]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/e1000.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[karo-tx-uboot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
25
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44
45 #include "e1000.h"
46
47 #define TOUT_LOOP   100000
48
49 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
50 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
51 #define mdelay(n)       udelay((n)*1000)
52
53 #define E1000_DEFAULT_PCI_PBA   0x00000030
54 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
55
56 /* NIC specific static variables go here */
57
58 static char tx_pool[128 + 16];
59 static char rx_pool[128 + 16];
60 static char packet[2096];
61
62 static struct e1000_tx_desc *tx_base;
63 static struct e1000_rx_desc *rx_base;
64
65 static int tx_tail;
66 static int rx_tail, rx_last;
67
68 static struct pci_device_id supported[] = {
69         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
85         /* E1000 PCIe card */
86         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
87         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
95         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
96         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
97         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
98         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
99         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
100         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
101         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
102         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
103         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
104         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
105         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
106         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
107         {}
108 };
109
110 /* Function forward declarations */
111 static int e1000_setup_link(struct eth_device *nic);
112 static int e1000_setup_fiber_link(struct eth_device *nic);
113 static int e1000_setup_copper_link(struct eth_device *nic);
114 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
115 static void e1000_config_collision_dist(struct e1000_hw *hw);
116 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
117 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
118 static int e1000_check_for_link(struct eth_device *nic);
119 static int e1000_wait_autoneg(struct e1000_hw *hw);
120 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
121                                        uint16_t * duplex);
122 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
123                               uint16_t * phy_data);
124 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
125                                uint16_t phy_data);
126 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
127 static int e1000_phy_reset(struct e1000_hw *hw);
128 static int e1000_detect_gig_phy(struct e1000_hw *hw);
129 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
130 static void e1000_set_media_type(struct e1000_hw *hw);
131
132 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
133 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
134 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
135 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
136 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
137                         writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
138 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
139         readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
140 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
141
142 #ifndef CONFIG_AP1000 /* remove for warnings */
143 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
144                 uint16_t words,
145                 uint16_t *data);
146 /******************************************************************************
147  * Raises the EEPROM's clock input.
148  *
149  * hw - Struct containing variables accessed by shared code
150  * eecd - EECD's current value
151  *****************************************************************************/
152 static void
153 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
154 {
155         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
156          * wait 50 microseconds.
157          */
158         *eecd = *eecd | E1000_EECD_SK;
159         E1000_WRITE_REG(hw, EECD, *eecd);
160         E1000_WRITE_FLUSH(hw);
161         udelay(50);
162 }
163
164 /******************************************************************************
165  * Lowers the EEPROM's clock input.
166  *
167  * hw - Struct containing variables accessed by shared code
168  * eecd - EECD's current value
169  *****************************************************************************/
170 static void
171 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
172 {
173         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
174          * wait 50 microseconds.
175          */
176         *eecd = *eecd & ~E1000_EECD_SK;
177         E1000_WRITE_REG(hw, EECD, *eecd);
178         E1000_WRITE_FLUSH(hw);
179         udelay(50);
180 }
181
182 /******************************************************************************
183  * Shift data bits out to the EEPROM.
184  *
185  * hw - Struct containing variables accessed by shared code
186  * data - data to send to the EEPROM
187  * count - number of bits to shift out
188  *****************************************************************************/
189 static void
190 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
191 {
192         uint32_t eecd;
193         uint32_t mask;
194
195         /* We need to shift "count" bits out to the EEPROM. So, value in the
196          * "data" parameter will be shifted out to the EEPROM one bit at a time.
197          * In order to do this, "data" must be broken down into bits.
198          */
199         mask = 0x01 << (count - 1);
200         eecd = E1000_READ_REG(hw, EECD);
201         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
202         do {
203                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
204                  * and then raising and then lowering the clock (the SK bit controls
205                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
206                  * by setting "DI" to "0" and then raising and then lowering the clock.
207                  */
208                 eecd &= ~E1000_EECD_DI;
209
210                 if (data & mask)
211                         eecd |= E1000_EECD_DI;
212
213                 E1000_WRITE_REG(hw, EECD, eecd);
214                 E1000_WRITE_FLUSH(hw);
215
216                 udelay(50);
217
218                 e1000_raise_ee_clk(hw, &eecd);
219                 e1000_lower_ee_clk(hw, &eecd);
220
221                 mask = mask >> 1;
222
223         } while (mask);
224
225         /* We leave the "DI" bit set to "0" when we leave this routine. */
226         eecd &= ~E1000_EECD_DI;
227         E1000_WRITE_REG(hw, EECD, eecd);
228 }
229
230 /******************************************************************************
231  * Shift data bits in from the EEPROM
232  *
233  * hw - Struct containing variables accessed by shared code
234  *****************************************************************************/
235 static uint16_t
236 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
237 {
238         uint32_t eecd;
239         uint32_t i;
240         uint16_t data;
241
242         /* In order to read a register from the EEPROM, we need to shift 'count'
243          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
244          * input to the EEPROM (setting the SK bit), and then reading the
245          * value of the "DO" bit.  During this "shifting in" process the
246          * "DI" bit should always be clear.
247          */
248
249         eecd = E1000_READ_REG(hw, EECD);
250
251         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
252         data = 0;
253
254         for (i = 0; i < count; i++) {
255                 data = data << 1;
256                 e1000_raise_ee_clk(hw, &eecd);
257
258                 eecd = E1000_READ_REG(hw, EECD);
259
260                 eecd &= ~(E1000_EECD_DI);
261                 if (eecd & E1000_EECD_DO)
262                         data |= 1;
263
264                 e1000_lower_ee_clk(hw, &eecd);
265         }
266
267         return data;
268 }
269
270 /******************************************************************************
271  * Returns EEPROM to a "standby" state
272  *
273  * hw - Struct containing variables accessed by shared code
274  *****************************************************************************/
275 static void
276 e1000_standby_eeprom(struct e1000_hw *hw)
277 {
278         struct e1000_eeprom_info *eeprom = &hw->eeprom;
279         uint32_t eecd;
280
281         eecd = E1000_READ_REG(hw, EECD);
282
283         if (eeprom->type == e1000_eeprom_microwire) {
284                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
285                 E1000_WRITE_REG(hw, EECD, eecd);
286                 E1000_WRITE_FLUSH(hw);
287                 udelay(eeprom->delay_usec);
288
289                 /* Clock high */
290                 eecd |= E1000_EECD_SK;
291                 E1000_WRITE_REG(hw, EECD, eecd);
292                 E1000_WRITE_FLUSH(hw);
293                 udelay(eeprom->delay_usec);
294
295                 /* Select EEPROM */
296                 eecd |= E1000_EECD_CS;
297                 E1000_WRITE_REG(hw, EECD, eecd);
298                 E1000_WRITE_FLUSH(hw);
299                 udelay(eeprom->delay_usec);
300
301                 /* Clock low */
302                 eecd &= ~E1000_EECD_SK;
303                 E1000_WRITE_REG(hw, EECD, eecd);
304                 E1000_WRITE_FLUSH(hw);
305                 udelay(eeprom->delay_usec);
306         } else if (eeprom->type == e1000_eeprom_spi) {
307                 /* Toggle CS to flush commands */
308                 eecd |= E1000_EECD_CS;
309                 E1000_WRITE_REG(hw, EECD, eecd);
310                 E1000_WRITE_FLUSH(hw);
311                 udelay(eeprom->delay_usec);
312                 eecd &= ~E1000_EECD_CS;
313                 E1000_WRITE_REG(hw, EECD, eecd);
314                 E1000_WRITE_FLUSH(hw);
315                 udelay(eeprom->delay_usec);
316         }
317 }
318
319 /***************************************************************************
320 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
321 *
322 * hw - Struct containing variables accessed by shared code
323 ****************************************************************************/
324 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
325 {
326         uint32_t eecd = 0;
327
328         DEBUGFUNC();
329
330         if (hw->mac_type == e1000_ich8lan)
331                 return FALSE;
332
333         if (hw->mac_type == e1000_82573) {
334                 eecd = E1000_READ_REG(hw, EECD);
335
336                 /* Isolate bits 15 & 16 */
337                 eecd = ((eecd >> 15) & 0x03);
338
339                 /* If both bits are set, device is Flash type */
340                 if (eecd == 0x03)
341                         return FALSE;
342         }
343         return TRUE;
344 }
345
346 /******************************************************************************
347  * Prepares EEPROM for access
348  *
349  * hw - Struct containing variables accessed by shared code
350  *
351  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
352  * function should be called before issuing a command to the EEPROM.
353  *****************************************************************************/
354 static int32_t
355 e1000_acquire_eeprom(struct e1000_hw *hw)
356 {
357         struct e1000_eeprom_info *eeprom = &hw->eeprom;
358         uint32_t eecd, i = 0;
359
360         DEBUGFUNC();
361
362         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
363                 return -E1000_ERR_SWFW_SYNC;
364         eecd = E1000_READ_REG(hw, EECD);
365
366         if (hw->mac_type != e1000_82573) {
367                 /* Request EEPROM Access */
368                 if (hw->mac_type > e1000_82544) {
369                         eecd |= E1000_EECD_REQ;
370                         E1000_WRITE_REG(hw, EECD, eecd);
371                         eecd = E1000_READ_REG(hw, EECD);
372                         while ((!(eecd & E1000_EECD_GNT)) &&
373                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
374                                 i++;
375                                 udelay(5);
376                                 eecd = E1000_READ_REG(hw, EECD);
377                         }
378                         if (!(eecd & E1000_EECD_GNT)) {
379                                 eecd &= ~E1000_EECD_REQ;
380                                 E1000_WRITE_REG(hw, EECD, eecd);
381                                 DEBUGOUT("Could not acquire EEPROM grant\n");
382                                 return -E1000_ERR_EEPROM;
383                         }
384                 }
385         }
386
387         /* Setup EEPROM for Read/Write */
388
389         if (eeprom->type == e1000_eeprom_microwire) {
390                 /* Clear SK and DI */
391                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
392                 E1000_WRITE_REG(hw, EECD, eecd);
393
394                 /* Set CS */
395                 eecd |= E1000_EECD_CS;
396                 E1000_WRITE_REG(hw, EECD, eecd);
397         } else if (eeprom->type == e1000_eeprom_spi) {
398                 /* Clear SK and CS */
399                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
400                 E1000_WRITE_REG(hw, EECD, eecd);
401                 udelay(1);
402         }
403
404         return E1000_SUCCESS;
405 }
406
407 /******************************************************************************
408  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
409  * is configured.  Additionally, if this is ICH8, the flash controller GbE
410  * registers must be mapped, or this will crash.
411  *
412  * hw - Struct containing variables accessed by shared code
413  *****************************************************************************/
414 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
415 {
416         struct e1000_eeprom_info *eeprom = &hw->eeprom;
417         uint32_t eecd = E1000_READ_REG(hw, EECD);
418         int32_t ret_val = E1000_SUCCESS;
419         uint16_t eeprom_size;
420
421         DEBUGFUNC();
422
423         switch (hw->mac_type) {
424         case e1000_82542_rev2_0:
425         case e1000_82542_rev2_1:
426         case e1000_82543:
427         case e1000_82544:
428                 eeprom->type = e1000_eeprom_microwire;
429                 eeprom->word_size = 64;
430                 eeprom->opcode_bits = 3;
431                 eeprom->address_bits = 6;
432                 eeprom->delay_usec = 50;
433                 eeprom->use_eerd = FALSE;
434                 eeprom->use_eewr = FALSE;
435         break;
436         case e1000_82540:
437         case e1000_82545:
438         case e1000_82545_rev_3:
439         case e1000_82546:
440         case e1000_82546_rev_3:
441                 eeprom->type = e1000_eeprom_microwire;
442                 eeprom->opcode_bits = 3;
443                 eeprom->delay_usec = 50;
444                 if (eecd & E1000_EECD_SIZE) {
445                         eeprom->word_size = 256;
446                         eeprom->address_bits = 8;
447                 } else {
448                         eeprom->word_size = 64;
449                         eeprom->address_bits = 6;
450                 }
451                 eeprom->use_eerd = FALSE;
452                 eeprom->use_eewr = FALSE;
453                 break;
454         case e1000_82541:
455         case e1000_82541_rev_2:
456         case e1000_82547:
457         case e1000_82547_rev_2:
458                 if (eecd & E1000_EECD_TYPE) {
459                         eeprom->type = e1000_eeprom_spi;
460                         eeprom->opcode_bits = 8;
461                         eeprom->delay_usec = 1;
462                         if (eecd & E1000_EECD_ADDR_BITS) {
463                                 eeprom->page_size = 32;
464                                 eeprom->address_bits = 16;
465                         } else {
466                                 eeprom->page_size = 8;
467                                 eeprom->address_bits = 8;
468                         }
469                 } else {
470                         eeprom->type = e1000_eeprom_microwire;
471                         eeprom->opcode_bits = 3;
472                         eeprom->delay_usec = 50;
473                         if (eecd & E1000_EECD_ADDR_BITS) {
474                                 eeprom->word_size = 256;
475                                 eeprom->address_bits = 8;
476                         } else {
477                                 eeprom->word_size = 64;
478                                 eeprom->address_bits = 6;
479                         }
480                 }
481                 eeprom->use_eerd = FALSE;
482                 eeprom->use_eewr = FALSE;
483                 break;
484         case e1000_82571:
485         case e1000_82572:
486                 eeprom->type = e1000_eeprom_spi;
487                 eeprom->opcode_bits = 8;
488                 eeprom->delay_usec = 1;
489                 if (eecd & E1000_EECD_ADDR_BITS) {
490                         eeprom->page_size = 32;
491                         eeprom->address_bits = 16;
492                 } else {
493                         eeprom->page_size = 8;
494                         eeprom->address_bits = 8;
495                 }
496                 eeprom->use_eerd = FALSE;
497                 eeprom->use_eewr = FALSE;
498                 break;
499         case e1000_82573:
500                 eeprom->type = e1000_eeprom_spi;
501                 eeprom->opcode_bits = 8;
502                 eeprom->delay_usec = 1;
503                 if (eecd & E1000_EECD_ADDR_BITS) {
504                         eeprom->page_size = 32;
505                         eeprom->address_bits = 16;
506                 } else {
507                         eeprom->page_size = 8;
508                         eeprom->address_bits = 8;
509                 }
510                 eeprom->use_eerd = TRUE;
511                 eeprom->use_eewr = TRUE;
512                 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
513                         eeprom->type = e1000_eeprom_flash;
514                         eeprom->word_size = 2048;
515
516                 /* Ensure that the Autonomous FLASH update bit is cleared due to
517                  * Flash update issue on parts which use a FLASH for NVM. */
518                         eecd &= ~E1000_EECD_AUPDEN;
519                         E1000_WRITE_REG(hw, EECD, eecd);
520                 }
521                 break;
522         case e1000_80003es2lan:
523                 eeprom->type = e1000_eeprom_spi;
524                 eeprom->opcode_bits = 8;
525                 eeprom->delay_usec = 1;
526                 if (eecd & E1000_EECD_ADDR_BITS) {
527                         eeprom->page_size = 32;
528                         eeprom->address_bits = 16;
529                 } else {
530                         eeprom->page_size = 8;
531                         eeprom->address_bits = 8;
532                 }
533                 eeprom->use_eerd = TRUE;
534                 eeprom->use_eewr = FALSE;
535                 break;
536
537         /* ich8lan does not support currently. if needed, please
538          * add corresponding code and functions.
539          */
540 #if 0
541         case e1000_ich8lan:
542                 {
543                 int32_t  i = 0;
544
545                 eeprom->type = e1000_eeprom_ich8;
546                 eeprom->use_eerd = FALSE;
547                 eeprom->use_eewr = FALSE;
548                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
549                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
550                                 ICH_FLASH_GFPREG);
551                 /* Zero the shadow RAM structure. But don't load it from NVM
552                  * so as to save time for driver init */
553                 if (hw->eeprom_shadow_ram != NULL) {
554                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
555                                 hw->eeprom_shadow_ram[i].modified = FALSE;
556                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
557                         }
558                 }
559
560                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
561                                 ICH_FLASH_SECTOR_SIZE;
562
563                 hw->flash_bank_size = ((flash_size >> 16)
564                                 & ICH_GFPREG_BASE_MASK) + 1;
565                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
566
567                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
568
569                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
570                 break;
571                 }
572 #endif
573         default:
574                 break;
575         }
576
577         if (eeprom->type == e1000_eeprom_spi) {
578                 /* eeprom_size will be an enum [0..8] that maps
579                  * to eeprom sizes 128B to
580                  * 32KB (incremented by powers of 2).
581                  */
582                 if (hw->mac_type <= e1000_82547_rev_2) {
583                         /* Set to default value for initial eeprom read. */
584                         eeprom->word_size = 64;
585                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
586                                         &eeprom_size);
587                         if (ret_val)
588                                 return ret_val;
589                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
590                                 >> EEPROM_SIZE_SHIFT;
591                         /* 256B eeprom size was not supported in earlier
592                          * hardware, so we bump eeprom_size up one to
593                          * ensure that "1" (which maps to 256B) is never
594                          * the result used in the shifting logic below. */
595                         if (eeprom_size)
596                                 eeprom_size++;
597                 } else {
598                         eeprom_size = (uint16_t)((eecd &
599                                 E1000_EECD_SIZE_EX_MASK) >>
600                                 E1000_EECD_SIZE_EX_SHIFT);
601                 }
602
603                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
604         }
605         return ret_val;
606 }
607
608 /******************************************************************************
609  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
610  *
611  * hw - Struct containing variables accessed by shared code
612  *****************************************************************************/
613 static int32_t
614 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
615 {
616         uint32_t attempts = 100000;
617         uint32_t i, reg = 0;
618         int32_t done = E1000_ERR_EEPROM;
619
620         for (i = 0; i < attempts; i++) {
621                 if (eerd == E1000_EEPROM_POLL_READ)
622                         reg = E1000_READ_REG(hw, EERD);
623                 else
624                         reg = E1000_READ_REG(hw, EEWR);
625
626                 if (reg & E1000_EEPROM_RW_REG_DONE) {
627                         done = E1000_SUCCESS;
628                         break;
629                 }
630                 udelay(5);
631         }
632
633         return done;
634 }
635
636 /******************************************************************************
637  * Reads a 16 bit word from the EEPROM using the EERD register.
638  *
639  * hw - Struct containing variables accessed by shared code
640  * offset - offset of  word in the EEPROM to read
641  * data - word read from the EEPROM
642  * words - number of words to read
643  *****************************************************************************/
644 static int32_t
645 e1000_read_eeprom_eerd(struct e1000_hw *hw,
646                         uint16_t offset,
647                         uint16_t words,
648                         uint16_t *data)
649 {
650         uint32_t i, eerd = 0;
651         int32_t error = 0;
652
653         for (i = 0; i < words; i++) {
654                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
655                         E1000_EEPROM_RW_REG_START;
656
657                 E1000_WRITE_REG(hw, EERD, eerd);
658                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
659
660                 if (error)
661                         break;
662                 data[i] = (E1000_READ_REG(hw, EERD) >>
663                                 E1000_EEPROM_RW_REG_DATA);
664
665         }
666
667         return error;
668 }
669
670 static void
671 e1000_release_eeprom(struct e1000_hw *hw)
672 {
673         uint32_t eecd;
674
675         DEBUGFUNC();
676
677         eecd = E1000_READ_REG(hw, EECD);
678
679         if (hw->eeprom.type == e1000_eeprom_spi) {
680                 eecd |= E1000_EECD_CS;  /* Pull CS high */
681                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
682
683                 E1000_WRITE_REG(hw, EECD, eecd);
684
685                 udelay(hw->eeprom.delay_usec);
686         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
687                 /* cleanup eeprom */
688
689                 /* CS on Microwire is active-high */
690                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
691
692                 E1000_WRITE_REG(hw, EECD, eecd);
693
694                 /* Rising edge of clock */
695                 eecd |= E1000_EECD_SK;
696                 E1000_WRITE_REG(hw, EECD, eecd);
697                 E1000_WRITE_FLUSH(hw);
698                 udelay(hw->eeprom.delay_usec);
699
700                 /* Falling edge of clock */
701                 eecd &= ~E1000_EECD_SK;
702                 E1000_WRITE_REG(hw, EECD, eecd);
703                 E1000_WRITE_FLUSH(hw);
704                 udelay(hw->eeprom.delay_usec);
705         }
706
707         /* Stop requesting EEPROM access */
708         if (hw->mac_type > e1000_82544) {
709                 eecd &= ~E1000_EECD_REQ;
710                 E1000_WRITE_REG(hw, EECD, eecd);
711         }
712 }
713 /******************************************************************************
714  * Reads a 16 bit word from the EEPROM.
715  *
716  * hw - Struct containing variables accessed by shared code
717  *****************************************************************************/
718 static int32_t
719 e1000_spi_eeprom_ready(struct e1000_hw *hw)
720 {
721         uint16_t retry_count = 0;
722         uint8_t spi_stat_reg;
723
724         DEBUGFUNC();
725
726         /* Read "Status Register" repeatedly until the LSB is cleared.  The
727          * EEPROM will signal that the command has been completed by clearing
728          * bit 0 of the internal status register.  If it's not cleared within
729          * 5 milliseconds, then error out.
730          */
731         retry_count = 0;
732         do {
733                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
734                         hw->eeprom.opcode_bits);
735                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
736                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
737                         break;
738
739                 udelay(5);
740                 retry_count += 5;
741
742                 e1000_standby_eeprom(hw);
743         } while (retry_count < EEPROM_MAX_RETRY_SPI);
744
745         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
746          * only 0-5mSec on 5V devices)
747          */
748         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
749                 DEBUGOUT("SPI EEPROM Status error\n");
750                 return -E1000_ERR_EEPROM;
751         }
752
753         return E1000_SUCCESS;
754 }
755
756 /******************************************************************************
757  * Reads a 16 bit word from the EEPROM.
758  *
759  * hw - Struct containing variables accessed by shared code
760  * offset - offset of  word in the EEPROM to read
761  * data - word read from the EEPROM
762  *****************************************************************************/
763 static int32_t
764 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
765                 uint16_t words, uint16_t *data)
766 {
767         struct e1000_eeprom_info *eeprom = &hw->eeprom;
768         uint32_t i = 0;
769
770         DEBUGFUNC();
771
772         /* If eeprom is not yet detected, do so now */
773         if (eeprom->word_size == 0)
774                 e1000_init_eeprom_params(hw);
775
776         /* A check for invalid values:  offset too large, too many words,
777          * and not enough words.
778          */
779         if ((offset >= eeprom->word_size) ||
780                 (words > eeprom->word_size - offset) ||
781                 (words == 0)) {
782                 DEBUGOUT("\"words\" parameter out of bounds."
783                         "Words = %d, size = %d\n", offset, eeprom->word_size);
784                 return -E1000_ERR_EEPROM;
785         }
786
787         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
788          * directly. In this case, we need to acquire the EEPROM so that
789          * FW or other port software does not interrupt.
790          */
791         if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
792                 hw->eeprom.use_eerd == FALSE) {
793
794                 /* Prepare the EEPROM for bit-bang reading */
795                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
796                         return -E1000_ERR_EEPROM;
797         }
798
799         /* Eerd register EEPROM access requires no eeprom aquire/release */
800         if (eeprom->use_eerd == TRUE)
801                 return e1000_read_eeprom_eerd(hw, offset, words, data);
802
803         /* ich8lan does not support currently. if needed, please
804          * add corresponding code and functions.
805          */
806 #if 0
807         /* ICH EEPROM access is done via the ICH flash controller */
808         if (eeprom->type == e1000_eeprom_ich8)
809                 return e1000_read_eeprom_ich8(hw, offset, words, data);
810 #endif
811         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
812          * acquired the EEPROM at this point, so any returns should relase it */
813         if (eeprom->type == e1000_eeprom_spi) {
814                 uint16_t word_in;
815                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
816
817                 if (e1000_spi_eeprom_ready(hw)) {
818                         e1000_release_eeprom(hw);
819                         return -E1000_ERR_EEPROM;
820                 }
821
822                 e1000_standby_eeprom(hw);
823
824                 /* Some SPI eeproms use the 8th address bit embedded in
825                  * the opcode */
826                 if ((eeprom->address_bits == 8) && (offset >= 128))
827                         read_opcode |= EEPROM_A8_OPCODE_SPI;
828
829                 /* Send the READ command (opcode + addr)  */
830                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
831                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
832                                 eeprom->address_bits);
833
834                 /* Read the data.  The address of the eeprom internally
835                  * increments with each byte (spi) being read, saving on the
836                  * overhead of eeprom setup and tear-down.  The address
837                  * counter will roll over if reading beyond the size of
838                  * the eeprom, thus allowing the entire memory to be read
839                  * starting from any offset. */
840                 for (i = 0; i < words; i++) {
841                         word_in = e1000_shift_in_ee_bits(hw, 16);
842                         data[i] = (word_in >> 8) | (word_in << 8);
843                 }
844         } else if (eeprom->type == e1000_eeprom_microwire) {
845                 for (i = 0; i < words; i++) {
846                         /* Send the READ command (opcode + addr)  */
847                         e1000_shift_out_ee_bits(hw,
848                                 EEPROM_READ_OPCODE_MICROWIRE,
849                                 eeprom->opcode_bits);
850                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
851                                 eeprom->address_bits);
852
853                         /* Read the data.  For microwire, each word requires
854                          * the overhead of eeprom setup and tear-down. */
855                         data[i] = e1000_shift_in_ee_bits(hw, 16);
856                         e1000_standby_eeprom(hw);
857                 }
858         }
859
860         /* End this read operation */
861         e1000_release_eeprom(hw);
862
863         return E1000_SUCCESS;
864 }
865
866 /******************************************************************************
867  * Verifies that the EEPROM has a valid checksum
868  *
869  * hw - Struct containing variables accessed by shared code
870  *
871  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
872  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
873  * valid.
874  *****************************************************************************/
875 static int
876 e1000_validate_eeprom_checksum(struct eth_device *nic)
877 {
878         struct e1000_hw *hw = nic->priv;
879         uint16_t checksum = 0;
880         uint16_t i, eeprom_data;
881
882         DEBUGFUNC();
883
884         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
885                 if (e1000_read_eeprom(hw, i, 1,  &eeprom_data) < 0) {
886                         DEBUGOUT("EEPROM Read Error\n");
887                         return -E1000_ERR_EEPROM;
888                 }
889                 checksum += eeprom_data;
890         }
891
892         if (checksum == (uint16_t) EEPROM_SUM) {
893                 return 0;
894         } else {
895                 DEBUGOUT("EEPROM Checksum Invalid\n");
896                 return -E1000_ERR_EEPROM;
897         }
898 }
899
900 /*****************************************************************************
901  * Set PHY to class A mode
902  * Assumes the following operations will follow to enable the new class mode.
903  *  1. Do a PHY soft reset
904  *  2. Restart auto-negotiation or force link.
905  *
906  * hw - Struct containing variables accessed by shared code
907  ****************************************************************************/
908 static int32_t
909 e1000_set_phy_mode(struct e1000_hw *hw)
910 {
911         int32_t ret_val;
912         uint16_t eeprom_data;
913
914         DEBUGFUNC();
915
916         if ((hw->mac_type == e1000_82545_rev_3) &&
917                 (hw->media_type == e1000_media_type_copper)) {
918                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
919                                 1, &eeprom_data);
920                 if (ret_val)
921                         return ret_val;
922
923                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
924                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
925                         ret_val = e1000_write_phy_reg(hw,
926                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
927                         if (ret_val)
928                                 return ret_val;
929                         ret_val = e1000_write_phy_reg(hw,
930                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
931                         if (ret_val)
932                                 return ret_val;
933
934                         hw->phy_reset_disable = FALSE;
935                 }
936         }
937
938         return E1000_SUCCESS;
939 }
940 #endif /* #ifndef CONFIG_AP1000 */
941
942 /***************************************************************************
943  *
944  * Obtaining software semaphore bit (SMBI) before resetting PHY.
945  *
946  * hw: Struct containing variables accessed by shared code
947  *
948  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
949  *            E1000_SUCCESS at any other case.
950  *
951  ***************************************************************************/
952 static int32_t
953 e1000_get_software_semaphore(struct e1000_hw *hw)
954 {
955          int32_t timeout = hw->eeprom.word_size + 1;
956          uint32_t swsm;
957
958         DEBUGFUNC();
959
960         if (hw->mac_type != e1000_80003es2lan)
961                 return E1000_SUCCESS;
962
963         while (timeout) {
964                 swsm = E1000_READ_REG(hw, SWSM);
965                 /* If SMBI bit cleared, it is now set and we hold
966                  * the semaphore */
967                 if (!(swsm & E1000_SWSM_SMBI))
968                         break;
969                 mdelay(1);
970                 timeout--;
971         }
972
973         if (!timeout) {
974                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
975                 return -E1000_ERR_RESET;
976         }
977
978         return E1000_SUCCESS;
979 }
980
981 /***************************************************************************
982  * This function clears HW semaphore bits.
983  *
984  * hw: Struct containing variables accessed by shared code
985  *
986  * returns: - None.
987  *
988  ***************************************************************************/
989 static void
990 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
991 {
992          uint32_t swsm;
993
994         DEBUGFUNC();
995
996         if (!hw->eeprom_semaphore_present)
997                 return;
998
999         swsm = E1000_READ_REG(hw, SWSM);
1000         if (hw->mac_type == e1000_80003es2lan) {
1001                 /* Release both semaphores. */
1002                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1003         } else
1004                 swsm &= ~(E1000_SWSM_SWESMBI);
1005         E1000_WRITE_REG(hw, SWSM, swsm);
1006 }
1007
1008 /***************************************************************************
1009  *
1010  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1011  * adapter or Eeprom access.
1012  *
1013  * hw: Struct containing variables accessed by shared code
1014  *
1015  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1016  *            E1000_SUCCESS at any other case.
1017  *
1018  ***************************************************************************/
1019 static int32_t
1020 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1021 {
1022         int32_t timeout;
1023         uint32_t swsm;
1024
1025         DEBUGFUNC();
1026
1027         if (!hw->eeprom_semaphore_present)
1028                 return E1000_SUCCESS;
1029
1030         if (hw->mac_type == e1000_80003es2lan) {
1031                 /* Get the SW semaphore. */
1032                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1033                         return -E1000_ERR_EEPROM;
1034         }
1035
1036         /* Get the FW semaphore. */
1037         timeout = hw->eeprom.word_size + 1;
1038         while (timeout) {
1039                 swsm = E1000_READ_REG(hw, SWSM);
1040                 swsm |= E1000_SWSM_SWESMBI;
1041                 E1000_WRITE_REG(hw, SWSM, swsm);
1042                 /* if we managed to set the bit we got the semaphore. */
1043                 swsm = E1000_READ_REG(hw, SWSM);
1044                 if (swsm & E1000_SWSM_SWESMBI)
1045                         break;
1046
1047                 udelay(50);
1048                 timeout--;
1049         }
1050
1051         if (!timeout) {
1052                 /* Release semaphores */
1053                 e1000_put_hw_eeprom_semaphore(hw);
1054                 DEBUGOUT("Driver can't access the Eeprom - "
1055                                 "SWESMBI bit is set.\n");
1056                 return -E1000_ERR_EEPROM;
1057         }
1058
1059         return E1000_SUCCESS;
1060 }
1061
1062 static int32_t
1063 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1064 {
1065         uint32_t swfw_sync = 0;
1066         uint32_t swmask = mask;
1067         uint32_t fwmask = mask << 16;
1068         int32_t timeout = 200;
1069
1070         DEBUGFUNC();
1071         while (timeout) {
1072                 if (e1000_get_hw_eeprom_semaphore(hw))
1073                         return -E1000_ERR_SWFW_SYNC;
1074
1075                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1076                 if (!(swfw_sync & (fwmask | swmask)))
1077                         break;
1078
1079                 /* firmware currently using resource (fwmask) */
1080                 /* or other software thread currently using resource (swmask) */
1081                 e1000_put_hw_eeprom_semaphore(hw);
1082                 mdelay(5);
1083                 timeout--;
1084         }
1085
1086         if (!timeout) {
1087                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1088                 return -E1000_ERR_SWFW_SYNC;
1089         }
1090
1091         swfw_sync |= swmask;
1092         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1093
1094         e1000_put_hw_eeprom_semaphore(hw);
1095         return E1000_SUCCESS;
1096 }
1097
1098 /******************************************************************************
1099  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1100  * second function of dual function devices
1101  *
1102  * nic - Struct containing variables accessed by shared code
1103  *****************************************************************************/
1104 static int
1105 e1000_read_mac_addr(struct eth_device *nic)
1106 {
1107 #ifndef CONFIG_AP1000
1108         struct e1000_hw *hw = nic->priv;
1109         uint16_t offset;
1110         uint16_t eeprom_data;
1111         int i;
1112
1113         DEBUGFUNC();
1114
1115         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1116                 offset = i >> 1;
1117                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1118                         DEBUGOUT("EEPROM Read Error\n");
1119                         return -E1000_ERR_EEPROM;
1120                 }
1121                 nic->enetaddr[i] = eeprom_data & 0xff;
1122                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1123         }
1124         if ((hw->mac_type == e1000_82546) &&
1125             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1126                 /* Invert the last bit if this is the second device */
1127                 nic->enetaddr[5] += 1;
1128         }
1129 #ifdef CONFIG_E1000_FALLBACK_MAC
1130         if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1131                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1132
1133                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1134         }
1135 #endif
1136 #else
1137         /*
1138          * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1139          * environment variables.  Currently this does not support the addition
1140          * of a PMC e1000 card, which is certainly a possibility, so this should
1141          * be updated to properly use the env variable only for the onboard e1000
1142          */
1143
1144         int ii;
1145         char *s, *e;
1146
1147         DEBUGFUNC();
1148
1149         s = getenv ("ethaddr");
1150         if (s == NULL) {
1151                 return -E1000_ERR_EEPROM;
1152         } else {
1153                 for(ii = 0; ii < 6; ii++) {
1154                         nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1155                         if (s){
1156                                 s = (*e) ? e + 1 : e;
1157                         }
1158                 }
1159         }
1160 #endif
1161         return 0;
1162 }
1163
1164 /******************************************************************************
1165  * Initializes receive address filters.
1166  *
1167  * hw - Struct containing variables accessed by shared code
1168  *
1169  * Places the MAC address in receive address register 0 and clears the rest
1170  * of the receive addresss registers. Clears the multicast table. Assumes
1171  * the receiver is in reset when the routine is called.
1172  *****************************************************************************/
1173 static void
1174 e1000_init_rx_addrs(struct eth_device *nic)
1175 {
1176         struct e1000_hw *hw = nic->priv;
1177         uint32_t i;
1178         uint32_t addr_low;
1179         uint32_t addr_high;
1180
1181         DEBUGFUNC();
1182
1183         /* Setup the receive address. */
1184         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1185         addr_low = (nic->enetaddr[0] |
1186                     (nic->enetaddr[1] << 8) |
1187                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1188
1189         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1190
1191         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1192         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1193
1194         /* Zero out the other 15 receive addresses. */
1195         DEBUGOUT("Clearing RAR[1-15]\n");
1196         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1197                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1198                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1199         }
1200 }
1201
1202 /******************************************************************************
1203  * Clears the VLAN filer table
1204  *
1205  * hw - Struct containing variables accessed by shared code
1206  *****************************************************************************/
1207 static void
1208 e1000_clear_vfta(struct e1000_hw *hw)
1209 {
1210         uint32_t offset;
1211
1212         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1213                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1214 }
1215
1216 /******************************************************************************
1217  * Set the mac type member in the hw struct.
1218  *
1219  * hw - Struct containing variables accessed by shared code
1220  *****************************************************************************/
1221 int32_t
1222 e1000_set_mac_type(struct e1000_hw *hw)
1223 {
1224         DEBUGFUNC();
1225
1226         switch (hw->device_id) {
1227         case E1000_DEV_ID_82542:
1228                 switch (hw->revision_id) {
1229                 case E1000_82542_2_0_REV_ID:
1230                         hw->mac_type = e1000_82542_rev2_0;
1231                         break;
1232                 case E1000_82542_2_1_REV_ID:
1233                         hw->mac_type = e1000_82542_rev2_1;
1234                         break;
1235                 default:
1236                         /* Invalid 82542 revision ID */
1237                         return -E1000_ERR_MAC_TYPE;
1238                 }
1239                 break;
1240         case E1000_DEV_ID_82543GC_FIBER:
1241         case E1000_DEV_ID_82543GC_COPPER:
1242                 hw->mac_type = e1000_82543;
1243                 break;
1244         case E1000_DEV_ID_82544EI_COPPER:
1245         case E1000_DEV_ID_82544EI_FIBER:
1246         case E1000_DEV_ID_82544GC_COPPER:
1247         case E1000_DEV_ID_82544GC_LOM:
1248                 hw->mac_type = e1000_82544;
1249                 break;
1250         case E1000_DEV_ID_82540EM:
1251         case E1000_DEV_ID_82540EM_LOM:
1252         case E1000_DEV_ID_82540EP:
1253         case E1000_DEV_ID_82540EP_LOM:
1254         case E1000_DEV_ID_82540EP_LP:
1255                 hw->mac_type = e1000_82540;
1256                 break;
1257         case E1000_DEV_ID_82545EM_COPPER:
1258         case E1000_DEV_ID_82545EM_FIBER:
1259                 hw->mac_type = e1000_82545;
1260                 break;
1261         case E1000_DEV_ID_82545GM_COPPER:
1262         case E1000_DEV_ID_82545GM_FIBER:
1263         case E1000_DEV_ID_82545GM_SERDES:
1264                 hw->mac_type = e1000_82545_rev_3;
1265                 break;
1266         case E1000_DEV_ID_82546EB_COPPER:
1267         case E1000_DEV_ID_82546EB_FIBER:
1268         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1269                 hw->mac_type = e1000_82546;
1270                 break;
1271         case E1000_DEV_ID_82546GB_COPPER:
1272         case E1000_DEV_ID_82546GB_FIBER:
1273         case E1000_DEV_ID_82546GB_SERDES:
1274         case E1000_DEV_ID_82546GB_PCIE:
1275         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1276         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1277                 hw->mac_type = e1000_82546_rev_3;
1278                 break;
1279         case E1000_DEV_ID_82541EI:
1280         case E1000_DEV_ID_82541EI_MOBILE:
1281         case E1000_DEV_ID_82541ER_LOM:
1282                 hw->mac_type = e1000_82541;
1283                 break;
1284         case E1000_DEV_ID_82541ER:
1285         case E1000_DEV_ID_82541GI:
1286         case E1000_DEV_ID_82541GI_LF:
1287         case E1000_DEV_ID_82541GI_MOBILE:
1288                 hw->mac_type = e1000_82541_rev_2;
1289                 break;
1290         case E1000_DEV_ID_82547EI:
1291         case E1000_DEV_ID_82547EI_MOBILE:
1292                 hw->mac_type = e1000_82547;
1293                 break;
1294         case E1000_DEV_ID_82547GI:
1295                 hw->mac_type = e1000_82547_rev_2;
1296                 break;
1297         case E1000_DEV_ID_82571EB_COPPER:
1298         case E1000_DEV_ID_82571EB_FIBER:
1299         case E1000_DEV_ID_82571EB_SERDES:
1300         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1301         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1302         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1303         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1304         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1305         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1306                 hw->mac_type = e1000_82571;
1307                 break;
1308         case E1000_DEV_ID_82572EI_COPPER:
1309         case E1000_DEV_ID_82572EI_FIBER:
1310         case E1000_DEV_ID_82572EI_SERDES:
1311         case E1000_DEV_ID_82572EI:
1312                 hw->mac_type = e1000_82572;
1313                 break;
1314         case E1000_DEV_ID_82573E:
1315         case E1000_DEV_ID_82573E_IAMT:
1316         case E1000_DEV_ID_82573L:
1317                 hw->mac_type = e1000_82573;
1318                 break;
1319         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1320         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1321         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1322         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1323                 hw->mac_type = e1000_80003es2lan;
1324                 break;
1325         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1326         case E1000_DEV_ID_ICH8_IGP_AMT:
1327         case E1000_DEV_ID_ICH8_IGP_C:
1328         case E1000_DEV_ID_ICH8_IFE:
1329         case E1000_DEV_ID_ICH8_IFE_GT:
1330         case E1000_DEV_ID_ICH8_IFE_G:
1331         case E1000_DEV_ID_ICH8_IGP_M:
1332                 hw->mac_type = e1000_ich8lan;
1333                 break;
1334         default:
1335                 /* Should never have loaded on this device */
1336                 return -E1000_ERR_MAC_TYPE;
1337         }
1338         return E1000_SUCCESS;
1339 }
1340
1341 /******************************************************************************
1342  * Reset the transmit and receive units; mask and clear all interrupts.
1343  *
1344  * hw - Struct containing variables accessed by shared code
1345  *****************************************************************************/
1346 void
1347 e1000_reset_hw(struct e1000_hw *hw)
1348 {
1349         uint32_t ctrl;
1350         uint32_t ctrl_ext;
1351         uint32_t icr;
1352         uint32_t manc;
1353         uint32_t pba = 0;
1354
1355         DEBUGFUNC();
1356
1357         /* get the correct pba value for both PCI and PCIe*/
1358         if (hw->mac_type <  e1000_82571)
1359                 pba = E1000_DEFAULT_PCI_PBA;
1360         else
1361                 pba = E1000_DEFAULT_PCIE_PBA;
1362
1363         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1364         if (hw->mac_type == e1000_82542_rev2_0) {
1365                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1366                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1367                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1368         }
1369
1370         /* Clear interrupt mask to stop board from generating interrupts */
1371         DEBUGOUT("Masking off all interrupts\n");
1372         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1373
1374         /* Disable the Transmit and Receive units.  Then delay to allow
1375          * any pending transactions to complete before we hit the MAC with
1376          * the global reset.
1377          */
1378         E1000_WRITE_REG(hw, RCTL, 0);
1379         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1380         E1000_WRITE_FLUSH(hw);
1381
1382         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1383         hw->tbi_compatibility_on = FALSE;
1384
1385         /* Delay to allow any outstanding PCI transactions to complete before
1386          * resetting the device
1387          */
1388         mdelay(10);
1389
1390         /* Issue a global reset to the MAC.  This will reset the chip's
1391          * transmit, receive, DMA, and link units.  It will not effect
1392          * the current PCI configuration.  The global reset bit is self-
1393          * clearing, and should clear within a microsecond.
1394          */
1395         DEBUGOUT("Issuing a global reset to MAC\n");
1396         ctrl = E1000_READ_REG(hw, CTRL);
1397
1398         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1399
1400         /* Force a reload from the EEPROM if necessary */
1401         if (hw->mac_type < e1000_82540) {
1402                 /* Wait for reset to complete */
1403                 udelay(10);
1404                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1405                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1406                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1407                 E1000_WRITE_FLUSH(hw);
1408                 /* Wait for EEPROM reload */
1409                 mdelay(2);
1410         } else {
1411                 /* Wait for EEPROM reload (it happens automatically) */
1412                 mdelay(4);
1413                 /* Dissable HW ARPs on ASF enabled adapters */
1414                 manc = E1000_READ_REG(hw, MANC);
1415                 manc &= ~(E1000_MANC_ARP_EN);
1416                 E1000_WRITE_REG(hw, MANC, manc);
1417         }
1418
1419         /* Clear interrupt mask to stop board from generating interrupts */
1420         DEBUGOUT("Masking off all interrupts\n");
1421         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1422
1423         /* Clear any pending interrupt events. */
1424         icr = E1000_READ_REG(hw, ICR);
1425
1426         /* If MWI was previously enabled, reenable it. */
1427         if (hw->mac_type == e1000_82542_rev2_0) {
1428                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1429         }
1430         E1000_WRITE_REG(hw, PBA, pba);
1431 }
1432
1433 /******************************************************************************
1434  *
1435  * Initialize a number of hardware-dependent bits
1436  *
1437  * hw: Struct containing variables accessed by shared code
1438  *
1439  * This function contains hardware limitation workarounds for PCI-E adapters
1440  *
1441  *****************************************************************************/
1442 static void
1443 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1444 {
1445         if ((hw->mac_type >= e1000_82571) &&
1446                         (!hw->initialize_hw_bits_disable)) {
1447                 /* Settings common to all PCI-express silicon */
1448                 uint32_t reg_ctrl, reg_ctrl_ext;
1449                 uint32_t reg_tarc0, reg_tarc1;
1450                 uint32_t reg_tctl;
1451                 uint32_t reg_txdctl, reg_txdctl1;
1452
1453                 /* link autonegotiation/sync workarounds */
1454                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1455                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1456
1457                 /* Enable not-done TX descriptor counting */
1458                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1459                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1460                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1461
1462                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1463                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1464                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1465
1466                 switch (hw->mac_type) {
1467                 case e1000_82571:
1468                 case e1000_82572:
1469                         /* Clear PHY TX compatible mode bits */
1470                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1471                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1472
1473                         /* link autonegotiation/sync workarounds */
1474                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1475
1476                         /* TX ring control fixes */
1477                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1478
1479                         /* Multiple read bit is reversed polarity */
1480                         reg_tctl = E1000_READ_REG(hw, TCTL);
1481                         if (reg_tctl & E1000_TCTL_MULR)
1482                                 reg_tarc1 &= ~(1 << 28);
1483                         else
1484                                 reg_tarc1 |= (1 << 28);
1485
1486                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1487                         break;
1488                 case e1000_82573:
1489                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1490                         reg_ctrl_ext &= ~(1 << 23);
1491                         reg_ctrl_ext |= (1 << 22);
1492
1493                         /* TX byte count fix */
1494                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1495                         reg_ctrl &= ~(1 << 29);
1496
1497                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1498                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1499                         break;
1500                 case e1000_80003es2lan:
1501         /* improve small packet performace for fiber/serdes */
1502                         if ((hw->media_type == e1000_media_type_fiber)
1503                         || (hw->media_type ==
1504                                 e1000_media_type_internal_serdes)) {
1505                                 reg_tarc0 &= ~(1 << 20);
1506                         }
1507
1508                 /* Multiple read bit is reversed polarity */
1509                         reg_tctl = E1000_READ_REG(hw, TCTL);
1510                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1511                         if (reg_tctl & E1000_TCTL_MULR)
1512                                 reg_tarc1 &= ~(1 << 28);
1513                         else
1514                                 reg_tarc1 |= (1 << 28);
1515
1516                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1517                         break;
1518                 case e1000_ich8lan:
1519                         /* Reduce concurrent DMA requests to 3 from 4 */
1520                         if ((hw->revision_id < 3) ||
1521                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1522                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1523                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1524
1525                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1526                         reg_ctrl_ext |= (1 << 22);
1527                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1528
1529                         /* workaround TX hang with TSO=on */
1530                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1531
1532                         /* Multiple read bit is reversed polarity */
1533                         reg_tctl = E1000_READ_REG(hw, TCTL);
1534                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1535                         if (reg_tctl & E1000_TCTL_MULR)
1536                                 reg_tarc1 &= ~(1 << 28);
1537                         else
1538                                 reg_tarc1 |= (1 << 28);
1539
1540                         /* workaround TX hang with TSO=on */
1541                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1542
1543                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1544                         break;
1545                 default:
1546                         break;
1547                 }
1548
1549                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1550         }
1551 }
1552
1553 /******************************************************************************
1554  * Performs basic configuration of the adapter.
1555  *
1556  * hw - Struct containing variables accessed by shared code
1557  *
1558  * Assumes that the controller has previously been reset and is in a
1559  * post-reset uninitialized state. Initializes the receive address registers,
1560  * multicast table, and VLAN filter table. Calls routines to setup link
1561  * configuration and flow control settings. Clears all on-chip counters. Leaves
1562  * the transmit and receive units disabled and uninitialized.
1563  *****************************************************************************/
1564 static int
1565 e1000_init_hw(struct eth_device *nic)
1566 {
1567         struct e1000_hw *hw = nic->priv;
1568         uint32_t ctrl;
1569         uint32_t i;
1570         int32_t ret_val;
1571         uint16_t pcix_cmd_word;
1572         uint16_t pcix_stat_hi_word;
1573         uint16_t cmd_mmrbc;
1574         uint16_t stat_mmrbc;
1575         uint32_t mta_size;
1576         uint32_t reg_data;
1577         uint32_t ctrl_ext;
1578         DEBUGFUNC();
1579         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1580         if ((hw->mac_type == e1000_ich8lan) &&
1581                 ((hw->revision_id < 3) ||
1582                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1583                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1584                         reg_data = E1000_READ_REG(hw, STATUS);
1585                         reg_data &= ~0x80000000;
1586                         E1000_WRITE_REG(hw, STATUS, reg_data);
1587         }
1588         /* Do not need initialize Identification LED */
1589
1590         /* Set the media type and TBI compatibility */
1591         e1000_set_media_type(hw);
1592
1593         /* Must be called after e1000_set_media_type
1594          * because media_type is used */
1595         e1000_initialize_hardware_bits(hw);
1596
1597         /* Disabling VLAN filtering. */
1598         DEBUGOUT("Initializing the IEEE VLAN\n");
1599         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1600         if (hw->mac_type != e1000_ich8lan) {
1601                 if (hw->mac_type < e1000_82545_rev_3)
1602                         E1000_WRITE_REG(hw, VET, 0);
1603                 e1000_clear_vfta(hw);
1604         }
1605
1606         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1607         if (hw->mac_type == e1000_82542_rev2_0) {
1608                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1609                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1610                                       hw->
1611                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1612                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1613                 E1000_WRITE_FLUSH(hw);
1614                 mdelay(5);
1615         }
1616
1617         /* Setup the receive address. This involves initializing all of the Receive
1618          * Address Registers (RARs 0 - 15).
1619          */
1620         e1000_init_rx_addrs(nic);
1621
1622         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1623         if (hw->mac_type == e1000_82542_rev2_0) {
1624                 E1000_WRITE_REG(hw, RCTL, 0);
1625                 E1000_WRITE_FLUSH(hw);
1626                 mdelay(1);
1627                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1628         }
1629
1630         /* Zero out the Multicast HASH table */
1631         DEBUGOUT("Zeroing the MTA\n");
1632         mta_size = E1000_MC_TBL_SIZE;
1633         if (hw->mac_type == e1000_ich8lan)
1634                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1635         for (i = 0; i < mta_size; i++) {
1636                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1637                 /* use write flush to prevent Memory Write Block (MWB) from
1638                  * occuring when accessing our register space */
1639                 E1000_WRITE_FLUSH(hw);
1640         }
1641 #if 0
1642         /* Set the PCI priority bit correctly in the CTRL register.  This
1643          * determines if the adapter gives priority to receives, or if it
1644          * gives equal priority to transmits and receives.  Valid only on
1645          * 82542 and 82543 silicon.
1646          */
1647         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1648                 ctrl = E1000_READ_REG(hw, CTRL);
1649                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1650         }
1651 #endif
1652         switch (hw->mac_type) {
1653         case e1000_82545_rev_3:
1654         case e1000_82546_rev_3:
1655                 break;
1656         default:
1657         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1658         if (hw->bus_type == e1000_bus_type_pcix) {
1659                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1660                                      &pcix_cmd_word);
1661                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1662                                      &pcix_stat_hi_word);
1663                 cmd_mmrbc =
1664                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1665                     PCIX_COMMAND_MMRBC_SHIFT;
1666                 stat_mmrbc =
1667                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1668                     PCIX_STATUS_HI_MMRBC_SHIFT;
1669                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1670                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1671                 if (cmd_mmrbc > stat_mmrbc) {
1672                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1673                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1674                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1675                                               pcix_cmd_word);
1676                 }
1677         }
1678                 break;
1679         }
1680
1681         /* More time needed for PHY to initialize */
1682         if (hw->mac_type == e1000_ich8lan)
1683                 mdelay(15);
1684
1685         /* Call a subroutine to configure the link and setup flow control. */
1686         ret_val = e1000_setup_link(nic);
1687
1688         /* Set the transmit descriptor write-back policy */
1689         if (hw->mac_type > e1000_82544) {
1690                 ctrl = E1000_READ_REG(hw, TXDCTL);
1691                 ctrl =
1692                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1693                     E1000_TXDCTL_FULL_TX_DESC_WB;
1694                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1695         }
1696
1697         switch (hw->mac_type) {
1698         default:
1699                 break;
1700         case e1000_80003es2lan:
1701                 /* Enable retransmit on late collisions */
1702                 reg_data = E1000_READ_REG(hw, TCTL);
1703                 reg_data |= E1000_TCTL_RTLC;
1704                 E1000_WRITE_REG(hw, TCTL, reg_data);
1705
1706                 /* Configure Gigabit Carry Extend Padding */
1707                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1708                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1709                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1710                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1711
1712                 /* Configure Transmit Inter-Packet Gap */
1713                 reg_data = E1000_READ_REG(hw, TIPG);
1714                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1715                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1716                 E1000_WRITE_REG(hw, TIPG, reg_data);
1717
1718                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1719                 reg_data &= ~0x00100000;
1720                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1721                 /* Fall through */
1722         case e1000_82571:
1723         case e1000_82572:
1724         case e1000_ich8lan:
1725                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1726                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1727                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1728                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1729                 break;
1730         }
1731
1732         if (hw->mac_type == e1000_82573) {
1733                 uint32_t gcr = E1000_READ_REG(hw, GCR);
1734                 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1735                 E1000_WRITE_REG(hw, GCR, gcr);
1736         }
1737
1738 #if 0
1739         /* Clear all of the statistics registers (clear on read).  It is
1740          * important that we do this after we have tried to establish link
1741          * because the symbol error count will increment wildly if there
1742          * is no link.
1743          */
1744         e1000_clear_hw_cntrs(hw);
1745
1746         /* ICH8 No-snoop bits are opposite polarity.
1747          * Set to snoop by default after reset. */
1748         if (hw->mac_type == e1000_ich8lan)
1749                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1750 #endif
1751
1752         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1753                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1754                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1755                 /* Relaxed ordering must be disabled to avoid a parity
1756                  * error crash in a PCI slot. */
1757                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1758                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1759         }
1760
1761         return ret_val;
1762 }
1763
1764 /******************************************************************************
1765  * Configures flow control and link settings.
1766  *
1767  * hw - Struct containing variables accessed by shared code
1768  *
1769  * Determines which flow control settings to use. Calls the apropriate media-
1770  * specific link configuration function. Configures the flow control settings.
1771  * Assuming the adapter has a valid link partner, a valid link should be
1772  * established. Assumes the hardware has previously been reset and the
1773  * transmitter and receiver are not enabled.
1774  *****************************************************************************/
1775 static int
1776 e1000_setup_link(struct eth_device *nic)
1777 {
1778         struct e1000_hw *hw = nic->priv;
1779         uint32_t ctrl_ext;
1780         int32_t ret_val;
1781         uint16_t eeprom_data;
1782
1783         DEBUGFUNC();
1784
1785         /* In the case of the phy reset being blocked, we already have a link.
1786          * We do not have to set it up again. */
1787         if (e1000_check_phy_reset_block(hw))
1788                 return E1000_SUCCESS;
1789
1790 #ifndef CONFIG_AP1000
1791         /* Read and store word 0x0F of the EEPROM. This word contains bits
1792          * that determine the hardware's default PAUSE (flow control) mode,
1793          * a bit that determines whether the HW defaults to enabling or
1794          * disabling auto-negotiation, and the direction of the
1795          * SW defined pins. If there is no SW over-ride of the flow
1796          * control setting, then the variable hw->fc will
1797          * be initialized based on a value in the EEPROM.
1798          */
1799         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1800                                 &eeprom_data) < 0) {
1801                 DEBUGOUT("EEPROM Read Error\n");
1802                 return -E1000_ERR_EEPROM;
1803         }
1804 #else
1805         /* we have to hardcode the proper value for our hardware. */
1806         /* this value is for the 82540EM pci card used for prototyping, and it works. */
1807         eeprom_data = 0xb220;
1808 #endif
1809
1810         if (hw->fc == e1000_fc_default) {
1811                 switch (hw->mac_type) {
1812                 case e1000_ich8lan:
1813                 case e1000_82573:
1814                         hw->fc = e1000_fc_full;
1815                         break;
1816                 default:
1817 #ifndef CONFIG_AP1000
1818                         ret_val = e1000_read_eeprom(hw,
1819                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1820                         if (ret_val) {
1821                                 DEBUGOUT("EEPROM Read Error\n");
1822                                 return -E1000_ERR_EEPROM;
1823                         }
1824 #else
1825                         eeprom_data = 0xb220;
1826 #endif
1827                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1828                                 hw->fc = e1000_fc_none;
1829                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1830                                     EEPROM_WORD0F_ASM_DIR)
1831                                 hw->fc = e1000_fc_tx_pause;
1832                         else
1833                                 hw->fc = e1000_fc_full;
1834                         break;
1835                 }
1836         }
1837
1838         /* We want to save off the original Flow Control configuration just
1839          * in case we get disconnected and then reconnected into a different
1840          * hub or switch with different Flow Control capabilities.
1841          */
1842         if (hw->mac_type == e1000_82542_rev2_0)
1843                 hw->fc &= (~e1000_fc_tx_pause);
1844
1845         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1846                 hw->fc &= (~e1000_fc_rx_pause);
1847
1848         hw->original_fc = hw->fc;
1849
1850         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1851
1852         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1853          * polarity value for the SW controlled pins, and setup the
1854          * Extended Device Control reg with that info.
1855          * This is needed because one of the SW controlled pins is used for
1856          * signal detection.  So this should be done before e1000_setup_pcs_link()
1857          * or e1000_phy_setup() is called.
1858          */
1859         if (hw->mac_type == e1000_82543) {
1860                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1861                             SWDPIO__EXT_SHIFT);
1862                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1863         }
1864
1865         /* Call the necessary subroutine to configure the link. */
1866         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1867             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1868         if (ret_val < 0) {
1869                 return ret_val;
1870         }
1871
1872         /* Initialize the flow control address, type, and PAUSE timer
1873          * registers to their default values.  This is done even if flow
1874          * control is disabled, because it does not hurt anything to
1875          * initialize these registers.
1876          */
1877         DEBUGOUT("Initializing the Flow Control address, type"
1878                         "and timer regs\n");
1879
1880         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1881         if (hw->mac_type != e1000_ich8lan) {
1882                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1883                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1884                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1885         }
1886
1887         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1888
1889         /* Set the flow control receive threshold registers.  Normally,
1890          * these registers will be set to a default threshold that may be
1891          * adjusted later by the driver's runtime code.  However, if the
1892          * ability to transmit pause frames in not enabled, then these
1893          * registers will be set to 0.
1894          */
1895         if (!(hw->fc & e1000_fc_tx_pause)) {
1896                 E1000_WRITE_REG(hw, FCRTL, 0);
1897                 E1000_WRITE_REG(hw, FCRTH, 0);
1898         } else {
1899                 /* We need to set up the Receive Threshold high and low water marks
1900                  * as well as (optionally) enabling the transmission of XON frames.
1901                  */
1902                 if (hw->fc_send_xon) {
1903                         E1000_WRITE_REG(hw, FCRTL,
1904                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1905                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1906                 } else {
1907                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1908                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1909                 }
1910         }
1911         return ret_val;
1912 }
1913
1914 /******************************************************************************
1915  * Sets up link for a fiber based adapter
1916  *
1917  * hw - Struct containing variables accessed by shared code
1918  *
1919  * Manipulates Physical Coding Sublayer functions in order to configure
1920  * link. Assumes the hardware has been previously reset and the transmitter
1921  * and receiver are not enabled.
1922  *****************************************************************************/
1923 static int
1924 e1000_setup_fiber_link(struct eth_device *nic)
1925 {
1926         struct e1000_hw *hw = nic->priv;
1927         uint32_t ctrl;
1928         uint32_t status;
1929         uint32_t txcw = 0;
1930         uint32_t i;
1931         uint32_t signal;
1932         int32_t ret_val;
1933
1934         DEBUGFUNC();
1935         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1936          * set when the optics detect a signal. On older adapters, it will be
1937          * cleared when there is a signal
1938          */
1939         ctrl = E1000_READ_REG(hw, CTRL);
1940         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1941                 signal = E1000_CTRL_SWDPIN1;
1942         else
1943                 signal = 0;
1944
1945         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1946                ctrl);
1947         /* Take the link out of reset */
1948         ctrl &= ~(E1000_CTRL_LRST);
1949
1950         e1000_config_collision_dist(hw);
1951
1952         /* Check for a software override of the flow control settings, and setup
1953          * the device accordingly.  If auto-negotiation is enabled, then software
1954          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1955          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1956          * auto-negotiation is disabled, then software will have to manually
1957          * configure the two flow control enable bits in the CTRL register.
1958          *
1959          * The possible values of the "fc" parameter are:
1960          *      0:  Flow control is completely disabled
1961          *      1:  Rx flow control is enabled (we can receive pause frames, but
1962          *          not send pause frames).
1963          *      2:  Tx flow control is enabled (we can send pause frames but we do
1964          *          not support receiving pause frames).
1965          *      3:  Both Rx and TX flow control (symmetric) are enabled.
1966          */
1967         switch (hw->fc) {
1968         case e1000_fc_none:
1969                 /* Flow control is completely disabled by a software over-ride. */
1970                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1971                 break;
1972         case e1000_fc_rx_pause:
1973                 /* RX Flow control is enabled and TX Flow control is disabled by a
1974                  * software over-ride. Since there really isn't a way to advertise
1975                  * that we are capable of RX Pause ONLY, we will advertise that we
1976                  * support both symmetric and asymmetric RX PAUSE. Later, we will
1977                  *  disable the adapter's ability to send PAUSE frames.
1978                  */
1979                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1980                 break;
1981         case e1000_fc_tx_pause:
1982                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1983                  * software over-ride.
1984                  */
1985                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1986                 break;
1987         case e1000_fc_full:
1988                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1989                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1990                 break;
1991         default:
1992                 DEBUGOUT("Flow control param set incorrectly\n");
1993                 return -E1000_ERR_CONFIG;
1994                 break;
1995         }
1996
1997         /* Since auto-negotiation is enabled, take the link out of reset (the link
1998          * will be in reset, because we previously reset the chip). This will
1999          * restart auto-negotiation.  If auto-neogtiation is successful then the
2000          * link-up status bit will be set and the flow control enable bits (RFCE
2001          * and TFCE) will be set according to their negotiated value.
2002          */
2003         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2004
2005         E1000_WRITE_REG(hw, TXCW, txcw);
2006         E1000_WRITE_REG(hw, CTRL, ctrl);
2007         E1000_WRITE_FLUSH(hw);
2008
2009         hw->txcw = txcw;
2010         mdelay(1);
2011
2012         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2013          * indication in the Device Status Register.  Time-out if a link isn't
2014          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2015          * less than 500 milliseconds even if the other end is doing it in SW).
2016          */
2017         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2018                 DEBUGOUT("Looking for Link\n");
2019                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2020                         mdelay(10);
2021                         status = E1000_READ_REG(hw, STATUS);
2022                         if (status & E1000_STATUS_LU)
2023                                 break;
2024                 }
2025                 if (i == (LINK_UP_TIMEOUT / 10)) {
2026                         /* AutoNeg failed to achieve a link, so we'll call
2027                          * e1000_check_for_link. This routine will force the link up if we
2028                          * detect a signal. This will allow us to communicate with
2029                          * non-autonegotiating link partners.
2030                          */
2031                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2032                         hw->autoneg_failed = 1;
2033                         ret_val = e1000_check_for_link(nic);
2034                         if (ret_val < 0) {
2035                                 DEBUGOUT("Error while checking for link\n");
2036                                 return ret_val;
2037                         }
2038                         hw->autoneg_failed = 0;
2039                 } else {
2040                         hw->autoneg_failed = 0;
2041                         DEBUGOUT("Valid Link Found\n");
2042                 }
2043         } else {
2044                 DEBUGOUT("No Signal Detected\n");
2045                 return -E1000_ERR_NOLINK;
2046         }
2047         return 0;
2048 }
2049
2050 /******************************************************************************
2051 * Make sure we have a valid PHY and change PHY mode before link setup.
2052 *
2053 * hw - Struct containing variables accessed by shared code
2054 ******************************************************************************/
2055 static int32_t
2056 e1000_copper_link_preconfig(struct e1000_hw *hw)
2057 {
2058         uint32_t ctrl;
2059         int32_t ret_val;
2060         uint16_t phy_data;
2061
2062         DEBUGFUNC();
2063
2064         ctrl = E1000_READ_REG(hw, CTRL);
2065         /* With 82543, we need to force speed and duplex on the MAC equal to what
2066          * the PHY speed and duplex configuration is. In addition, we need to
2067          * perform a hardware reset on the PHY to take it out of reset.
2068          */
2069         if (hw->mac_type > e1000_82543) {
2070                 ctrl |= E1000_CTRL_SLU;
2071                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2072                 E1000_WRITE_REG(hw, CTRL, ctrl);
2073         } else {
2074                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2075                                 | E1000_CTRL_SLU);
2076                 E1000_WRITE_REG(hw, CTRL, ctrl);
2077                 ret_val = e1000_phy_hw_reset(hw);
2078                 if (ret_val)
2079                         return ret_val;
2080         }
2081
2082         /* Make sure we have a valid PHY */
2083         ret_val = e1000_detect_gig_phy(hw);
2084         if (ret_val) {
2085                 DEBUGOUT("Error, did not detect valid phy.\n");
2086                 return ret_val;
2087         }
2088         DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2089
2090 #ifndef CONFIG_AP1000
2091         /* Set PHY to class A mode (if necessary) */
2092         ret_val = e1000_set_phy_mode(hw);
2093         if (ret_val)
2094                 return ret_val;
2095 #endif
2096         if ((hw->mac_type == e1000_82545_rev_3) ||
2097                 (hw->mac_type == e1000_82546_rev_3)) {
2098                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2099                                 &phy_data);
2100                 phy_data |= 0x00000008;
2101                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2102                                 phy_data);
2103         }
2104
2105         if (hw->mac_type <= e1000_82543 ||
2106                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2107                 hw->mac_type == e1000_82541_rev_2
2108                 || hw->mac_type == e1000_82547_rev_2)
2109                         hw->phy_reset_disable = FALSE;
2110
2111         return E1000_SUCCESS;
2112 }
2113
2114 /*****************************************************************************
2115  *
2116  * This function sets the lplu state according to the active flag.  When
2117  * activating lplu this function also disables smart speed and vise versa.
2118  * lplu will not be activated unless the device autonegotiation advertisment
2119  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2120  * hw: Struct containing variables accessed by shared code
2121  * active - true to enable lplu false to disable lplu.
2122  *
2123  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2124  *            E1000_SUCCESS at any other case.
2125  *
2126  ****************************************************************************/
2127
2128 static int32_t
2129 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2130 {
2131         uint32_t phy_ctrl = 0;
2132         int32_t ret_val;
2133         uint16_t phy_data;
2134         DEBUGFUNC();
2135
2136         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2137             && hw->phy_type != e1000_phy_igp_3)
2138                 return E1000_SUCCESS;
2139
2140         /* During driver activity LPLU should not be used or it will attain link
2141          * from the lowest speeds starting from 10Mbps. The capability is used
2142          * for Dx transitions and states */
2143         if (hw->mac_type == e1000_82541_rev_2
2144                         || hw->mac_type == e1000_82547_rev_2) {
2145                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2146                                 &phy_data);
2147                 if (ret_val)
2148                         return ret_val;
2149         } else if (hw->mac_type == e1000_ich8lan) {
2150                 /* MAC writes into PHY register based on the state transition
2151                  * and start auto-negotiation. SW driver can overwrite the
2152                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2153                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2154         } else {
2155                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2156                                 &phy_data);
2157                 if (ret_val)
2158                         return ret_val;
2159         }
2160
2161         if (!active) {
2162                 if (hw->mac_type == e1000_82541_rev_2 ||
2163                         hw->mac_type == e1000_82547_rev_2) {
2164                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2165                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2166                                         phy_data);
2167                         if (ret_val)
2168                                 return ret_val;
2169                 } else {
2170                         if (hw->mac_type == e1000_ich8lan) {
2171                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2172                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2173                         } else {
2174                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2175                                 ret_val = e1000_write_phy_reg(hw,
2176                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2177                                 if (ret_val)
2178                                         return ret_val;
2179                         }
2180                 }
2181
2182         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2183          * Dx states where the power conservation is most important.  During
2184          * driver activity we should enable SmartSpeed, so performance is
2185          * maintained. */
2186                 if (hw->smart_speed == e1000_smart_speed_on) {
2187                         ret_val = e1000_read_phy_reg(hw,
2188                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2189                         if (ret_val)
2190                                 return ret_val;
2191
2192                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2193                         ret_val = e1000_write_phy_reg(hw,
2194                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2195                         if (ret_val)
2196                                 return ret_val;
2197                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2198                         ret_val = e1000_read_phy_reg(hw,
2199                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2200                         if (ret_val)
2201                                 return ret_val;
2202
2203                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2204                         ret_val = e1000_write_phy_reg(hw,
2205                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2206                         if (ret_val)
2207                                 return ret_val;
2208                 }
2209
2210         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2211                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2212                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2213
2214                 if (hw->mac_type == e1000_82541_rev_2 ||
2215                     hw->mac_type == e1000_82547_rev_2) {
2216                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2217                         ret_val = e1000_write_phy_reg(hw,
2218                                         IGP01E1000_GMII_FIFO, phy_data);
2219                         if (ret_val)
2220                                 return ret_val;
2221                 } else {
2222                         if (hw->mac_type == e1000_ich8lan) {
2223                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2224                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2225                         } else {
2226                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2227                                 ret_val = e1000_write_phy_reg(hw,
2228                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2229                                 if (ret_val)
2230                                         return ret_val;
2231                         }
2232                 }
2233
2234                 /* When LPLU is enabled we should disable SmartSpeed */
2235                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2236                                 &phy_data);
2237                 if (ret_val)
2238                         return ret_val;
2239
2240                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2241                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2242                                 phy_data);
2243                 if (ret_val)
2244                         return ret_val;
2245         }
2246         return E1000_SUCCESS;
2247 }
2248
2249 /*****************************************************************************
2250  *
2251  * This function sets the lplu d0 state according to the active flag.  When
2252  * activating lplu this function also disables smart speed and vise versa.
2253  * lplu will not be activated unless the device autonegotiation advertisment
2254  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2255  * hw: Struct containing variables accessed by shared code
2256  * active - true to enable lplu false to disable lplu.
2257  *
2258  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2259  *            E1000_SUCCESS at any other case.
2260  *
2261  ****************************************************************************/
2262
2263 static int32_t
2264 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2265 {
2266         uint32_t phy_ctrl = 0;
2267         int32_t ret_val;
2268         uint16_t phy_data;
2269         DEBUGFUNC();
2270
2271         if (hw->mac_type <= e1000_82547_rev_2)
2272                 return E1000_SUCCESS;
2273
2274         if (hw->mac_type == e1000_ich8lan) {
2275                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2276         } else {
2277                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2278                                 &phy_data);
2279                 if (ret_val)
2280                         return ret_val;
2281         }
2282
2283         if (!active) {
2284                 if (hw->mac_type == e1000_ich8lan) {
2285                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2286                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2287                 } else {
2288                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2289                         ret_val = e1000_write_phy_reg(hw,
2290                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2291                         if (ret_val)
2292                                 return ret_val;
2293                 }
2294
2295         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2296          * Dx states where the power conservation is most important.  During
2297          * driver activity we should enable SmartSpeed, so performance is
2298          * maintained. */
2299                 if (hw->smart_speed == e1000_smart_speed_on) {
2300                         ret_val = e1000_read_phy_reg(hw,
2301                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2302                         if (ret_val)
2303                                 return ret_val;
2304
2305                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2306                         ret_val = e1000_write_phy_reg(hw,
2307                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2308                         if (ret_val)
2309                                 return ret_val;
2310                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2311                         ret_val = e1000_read_phy_reg(hw,
2312                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2313                         if (ret_val)
2314                                 return ret_val;
2315
2316                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2317                         ret_val = e1000_write_phy_reg(hw,
2318                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2319                         if (ret_val)
2320                                 return ret_val;
2321                 }
2322
2323
2324         } else {
2325
2326                 if (hw->mac_type == e1000_ich8lan) {
2327                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2328                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2329                 } else {
2330                         phy_data |= IGP02E1000_PM_D0_LPLU;
2331                         ret_val = e1000_write_phy_reg(hw,
2332                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2333                         if (ret_val)
2334                                 return ret_val;
2335                 }
2336
2337                 /* When LPLU is enabled we should disable SmartSpeed */
2338                 ret_val = e1000_read_phy_reg(hw,
2339                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2340                 if (ret_val)
2341                         return ret_val;
2342
2343                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2344                 ret_val = e1000_write_phy_reg(hw,
2345                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2346                 if (ret_val)
2347                         return ret_val;
2348
2349         }
2350         return E1000_SUCCESS;
2351 }
2352
2353 /********************************************************************
2354 * Copper link setup for e1000_phy_igp series.
2355 *
2356 * hw - Struct containing variables accessed by shared code
2357 *********************************************************************/
2358 static int32_t
2359 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2360 {
2361         uint32_t led_ctrl;
2362         int32_t ret_val;
2363         uint16_t phy_data;
2364
2365         DEBUGFUNC();
2366
2367         if (hw->phy_reset_disable)
2368                 return E1000_SUCCESS;
2369
2370         ret_val = e1000_phy_reset(hw);
2371         if (ret_val) {
2372                 DEBUGOUT("Error Resetting the PHY\n");
2373                 return ret_val;
2374         }
2375
2376         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2377         mdelay(15);
2378         if (hw->mac_type != e1000_ich8lan) {
2379                 /* Configure activity LED after PHY reset */
2380                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2381                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2382                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2383                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2384         }
2385
2386         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2387         if (hw->phy_type == e1000_phy_igp) {
2388                 /* disable lplu d3 during driver init */
2389                 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2390                 if (ret_val) {
2391                         DEBUGOUT("Error Disabling LPLU D3\n");
2392                         return ret_val;
2393                 }
2394         }
2395
2396         /* disable lplu d0 during driver init */
2397         ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2398         if (ret_val) {
2399                 DEBUGOUT("Error Disabling LPLU D0\n");
2400                 return ret_val;
2401         }
2402         /* Configure mdi-mdix settings */
2403         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2404         if (ret_val)
2405                 return ret_val;
2406
2407         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2408                 hw->dsp_config_state = e1000_dsp_config_disabled;
2409                 /* Force MDI for earlier revs of the IGP PHY */
2410                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2411                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2412                 hw->mdix = 1;
2413
2414         } else {
2415                 hw->dsp_config_state = e1000_dsp_config_enabled;
2416                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2417
2418                 switch (hw->mdix) {
2419                 case 1:
2420                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2421                         break;
2422                 case 2:
2423                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2424                         break;
2425                 case 0:
2426                 default:
2427                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2428                         break;
2429                 }
2430         }
2431         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2432         if (ret_val)
2433                 return ret_val;
2434
2435         /* set auto-master slave resolution settings */
2436         if (hw->autoneg) {
2437                 e1000_ms_type phy_ms_setting = hw->master_slave;
2438
2439                 if (hw->ffe_config_state == e1000_ffe_config_active)
2440                         hw->ffe_config_state = e1000_ffe_config_enabled;
2441
2442                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2443                         hw->dsp_config_state = e1000_dsp_config_enabled;
2444
2445                 /* when autonegotiation advertisment is only 1000Mbps then we
2446                   * should disable SmartSpeed and enable Auto MasterSlave
2447                   * resolution as hardware default. */
2448                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2449                         /* Disable SmartSpeed */
2450                         ret_val = e1000_read_phy_reg(hw,
2451                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2452                         if (ret_val)
2453                                 return ret_val;
2454                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2455                         ret_val = e1000_write_phy_reg(hw,
2456                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2457                         if (ret_val)
2458                                 return ret_val;
2459                         /* Set auto Master/Slave resolution process */
2460                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2461                                         &phy_data);
2462                         if (ret_val)
2463                                 return ret_val;
2464                         phy_data &= ~CR_1000T_MS_ENABLE;
2465                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2466                                         phy_data);
2467                         if (ret_val)
2468                                 return ret_val;
2469                 }
2470
2471                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2472                 if (ret_val)
2473                         return ret_val;
2474
2475                 /* load defaults for future use */
2476                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2477                                 ((phy_data & CR_1000T_MS_VALUE) ?
2478                                 e1000_ms_force_master :
2479                                 e1000_ms_force_slave) :
2480                                 e1000_ms_auto;
2481
2482                 switch (phy_ms_setting) {
2483                 case e1000_ms_force_master:
2484                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2485                         break;
2486                 case e1000_ms_force_slave:
2487                         phy_data |= CR_1000T_MS_ENABLE;
2488                         phy_data &= ~(CR_1000T_MS_VALUE);
2489                         break;
2490                 case e1000_ms_auto:
2491                         phy_data &= ~CR_1000T_MS_ENABLE;
2492                 default:
2493                         break;
2494                 }
2495                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2496                 if (ret_val)
2497                         return ret_val;
2498         }
2499
2500         return E1000_SUCCESS;
2501 }
2502
2503 /*****************************************************************************
2504  * This function checks the mode of the firmware.
2505  *
2506  * returns  - TRUE when the mode is IAMT or FALSE.
2507  ****************************************************************************/
2508 boolean_t
2509 e1000_check_mng_mode(struct e1000_hw *hw)
2510 {
2511         uint32_t fwsm;
2512         DEBUGFUNC();
2513
2514         fwsm = E1000_READ_REG(hw, FWSM);
2515
2516         if (hw->mac_type == e1000_ich8lan) {
2517                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2518                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2519                         return TRUE;
2520         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2521                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2522                         return TRUE;
2523
2524         return FALSE;
2525 }
2526
2527 static int32_t
2528 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2529 {
2530         uint32_t reg_val;
2531         uint16_t swfw;
2532         DEBUGFUNC();
2533
2534         if ((hw->mac_type == e1000_80003es2lan) &&
2535                 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2536                 swfw = E1000_SWFW_PHY1_SM;
2537         } else {
2538                 swfw = E1000_SWFW_PHY0_SM;
2539         }
2540         if (e1000_swfw_sync_acquire(hw, swfw))
2541                 return -E1000_ERR_SWFW_SYNC;
2542
2543         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2544                         & E1000_KUMCTRLSTA_OFFSET) | data;
2545         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2546         udelay(2);
2547
2548         return E1000_SUCCESS;
2549 }
2550
2551 static int32_t
2552 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2553 {
2554         uint32_t reg_val;
2555         uint16_t swfw;
2556         DEBUGFUNC();
2557
2558         if ((hw->mac_type == e1000_80003es2lan) &&
2559             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2560                 swfw = E1000_SWFW_PHY1_SM;
2561         } else {
2562                 swfw = E1000_SWFW_PHY0_SM;
2563         }
2564         if (e1000_swfw_sync_acquire(hw, swfw))
2565                 return -E1000_ERR_SWFW_SYNC;
2566
2567         /* Write register address */
2568         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2569                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2570         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2571         udelay(2);
2572
2573         /* Read the data returned */
2574         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2575         *data = (uint16_t)reg_val;
2576
2577         return E1000_SUCCESS;
2578 }
2579
2580 /********************************************************************
2581 * Copper link setup for e1000_phy_gg82563 series.
2582 *
2583 * hw - Struct containing variables accessed by shared code
2584 *********************************************************************/
2585 static int32_t
2586 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2587 {
2588         int32_t ret_val;
2589         uint16_t phy_data;
2590         uint32_t reg_data;
2591
2592         DEBUGFUNC();
2593
2594         if (!hw->phy_reset_disable) {
2595                 /* Enable CRS on TX for half-duplex operation. */
2596                 ret_val = e1000_read_phy_reg(hw,
2597                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2598                 if (ret_val)
2599                         return ret_val;
2600
2601                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2602                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2603                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2604
2605                 ret_val = e1000_write_phy_reg(hw,
2606                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2607                 if (ret_val)
2608                         return ret_val;
2609
2610                 /* Options:
2611                  *   MDI/MDI-X = 0 (default)
2612                  *   0 - Auto for all speeds
2613                  *   1 - MDI mode
2614                  *   2 - MDI-X mode
2615                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2616                  */
2617                 ret_val = e1000_read_phy_reg(hw,
2618                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2619                 if (ret_val)
2620                         return ret_val;
2621
2622                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2623
2624                 switch (hw->mdix) {
2625                 case 1:
2626                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2627                         break;
2628                 case 2:
2629                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2630                         break;
2631                 case 0:
2632                 default:
2633                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2634                         break;
2635                 }
2636
2637                 /* Options:
2638                  *   disable_polarity_correction = 0 (default)
2639                  *       Automatic Correction for Reversed Cable Polarity
2640                  *   0 - Disabled
2641                  *   1 - Enabled
2642                  */
2643                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2644                 ret_val = e1000_write_phy_reg(hw,
2645                                 GG82563_PHY_SPEC_CTRL, phy_data);
2646
2647                 if (ret_val)
2648                         return ret_val;
2649
2650                 /* SW Reset the PHY so all changes take effect */
2651                 ret_val = e1000_phy_reset(hw);
2652                 if (ret_val) {
2653                         DEBUGOUT("Error Resetting the PHY\n");
2654                         return ret_val;
2655                 }
2656         } /* phy_reset_disable */
2657
2658         if (hw->mac_type == e1000_80003es2lan) {
2659                 /* Bypass RX and TX FIFO's */
2660                 ret_val = e1000_write_kmrn_reg(hw,
2661                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2662                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2663                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2664                 if (ret_val)
2665                         return ret_val;
2666
2667                 ret_val = e1000_read_phy_reg(hw,
2668                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2669                 if (ret_val)
2670                         return ret_val;
2671
2672                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2673                 ret_val = e1000_write_phy_reg(hw,
2674                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2675
2676                 if (ret_val)
2677                         return ret_val;
2678
2679                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2680                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2681                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2682
2683                 ret_val = e1000_read_phy_reg(hw,
2684                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2685                 if (ret_val)
2686                         return ret_val;
2687
2688         /* Do not init these registers when the HW is in IAMT mode, since the
2689          * firmware will have already initialized them.  We only initialize
2690          * them if the HW is not in IAMT mode.
2691          */
2692                 if (e1000_check_mng_mode(hw) == FALSE) {
2693                         /* Enable Electrical Idle on the PHY */
2694                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2695                         ret_val = e1000_write_phy_reg(hw,
2696                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2697                         if (ret_val)
2698                                 return ret_val;
2699
2700                         ret_val = e1000_read_phy_reg(hw,
2701                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2702                         if (ret_val)
2703                                 return ret_val;
2704
2705                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2706                         ret_val = e1000_write_phy_reg(hw,
2707                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2708
2709                         if (ret_val)
2710                                 return ret_val;
2711                 }
2712
2713                 /* Workaround: Disable padding in Kumeran interface in the MAC
2714                  * and in the PHY to avoid CRC errors.
2715                  */
2716                 ret_val = e1000_read_phy_reg(hw,
2717                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2718                 if (ret_val)
2719                         return ret_val;
2720                 phy_data |= GG82563_ICR_DIS_PADDING;
2721                 ret_val = e1000_write_phy_reg(hw,
2722                                 GG82563_PHY_INBAND_CTRL, phy_data);
2723                 if (ret_val)
2724                         return ret_val;
2725         }
2726         return E1000_SUCCESS;
2727 }
2728
2729 /********************************************************************
2730 * Copper link setup for e1000_phy_m88 series.
2731 *
2732 * hw - Struct containing variables accessed by shared code
2733 *********************************************************************/
2734 static int32_t
2735 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2736 {
2737         int32_t ret_val;
2738         uint16_t phy_data;
2739
2740         DEBUGFUNC();
2741
2742         if (hw->phy_reset_disable)
2743                 return E1000_SUCCESS;
2744
2745         /* Enable CRS on TX. This must be set for half-duplex operation. */
2746         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2747         if (ret_val)
2748                 return ret_val;
2749
2750         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2751
2752         /* Options:
2753          *   MDI/MDI-X = 0 (default)
2754          *   0 - Auto for all speeds
2755          *   1 - MDI mode
2756          *   2 - MDI-X mode
2757          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2758          */
2759         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2760
2761         switch (hw->mdix) {
2762         case 1:
2763                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2764                 break;
2765         case 2:
2766                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2767                 break;
2768         case 3:
2769                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2770                 break;
2771         case 0:
2772         default:
2773                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2774                 break;
2775         }
2776
2777         /* Options:
2778          *   disable_polarity_correction = 0 (default)
2779          *       Automatic Correction for Reversed Cable Polarity
2780          *   0 - Disabled
2781          *   1 - Enabled
2782          */
2783         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2784         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2785         if (ret_val)
2786                 return ret_val;
2787
2788         if (hw->phy_revision < M88E1011_I_REV_4) {
2789                 /* Force TX_CLK in the Extended PHY Specific Control Register
2790                  * to 25MHz clock.
2791                  */
2792                 ret_val = e1000_read_phy_reg(hw,
2793                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2794                 if (ret_val)
2795                         return ret_val;
2796
2797                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2798
2799                 if ((hw->phy_revision == E1000_REVISION_2) &&
2800                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2801                         /* Vidalia Phy, set the downshift counter to 5x */
2802                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2803                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2804                         ret_val = e1000_write_phy_reg(hw,
2805                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2806                         if (ret_val)
2807                                 return ret_val;
2808                 } else {
2809                         /* Configure Master and Slave downshift values */
2810                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2811                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2812                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2813                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2814                         ret_val = e1000_write_phy_reg(hw,
2815                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2816                         if (ret_val)
2817                                 return ret_val;
2818                 }
2819         }
2820
2821         /* SW Reset the PHY so all changes take effect */
2822         ret_val = e1000_phy_reset(hw);
2823         if (ret_val) {
2824                 DEBUGOUT("Error Resetting the PHY\n");
2825                 return ret_val;
2826         }
2827
2828         return E1000_SUCCESS;
2829 }
2830
2831 /********************************************************************
2832 * Setup auto-negotiation and flow control advertisements,
2833 * and then perform auto-negotiation.
2834 *
2835 * hw - Struct containing variables accessed by shared code
2836 *********************************************************************/
2837 static int32_t
2838 e1000_copper_link_autoneg(struct e1000_hw *hw)
2839 {
2840         int32_t ret_val;
2841         uint16_t phy_data;
2842
2843         DEBUGFUNC();
2844
2845         /* Perform some bounds checking on the hw->autoneg_advertised
2846          * parameter.  If this variable is zero, then set it to the default.
2847          */
2848         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2849
2850         /* If autoneg_advertised is zero, we assume it was not defaulted
2851          * by the calling code so we set to advertise full capability.
2852          */
2853         if (hw->autoneg_advertised == 0)
2854                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2855
2856         /* IFE phy only supports 10/100 */
2857         if (hw->phy_type == e1000_phy_ife)
2858                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2859
2860         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2861         ret_val = e1000_phy_setup_autoneg(hw);
2862         if (ret_val) {
2863                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2864                 return ret_val;
2865         }
2866         DEBUGOUT("Restarting Auto-Neg\n");
2867
2868         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2869          * the Auto Neg Restart bit in the PHY control register.
2870          */
2871         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2872         if (ret_val)
2873                 return ret_val;
2874
2875         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2876         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2877         if (ret_val)
2878                 return ret_val;
2879
2880         /* Does the user want to wait for Auto-Neg to complete here, or
2881          * check at a later time (for example, callback routine).
2882          */
2883         /* If we do not wait for autonegtation to complete I
2884          * do not see a valid link status.
2885          * wait_autoneg_complete = 1 .
2886          */
2887         if (hw->wait_autoneg_complete) {
2888                 ret_val = e1000_wait_autoneg(hw);
2889                 if (ret_val) {
2890                         DEBUGOUT("Error while waiting for autoneg"
2891                                         "to complete\n");
2892                         return ret_val;
2893                 }
2894         }
2895
2896         hw->get_link_status = TRUE;
2897
2898         return E1000_SUCCESS;
2899 }
2900
2901 /******************************************************************************
2902 * Config the MAC and the PHY after link is up.
2903 *   1) Set up the MAC to the current PHY speed/duplex
2904 *      if we are on 82543.  If we
2905 *      are on newer silicon, we only need to configure
2906 *      collision distance in the Transmit Control Register.
2907 *   2) Set up flow control on the MAC to that established with
2908 *      the link partner.
2909 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2910 *
2911 * hw - Struct containing variables accessed by shared code
2912 ******************************************************************************/
2913 static int32_t
2914 e1000_copper_link_postconfig(struct e1000_hw *hw)
2915 {
2916         int32_t ret_val;
2917         DEBUGFUNC();
2918
2919         if (hw->mac_type >= e1000_82544) {
2920                 e1000_config_collision_dist(hw);
2921         } else {
2922                 ret_val = e1000_config_mac_to_phy(hw);
2923                 if (ret_val) {
2924                         DEBUGOUT("Error configuring MAC to PHY settings\n");
2925                         return ret_val;
2926                 }
2927         }
2928         ret_val = e1000_config_fc_after_link_up(hw);
2929         if (ret_val) {
2930                 DEBUGOUT("Error Configuring Flow Control\n");
2931                 return ret_val;
2932         }
2933         return E1000_SUCCESS;
2934 }
2935
2936 /******************************************************************************
2937 * Detects which PHY is present and setup the speed and duplex
2938 *
2939 * hw - Struct containing variables accessed by shared code
2940 ******************************************************************************/
2941 static int
2942 e1000_setup_copper_link(struct eth_device *nic)
2943 {
2944         struct e1000_hw *hw = nic->priv;
2945         int32_t ret_val;
2946         uint16_t i;
2947         uint16_t phy_data;
2948         uint16_t reg_data;
2949
2950         DEBUGFUNC();
2951
2952         switch (hw->mac_type) {
2953         case e1000_80003es2lan:
2954         case e1000_ich8lan:
2955                 /* Set the mac to wait the maximum time between each
2956                  * iteration and increase the max iterations when
2957                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2958                 ret_val = e1000_write_kmrn_reg(hw,
2959                                 GG82563_REG(0x34, 4), 0xFFFF);
2960                 if (ret_val)
2961                         return ret_val;
2962                 ret_val = e1000_read_kmrn_reg(hw,
2963                                 GG82563_REG(0x34, 9), &reg_data);
2964                 if (ret_val)
2965                         return ret_val;
2966                 reg_data |= 0x3F;
2967                 ret_val = e1000_write_kmrn_reg(hw,
2968                                 GG82563_REG(0x34, 9), reg_data);
2969                 if (ret_val)
2970                         return ret_val;
2971         default:
2972                 break;
2973         }
2974
2975         /* Check if it is a valid PHY and set PHY mode if necessary. */
2976         ret_val = e1000_copper_link_preconfig(hw);
2977         if (ret_val)
2978                 return ret_val;
2979         switch (hw->mac_type) {
2980         case e1000_80003es2lan:
2981                 /* Kumeran registers are written-only */
2982                 reg_data =
2983                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2984                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2985                 ret_val = e1000_write_kmrn_reg(hw,
2986                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2987                 if (ret_val)
2988                         return ret_val;
2989                 break;
2990         default:
2991                 break;
2992         }
2993
2994         if (hw->phy_type == e1000_phy_igp ||
2995                 hw->phy_type == e1000_phy_igp_3 ||
2996                 hw->phy_type == e1000_phy_igp_2) {
2997                 ret_val = e1000_copper_link_igp_setup(hw);
2998                 if (ret_val)
2999                         return ret_val;
3000         } else if (hw->phy_type == e1000_phy_m88) {
3001                 ret_val = e1000_copper_link_mgp_setup(hw);
3002                 if (ret_val)
3003                         return ret_val;
3004         } else if (hw->phy_type == e1000_phy_gg82563) {
3005                 ret_val = e1000_copper_link_ggp_setup(hw);
3006                 if (ret_val)
3007                         return ret_val;
3008         }
3009
3010         /* always auto */
3011         /* Setup autoneg and flow control advertisement
3012           * and perform autonegotiation */
3013         ret_val = e1000_copper_link_autoneg(hw);
3014         if (ret_val)
3015                 return ret_val;
3016
3017         /* Check link status. Wait up to 100 microseconds for link to become
3018          * valid.
3019          */
3020         for (i = 0; i < 10; i++) {
3021                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3022                 if (ret_val)
3023                         return ret_val;
3024                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3025                 if (ret_val)
3026                         return ret_val;
3027
3028                 if (phy_data & MII_SR_LINK_STATUS) {
3029                         /* Config the MAC and PHY after link is up */
3030                         ret_val = e1000_copper_link_postconfig(hw);
3031                         if (ret_val)
3032                                 return ret_val;
3033
3034                         DEBUGOUT("Valid link established!!!\n");
3035                         return E1000_SUCCESS;
3036                 }
3037                 udelay(10);
3038         }
3039
3040         DEBUGOUT("Unable to establish link!!!\n");
3041         return E1000_SUCCESS;
3042 }
3043
3044 /******************************************************************************
3045 * Configures PHY autoneg and flow control advertisement settings
3046 *
3047 * hw - Struct containing variables accessed by shared code
3048 ******************************************************************************/
3049 int32_t
3050 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3051 {
3052         int32_t ret_val;
3053         uint16_t mii_autoneg_adv_reg;
3054         uint16_t mii_1000t_ctrl_reg;
3055
3056         DEBUGFUNC();
3057
3058         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3059         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3060         if (ret_val)
3061                 return ret_val;
3062
3063         if (hw->phy_type != e1000_phy_ife) {
3064                 /* Read the MII 1000Base-T Control Register (Address 9). */
3065                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3066                                 &mii_1000t_ctrl_reg);
3067                 if (ret_val)
3068                         return ret_val;
3069         } else
3070                 mii_1000t_ctrl_reg = 0;
3071
3072         /* Need to parse both autoneg_advertised and fc and set up
3073          * the appropriate PHY registers.  First we will parse for
3074          * autoneg_advertised software override.  Since we can advertise
3075          * a plethora of combinations, we need to check each bit
3076          * individually.
3077          */
3078
3079         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3080          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3081          * the  1000Base-T Control Register (Address 9).
3082          */
3083         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3084         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3085
3086         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3087
3088         /* Do we want to advertise 10 Mb Half Duplex? */
3089         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3090                 DEBUGOUT("Advertise 10mb Half duplex\n");
3091                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3092         }
3093
3094         /* Do we want to advertise 10 Mb Full Duplex? */
3095         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3096                 DEBUGOUT("Advertise 10mb Full duplex\n");
3097                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3098         }
3099
3100         /* Do we want to advertise 100 Mb Half Duplex? */
3101         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3102                 DEBUGOUT("Advertise 100mb Half duplex\n");
3103                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3104         }
3105
3106         /* Do we want to advertise 100 Mb Full Duplex? */
3107         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3108                 DEBUGOUT("Advertise 100mb Full duplex\n");
3109                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3110         }
3111
3112         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3113         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3114                 DEBUGOUT
3115                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3116         }
3117
3118         /* Do we want to advertise 1000 Mb Full Duplex? */
3119         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3120                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3121                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3122         }
3123
3124         /* Check for a software override of the flow control settings, and
3125          * setup the PHY advertisement registers accordingly.  If
3126          * auto-negotiation is enabled, then software will have to set the
3127          * "PAUSE" bits to the correct value in the Auto-Negotiation
3128          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3129          *
3130          * The possible values of the "fc" parameter are:
3131          *      0:  Flow control is completely disabled
3132          *      1:  Rx flow control is enabled (we can receive pause frames
3133          *          but not send pause frames).
3134          *      2:  Tx flow control is enabled (we can send pause frames
3135          *          but we do not support receiving pause frames).
3136          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3137          *  other:  No software override.  The flow control configuration
3138          *          in the EEPROM is used.
3139          */
3140         switch (hw->fc) {
3141         case e1000_fc_none:     /* 0 */
3142                 /* Flow control (RX & TX) is completely disabled by a
3143                  * software over-ride.
3144                  */
3145                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3146                 break;
3147         case e1000_fc_rx_pause: /* 1 */
3148                 /* RX Flow control is enabled, and TX Flow control is
3149                  * disabled, by a software over-ride.
3150                  */
3151                 /* Since there really isn't a way to advertise that we are
3152                  * capable of RX Pause ONLY, we will advertise that we
3153                  * support both symmetric and asymmetric RX PAUSE.  Later
3154                  * (in e1000_config_fc_after_link_up) we will disable the
3155                  *hw's ability to send PAUSE frames.
3156                  */
3157                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3158                 break;
3159         case e1000_fc_tx_pause: /* 2 */
3160                 /* TX Flow control is enabled, and RX Flow control is
3161                  * disabled, by a software over-ride.
3162                  */
3163                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3164                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3165                 break;
3166         case e1000_fc_full:     /* 3 */
3167                 /* Flow control (both RX and TX) is enabled by a software
3168                  * over-ride.
3169                  */
3170                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3171                 break;
3172         default:
3173                 DEBUGOUT("Flow control param set incorrectly\n");
3174                 return -E1000_ERR_CONFIG;
3175         }
3176
3177         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3178         if (ret_val)
3179                 return ret_val;
3180
3181         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3182
3183         if (hw->phy_type != e1000_phy_ife) {
3184                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3185                                 mii_1000t_ctrl_reg);
3186                 if (ret_val)
3187                         return ret_val;
3188         }
3189
3190         return E1000_SUCCESS;
3191 }
3192
3193 /******************************************************************************
3194 * Sets the collision distance in the Transmit Control register
3195 *
3196 * hw - Struct containing variables accessed by shared code
3197 *
3198 * Link should have been established previously. Reads the speed and duplex
3199 * information from the Device Status register.
3200 ******************************************************************************/
3201 static void
3202 e1000_config_collision_dist(struct e1000_hw *hw)
3203 {
3204         uint32_t tctl, coll_dist;
3205
3206         DEBUGFUNC();
3207
3208         if (hw->mac_type < e1000_82543)
3209                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3210         else
3211                 coll_dist = E1000_COLLISION_DISTANCE;
3212
3213         tctl = E1000_READ_REG(hw, TCTL);
3214
3215         tctl &= ~E1000_TCTL_COLD;
3216         tctl |= coll_dist << E1000_COLD_SHIFT;
3217
3218         E1000_WRITE_REG(hw, TCTL, tctl);
3219         E1000_WRITE_FLUSH(hw);
3220 }
3221
3222 /******************************************************************************
3223 * Sets MAC speed and duplex settings to reflect the those in the PHY
3224 *
3225 * hw - Struct containing variables accessed by shared code
3226 * mii_reg - data to write to the MII control register
3227 *
3228 * The contents of the PHY register containing the needed information need to
3229 * be passed in.
3230 ******************************************************************************/
3231 static int
3232 e1000_config_mac_to_phy(struct e1000_hw *hw)
3233 {
3234         uint32_t ctrl;
3235         uint16_t phy_data;
3236
3237         DEBUGFUNC();
3238
3239         /* Read the Device Control Register and set the bits to Force Speed
3240          * and Duplex.
3241          */
3242         ctrl = E1000_READ_REG(hw, CTRL);
3243         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3244         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3245
3246         /* Set up duplex in the Device Control and Transmit Control
3247          * registers depending on negotiated values.
3248          */
3249         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3250                 DEBUGOUT("PHY Read Error\n");
3251                 return -E1000_ERR_PHY;
3252         }
3253         if (phy_data & M88E1000_PSSR_DPLX)
3254                 ctrl |= E1000_CTRL_FD;
3255         else
3256                 ctrl &= ~E1000_CTRL_FD;
3257
3258         e1000_config_collision_dist(hw);
3259
3260         /* Set up speed in the Device Control register depending on
3261          * negotiated values.
3262          */
3263         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3264                 ctrl |= E1000_CTRL_SPD_1000;
3265         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3266                 ctrl |= E1000_CTRL_SPD_100;
3267         /* Write the configured values back to the Device Control Reg. */
3268         E1000_WRITE_REG(hw, CTRL, ctrl);
3269         return 0;
3270 }
3271
3272 /******************************************************************************
3273  * Forces the MAC's flow control settings.
3274  *
3275  * hw - Struct containing variables accessed by shared code
3276  *
3277  * Sets the TFCE and RFCE bits in the device control register to reflect
3278  * the adapter settings. TFCE and RFCE need to be explicitly set by
3279  * software when a Copper PHY is used because autonegotiation is managed
3280  * by the PHY rather than the MAC. Software must also configure these
3281  * bits when link is forced on a fiber connection.
3282  *****************************************************************************/
3283 static int
3284 e1000_force_mac_fc(struct e1000_hw *hw)
3285 {
3286         uint32_t ctrl;
3287
3288         DEBUGFUNC();
3289
3290         /* Get the current configuration of the Device Control Register */
3291         ctrl = E1000_READ_REG(hw, CTRL);
3292
3293         /* Because we didn't get link via the internal auto-negotiation
3294          * mechanism (we either forced link or we got link via PHY
3295          * auto-neg), we have to manually enable/disable transmit an
3296          * receive flow control.
3297          *
3298          * The "Case" statement below enables/disable flow control
3299          * according to the "hw->fc" parameter.
3300          *
3301          * The possible values of the "fc" parameter are:
3302          *      0:  Flow control is completely disabled
3303          *      1:  Rx flow control is enabled (we can receive pause
3304          *          frames but not send pause frames).
3305          *      2:  Tx flow control is enabled (we can send pause frames
3306          *          frames but we do not receive pause frames).
3307          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3308          *  other:  No other values should be possible at this point.
3309          */
3310
3311         switch (hw->fc) {
3312         case e1000_fc_none:
3313                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3314                 break;
3315         case e1000_fc_rx_pause:
3316                 ctrl &= (~E1000_CTRL_TFCE);
3317                 ctrl |= E1000_CTRL_RFCE;
3318                 break;
3319         case e1000_fc_tx_pause:
3320                 ctrl &= (~E1000_CTRL_RFCE);
3321                 ctrl |= E1000_CTRL_TFCE;
3322                 break;
3323         case e1000_fc_full:
3324                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3325                 break;
3326         default:
3327                 DEBUGOUT("Flow control param set incorrectly\n");
3328                 return -E1000_ERR_CONFIG;
3329         }
3330
3331         /* Disable TX Flow Control for 82542 (rev 2.0) */
3332         if (hw->mac_type == e1000_82542_rev2_0)
3333                 ctrl &= (~E1000_CTRL_TFCE);
3334
3335         E1000_WRITE_REG(hw, CTRL, ctrl);
3336         return 0;
3337 }
3338
3339 /******************************************************************************
3340  * Configures flow control settings after link is established
3341  *
3342  * hw - Struct containing variables accessed by shared code
3343  *
3344  * Should be called immediately after a valid link has been established.
3345  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3346  * and autonegotiation is enabled, the MAC flow control settings will be set
3347  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3348  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3349  *****************************************************************************/
3350 static int32_t
3351 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3352 {
3353         int32_t ret_val;
3354         uint16_t mii_status_reg;
3355         uint16_t mii_nway_adv_reg;
3356         uint16_t mii_nway_lp_ability_reg;
3357         uint16_t speed;
3358         uint16_t duplex;
3359
3360         DEBUGFUNC();
3361
3362         /* Check for the case where we have fiber media and auto-neg failed
3363          * so we had to force link.  In this case, we need to force the
3364          * configuration of the MAC to match the "fc" parameter.
3365          */
3366         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3367                 || ((hw->media_type == e1000_media_type_internal_serdes)
3368                 && (hw->autoneg_failed))
3369                 || ((hw->media_type == e1000_media_type_copper)
3370                 && (!hw->autoneg))) {
3371                 ret_val = e1000_force_mac_fc(hw);
3372                 if (ret_val < 0) {
3373                         DEBUGOUT("Error forcing flow control settings\n");
3374                         return ret_val;
3375                 }
3376         }
3377
3378         /* Check for the case where we have copper media and auto-neg is
3379          * enabled.  In this case, we need to check and see if Auto-Neg
3380          * has completed, and if so, how the PHY and link partner has
3381          * flow control configured.
3382          */
3383         if (hw->media_type == e1000_media_type_copper) {
3384                 /* Read the MII Status Register and check to see if AutoNeg
3385                  * has completed.  We read this twice because this reg has
3386                  * some "sticky" (latched) bits.
3387                  */
3388                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3389                         DEBUGOUT("PHY Read Error \n");
3390                         return -E1000_ERR_PHY;
3391                 }
3392                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3393                         DEBUGOUT("PHY Read Error \n");
3394                         return -E1000_ERR_PHY;
3395                 }
3396
3397                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3398                         /* The AutoNeg process has completed, so we now need to
3399                          * read both the Auto Negotiation Advertisement Register
3400                          * (Address 4) and the Auto_Negotiation Base Page Ability
3401                          * Register (Address 5) to determine how flow control was
3402                          * negotiated.
3403                          */
3404                         if (e1000_read_phy_reg
3405                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3406                                 DEBUGOUT("PHY Read Error\n");
3407                                 return -E1000_ERR_PHY;
3408                         }
3409                         if (e1000_read_phy_reg
3410                             (hw, PHY_LP_ABILITY,
3411                              &mii_nway_lp_ability_reg) < 0) {
3412                                 DEBUGOUT("PHY Read Error\n");
3413                                 return -E1000_ERR_PHY;
3414                         }
3415
3416                         /* Two bits in the Auto Negotiation Advertisement Register
3417                          * (Address 4) and two bits in the Auto Negotiation Base
3418                          * Page Ability Register (Address 5) determine flow control
3419                          * for both the PHY and the link partner.  The following
3420                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3421                          * 1999, describes these PAUSE resolution bits and how flow
3422                          * control is determined based upon these settings.
3423                          * NOTE:  DC = Don't Care
3424                          *
3425                          *   LOCAL DEVICE  |   LINK PARTNER
3426                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3427                          *-------|---------|-------|---------|--------------------
3428                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3429                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3430                          *   0   |    1    |   1   |    0    | e1000_fc_none
3431                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3432                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3433                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3434                          *   1   |    1    |   0   |    0    | e1000_fc_none
3435                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3436                          *
3437                          */
3438                         /* Are both PAUSE bits set to 1?  If so, this implies
3439                          * Symmetric Flow Control is enabled at both ends.  The
3440                          * ASM_DIR bits are irrelevant per the spec.
3441                          *
3442                          * For Symmetric Flow Control:
3443                          *
3444                          *   LOCAL DEVICE  |   LINK PARTNER
3445                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3446                          *-------|---------|-------|---------|--------------------
3447                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3448                          *
3449                          */
3450                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3451                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3452                                 /* Now we need to check if the user selected RX ONLY
3453                                  * of pause frames.  In this case, we had to advertise
3454                                  * FULL flow control because we could not advertise RX
3455                                  * ONLY. Hence, we must now check to see if we need to
3456                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3457                                  */
3458                                 if (hw->original_fc == e1000_fc_full) {
3459                                         hw->fc = e1000_fc_full;
3460                                         DEBUGOUT("Flow Control = FULL.\r\n");
3461                                 } else {
3462                                         hw->fc = e1000_fc_rx_pause;
3463                                         DEBUGOUT
3464                                             ("Flow Control = RX PAUSE frames only.\r\n");
3465                                 }
3466                         }
3467                         /* For receiving PAUSE frames ONLY.
3468                          *
3469                          *   LOCAL DEVICE  |   LINK PARTNER
3470                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3471                          *-------|---------|-------|---------|--------------------
3472                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3473                          *
3474                          */
3475                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3476                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3477                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3478                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3479                         {
3480                                 hw->fc = e1000_fc_tx_pause;
3481                                 DEBUGOUT
3482                                     ("Flow Control = TX PAUSE frames only.\r\n");
3483                         }
3484                         /* For transmitting PAUSE frames ONLY.
3485                          *
3486                          *   LOCAL DEVICE  |   LINK PARTNER
3487                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3488                          *-------|---------|-------|---------|--------------------
3489                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3490                          *
3491                          */
3492                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3493                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3494                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3495                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3496                         {
3497                                 hw->fc = e1000_fc_rx_pause;
3498                                 DEBUGOUT
3499                                     ("Flow Control = RX PAUSE frames only.\r\n");
3500                         }
3501                         /* Per the IEEE spec, at this point flow control should be
3502                          * disabled.  However, we want to consider that we could
3503                          * be connected to a legacy switch that doesn't advertise
3504                          * desired flow control, but can be forced on the link
3505                          * partner.  So if we advertised no flow control, that is
3506                          * what we will resolve to.  If we advertised some kind of
3507                          * receive capability (Rx Pause Only or Full Flow Control)
3508                          * and the link partner advertised none, we will configure
3509                          * ourselves to enable Rx Flow Control only.  We can do
3510                          * this safely for two reasons:  If the link partner really
3511                          * didn't want flow control enabled, and we enable Rx, no
3512                          * harm done since we won't be receiving any PAUSE frames
3513                          * anyway.  If the intent on the link partner was to have
3514                          * flow control enabled, then by us enabling RX only, we
3515                          * can at least receive pause frames and process them.
3516                          * This is a good idea because in most cases, since we are
3517                          * predominantly a server NIC, more times than not we will
3518                          * be asked to delay transmission of packets than asking
3519                          * our link partner to pause transmission of frames.
3520                          */
3521                         else if (hw->original_fc == e1000_fc_none ||
3522                                  hw->original_fc == e1000_fc_tx_pause) {
3523                                 hw->fc = e1000_fc_none;
3524                                 DEBUGOUT("Flow Control = NONE.\r\n");
3525                         } else {
3526                                 hw->fc = e1000_fc_rx_pause;
3527                                 DEBUGOUT
3528                                     ("Flow Control = RX PAUSE frames only.\r\n");
3529                         }
3530
3531                         /* Now we need to do one last check...  If we auto-
3532                          * negotiated to HALF DUPLEX, flow control should not be
3533                          * enabled per IEEE 802.3 spec.
3534                          */
3535                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3536
3537                         if (duplex == HALF_DUPLEX)
3538                                 hw->fc = e1000_fc_none;
3539
3540                         /* Now we call a subroutine to actually force the MAC
3541                          * controller to use the correct flow control settings.
3542                          */
3543                         ret_val = e1000_force_mac_fc(hw);
3544                         if (ret_val < 0) {
3545                                 DEBUGOUT
3546                                     ("Error forcing flow control settings\n");
3547                                 return ret_val;
3548                         }
3549                 } else {
3550                         DEBUGOUT
3551                             ("Copper PHY and Auto Neg has not completed.\r\n");
3552                 }
3553         }
3554         return E1000_SUCCESS;
3555 }
3556
3557 /******************************************************************************
3558  * Checks to see if the link status of the hardware has changed.
3559  *
3560  * hw - Struct containing variables accessed by shared code
3561  *
3562  * Called by any function that needs to check the link status of the adapter.
3563  *****************************************************************************/
3564 static int
3565 e1000_check_for_link(struct eth_device *nic)
3566 {
3567         struct e1000_hw *hw = nic->priv;
3568         uint32_t rxcw;
3569         uint32_t ctrl;
3570         uint32_t status;
3571         uint32_t rctl;
3572         uint32_t signal;
3573         int32_t ret_val;
3574         uint16_t phy_data;
3575         uint16_t lp_capability;
3576
3577         DEBUGFUNC();
3578
3579         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3580          * set when the optics detect a signal. On older adapters, it will be
3581          * cleared when there is a signal
3582          */
3583         ctrl = E1000_READ_REG(hw, CTRL);
3584         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3585                 signal = E1000_CTRL_SWDPIN1;
3586         else
3587                 signal = 0;
3588
3589         status = E1000_READ_REG(hw, STATUS);
3590         rxcw = E1000_READ_REG(hw, RXCW);
3591         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3592
3593         /* If we have a copper PHY then we only want to go out to the PHY
3594          * registers to see if Auto-Neg has completed and/or if our link
3595          * status has changed.  The get_link_status flag will be set if we
3596          * receive a Link Status Change interrupt or we have Rx Sequence
3597          * Errors.
3598          */
3599         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3600                 /* First we want to see if the MII Status Register reports
3601                  * link.  If so, then we want to get the current speed/duplex
3602                  * of the PHY.
3603                  * Read the register twice since the link bit is sticky.
3604                  */
3605                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3606                         DEBUGOUT("PHY Read Error\n");
3607                         return -E1000_ERR_PHY;
3608                 }
3609                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3610                         DEBUGOUT("PHY Read Error\n");
3611                         return -E1000_ERR_PHY;
3612                 }
3613
3614                 if (phy_data & MII_SR_LINK_STATUS) {
3615                         hw->get_link_status = FALSE;
3616                 } else {
3617                         /* No link detected */
3618                         return -E1000_ERR_NOLINK;
3619                 }
3620
3621                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3622                  * have Si on board that is 82544 or newer, Auto
3623                  * Speed Detection takes care of MAC speed/duplex
3624                  * configuration.  So we only need to configure Collision
3625                  * Distance in the MAC.  Otherwise, we need to force
3626                  * speed/duplex on the MAC to the current PHY speed/duplex
3627                  * settings.
3628                  */
3629                 if (hw->mac_type >= e1000_82544)
3630                         e1000_config_collision_dist(hw);
3631                 else {
3632                         ret_val = e1000_config_mac_to_phy(hw);
3633                         if (ret_val < 0) {
3634                                 DEBUGOUT
3635                                     ("Error configuring MAC to PHY settings\n");
3636                                 return ret_val;
3637                         }
3638                 }
3639
3640                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3641                  * need to restore the desired flow control settings because we may
3642                  * have had to re-autoneg with a different link partner.
3643                  */
3644                 ret_val = e1000_config_fc_after_link_up(hw);
3645                 if (ret_val < 0) {
3646                         DEBUGOUT("Error configuring flow control\n");
3647                         return ret_val;
3648                 }
3649
3650                 /* At this point we know that we are on copper and we have
3651                  * auto-negotiated link.  These are conditions for checking the link
3652                  * parter capability register.  We use the link partner capability to
3653                  * determine if TBI Compatibility needs to be turned on or off.  If
3654                  * the link partner advertises any speed in addition to Gigabit, then
3655                  * we assume that they are GMII-based, and TBI compatibility is not
3656                  * needed. If no other speeds are advertised, we assume the link
3657                  * partner is TBI-based, and we turn on TBI Compatibility.
3658                  */
3659                 if (hw->tbi_compatibility_en) {
3660                         if (e1000_read_phy_reg
3661                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3662                                 DEBUGOUT("PHY Read Error\n");
3663                                 return -E1000_ERR_PHY;
3664                         }
3665                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3666                                              NWAY_LPAR_10T_FD_CAPS |
3667                                              NWAY_LPAR_100TX_HD_CAPS |
3668                                              NWAY_LPAR_100TX_FD_CAPS |
3669                                              NWAY_LPAR_100T4_CAPS)) {
3670                                 /* If our link partner advertises anything in addition to
3671                                  * gigabit, we do not need to enable TBI compatibility.
3672                                  */
3673                                 if (hw->tbi_compatibility_on) {
3674                                         /* If we previously were in the mode, turn it off. */
3675                                         rctl = E1000_READ_REG(hw, RCTL);
3676                                         rctl &= ~E1000_RCTL_SBP;
3677                                         E1000_WRITE_REG(hw, RCTL, rctl);
3678                                         hw->tbi_compatibility_on = FALSE;
3679                                 }
3680                         } else {
3681                                 /* If TBI compatibility is was previously off, turn it on. For
3682                                  * compatibility with a TBI link partner, we will store bad
3683                                  * packets. Some frames have an additional byte on the end and
3684                                  * will look like CRC errors to to the hardware.
3685                                  */
3686                                 if (!hw->tbi_compatibility_on) {
3687                                         hw->tbi_compatibility_on = TRUE;
3688                                         rctl = E1000_READ_REG(hw, RCTL);
3689                                         rctl |= E1000_RCTL_SBP;
3690                                         E1000_WRITE_REG(hw, RCTL, rctl);
3691                                 }
3692                         }
3693                 }
3694         }
3695         /* If we don't have link (auto-negotiation failed or link partner cannot
3696          * auto-negotiate), the cable is plugged in (we have signal), and our
3697          * link partner is not trying to auto-negotiate with us (we are receiving
3698          * idles or data), we need to force link up. We also need to give
3699          * auto-negotiation time to complete, in case the cable was just plugged
3700          * in. The autoneg_failed flag does this.
3701          */
3702         else if ((hw->media_type == e1000_media_type_fiber) &&
3703                  (!(status & E1000_STATUS_LU)) &&
3704                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3705                  (!(rxcw & E1000_RXCW_C))) {
3706                 if (hw->autoneg_failed == 0) {
3707                         hw->autoneg_failed = 1;
3708                         return 0;
3709                 }
3710                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3711
3712                 /* Disable auto-negotiation in the TXCW register */
3713                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3714
3715                 /* Force link-up and also force full-duplex. */
3716                 ctrl = E1000_READ_REG(hw, CTRL);
3717                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3718                 E1000_WRITE_REG(hw, CTRL, ctrl);
3719
3720                 /* Configure Flow Control after forcing link up. */
3721                 ret_val = e1000_config_fc_after_link_up(hw);
3722                 if (ret_val < 0) {
3723                         DEBUGOUT("Error configuring flow control\n");
3724                         return ret_val;
3725                 }
3726         }
3727         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3728          * auto-negotiation in the TXCW register and disable forced link in the
3729          * Device Control register in an attempt to auto-negotiate with our link
3730          * partner.
3731          */
3732         else if ((hw->media_type == e1000_media_type_fiber) &&
3733                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3734                 DEBUGOUT
3735                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3736                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3737                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3738         }
3739         return 0;
3740 }
3741
3742 /******************************************************************************
3743 * Configure the MAC-to-PHY interface for 10/100Mbps
3744 *
3745 * hw - Struct containing variables accessed by shared code
3746 ******************************************************************************/
3747 static int32_t
3748 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3749 {
3750         int32_t ret_val = E1000_SUCCESS;
3751         uint32_t tipg;
3752         uint16_t reg_data;
3753
3754         DEBUGFUNC();
3755
3756         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3757         ret_val = e1000_write_kmrn_reg(hw,
3758                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3759         if (ret_val)
3760                 return ret_val;
3761
3762         /* Configure Transmit Inter-Packet Gap */
3763         tipg = E1000_READ_REG(hw, TIPG);
3764         tipg &= ~E1000_TIPG_IPGT_MASK;
3765         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3766         E1000_WRITE_REG(hw, TIPG, tipg);
3767
3768         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3769
3770         if (ret_val)
3771                 return ret_val;
3772
3773         if (duplex == HALF_DUPLEX)
3774                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3775         else
3776                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3777
3778         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3779
3780         return ret_val;
3781 }
3782
3783 static int32_t
3784 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3785 {
3786         int32_t ret_val = E1000_SUCCESS;
3787         uint16_t reg_data;
3788         uint32_t tipg;
3789
3790         DEBUGFUNC();
3791
3792         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3793         ret_val = e1000_write_kmrn_reg(hw,
3794                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3795         if (ret_val)
3796                 return ret_val;
3797
3798         /* Configure Transmit Inter-Packet Gap */
3799         tipg = E1000_READ_REG(hw, TIPG);
3800         tipg &= ~E1000_TIPG_IPGT_MASK;
3801         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3802         E1000_WRITE_REG(hw, TIPG, tipg);
3803
3804         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3805
3806         if (ret_val)
3807                 return ret_val;
3808
3809         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3810         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3811
3812         return ret_val;
3813 }
3814
3815 /******************************************************************************
3816  * Detects the current speed and duplex settings of the hardware.
3817  *
3818  * hw - Struct containing variables accessed by shared code
3819  * speed - Speed of the connection
3820  * duplex - Duplex setting of the connection
3821  *****************************************************************************/
3822 static int
3823 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3824                 uint16_t *duplex)
3825 {
3826         uint32_t status;
3827         int32_t ret_val;
3828         uint16_t phy_data;
3829
3830         DEBUGFUNC();
3831
3832         if (hw->mac_type >= e1000_82543) {
3833                 status = E1000_READ_REG(hw, STATUS);
3834                 if (status & E1000_STATUS_SPEED_1000) {
3835                         *speed = SPEED_1000;
3836                         DEBUGOUT("1000 Mbs, ");
3837                 } else if (status & E1000_STATUS_SPEED_100) {
3838                         *speed = SPEED_100;
3839                         DEBUGOUT("100 Mbs, ");
3840                 } else {
3841                         *speed = SPEED_10;
3842                         DEBUGOUT("10 Mbs, ");
3843                 }
3844
3845                 if (status & E1000_STATUS_FD) {
3846                         *duplex = FULL_DUPLEX;
3847                         DEBUGOUT("Full Duplex\r\n");
3848                 } else {
3849                         *duplex = HALF_DUPLEX;
3850                         DEBUGOUT(" Half Duplex\r\n");
3851                 }
3852         } else {
3853                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3854                 *speed = SPEED_1000;
3855                 *duplex = FULL_DUPLEX;
3856         }
3857
3858         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3859          * even if it is operating at half duplex.  Here we set the duplex
3860          * settings to match the duplex in the link partner's capabilities.
3861          */
3862         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3863                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3864                 if (ret_val)
3865                         return ret_val;
3866
3867                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3868                         *duplex = HALF_DUPLEX;
3869                 else {
3870                         ret_val = e1000_read_phy_reg(hw,
3871                                         PHY_LP_ABILITY, &phy_data);
3872                         if (ret_val)
3873                                 return ret_val;
3874                         if ((*speed == SPEED_100 &&
3875                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3876                                 || (*speed == SPEED_10
3877                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3878                                 *duplex = HALF_DUPLEX;
3879                 }
3880         }
3881
3882         if ((hw->mac_type == e1000_80003es2lan) &&
3883                 (hw->media_type == e1000_media_type_copper)) {
3884                 if (*speed == SPEED_1000)
3885                         ret_val = e1000_configure_kmrn_for_1000(hw);
3886                 else
3887                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3888                 if (ret_val)
3889                         return ret_val;
3890         }
3891         return E1000_SUCCESS;
3892 }
3893
3894 /******************************************************************************
3895 * Blocks until autoneg completes or times out (~4.5 seconds)
3896 *
3897 * hw - Struct containing variables accessed by shared code
3898 ******************************************************************************/
3899 static int
3900 e1000_wait_autoneg(struct e1000_hw *hw)
3901 {
3902         uint16_t i;
3903         uint16_t phy_data;
3904
3905         DEBUGFUNC();
3906         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3907
3908         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3909         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3910                 /* Read the MII Status Register and wait for Auto-Neg
3911                  * Complete bit to be set.
3912                  */
3913                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3914                         DEBUGOUT("PHY Read Error\n");
3915                         return -E1000_ERR_PHY;
3916                 }
3917                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3918                         DEBUGOUT("PHY Read Error\n");
3919                         return -E1000_ERR_PHY;
3920                 }
3921                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3922                         DEBUGOUT("Auto-Neg complete.\n");
3923                         return 0;
3924                 }
3925                 mdelay(100);
3926         }
3927         DEBUGOUT("Auto-Neg timedout.\n");
3928         return -E1000_ERR_TIMEOUT;
3929 }
3930
3931 /******************************************************************************
3932 * Raises the Management Data Clock
3933 *
3934 * hw - Struct containing variables accessed by shared code
3935 * ctrl - Device control register's current value
3936 ******************************************************************************/
3937 static void
3938 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3939 {
3940         /* Raise the clock input to the Management Data Clock (by setting the MDC
3941          * bit), and then delay 2 microseconds.
3942          */
3943         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3944         E1000_WRITE_FLUSH(hw);
3945         udelay(2);
3946 }
3947
3948 /******************************************************************************
3949 * Lowers the Management Data Clock
3950 *
3951 * hw - Struct containing variables accessed by shared code
3952 * ctrl - Device control register's current value
3953 ******************************************************************************/
3954 static void
3955 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3956 {
3957         /* Lower the clock input to the Management Data Clock (by clearing the MDC
3958          * bit), and then delay 2 microseconds.
3959          */
3960         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3961         E1000_WRITE_FLUSH(hw);
3962         udelay(2);
3963 }
3964
3965 /******************************************************************************
3966 * Shifts data bits out to the PHY
3967 *
3968 * hw - Struct containing variables accessed by shared code
3969 * data - Data to send out to the PHY
3970 * count - Number of bits to shift out
3971 *
3972 * Bits are shifted out in MSB to LSB order.
3973 ******************************************************************************/
3974 static void
3975 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3976 {
3977         uint32_t ctrl;
3978         uint32_t mask;
3979
3980         /* We need to shift "count" number of bits out to the PHY. So, the value
3981          * in the "data" parameter will be shifted out to the PHY one bit at a
3982          * time. In order to do this, "data" must be broken down into bits.
3983          */
3984         mask = 0x01;
3985         mask <<= (count - 1);
3986
3987         ctrl = E1000_READ_REG(hw, CTRL);
3988
3989         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3990         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3991
3992         while (mask) {
3993                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3994                  * then raising and lowering the Management Data Clock. A "0" is
3995                  * shifted out to the PHY by setting the MDIO bit to "0" and then
3996                  * raising and lowering the clock.
3997                  */
3998                 if (data & mask)
3999                         ctrl |= E1000_CTRL_MDIO;
4000                 else
4001                         ctrl &= ~E1000_CTRL_MDIO;
4002
4003                 E1000_WRITE_REG(hw, CTRL, ctrl);
4004                 E1000_WRITE_FLUSH(hw);
4005
4006                 udelay(2);
4007
4008                 e1000_raise_mdi_clk(hw, &ctrl);
4009                 e1000_lower_mdi_clk(hw, &ctrl);
4010
4011                 mask = mask >> 1;
4012         }
4013 }
4014
4015 /******************************************************************************
4016 * Shifts data bits in from the PHY
4017 *
4018 * hw - Struct containing variables accessed by shared code
4019 *
4020 * Bits are shifted in in MSB to LSB order.
4021 ******************************************************************************/
4022 static uint16_t
4023 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4024 {
4025         uint32_t ctrl;
4026         uint16_t data = 0;
4027         uint8_t i;
4028
4029         /* In order to read a register from the PHY, we need to shift in a total
4030          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4031          * to avoid contention on the MDIO pin when a read operation is performed.
4032          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4033          * by raising the input to the Management Data Clock (setting the MDC bit),
4034          * and then reading the value of the MDIO bit.
4035          */
4036         ctrl = E1000_READ_REG(hw, CTRL);
4037
4038         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4039         ctrl &= ~E1000_CTRL_MDIO_DIR;
4040         ctrl &= ~E1000_CTRL_MDIO;
4041
4042         E1000_WRITE_REG(hw, CTRL, ctrl);
4043         E1000_WRITE_FLUSH(hw);
4044
4045         /* Raise and Lower the clock before reading in the data. This accounts for
4046          * the turnaround bits. The first clock occurred when we clocked out the
4047          * last bit of the Register Address.
4048          */
4049         e1000_raise_mdi_clk(hw, &ctrl);
4050         e1000_lower_mdi_clk(hw, &ctrl);
4051
4052         for (data = 0, i = 0; i < 16; i++) {
4053                 data = data << 1;
4054                 e1000_raise_mdi_clk(hw, &ctrl);
4055                 ctrl = E1000_READ_REG(hw, CTRL);
4056                 /* Check to see if we shifted in a "1". */
4057                 if (ctrl & E1000_CTRL_MDIO)
4058                         data |= 1;
4059                 e1000_lower_mdi_clk(hw, &ctrl);
4060         }
4061
4062         e1000_raise_mdi_clk(hw, &ctrl);
4063         e1000_lower_mdi_clk(hw, &ctrl);
4064
4065         return data;
4066 }
4067
4068 /*****************************************************************************
4069 * Reads the value from a PHY register
4070 *
4071 * hw - Struct containing variables accessed by shared code
4072 * reg_addr - address of the PHY register to read
4073 ******************************************************************************/
4074 static int
4075 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4076 {
4077         uint32_t i;
4078         uint32_t mdic = 0;
4079         const uint32_t phy_addr = 1;
4080
4081         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4082                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4083                 return -E1000_ERR_PARAM;
4084         }
4085
4086         if (hw->mac_type > e1000_82543) {
4087                 /* Set up Op-code, Phy Address, and register address in the MDI
4088                  * Control register.  The MAC will take care of interfacing with the
4089                  * PHY to retrieve the desired data.
4090                  */
4091                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4092                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4093                         (E1000_MDIC_OP_READ));
4094
4095                 E1000_WRITE_REG(hw, MDIC, mdic);
4096
4097                 /* Poll the ready bit to see if the MDI read completed */
4098                 for (i = 0; i < 64; i++) {
4099                         udelay(10);
4100                         mdic = E1000_READ_REG(hw, MDIC);
4101                         if (mdic & E1000_MDIC_READY)
4102                                 break;
4103                 }
4104                 if (!(mdic & E1000_MDIC_READY)) {
4105                         DEBUGOUT("MDI Read did not complete\n");
4106                         return -E1000_ERR_PHY;
4107                 }
4108                 if (mdic & E1000_MDIC_ERROR) {
4109                         DEBUGOUT("MDI Error\n");
4110                         return -E1000_ERR_PHY;
4111                 }
4112                 *phy_data = (uint16_t) mdic;
4113         } else {
4114                 /* We must first send a preamble through the MDIO pin to signal the
4115                  * beginning of an MII instruction.  This is done by sending 32
4116                  * consecutive "1" bits.
4117                  */
4118                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4119
4120                 /* Now combine the next few fields that are required for a read
4121                  * operation.  We use this method instead of calling the
4122                  * e1000_shift_out_mdi_bits routine five different times. The format of
4123                  * a MII read instruction consists of a shift out of 14 bits and is
4124                  * defined as follows:
4125                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4126                  * followed by a shift in of 18 bits.  This first two bits shifted in
4127                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4128                  * READ operation is performed.  These two bits are thrown away
4129                  * followed by a shift in of 16 bits which contains the desired data.
4130                  */
4131                 mdic = ((reg_addr) | (phy_addr << 5) |
4132                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4133
4134                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4135
4136                 /* Now that we've shifted out the read command to the MII, we need to
4137                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4138                  * register address.
4139                  */
4140                 *phy_data = e1000_shift_in_mdi_bits(hw);
4141         }
4142         return 0;
4143 }
4144
4145 /******************************************************************************
4146 * Writes a value to a PHY register
4147 *
4148 * hw - Struct containing variables accessed by shared code
4149 * reg_addr - address of the PHY register to write
4150 * data - data to write to the PHY
4151 ******************************************************************************/
4152 static int
4153 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4154 {
4155         uint32_t i;
4156         uint32_t mdic = 0;
4157         const uint32_t phy_addr = 1;
4158
4159         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4160                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4161                 return -E1000_ERR_PARAM;
4162         }
4163
4164         if (hw->mac_type > e1000_82543) {
4165                 /* Set up Op-code, Phy Address, register address, and data intended
4166                  * for the PHY register in the MDI Control register.  The MAC will take
4167                  * care of interfacing with the PHY to send the desired data.
4168                  */
4169                 mdic = (((uint32_t) phy_data) |
4170                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4171                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4172                         (E1000_MDIC_OP_WRITE));
4173
4174                 E1000_WRITE_REG(hw, MDIC, mdic);
4175
4176                 /* Poll the ready bit to see if the MDI read completed */
4177                 for (i = 0; i < 64; i++) {
4178                         udelay(10);
4179                         mdic = E1000_READ_REG(hw, MDIC);
4180                         if (mdic & E1000_MDIC_READY)
4181                                 break;
4182                 }
4183                 if (!(mdic & E1000_MDIC_READY)) {
4184                         DEBUGOUT("MDI Write did not complete\n");
4185                         return -E1000_ERR_PHY;
4186                 }
4187         } else {
4188                 /* We'll need to use the SW defined pins to shift the write command
4189                  * out to the PHY. We first send a preamble to the PHY to signal the
4190                  * beginning of the MII instruction.  This is done by sending 32
4191                  * consecutive "1" bits.
4192                  */
4193                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4194
4195                 /* Now combine the remaining required fields that will indicate a
4196                  * write operation. We use this method instead of calling the
4197                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4198                  * format of a MII write instruction is as follows:
4199                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4200                  */
4201                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4202                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4203                 mdic <<= 16;
4204                 mdic |= (uint32_t) phy_data;
4205
4206                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4207         }
4208         return 0;
4209 }
4210
4211 /******************************************************************************
4212  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4213  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4214  * the caller to figure out how to deal with it.
4215  *
4216  * hw - Struct containing variables accessed by shared code
4217  *
4218  * returns: - E1000_BLK_PHY_RESET
4219  *            E1000_SUCCESS
4220  *
4221  *****************************************************************************/
4222 int32_t
4223 e1000_check_phy_reset_block(struct e1000_hw *hw)
4224 {
4225         uint32_t manc = 0;
4226         uint32_t fwsm = 0;
4227
4228         if (hw->mac_type == e1000_ich8lan) {
4229                 fwsm = E1000_READ_REG(hw, FWSM);
4230                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4231                                                 : E1000_BLK_PHY_RESET;
4232         }
4233
4234         if (hw->mac_type > e1000_82547_rev_2)
4235                 manc = E1000_READ_REG(hw, MANC);
4236         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4237                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4238 }
4239
4240 /***************************************************************************
4241  * Checks if the PHY configuration is done
4242  *
4243  * hw: Struct containing variables accessed by shared code
4244  *
4245  * returns: - E1000_ERR_RESET if fail to reset MAC
4246  *            E1000_SUCCESS at any other case.
4247  *
4248  ***************************************************************************/
4249 static int32_t
4250 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4251 {
4252         int32_t timeout = PHY_CFG_TIMEOUT;
4253         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4254
4255         DEBUGFUNC();
4256
4257         switch (hw->mac_type) {
4258         default:
4259                 mdelay(10);
4260                 break;
4261         case e1000_80003es2lan:
4262                 /* Separate *_CFG_DONE_* bit for each port */
4263                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4264                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4265         /* Fall Through */
4266         case e1000_82571:
4267         case e1000_82572:
4268                 while (timeout) {
4269                         if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4270                                 break;
4271                         else
4272                                 mdelay(1);
4273                         timeout--;
4274                 }
4275                 if (!timeout) {
4276                         DEBUGOUT("MNG configuration cycle has not "
4277                                         "completed.\n");
4278                         return -E1000_ERR_RESET;
4279                 }
4280                 break;
4281         }
4282
4283         return E1000_SUCCESS;
4284 }
4285
4286 /******************************************************************************
4287 * Returns the PHY to the power-on reset state
4288 *
4289 * hw - Struct containing variables accessed by shared code
4290 ******************************************************************************/
4291 int32_t
4292 e1000_phy_hw_reset(struct e1000_hw *hw)
4293 {
4294         uint32_t ctrl, ctrl_ext;
4295         uint32_t led_ctrl;
4296         int32_t ret_val;
4297         uint16_t swfw;
4298
4299         DEBUGFUNC();
4300
4301         /* In the case of the phy reset being blocked, it's not an error, we
4302          * simply return success without performing the reset. */
4303         ret_val = e1000_check_phy_reset_block(hw);
4304         if (ret_val)
4305                 return E1000_SUCCESS;
4306
4307         DEBUGOUT("Resetting Phy...\n");
4308
4309         if (hw->mac_type > e1000_82543) {
4310                 if ((hw->mac_type == e1000_80003es2lan) &&
4311                         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4312                         swfw = E1000_SWFW_PHY1_SM;
4313                 } else {
4314                         swfw = E1000_SWFW_PHY0_SM;
4315                 }
4316                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4317                         DEBUGOUT("Unable to acquire swfw sync\n");
4318                         return -E1000_ERR_SWFW_SYNC;
4319                 }
4320                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4321                  * bit. Then, take it out of reset.
4322                  */
4323                 ctrl = E1000_READ_REG(hw, CTRL);
4324                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4325                 E1000_WRITE_FLUSH(hw);
4326
4327                 if (hw->mac_type < e1000_82571)
4328                         udelay(10);
4329                 else
4330                         udelay(100);
4331
4332                 E1000_WRITE_REG(hw, CTRL, ctrl);
4333                 E1000_WRITE_FLUSH(hw);
4334
4335                 if (hw->mac_type >= e1000_82571)
4336                         mdelay(10);
4337
4338         } else {
4339                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4340                  * bit to put the PHY into reset. Then, take it out of reset.
4341                  */
4342                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4343                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4344                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4345                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4346                 E1000_WRITE_FLUSH(hw);
4347                 mdelay(10);
4348                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4349                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4350                 E1000_WRITE_FLUSH(hw);
4351         }
4352         udelay(150);
4353
4354         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4355                 /* Configure activity LED after PHY reset */
4356                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4357                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4358                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4359                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4360         }
4361
4362         /* Wait for FW to finish PHY configuration. */
4363         ret_val = e1000_get_phy_cfg_done(hw);
4364         if (ret_val != E1000_SUCCESS)
4365                 return ret_val;
4366
4367         return ret_val;
4368 }
4369
4370 /******************************************************************************
4371  * IGP phy init script - initializes the GbE PHY
4372  *
4373  * hw - Struct containing variables accessed by shared code
4374  *****************************************************************************/
4375 static void
4376 e1000_phy_init_script(struct e1000_hw *hw)
4377 {
4378         uint32_t ret_val;
4379         uint16_t phy_saved_data;
4380         DEBUGFUNC();
4381
4382         if (hw->phy_init_script) {
4383                 mdelay(20);
4384
4385                 /* Save off the current value of register 0x2F5B to be
4386                  * restored at the end of this routine. */
4387                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4388
4389                 /* Disabled the PHY transmitter */
4390                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4391
4392                 mdelay(20);
4393
4394                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4395
4396                 mdelay(5);
4397
4398                 switch (hw->mac_type) {
4399                 case e1000_82541:
4400                 case e1000_82547:
4401                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4402
4403                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4404
4405                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4406
4407                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4408
4409                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4410
4411                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4412
4413                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4414
4415                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4416
4417                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4418                         break;
4419
4420                 case e1000_82541_rev_2:
4421                 case e1000_82547_rev_2:
4422                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4423                         break;
4424                 default:
4425                         break;
4426                 }
4427
4428                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4429
4430                 mdelay(20);
4431
4432                 /* Now enable the transmitter */
4433                 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4434
4435                 if (hw->mac_type == e1000_82547) {
4436                         uint16_t fused, fine, coarse;
4437
4438                         /* Move to analog registers page */
4439                         e1000_read_phy_reg(hw,
4440                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4441
4442                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4443                                 e1000_read_phy_reg(hw,
4444                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4445
4446                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4447                                 coarse = fused
4448                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4449
4450                                 if (coarse >
4451                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4452                                         coarse -=
4453                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4454                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4455                                 } else if (coarse
4456                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4457                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4458
4459                                 fused = (fused
4460                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4461                                         (fine
4462                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4463                                         (coarse
4464                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4465
4466                                 e1000_write_phy_reg(hw,
4467                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4468                                 e1000_write_phy_reg(hw,
4469                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4470                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4471                         }
4472                 }
4473         }
4474 }
4475
4476 /******************************************************************************
4477 * Resets the PHY
4478 *
4479 * hw - Struct containing variables accessed by shared code
4480 *
4481 * Sets bit 15 of the MII Control register
4482 ******************************************************************************/
4483 int32_t
4484 e1000_phy_reset(struct e1000_hw *hw)
4485 {
4486         int32_t ret_val;
4487         uint16_t phy_data;
4488
4489         DEBUGFUNC();
4490
4491         /* In the case of the phy reset being blocked, it's not an error, we
4492          * simply return success without performing the reset. */
4493         ret_val = e1000_check_phy_reset_block(hw);
4494         if (ret_val)
4495                 return E1000_SUCCESS;
4496
4497         switch (hw->phy_type) {
4498         case e1000_phy_igp:
4499         case e1000_phy_igp_2:
4500         case e1000_phy_igp_3:
4501         case e1000_phy_ife:
4502                 ret_val = e1000_phy_hw_reset(hw);
4503                 if (ret_val)
4504                         return ret_val;
4505                 break;
4506         default:
4507                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4508                 if (ret_val)
4509                         return ret_val;
4510
4511                 phy_data |= MII_CR_RESET;
4512                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4513                 if (ret_val)
4514                         return ret_val;
4515
4516                 udelay(1);
4517                 break;
4518         }
4519
4520         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4521                 e1000_phy_init_script(hw);
4522
4523         return E1000_SUCCESS;
4524 }
4525
4526 static int e1000_set_phy_type (struct e1000_hw *hw)
4527 {
4528         DEBUGFUNC ();
4529
4530         if (hw->mac_type == e1000_undefined)
4531                 return -E1000_ERR_PHY_TYPE;
4532
4533         switch (hw->phy_id) {
4534         case M88E1000_E_PHY_ID:
4535         case M88E1000_I_PHY_ID:
4536         case M88E1011_I_PHY_ID:
4537         case M88E1111_I_PHY_ID:
4538                 hw->phy_type = e1000_phy_m88;
4539                 break;
4540         case IGP01E1000_I_PHY_ID:
4541                 if (hw->mac_type == e1000_82541 ||
4542                         hw->mac_type == e1000_82541_rev_2 ||
4543                         hw->mac_type == e1000_82547 ||
4544                         hw->mac_type == e1000_82547_rev_2) {
4545                         hw->phy_type = e1000_phy_igp;
4546                         hw->phy_type = e1000_phy_igp;
4547                         break;
4548                 }
4549         case IGP03E1000_E_PHY_ID:
4550                 hw->phy_type = e1000_phy_igp_3;
4551                 break;
4552         case IFE_E_PHY_ID:
4553         case IFE_PLUS_E_PHY_ID:
4554         case IFE_C_E_PHY_ID:
4555                 hw->phy_type = e1000_phy_ife;
4556                 break;
4557         case GG82563_E_PHY_ID:
4558                 if (hw->mac_type == e1000_80003es2lan) {
4559                         hw->phy_type = e1000_phy_gg82563;
4560                         break;
4561                 }
4562                 /* Fall Through */
4563         default:
4564                 /* Should never have loaded on this device */
4565                 hw->phy_type = e1000_phy_undefined;
4566                 return -E1000_ERR_PHY_TYPE;
4567         }
4568
4569         return E1000_SUCCESS;
4570 }
4571
4572 /******************************************************************************
4573 * Probes the expected PHY address for known PHY IDs
4574 *
4575 * hw - Struct containing variables accessed by shared code
4576 ******************************************************************************/
4577 static int32_t
4578 e1000_detect_gig_phy(struct e1000_hw *hw)
4579 {
4580         int32_t phy_init_status, ret_val;
4581         uint16_t phy_id_high, phy_id_low;
4582         boolean_t match = FALSE;
4583
4584         DEBUGFUNC();
4585
4586         /* The 82571 firmware may still be configuring the PHY.  In this
4587          * case, we cannot access the PHY until the configuration is done.  So
4588          * we explicitly set the PHY values. */
4589         if (hw->mac_type == e1000_82571 ||
4590                 hw->mac_type == e1000_82572) {
4591                 hw->phy_id = IGP01E1000_I_PHY_ID;
4592                 hw->phy_type = e1000_phy_igp_2;
4593                 return E1000_SUCCESS;
4594         }
4595
4596         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4597          * work- around that forces PHY page 0 to be set or the reads fail.
4598          * The rest of the code in this routine uses e1000_read_phy_reg to
4599          * read the PHY ID.  So for ESB-2 we need to have this set so our
4600          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4601          * the routines below will figure this out as well. */
4602         if (hw->mac_type == e1000_80003es2lan)
4603                 hw->phy_type = e1000_phy_gg82563;
4604
4605         /* Read the PHY ID Registers to identify which PHY is onboard. */
4606         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4607         if (ret_val)
4608                 return ret_val;
4609
4610         hw->phy_id = (uint32_t) (phy_id_high << 16);
4611         udelay(20);
4612         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4613         if (ret_val)
4614                 return ret_val;
4615
4616         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4617         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4618
4619         switch (hw->mac_type) {
4620         case e1000_82543:
4621                 if (hw->phy_id == M88E1000_E_PHY_ID)
4622                         match = TRUE;
4623                 break;
4624         case e1000_82544:
4625                 if (hw->phy_id == M88E1000_I_PHY_ID)
4626                         match = TRUE;
4627                 break;
4628         case e1000_82540:
4629         case e1000_82545:
4630         case e1000_82545_rev_3:
4631         case e1000_82546:
4632         case e1000_82546_rev_3:
4633                 if (hw->phy_id == M88E1011_I_PHY_ID)
4634                         match = TRUE;
4635                 break;
4636         case e1000_82541:
4637         case e1000_82541_rev_2:
4638         case e1000_82547:
4639         case e1000_82547_rev_2:
4640                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4641                         match = TRUE;
4642
4643                 break;
4644         case e1000_82573:
4645                 if (hw->phy_id == M88E1111_I_PHY_ID)
4646                         match = TRUE;
4647                 break;
4648         case e1000_80003es2lan:
4649                 if (hw->phy_id == GG82563_E_PHY_ID)
4650                         match = TRUE;
4651                 break;
4652         case e1000_ich8lan:
4653                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4654                         match = TRUE;
4655                 if (hw->phy_id == IFE_E_PHY_ID)
4656                         match = TRUE;
4657                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4658                         match = TRUE;
4659                 if (hw->phy_id == IFE_C_E_PHY_ID)
4660                         match = TRUE;
4661                 break;
4662         default:
4663                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4664                 return -E1000_ERR_CONFIG;
4665         }
4666
4667         phy_init_status = e1000_set_phy_type(hw);
4668
4669         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4670                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4671                 return 0;
4672         }
4673         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4674         return -E1000_ERR_PHY;
4675 }
4676
4677 /*****************************************************************************
4678  * Set media type and TBI compatibility.
4679  *
4680  * hw - Struct containing variables accessed by shared code
4681  * **************************************************************************/
4682 void
4683 e1000_set_media_type(struct e1000_hw *hw)
4684 {
4685         uint32_t status;
4686
4687         DEBUGFUNC();
4688
4689         if (hw->mac_type != e1000_82543) {
4690                 /* tbi_compatibility is only valid on 82543 */
4691                 hw->tbi_compatibility_en = FALSE;
4692         }
4693
4694         switch (hw->device_id) {
4695         case E1000_DEV_ID_82545GM_SERDES:
4696         case E1000_DEV_ID_82546GB_SERDES:
4697         case E1000_DEV_ID_82571EB_SERDES:
4698         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4699         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4700         case E1000_DEV_ID_82572EI_SERDES:
4701         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4702                 hw->media_type = e1000_media_type_internal_serdes;
4703                 break;
4704         default:
4705                 switch (hw->mac_type) {
4706                 case e1000_82542_rev2_0:
4707                 case e1000_82542_rev2_1:
4708                         hw->media_type = e1000_media_type_fiber;
4709                         break;
4710                 case e1000_ich8lan:
4711                 case e1000_82573:
4712                         /* The STATUS_TBIMODE bit is reserved or reused
4713                          * for the this device.
4714                          */
4715                         hw->media_type = e1000_media_type_copper;
4716                         break;
4717                 default:
4718                         status = E1000_READ_REG(hw, STATUS);
4719                         if (status & E1000_STATUS_TBIMODE) {
4720                                 hw->media_type = e1000_media_type_fiber;
4721                                 /* tbi_compatibility not valid on fiber */
4722                                 hw->tbi_compatibility_en = FALSE;
4723                         } else {
4724                                 hw->media_type = e1000_media_type_copper;
4725                         }
4726                         break;
4727                 }
4728         }
4729 }
4730
4731 /**
4732  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4733  *
4734  * e1000_sw_init initializes the Adapter private data structure.
4735  * Fields are initialized based on PCI device information and
4736  * OS network device settings (MTU size).
4737  **/
4738
4739 static int
4740 e1000_sw_init(struct eth_device *nic, int cardnum)
4741 {
4742         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4743         int result;
4744
4745         /* PCI config space info */
4746         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4747         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4748         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4749                              &hw->subsystem_vendor_id);
4750         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4751
4752         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4753         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4754
4755         /* identify the MAC */
4756         result = e1000_set_mac_type(hw);
4757         if (result) {
4758                 E1000_ERR("Unknown MAC Type\n");
4759                 return result;
4760         }
4761
4762         switch (hw->mac_type) {
4763         default:
4764                 break;
4765         case e1000_82541:
4766         case e1000_82547:
4767         case e1000_82541_rev_2:
4768         case e1000_82547_rev_2:
4769                 hw->phy_init_script = 1;
4770                 break;
4771         }
4772
4773         /* lan a vs. lan b settings */
4774         if (hw->mac_type == e1000_82546)
4775                 /*this also works w/ multiple 82546 cards */
4776                 /*but not if they're intermingled /w other e1000s */
4777                 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4778         else
4779                 hw->lan_loc = e1000_lan_a;
4780
4781         /* flow control settings */
4782         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4783         hw->fc_low_water = E1000_FC_LOW_THRESH;
4784         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4785         hw->fc_send_xon = 1;
4786
4787         /* Media type - copper or fiber */
4788         e1000_set_media_type(hw);
4789
4790         if (hw->mac_type >= e1000_82543) {
4791                 uint32_t status = E1000_READ_REG(hw, STATUS);
4792
4793                 if (status & E1000_STATUS_TBIMODE) {
4794                         DEBUGOUT("fiber interface\n");
4795                         hw->media_type = e1000_media_type_fiber;
4796                 } else {
4797                         DEBUGOUT("copper interface\n");
4798                         hw->media_type = e1000_media_type_copper;
4799                 }
4800         } else {
4801                 hw->media_type = e1000_media_type_fiber;
4802         }
4803
4804         hw->tbi_compatibility_en = TRUE;
4805         hw->wait_autoneg_complete = TRUE;
4806         if (hw->mac_type < e1000_82543)
4807                 hw->report_tx_early = 0;
4808         else
4809                 hw->report_tx_early = 1;
4810
4811         return E1000_SUCCESS;
4812 }
4813
4814 void
4815 fill_rx(struct e1000_hw *hw)
4816 {
4817         struct e1000_rx_desc *rd;
4818
4819         rx_last = rx_tail;
4820         rd = rx_base + rx_tail;
4821         rx_tail = (rx_tail + 1) % 8;
4822         memset(rd, 0, 16);
4823         rd->buffer_addr = cpu_to_le64((u32) & packet);
4824         E1000_WRITE_REG(hw, RDT, rx_tail);
4825 }
4826
4827 /**
4828  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4829  * @adapter: board private structure
4830  *
4831  * Configure the Tx unit of the MAC after a reset.
4832  **/
4833
4834 static void
4835 e1000_configure_tx(struct e1000_hw *hw)
4836 {
4837         unsigned long ptr;
4838         unsigned long tctl;
4839         unsigned long tipg, tarc;
4840         uint32_t ipgr1, ipgr2;
4841
4842         ptr = (u32) tx_pool;
4843         if (ptr & 0xf)
4844                 ptr = (ptr + 0x10) & (~0xf);
4845
4846         tx_base = (typeof(tx_base)) ptr;
4847
4848         E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4849         E1000_WRITE_REG(hw, TDBAH, 0);
4850
4851         E1000_WRITE_REG(hw, TDLEN, 128);
4852
4853         /* Setup the HW Tx Head and Tail descriptor pointers */
4854         E1000_WRITE_REG(hw, TDH, 0);
4855         E1000_WRITE_REG(hw, TDT, 0);
4856         tx_tail = 0;
4857
4858         /* Set the default values for the Tx Inter Packet Gap timer */
4859         if (hw->mac_type <= e1000_82547_rev_2 &&
4860             (hw->media_type == e1000_media_type_fiber ||
4861              hw->media_type == e1000_media_type_internal_serdes))
4862                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4863         else
4864                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4865
4866         /* Set the default values for the Tx Inter Packet Gap timer */
4867         switch (hw->mac_type) {
4868         case e1000_82542_rev2_0:
4869         case e1000_82542_rev2_1:
4870                 tipg = DEFAULT_82542_TIPG_IPGT;
4871                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4872                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4873                 break;
4874         case e1000_80003es2lan:
4875                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4876                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4877                 break;
4878         default:
4879                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4880                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4881                 break;
4882         }
4883         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4884         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4885         E1000_WRITE_REG(hw, TIPG, tipg);
4886         /* Program the Transmit Control Register */
4887         tctl = E1000_READ_REG(hw, TCTL);
4888         tctl &= ~E1000_TCTL_CT;
4889         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4890             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4891
4892         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4893                 tarc = E1000_READ_REG(hw, TARC0);
4894                 /* set the speed mode bit, we'll clear it if we're not at
4895                  * gigabit link later */
4896                 /* git bit can be set to 1*/
4897         } else if (hw->mac_type == e1000_80003es2lan) {
4898                 tarc = E1000_READ_REG(hw, TARC0);
4899                 tarc |= 1;
4900                 E1000_WRITE_REG(hw, TARC0, tarc);
4901                 tarc = E1000_READ_REG(hw, TARC1);
4902                 tarc |= 1;
4903                 E1000_WRITE_REG(hw, TARC1, tarc);
4904         }
4905
4906
4907         e1000_config_collision_dist(hw);
4908         /* Setup Transmit Descriptor Settings for eop descriptor */
4909         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4910
4911         /* Need to set up RS bit */
4912         if (hw->mac_type < e1000_82543)
4913                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4914         else
4915                 hw->txd_cmd |= E1000_TXD_CMD_RS;
4916         E1000_WRITE_REG(hw, TCTL, tctl);
4917 }
4918
4919 /**
4920  * e1000_setup_rctl - configure the receive control register
4921  * @adapter: Board private structure
4922  **/
4923 static void
4924 e1000_setup_rctl(struct e1000_hw *hw)
4925 {
4926         uint32_t rctl;
4927
4928         rctl = E1000_READ_REG(hw, RCTL);
4929
4930         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4931
4932         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4933                 | E1000_RCTL_RDMTS_HALF;        /* |
4934                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4935
4936         if (hw->tbi_compatibility_on == 1)
4937                 rctl |= E1000_RCTL_SBP;
4938         else
4939                 rctl &= ~E1000_RCTL_SBP;
4940
4941         rctl &= ~(E1000_RCTL_SZ_4096);
4942                 rctl |= E1000_RCTL_SZ_2048;
4943                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4944         E1000_WRITE_REG(hw, RCTL, rctl);
4945 }
4946
4947 /**
4948  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4949  * @adapter: board private structure
4950  *
4951  * Configure the Rx unit of the MAC after a reset.
4952  **/
4953 static void
4954 e1000_configure_rx(struct e1000_hw *hw)
4955 {
4956         unsigned long ptr;
4957         unsigned long rctl, ctrl_ext;
4958         rx_tail = 0;
4959         /* make sure receives are disabled while setting up the descriptors */
4960         rctl = E1000_READ_REG(hw, RCTL);
4961         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4962         if (hw->mac_type >= e1000_82540) {
4963                 /* Set the interrupt throttling rate.  Value is calculated
4964                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4965 #define MAX_INTS_PER_SEC        8000
4966 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4967                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4968         }
4969
4970         if (hw->mac_type >= e1000_82571) {
4971                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4972                 /* Reset delay timers after every interrupt */
4973                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4974                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4975                 E1000_WRITE_FLUSH(hw);
4976         }
4977         /* Setup the Base and Length of the Rx Descriptor Ring */
4978         ptr = (u32) rx_pool;
4979         if (ptr & 0xf)
4980                 ptr = (ptr + 0x10) & (~0xf);
4981         rx_base = (typeof(rx_base)) ptr;
4982         E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4983         E1000_WRITE_REG(hw, RDBAH, 0);
4984
4985         E1000_WRITE_REG(hw, RDLEN, 128);
4986
4987         /* Setup the HW Rx Head and Tail Descriptor Pointers */
4988         E1000_WRITE_REG(hw, RDH, 0);
4989         E1000_WRITE_REG(hw, RDT, 0);
4990         /* Enable Receives */
4991
4992         E1000_WRITE_REG(hw, RCTL, rctl);
4993         fill_rx(hw);
4994 }
4995
4996 /**************************************************************************
4997 POLL - Wait for a frame
4998 ***************************************************************************/
4999 static int
5000 e1000_poll(struct eth_device *nic)
5001 {
5002         struct e1000_hw *hw = nic->priv;
5003         struct e1000_rx_desc *rd;
5004         /* return true if there's an ethernet packet ready to read */
5005         rd = rx_base + rx_last;
5006         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5007                 return 0;
5008         /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5009         NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5010         fill_rx(hw);
5011         return 1;
5012 }
5013
5014 /**************************************************************************
5015 TRANSMIT - Transmit a frame
5016 ***************************************************************************/
5017 static int
5018 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5019 {
5020         struct e1000_hw *hw = nic->priv;
5021         struct e1000_tx_desc *txp;
5022         int i = 0;
5023
5024         txp = tx_base + tx_tail;
5025         tx_tail = (tx_tail + 1) % 8;
5026
5027         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
5028         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5029         txp->upper.data = 0;
5030         E1000_WRITE_REG(hw, TDT, tx_tail);
5031
5032         E1000_WRITE_FLUSH(hw);
5033         while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5034                 if (i++ > TOUT_LOOP) {
5035                         DEBUGOUT("e1000: tx timeout\n");
5036                         return 0;
5037                 }
5038                 udelay(10);     /* give the nic a chance to write to the register */
5039         }
5040         return 1;
5041 }
5042
5043 /*reset function*/
5044 static inline int
5045 e1000_reset(struct eth_device *nic)
5046 {
5047         struct e1000_hw *hw = nic->priv;
5048
5049         e1000_reset_hw(hw);
5050         if (hw->mac_type >= e1000_82544) {
5051                 E1000_WRITE_REG(hw, WUC, 0);
5052         }
5053         return e1000_init_hw(nic);
5054 }
5055
5056 /**************************************************************************
5057 DISABLE - Turn off ethernet interface
5058 ***************************************************************************/
5059 static void
5060 e1000_disable(struct eth_device *nic)
5061 {
5062         struct e1000_hw *hw = nic->priv;
5063
5064         /* Turn off the ethernet interface */
5065         E1000_WRITE_REG(hw, RCTL, 0);
5066         E1000_WRITE_REG(hw, TCTL, 0);
5067
5068         /* Clear the transmit ring */
5069         E1000_WRITE_REG(hw, TDH, 0);
5070         E1000_WRITE_REG(hw, TDT, 0);
5071
5072         /* Clear the receive ring */
5073         E1000_WRITE_REG(hw, RDH, 0);
5074         E1000_WRITE_REG(hw, RDT, 0);
5075
5076         /* put the card in its initial state */
5077 #if 0
5078         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5079 #endif
5080         mdelay(10);
5081
5082 }
5083
5084 /**************************************************************************
5085 INIT - set up ethernet interface(s)
5086 ***************************************************************************/
5087 static int
5088 e1000_init(struct eth_device *nic, bd_t * bis)
5089 {
5090         struct e1000_hw *hw = nic->priv;
5091         int ret_val = 0;
5092
5093         ret_val = e1000_reset(nic);
5094         if (ret_val < 0) {
5095                 if ((ret_val == -E1000_ERR_NOLINK) ||
5096                     (ret_val == -E1000_ERR_TIMEOUT)) {
5097                         E1000_ERR("Valid Link not detected\n");
5098                 } else {
5099                         E1000_ERR("Hardware Initialization Failed\n");
5100                 }
5101                 return 0;
5102         }
5103         e1000_configure_tx(hw);
5104         e1000_setup_rctl(hw);
5105         e1000_configure_rx(hw);
5106         return 1;
5107 }
5108
5109 /******************************************************************************
5110  * Gets the current PCI bus type of hardware
5111  *
5112  * hw - Struct containing variables accessed by shared code
5113  *****************************************************************************/
5114 void e1000_get_bus_type(struct e1000_hw *hw)
5115 {
5116         uint32_t status;
5117
5118         switch (hw->mac_type) {
5119         case e1000_82542_rev2_0:
5120         case e1000_82542_rev2_1:
5121                 hw->bus_type = e1000_bus_type_pci;
5122                 break;
5123         case e1000_82571:
5124         case e1000_82572:
5125         case e1000_82573:
5126         case e1000_80003es2lan:
5127                 hw->bus_type = e1000_bus_type_pci_express;
5128                 break;
5129         case e1000_ich8lan:
5130                 hw->bus_type = e1000_bus_type_pci_express;
5131                 break;
5132         default:
5133                 status = E1000_READ_REG(hw, STATUS);
5134                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5135                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5136                 break;
5137         }
5138 }
5139
5140 /**************************************************************************
5141 PROBE - Look for an adapter, this routine's visible to the outside
5142 You should omit the last argument struct pci_device * for a non-PCI NIC
5143 ***************************************************************************/
5144 int
5145 e1000_initialize(bd_t * bis)
5146 {
5147         pci_dev_t devno;
5148         int card_number = 0;
5149         struct eth_device *nic = NULL;
5150         struct e1000_hw *hw = NULL;
5151         u32 iobase;
5152         int idx = 0;
5153         u32 PciCommandWord;
5154
5155         DEBUGFUNC();
5156
5157         while (1) {             /* Find PCI device(s) */
5158                 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5159                         break;
5160                 }
5161
5162                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5163                 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5164                 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5165
5166                 pci_write_config_dword(devno, PCI_COMMAND,
5167                                        PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5168                 /* Check if I/O accesses and Bus Mastering are enabled. */
5169                 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5170                 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5171                         printf("Error: Can not enable MEM access.\n");
5172                         continue;
5173                 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5174                         printf("Error: Can not enable Bus Mastering.\n");
5175                         continue;
5176                 }
5177
5178                 nic = (struct eth_device *) malloc(sizeof (*nic));
5179                 hw = (struct e1000_hw *) malloc(sizeof (*hw));
5180                 hw->pdev = devno;
5181                 nic->priv = hw;
5182
5183                 sprintf(nic->name, "e1000#%d", card_number);
5184
5185                 /* Are these variables needed? */
5186                 hw->fc = e1000_fc_default;
5187                 hw->original_fc = e1000_fc_default;
5188                 hw->autoneg_failed = 0;
5189                 hw->autoneg = 1;
5190                 hw->get_link_status = TRUE;
5191                 hw->hw_addr =
5192                         pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
5193                 hw->mac_type = e1000_undefined;
5194
5195                 /* MAC and Phy settings */
5196                 if (e1000_sw_init(nic, card_number) < 0) {
5197                         free(hw);
5198                         free(nic);
5199                         return 0;
5200                 }
5201                 if (e1000_check_phy_reset_block(hw))
5202                         printf("phy reset block error \n");
5203                 e1000_reset_hw(hw);
5204 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5205                 if (e1000_init_eeprom_params(hw)) {
5206                         printf("The EEPROM Checksum Is Not Valid\n");
5207                         free(hw);
5208                         free(nic);
5209                         return 0;
5210                 }
5211                 if (e1000_validate_eeprom_checksum(nic) < 0) {
5212                         printf("The EEPROM Checksum Is Not Valid\n");
5213                         free(hw);
5214                         free(nic);
5215                         return 0;
5216                 }
5217 #endif
5218                 e1000_read_mac_addr(nic);
5219
5220                 /* get the bus type information */
5221                 e1000_get_bus_type(hw);
5222
5223                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5224                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5225                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5226
5227                 nic->init = e1000_init;
5228                 nic->recv = e1000_poll;
5229                 nic->send = e1000_transmit;
5230                 nic->halt = e1000_disable;
5231
5232                 eth_register(nic);
5233
5234                 card_number++;
5235         }
5236         return card_number;
5237 }