through */
4378
4379         case e1000_82571:
4380         case e1000_82572:
4381         case e1000_igb:
4382                 while (timeout) {
4383                         if (hw->mac_type == e1000_igb) {
4384                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4385                                         break;
4386                         } else {
4387                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4388                                         break;
4389                         }
4390                         mdelay(1);
4391                         timeout--;
4392                 }
4393                 if (!timeout) {
4394                         DEBUGOUT("MNG configuration cycle has not "
4395                                         "completed.\n");
4396                         return -E1000_ERR_RESET;
4397                 }
4398                 break;
4399         }
4400
4401         return E1000_SUCCESS;
4402 }
4403
4404 /******************************************************************************
4405 * Returns the PHY to the power-on reset state
4406 *
4407 * hw - Struct containing variables accessed by shared code
4408 ******************************************************************************/
4409 int32_t
4410 e1000_phy_hw_reset(struct e1000_hw *hw)
4411 {
4412         uint16_t swfw = E1000_SWFW_PHY0_SM;
4413         uint32_t ctrl, ctrl_ext;
4414         uint32_t led_ctrl;
4415         int32_t ret_val;
4416
4417         DEBUGFUNC();
4418
4419         /* In the case of the phy reset being blocked, it's not an error, we
4420          * simply return success without performing the reset. */
4421         ret_val = e1000_check_phy_reset_block(hw);
4422         if (ret_val)
4423                 return E1000_SUCCESS;
4424
4425         DEBUGOUT("Resetting Phy...\n");
4426
4427         if (hw->mac_type > e1000_82543) {
4428                 if (e1000_is_second_port(hw))
4429                         swfw = E1000_SWFW_PHY1_SM;
4430
4431                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4432                         DEBUGOUT("Unable to acquire swfw sync\n");
4433                         return -E1000_ERR_SWFW_SYNC;
4434                 }
4435
4436                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4437                  * bit. Then, take it out of reset.
4438                  */
4439                 ctrl = E1000_READ_REG(hw, CTRL);
4440                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4441                 E1000_WRITE_FLUSH(hw);
4442
4443                 if (hw->mac_type < e1000_82571)
4444                         udelay(10);
4445                 else
4446                         udelay(100);
4447
4448                 E1000_WRITE_REG(hw, CTRL, ctrl);
4449                 E1000_WRITE_FLUSH(hw);
4450
4451                 if (hw->mac_type >= e1000_82571)
4452                         mdelay(10);
4453
4454         } else {
4455                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4456                  * bit to put the PHY into reset. Then, take it out of reset.
4457                  */
4458                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4459                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4460                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4461                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4462                 E1000_WRITE_FLUSH(hw);
4463                 mdelay(10);
4464                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4465                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4466                 E1000_WRITE_FLUSH(hw);
4467         }
4468         udelay(150);
4469
4470         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4471                 /* Configure activity LED after PHY reset */
4472                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4473                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4474                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4475                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4476         }
4477
4478         e1000_swfw_sync_release(hw, swfw);
4479
4480         /* Wait for FW to finish PHY configuration. */
4481         ret_val = e1000_get_phy_cfg_done(hw);
4482         if (ret_val != E1000_SUCCESS)
4483                 return ret_val;
4484
4485         return ret_val;
4486 }
4487
4488 /******************************************************************************
4489  * IGP phy init script - initializes the GbE PHY
4490  *
4491  * hw - Struct containing variables accessed by shared code
4492  *****************************************************************************/
4493 static void
4494 e1000_phy_init_script(struct e1000_hw *hw)
4495 {
4496         uint32_t ret_val;
4497         uint16_t phy_saved_data;
4498         DEBUGFUNC();
4499
4500         if (hw->phy_init_script) {
4501                 mdelay(20);
4502
4503                 /* Save off the current value of register 0x2F5B to be
4504                  * restored at the end of this routine. */
4505                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4506
4507                 /* Disabled the PHY transmitter */
4508                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4509
4510                 mdelay(20);
4511
4512                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4513
4514                 mdelay(5);
4515
4516                 switch (hw->mac_type) {
4517                 case e1000_82541:
4518                 case e1000_82547:
4519                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4520
4521                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4522
4523                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4524
4525                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4526
4527                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4528
4529                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4530
4531                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4532
4533                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4534
4535                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4536                         break;
4537
4538                 case e1000_82541_rev_2:
4539                 case e1000_82547_rev_2:
4540                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4541                         break;
4542                 default:
4543                         break;
4544                 }
4545
4546                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4547
4548                 mdelay(20);
4549
4550                 /* Now enable the transmitter */
4551                 if (!ret_val)
4552                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4553
4554                 if (hw->mac_type == e1000_82547) {
4555                         uint16_t fused, fine, coarse;
4556
4557                         /* Move to analog registers page */
4558                         e1000_read_phy_reg(hw,
4559                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4560
4561                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4562                                 e1000_read_phy_reg(hw,
4563                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4564
4565                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4566                                 coarse = fused
4567                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4568
4569                                 if (coarse >
4570                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4571                                         coarse -=
4572                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4573                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4574                                 } else if (coarse
4575                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4576                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4577
4578                                 fused = (fused
4579                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4580                                         (fine
4581                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4582                                         (coarse
4583                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4584
4585                                 e1000_write_phy_reg(hw,
4586                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4587                                 e1000_write_phy_reg(hw,
4588                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4589                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4590                         }
4591                 }
4592         }
4593 }
4594
4595 /******************************************************************************
4596 * Resets the PHY
4597 *
4598 * hw - Struct containing variables accessed by shared code
4599 *
4600 * Sets bit 15 of the MII Control register
4601 ******************************************************************************/
4602 int32_t
4603 e1000_phy_reset(struct e1000_hw *hw)
4604 {
4605         int32_t ret_val;
4606         uint16_t phy_data;
4607
4608         DEBUGFUNC();
4609
4610         /* In the case of the phy reset being blocked, it's not an error, we
4611          * simply return success without performing the reset. */
4612         ret_val = e1000_check_phy_reset_block(hw);
4613         if (ret_val)
4614                 return E1000_SUCCESS;
4615
4616         switch (hw->phy_type) {
4617         case e1000_phy_igp:
4618         case e1000_phy_igp_2:
4619         case e1000_phy_igp_3:
4620         case e1000_phy_ife:
4621         case e1000_phy_igb:
4622                 ret_val = e1000_phy_hw_reset(hw);
4623                 if (ret_val)
4624                         return ret_val;
4625                 break;
4626         default:
4627                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4628                 if (ret_val)
4629                         return ret_val;
4630
4631                 phy_data |= MII_CR_RESET;
4632                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4633                 if (ret_val)
4634                         return ret_val;
4635
4636                 udelay(1);
4637                 break;
4638         }
4639
4640         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4641                 e1000_phy_init_script(hw);
4642
4643         return E1000_SUCCESS;
4644 }
4645
4646 static int e1000_set_phy_type (struct e1000_hw *hw)
4647 {
4648         DEBUGFUNC ();
4649
4650         if (hw->mac_type == e1000_undefined)
4651                 return -E1000_ERR_PHY_TYPE;
4652
4653         switch (hw->phy_id) {
4654         case M88E1000_E_PHY_ID:
4655         case M88E1000_I_PHY_ID:
4656         case M88E1011_I_PHY_ID:
4657         case M88E1111_I_PHY_ID:
4658                 hw->phy_type = e1000_phy_m88;
4659                 break;
4660         case IGP01E1000_I_PHY_ID:
4661                 if (hw->mac_type == e1000_82541 ||
4662                         hw->mac_type == e1000_82541_rev_2 ||
4663                         hw->mac_type == e1000_82547 ||
4664                         hw->mac_type == e1000_82547_rev_2) {
4665                         hw->phy_type = e1000_phy_igp;
4666                         break;
4667                 }
4668         case IGP03E1000_E_PHY_ID:
4669                 hw->phy_type = e1000_phy_igp_3;
4670                 break;
4671         case IFE_E_PHY_ID:
4672         case IFE_PLUS_E_PHY_ID:
4673         case IFE_C_E_PHY_ID:
4674                 hw->phy_type = e1000_phy_ife;
4675                 break;
4676         case GG82563_E_PHY_ID:
4677                 if (hw->mac_type == e1000_80003es2lan) {
4678                         hw->phy_type = e1000_phy_gg82563;
4679                         break;
4680                 }
4681         case BME1000_E_PHY_ID:
4682                 hw->phy_type = e1000_phy_bm;
4683                 break;
4684         case I210_I_PHY_ID:
4685                 hw->phy_type = e1000_phy_igb;
4686                 break;
4687                 /* Fall Through */
4688         default:
4689                 /* Should never have loaded on this device */
4690                 hw->phy_type = e1000_phy_undefined;
4691                 return -E1000_ERR_PHY_TYPE;
4692         }
4693
4694         return E1000_SUCCESS;
4695 }
4696
4697 /******************************************************************************
4698 * Probes the expected PHY address for known PHY IDs
4699 *
4700 * hw - Struct containing variables accessed by shared code
4701 ******************************************************************************/
4702 static int32_t
4703 e1000_detect_gig_phy(struct e1000_hw *hw)
4704 {
4705         int32_t phy_init_status, ret_val;
4706         uint16_t phy_id_high, phy_id_low;
4707         bool match = false;
4708
4709         DEBUGFUNC();
4710
4711         /* The 82571 firmware may still be configuring the PHY.  In this
4712          * case, we cannot access the PHY until the configuration is done.  So
4713          * we explicitly set the PHY values. */
4714         if (hw->mac_type == e1000_82571 ||
4715                 hw->mac_type == e1000_82572) {
4716                 hw->phy_id = IGP01E1000_I_PHY_ID;
4717                 hw->phy_type = e1000_phy_igp_2;
4718                 return E1000_SUCCESS;
4719         }
4720
4721         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4722          * work- around that forces PHY page 0 to be set or the reads fail.
4723          * The rest of the code in this routine uses e1000_read_phy_reg to
4724          * read the PHY ID.  So for ESB-2 we need to have this set so our
4725          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4726          * the routines below will figure this out as well. */
4727         if (hw->mac_type == e1000_80003es2lan)
4728                 hw->phy_type = e1000_phy_gg82563;
4729
4730         /* Read the PHY ID Registers to identify which PHY is onboard. */
4731         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4732         if (ret_val)
4733                 return ret_val;
4734
4735         hw->phy_id = (uint32_t) (phy_id_high << 16);
4736         udelay(20);
4737         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4738         if (ret_val)
4739                 return ret_val;
4740
4741         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4742         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4743
4744         switch (hw->mac_type) {
4745         case e1000_82543:
4746                 if (hw->phy_id == M88E1000_E_PHY_ID)
4747                         match = true;
4748                 break;
4749         case e1000_82544:
4750                 if (hw->phy_id == M88E1000_I_PHY_ID)
4751                         match = true;
4752                 break;
4753         case e1000_82540:
4754         case e1000_82545:
4755         case e1000_82545_rev_3:
4756         case e1000_82546:
4757         case e1000_82546_rev_3:
4758                 if (hw->phy_id == M88E1011_I_PHY_ID)
4759                         match = true;
4760                 break;
4761         case e1000_82541:
4762         case e1000_82541_rev_2:
4763         case e1000_82547:
4764         case e1000_82547_rev_2:
4765                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4766                         match = true;
4767
4768                 break;
4769         case e1000_82573:
4770                 if (hw->phy_id == M88E1111_I_PHY_ID)
4771                         match = true;
4772                 break;
4773         case e1000_82574:
4774                 if (hw->phy_id == BME1000_E_PHY_ID)
4775                         match = true;
4776                 break;
4777         case e1000_80003es2lan:
4778                 if (hw->phy_id == GG82563_E_PHY_ID)
4779                         match = true;
4780                 break;
4781         case e1000_ich8lan:
4782                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4783                         match = true;
4784                 if (hw->phy_id == IFE_E_PHY_ID)
4785                         match = true;
4786                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4787                         match = true;
4788                 if (hw->phy_id == IFE_C_E_PHY_ID)
4789                         match = true;
4790                 break;
4791         case e1000_igb:
4792                 if (hw->phy_id == I210_I_PHY_ID)
4793                         match = true;
4794                 break;
4795         default:
4796                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4797                 return -E1000_ERR_CONFIG;
4798         }
4799
4800         phy_init_status = e1000_set_phy_type(hw);
4801
4802         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4803                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4804                 return 0;
4805         }
4806         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4807         return -E1000_ERR_PHY;
4808 }
4809
4810 /*****************************************************************************
4811  * Set media type and TBI compatibility.
4812  *
4813  * hw - Struct containing variables accessed by shared code
4814  * **************************************************************************/
4815 void
4816 e1000_set_media_type(struct e1000_hw *hw)
4817 {
4818         uint32_t status;
4819
4820         DEBUGFUNC();
4821
4822         if (hw->mac_type != e1000_82543) {
4823                 /* tbi_compatibility is only valid on 82543 */
4824                 hw->tbi_compatibility_en = false;
4825         }
4826
4827         switch (hw->device_id) {
4828         case E1000_DEV_ID_82545GM_SERDES:
4829         case E1000_DEV_ID_82546GB_SERDES:
4830         case E1000_DEV_ID_82571EB_SERDES:
4831         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4832         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4833         case E1000_DEV_ID_82572EI_SERDES:
4834         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4835                 hw->media_type = e1000_media_type_internal_serdes;
4836                 break;
4837         default:
4838                 switch (hw->mac_type) {
4839                 case e1000_82542_rev2_0:
4840                 case e1000_82542_rev2_1:
4841                         hw->media_type = e1000_media_type_fiber;
4842                         break;
4843                 case e1000_ich8lan:
4844                 case e1000_82573:
4845                 case e1000_82574:
4846                 case e1000_igb:
4847                         /* The STATUS_TBIMODE bit is reserved or reused
4848                          * for the this device.
4849                          */
4850                         hw->media_type = e1000_media_type_copper;
4851                         break;
4852                 default:
4853                         status = E1000_READ_REG(hw, STATUS);
4854                         if (status & E1000_STATUS_TBIMODE) {
4855                                 hw->media_type = e1000_media_type_fiber;
4856                                 /* tbi_compatibility not valid on fiber */
4857                                 hw->tbi_compatibility_en = false;
4858                         } else {
4859                                 hw->media_type = e1000_media_type_copper;
4860                         }
4861                         break;
4862                 }
4863         }
4864 }
4865
4866 /**
4867  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4868  *
4869  * e1000_sw_init initializes the Adapter private data structure.
4870  * Fields are initialized based on PCI device information and
4871  * OS network device settings (MTU size).
4872  **/
4873
4874 static int
4875 e1000_sw_init(struct e1000_hw *hw)
4876 {
4877         int result;
4878
4879         /* PCI config space info */
4880         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4881         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4882         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4883                              &hw->subsystem_vendor_id);
4884         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4885
4886         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4887         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4888
4889         /* identify the MAC */
4890         result = e1000_set_mac_type(hw);
4891         if (result) {
4892                 E1000_ERR(hw, "Unknown MAC Type\n");
4893                 return result;
4894         }
4895
4896         switch (hw->mac_type) {
4897         default:
4898                 break;
4899         case e1000_82541:
4900         case e1000_82547:
4901         case e1000_82541_rev_2:
4902         case e1000_82547_rev_2:
4903                 hw->phy_init_script = 1;
4904                 break;
4905         }
4906
4907         /* flow control settings */
4908         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4909         hw->fc_low_water = E1000_FC_LOW_THRESH;
4910         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4911         hw->fc_send_xon = 1;
4912
4913         /* Media type - copper or fiber */
4914         hw->tbi_compatibility_en = true;
4915         e1000_set_media_type(hw);
4916
4917         if (hw->mac_type >= e1000_82543) {
4918                 uint32_t status = E1000_READ_REG(hw, STATUS);
4919
4920                 if (status & E1000_STATUS_TBIMODE) {
4921                         DEBUGOUT("fiber interface\n");
4922                         hw->media_type = e1000_media_type_fiber;
4923                 } else {
4924                         DEBUGOUT("copper interface\n");
4925                         hw->media_type = e1000_media_type_copper;
4926                 }
4927         } else {
4928                 hw->media_type = e1000_media_type_fiber;
4929         }
4930
4931         hw->wait_autoneg_complete = true;
4932         if (hw->mac_type < e1000_82543)
4933                 hw->report_tx_early = 0;
4934         else
4935                 hw->report_tx_early = 1;
4936
4937         return E1000_SUCCESS;
4938 }
4939
4940 void
4941 fill_rx(struct e1000_hw *hw)
4942 {
4943         struct e1000_rx_desc *rd;
4944         unsigned long flush_start, flush_end;
4945
4946         rx_last = rx_tail;
4947         rd = rx_base + rx_tail;
4948         rx_tail = (rx_tail + 1) % 8;
4949         memset(rd, 0, 16);
4950         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4951
4952         /*
4953          * Make sure there are no stale data in WB over this area, which
4954          * might get written into the memory while the e1000 also writes
4955          * into the same memory area.
4956          */
4957         invalidate_dcache_range((unsigned long)packet,
4958                                 (unsigned long)packet + 4096);
4959         /* Dump the DMA descriptor into RAM. */
4960         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4961         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4962         flush_dcache_range(flush_start, flush_end);
4963
4964         E1000_WRITE_REG(hw, RDT, rx_tail);
4965 }
4966
4967 /**
4968  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4969  * @adapter: board private structure
4970  *
4971  * Configure the Tx unit of the MAC after a reset.
4972  **/
4973
4974 static void
4975 e1000_configure_tx(struct e1000_hw *hw)
4976 {
4977         unsigned long tctl;
4978         unsigned long tipg, tarc;
4979         uint32_t ipgr1, ipgr2;
4980
4981         E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4982         E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4983
4984         E1000_WRITE_REG(hw, TDLEN, 128);
4985
4986         /* Setup the HW Tx Head and Tail descriptor pointers */
4987         E1000_WRITE_REG(hw, TDH, 0);
4988         E1000_WRITE_REG(hw, TDT, 0);
4989         tx_tail = 0;
4990
4991         /* Set the default values for the Tx Inter Packet Gap timer */
4992         if (hw->mac_type <= e1000_82547_rev_2 &&
4993             (hw->media_type == e1000_media_type_fiber ||
4994              hw->media_type == e1000_media_type_internal_serdes))
4995                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4996         else
4997                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4998
4999         /* Set the default values for the Tx Inter Packet Gap timer */
5000         switch (hw->mac_type) {
5001         case e1000_82542_rev2_0:
5002         case e1000_82542_rev2_1:
5003                 tipg = DEFAULT_82542_TIPG_IPGT;
5004                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5005                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5006                 break;
5007         case e1000_80003es2lan:
5008                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5009                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5010                 break;
5011         default:
5012                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5013                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5014                 break;
5015         }
5016         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5017         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5018         E1000_WRITE_REG(hw, TIPG, tipg);
5019         /* Program the Transmit Control Register */
5020         tctl = E1000_READ_REG(hw, TCTL);
5021         tctl &= ~E1000_TCTL_CT;
5022         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5023             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5024
5025         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5026                 tarc = E1000_READ_REG(hw, TARC0);
5027                 /* set the speed mode bit, we'll clear it if we're not at
5028                  * gigabit link later */
5029                 /* git bit can be set to 1*/
5030         } else if (hw->mac_type == e1000_80003es2lan) {
5031                 tarc = E1000_READ_REG(hw, TARC0);
5032                 tarc |= 1;
5033                 E1000_WRITE_REG(hw, TARC0, tarc);
5034                 tarc = E1000_READ_REG(hw, TARC1);
5035                 tarc |= 1;
5036                 E1000_WRITE_REG(hw, TARC1, tarc);
5037         }
5038
5039
5040         e1000_config_collision_dist(hw);
5041         /* Setup Transmit Descriptor Settings for eop descriptor */
5042         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5043
5044         /* Need to set up RS bit */
5045         if (hw->mac_type < e1000_82543)
5046                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5047         else
5048                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5049
5050
5051         if (hw->mac_type == e1000_igb) {
5052                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5053
5054                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5055                 reg_txdctl |= 1 << 25;
5056                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5057                 mdelay(20);
5058         }
5059
5060
5061
5062         E1000_WRITE_REG(hw, TCTL, tctl);
5063
5064
5065 }
5066
5067 /**
5068  * e1000_setup_rctl - configure the receive control register
5069  * @adapter: Board private structure
5070  **/
5071 static void
5072 e1000_setup_rctl(struct e1000_hw *hw)
5073 {
5074         uint32_t rctl;
5075
5076         rctl = E1000_READ_REG(hw, RCTL);
5077
5078         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5079
5080         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5081                 | E1000_RCTL_RDMTS_HALF;        /* |
5082                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5083
5084         if (hw->tbi_compatibility_on == 1)
5085                 rctl |= E1000_RCTL_SBP;
5086         else
5087                 rctl &= ~E1000_RCTL_SBP;
5088
5089         rctl &= ~(E1000_RCTL_SZ_4096);
5090                 rctl |= E1000_RCTL_SZ_2048;
5091                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5092         E1000_WRITE_REG(hw, RCTL, rctl);
5093 }
5094
5095 /**
5096  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5097  * @adapter: board private structure
5098  *
5099  * Configure the Rx unit of the MAC after a reset.
5100  **/
5101 static void
5102 e1000_configure_rx(struct e1000_hw *hw)
5103 {
5104         unsigned long rctl, ctrl_ext;
5105         rx_tail = 0;
5106
5107         /* make sure receives are disabled while setting up the descriptors */
5108         rctl = E1000_READ_REG(hw, RCTL);
5109         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5110         if (hw->mac_type >= e1000_82540) {
5111                 /* Set the interrupt throttling rate.  Value is calculated
5112                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5113 #define MAX_INTS_PER_SEC        8000
5114 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5115                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5116         }
5117
5118         if (hw->mac_type >= e1000_82571) {
5119                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5120                 /* Reset delay timers after every interrupt */
5121                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5122                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5123                 E1000_WRITE_FLUSH(hw);
5124         }
5125         /* Setup the Base and Length of the Rx Descriptor Ring */
5126         E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5127         E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5128
5129         E1000_WRITE_REG(hw, RDLEN, 128);
5130
5131         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5132         E1000_WRITE_REG(hw, RDH, 0);
5133         E1000_WRITE_REG(hw, RDT, 0);
5134         /* Enable Receives */
5135
5136         if (hw->mac_type == e1000_igb) {
5137
5138                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5139                 reg_rxdctl |= 1 << 25;
5140                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5141                 mdelay(20);
5142         }
5143
5144         E1000_WRITE_REG(hw, RCTL, rctl);
5145
5146         fill_rx(hw);
5147 }
5148
5149 /**************************************************************************
5150 POLL - Wait for a frame
5151 ***************************************************************************/
5152 static int
5153 _e1000_poll(struct e1000_hw *hw)
5154 {
5155         struct e1000_rx_desc *rd;
5156         unsigned long inval_start, inval_end;
5157         uint32_t len;
5158
5159         /* return true if there's an ethernet packet ready to read */
5160         rd = rx_base + rx_last;
5161
5162         /* Re-load the descriptor from RAM. */
5163         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5164         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5165         invalidate_dcache_range(inval_start, inval_end);
5166
5167         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5168                 return 0;
5169         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5170         /* Packet received, make sure the data are re-loaded from RAM. */
5171         len = le32_to_cpu(rd->length);
5172         invalidate_dcache_range((unsigned long)packet,
5173                                 (unsigned long)packet +
5174                                 roundup(len, ARCH_DMA_MINALIGN));
5175         return len;
5176 }
5177
5178 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5179 {
5180         void *nv_packet = (void *)txpacket;
5181         struct e1000_tx_desc *txp;
5182         int i = 0;
5183         unsigned long flush_start, flush_end;
5184
5185         txp = tx_base + tx_tail;
5186         tx_tail = (tx_tail + 1) % 8;
5187
5188         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5189         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5190         txp->upper.data = 0;
5191
5192         /* Dump the packet into RAM so e1000 can pick them. */
5193         flush_dcache_range((unsigned long)nv_packet,
5194                            (unsigned long)nv_packet +
5195                            roundup(length, ARCH_DMA_MINALIGN));
5196         /* Dump the descriptor into RAM as well. */
5197         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5198         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5199         flush_dcache_range(flush_start, flush_end);
5200
5201         E1000_WRITE_REG(hw, TDT, tx_tail);
5202
5203         E1000_WRITE_FLUSH(hw);
5204         while (1) {
5205                 invalidate_dcache_range(flush_start, flush_end);
5206                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5207                         break;
5208                 if (i++ > TOUT_LOOP) {
5209                         DEBUGOUT("e1000: tx timeout\n");
5210                         return 0;
5211                 }
5212                 udelay(10);     /* give the nic a chance to write to the register */
5213         }
5214         return 1;
5215 }
5216
5217 static void
5218 _e1000_disable(struct e1000_hw *hw)
5219 {
5220         /* Turn off the ethernet interface */
5221         E1000_WRITE_REG(hw, RCTL, 0);
5222         E1000_WRITE_REG(hw, TCTL, 0);
5223
5224         /* Clear the transmit ring */
5225         E1000_WRITE_REG(hw, TDH, 0);
5226         E1000_WRITE_REG(hw, TDT, 0);
5227
5228         /* Clear the receive ring */
5229         E1000_WRITE_REG(hw, RDH, 0);
5230         E1000_WRITE_REG(hw, RDT, 0);
5231
5232         /* put the card in its initial state */
5233 #if 0
5234         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5235 #endif
5236         mdelay(10);
5237 }
5238
5239 /*reset function*/
5240 static inline int
5241 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5242 {
5243         e1000_reset_hw(hw);
5244         if (hw->mac_type >= e1000_82544)
5245                 E1000_WRITE_REG(hw, WUC, 0);
5246
5247         return e1000_init_hw(hw, enetaddr);
5248 }
5249
5250 static int
5251 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5252 {
5253         int ret_val = 0;
5254
5255         ret_val = e1000_reset(hw, enetaddr);
5256         if (ret_val < 0) {
5257                 if ((ret_val == -E1000_ERR_NOLINK) ||
5258                     (ret_val == -E1000_ERR_TIMEOUT)) {
5259                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5260                 } else {
5261                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5262                 }
5263                 return ret_val;
5264         }
5265         e1000_configure_tx(hw);
5266         e1000_setup_rctl(hw);
5267         e1000_configure_rx(hw);
5268         return 0;
5269 }
5270
5271 /******************************************************************************
5272  * Gets the current PCI bus type of hardware
5273  *
5274  * hw - Struct containing variables accessed by shared code
5275  *****************************************************************************/
5276 void e1000_get_bus_type(struct e1000_hw *hw)
5277 {
5278         uint32_t status;
5279
5280         switch (hw->mac_type) {
5281         case e1000_82542_rev2_0:
5282         case e1000_82542_rev2_1:
5283                 hw->bus_type = e1000_bus_type_pci;
5284                 break;
5285         case e1000_82571:
5286         case e1000_82572:
5287         case e1000_82573:
5288         case e1000_82574:
5289         case e1000_80003es2lan:
5290         case e1000_ich8lan:
5291         case e1000_igb:
5292                 hw->bus_type = e1000_bus_type_pci_express;
5293                 break;
5294         default:
5295                 status = E1000_READ_REG(hw, STATUS);
5296                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5297                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5298                 break;
5299         }
5300 }
5301
5302 #ifndef CONFIG_DM_ETH
5303 /* A list of all registered e1000 devices */
5304 static LIST_HEAD(e1000_hw_list);
5305 #endif
5306
5307 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5308                           unsigned char enetaddr[6])
5309 {
5310         u32 val;
5311
5312         /* Assign the passed-in values */
5313         hw->pdev = devno;
5314         hw->cardnum = cardnum;
5315
5316         /* Print a debug message with the IO base address */
5317         pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5318         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5319
5320         /* Try to enable I/O accesses and bus-mastering */
5321         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5322         pci_write_config_dword(devno, PCI_COMMAND, val);
5323
5324         /* Make sure it worked */
5325         pci_read_config_dword(devno, PCI_COMMAND, &val);
5326         if (!(val & PCI_COMMAND_MEMORY)) {
5327                 E1000_ERR(hw, "Can't enable I/O memory\n");
5328                 return -ENOSPC;
5329         }
5330         if (!(val & PCI_COMMAND_MASTER)) {
5331                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5332                 return -EPERM;
5333         }
5334
5335         /* Are these variables needed? */
5336         hw->fc = e1000_fc_default;
5337         hw->original_fc = e1000_fc_default;
5338         hw->autoneg_failed = 0;
5339         hw->autoneg = 1;
5340         hw->get_link_status = true;
5341 #ifndef CONFIG_E1000_NO_NVM
5342         hw->eeprom_semaphore_present = true;
5343 #endif
5344         hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5345                                                 PCI_REGION_MEM);
5346         hw->mac_type = e1000_undefined;
5347
5348         /* MAC and Phy settings */
5349         if (e1000_sw_init(hw) < 0) {
5350                 E1000_ERR(hw, "Software init failed\n");
5351                 return -EIO;
5352         }
5353         if (e1000_check_phy_reset_block(hw))
5354                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5355
5356         /* Basic init was OK, reset the hardware and allow SPI access */
5357         e1000_reset_hw(hw);
5358
5359 #ifndef CONFIG_E1000_NO_NVM
5360         /* Validate the EEPROM and get chipset information */
5361 #if !defined(CONFIG_MVBC_1G)
5362         if (e1000_init_eeprom_params(hw)) {
5363                 E1000_ERR(hw, "EEPROM is invalid!\n");
5364                 return -EINVAL;
5365         }
5366         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5367             e1000_validate_eeprom_checksum(hw))
5368                 return -ENXIO;
5369 #endif
5370         e1000_read_mac_addr(hw, enetaddr);
5371 #endif
5372         e1000_get_bus_type(hw);
5373
5374 #ifndef CONFIG_E1000_NO_NVM
5375         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5376                enetaddr[0], enetaddr[1], enetaddr[2],
5377                enetaddr[3], enetaddr[4], enetaddr[5]);
5378 #else
5379         memset(enetaddr, 0, 6);
5380         printf("e1000: no NVM\n");
5381 #endif
5382
5383         return 0;
5384 }
5385
5386 /* Put the name of a device in a string */
5387 static void e1000_name(char *str, int cardnum)
5388 {
5389         sprintf(str, "e1000#%u", cardnum);
5390 }
5391
5392 #ifndef CONFIG_DM_ETH
5393 /**************************************************************************
5394 TRANSMIT - Transmit a frame
5395 ***************************************************************************/
5396 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5397 {
5398         struct e1000_hw *hw = nic->priv;
5399
5400         return _e1000_transmit(hw, txpacket, length);
5401 }
5402
5403 /**************************************************************************
5404 DISABLE - Turn off ethernet interface
5405 ***************************************************************************/
5406 static void
5407 e1000_disable(struct eth_device *nic)
5408 {
5409         struct e1000_hw *hw = nic->priv;
5410
5411         _e1000_disable(hw);
5412 }
5413
5414 /**************************************************************************
5415 INIT - set up ethernet interface(s)
5416 ***************************************************************************/
5417 static int
5418 e1000_init(struct eth_device *nic, bd_t *bis)
5419 {
5420         struct e1000_hw *hw = nic->priv;
5421
5422         return _e1000_init(hw, nic->enetaddr);
5423 }
5424
5425 static int
5426 e1000_poll(struct eth_device *nic)
5427 {
5428         struct e1000_hw *hw = nic->priv;
5429         int len;
5430
5431         len = _e1000_poll(hw);
5432         if (len) {
5433                 net_process_received_packet((uchar *)packet, len);
5434                 fill_rx(hw);
5435         }
5436
5437         return len ? 1 : 0;
5438 }
5439
5440 /**************************************************************************
5441 PROBE - Look for an adapter, this routine's visible to the outside
5442 You should omit the last argument struct pci_device * for a non-PCI NIC
5443 ***************************************************************************/
5444 int
5445 e1000_initialize(bd_t * bis)
5446 {
5447         unsigned int i;
5448         pci_dev_t devno;
5449         int ret;
5450
5451         DEBUGFUNC();
5452
5453         /* Find and probe all the matching PCI devices */
5454         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5455                 /*
5456                  * These will never get freed due to errors, this allows us to
5457                  * perform SPI EEPROM programming from U-boot, for example.
5458                  */
5459                 struct eth_device *nic = malloc(sizeof(*nic));
5460                 struct e1000_hw *hw = malloc(sizeof(*hw));
5461                 if (!nic || !hw) {
5462                         printf("e1000#%u: Out of Memory!\n", i);
5463                         free(nic);
5464                         free(hw);
5465                         continue;
5466                 }
5467
5468                 /* Make sure all of the fields are initially zeroed */
5469                 memset(nic, 0, sizeof(*nic));
5470                 memset(hw, 0, sizeof(*hw));
5471                 nic->priv = hw;
5472
5473                 /* Generate a card name */
5474                 e1000_name(nic->name, i);
5475                 hw->name = nic->name;
5476
5477                 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5478                 if (ret)
5479                         continue;
5480                 list_add_tail(&hw->list_node, &e1000_hw_list);
5481
5482                 hw->nic = nic;
5483
5484                 /* Set up the function pointers and register the device */
5485                 nic->init = e1000_init;
5486                 nic->recv = e1000_poll;
5487                 nic->send = e1000_transmit;
5488                 nic->halt = e1000_disable;
5489                 eth_register(nic);
5490         }
5491
5492         return i;
5493 }
5494
5495 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5496 {
5497         struct e1000_hw *hw;
5498
5499         list_for_each_entry(hw, &e1000_hw_list, list_node)
5500                 if (hw->cardnum == cardnum)
5501                         return hw;
5502
5503         return NULL;
5504 }
5505 #endif /* !CONFIG_DM_ETH */
5506
5507 #ifdef CONFIG_CMD_E1000
5508 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5509                 int argc, char * const argv[])
5510 {
5511         unsigned char *mac = NULL;
5512 #ifdef CONFIG_DM_ETH
5513         struct eth_pdata *plat;
5514         struct udevice *dev;
5515         char name[30];
5516         int ret;
5517 #else
5518         struct e1000_hw *hw;
5519 #endif
5520         int cardnum;
5521
5522         if (argc < 3) {
5523                 cmd_usage(cmdtp);
5524                 return 1;
5525         }
5526
5527         /* Make sure we can find the requested e1000 card */
5528         cardnum = simple_strtoul(argv[1], NULL, 10);
5529 #ifdef CONFIG_DM_ETH
5530         e1000_name(name, cardnum);
5531         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5532         if (!ret) {
5533                 plat = dev_get_platdata(dev);
5534                 mac = plat->enetaddr;
5535         }
5536 #else
5537         hw = e1000_find_card(cardnum);
5538         if (hw)
5539                 mac = hw->nic->enetaddr;
5540 #endif
5541         if (!mac) {
5542                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5543                 return 1;
5544         }
5545
5546         if (!strcmp(argv[2], "print-mac-address")) {
5547                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5548                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5549                 return 0;
5550         }
5551
5552 #ifdef CONFIG_E1000_SPI
5553         /* Handle the "SPI" subcommand */
5554         if (!strcmp(argv[2], "spi"))
5555                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5556 #endif
5557
5558         cmd_usage(cmdtp);
5559         return 1;
5560 }
5561
5562 U_BOOT_CMD(
5563         e1000, 7, 0, do_e1000,
5564         "Intel e1000 controller management",
5565         /*  */"<card#> print-mac-address\n"
5566 #ifdef CONFIG_E1000_SPI
5567         "e1000 <card#> spi show [<offset> [<length>]]\n"
5568         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5569         "e1000 <card#> spi program <addr> <offset> <length>\n"
5570         "e1000 <card#> spi checksum [update]\n"
5571 #endif
5572         "       - Manage the Intel E1000 PCI device"
5573 );
5574 #endif /* not CONFIG_CMD_E1000 */
5575
5576 #ifdef CONFIG_DM_ETH
5577 static int e1000_eth_start(struct udevice *dev)
5578 {
5579         struct eth_pdata *plat = dev_get_platdata(dev);
5580         struct e1000_hw *hw = dev_get_priv(dev);
5581
5582         return _e1000_init(hw, plat->enetaddr);
5583 }
5584
5585 static void e1000_eth_stop(struct udevice *dev)
5586 {
5587         struct e1000_hw *hw = dev_get_priv(dev);
5588
5589         _e1000_disable(hw);
5590 }
5591
5592 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5593 {
5594         struct e1000_hw *hw = dev_get_priv(dev);
5595         int ret;
5596
5597         ret = _e1000_transmit(hw, packet, length);
5598
5599         return ret ? 0 : -ETIMEDOUT;
5600 }
5601
5602 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5603 {
5604         struct e1000_hw *hw = dev_get_priv(dev);
5605         int len;
5606
5607         len = _e1000_poll(hw);
5608         if (len)
5609                 *packetp = packet;
5610
5611         return len ? len : -EAGAIN;
5612 }
5613
5614 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5615 {
5616         struct e1000_hw *hw = dev_get_priv(dev);
5617
5618         fill_rx(hw);
5619
5620         return 0;
5621 }
5622
5623 static int e1000_eth_probe(struct udevice *dev)
5624 {
5625         struct eth_pdata *plat = dev_get_platdata(dev);
5626         struct e1000_hw *hw = dev_get_priv(dev);
5627         int ret;
5628
5629         hw->name = dev->name;
5630         ret = e1000_init_one(hw, trailing_strtol(dev->name), pci_get_bdf(dev),
5631                              plat->enetaddr);
5632         if (ret < 0) {
5633                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5634                 return ret;
5635         }
5636
5637         return 0;
5638 }
5639
5640 static int e1000_eth_bind(struct udevice *dev)
5641 {
5642         char name[20];
5643
5644         /*
5645          * A simple way to number the devices. When device tree is used this
5646          * is unnecessary, but when the device is just discovered on the PCI
5647          * bus we need a name. We could instead have the uclass figure out
5648          * which devices are different and number them.
5649          */
5650         e1000_name(name, num_cards++);
5651
5652         return device_set_name(dev, name);
5653 }
5654
5655 static const struct eth_ops e1000_eth_ops = {
5656         .start  = e1000_eth_start,
5657         .send   = e1000_eth_send,
5658         .recv   = e1000_eth_recv,
5659         .stop   = e1000_eth_stop,
5660         .free_pkt = e1000_free_pkt,
5661 };
5662
5663 static const struct udevice_id e1000_eth_ids[] = {
5664         { .compatible = "intel,e1000" },
5665         { }
5666 };
5667
5668 U_BOOT_DRIVER(eth_e1000) = {
5669         .name   = "eth_e1000",
5670         .id     = UCLASS_ETH,
5671         .of_match = e1000_eth_ids,
5672         .bind   = e1000_eth_bind,
5673         .probe  = e1000_eth_probe,
5674         .ops    = &e1000_eth_ops,
5675         .priv_auto_alloc_size = sizeof(struct e1000_hw),
5676         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5677 };
5678
5679 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5680 #endif