]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - include/linux/usb/gadget.h
pcm051: use ti_am335x_common.h config
[karo-tx-uboot.git] / include / linux / usb / gadget.h
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  *
14  * Ported to U-boot by: Thomas Smits <ts.smits@gmail.com> and
15  *                      Remy Bohmer <linux@bohmer.net>
16  */
17
18 #ifndef __LINUX_USB_GADGET_H
19 #define __LINUX_USB_GADGET_H
20
21 #include <errno.h>
22 #include <linux/list.h>
23
24 struct usb_ep;
25
26 /**
27  * struct usb_request - describes one i/o request
28  * @buf: Buffer used for data.  Always provide this; some controllers
29  *      only use PIO, or don't use DMA for some endpoints.
30  * @dma: DMA address corresponding to 'buf'.  If you don't set this
31  *      field, and the usb controller needs one, it is responsible
32  *      for mapping and unmapping the buffer.
33  * @length: Length of that data
34  * @no_interrupt: If true, hints that no completion irq is needed.
35  *      Helpful sometimes with deep request queues that are handled
36  *      directly by DMA controllers.
37  * @zero: If true, when writing data, makes the last packet be "short"
38  *     by adding a zero length packet as needed;
39  * @short_not_ok: When reading data, makes short packets be
40  *     treated as errors (queue stops advancing till cleanup).
41  * @complete: Function called when request completes, so this request and
42  *      its buffer may be re-used.
43  *      Reads terminate with a short packet, or when the buffer fills,
44  *      whichever comes first.  When writes terminate, some data bytes
45  *      will usually still be in flight (often in a hardware fifo).
46  *      Errors (for reads or writes) stop the queue from advancing
47  *      until the completion function returns, so that any transfers
48  *      invalidated by the error may first be dequeued.
49  * @context: For use by the completion callback
50  * @list: For use by the gadget driver.
51  * @status: Reports completion code, zero or a negative errno.
52  *      Normally, faults block the transfer queue from advancing until
53  *      the completion callback returns.
54  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
55  *      or when the driver disabled the endpoint.
56  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
57  *      transfers) this may be less than the requested length.  If the
58  *      short_not_ok flag is set, short reads are treated as errors
59  *      even when status otherwise indicates successful completion.
60  *      Note that for writes (IN transfers) some data bytes may still
61  *      reside in a device-side FIFO when the request is reported as
62  *      complete.
63  *
64  * These are allocated/freed through the endpoint they're used with.  The
65  * hardware's driver can add extra per-request data to the memory it returns,
66  * which often avoids separate memory allocations (potential failures),
67  * later when the request is queued.
68  *
69  * Request flags affect request handling, such as whether a zero length
70  * packet is written (the "zero" flag), whether a short read should be
71  * treated as an error (blocking request queue advance, the "short_not_ok"
72  * flag), or hinting that an interrupt is not required (the "no_interrupt"
73  * flag, for use with deep request queues).
74  *
75  * Bulk endpoints can use any size buffers, and can also be used for interrupt
76  * transfers. interrupt-only endpoints can be much less functional.
77  *
78  * NOTE:  this is analagous to 'struct urb' on the host side, except that
79  * it's thinner and promotes more pre-allocation.
80  */
81
82 struct usb_request {
83         void                    *buf;
84         unsigned                length;
85         dma_addr_t              dma;
86
87         unsigned                no_interrupt:1;
88         unsigned                zero:1;
89         unsigned                short_not_ok:1;
90
91         void                    (*complete)(struct usb_ep *ep,
92                                         struct usb_request *req);
93         void                    *context;
94         struct list_head        list;
95
96         int                     status;
97         unsigned                actual;
98 };
99
100 /*-------------------------------------------------------------------------*/
101
102 /* endpoint-specific parts of the api to the usb controller hardware.
103  * unlike the urb model, (de)multiplexing layers are not required.
104  * (so this api could slash overhead if used on the host side...)
105  *
106  * note that device side usb controllers commonly differ in how many
107  * endpoints they support, as well as their capabilities.
108  */
109 struct usb_ep_ops {
110         int (*enable) (struct usb_ep *ep,
111                 const struct usb_endpoint_descriptor *desc);
112         int (*disable) (struct usb_ep *ep);
113
114         struct usb_request *(*alloc_request) (struct usb_ep *ep,
115                 gfp_t gfp_flags);
116         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
117
118         int (*queue) (struct usb_ep *ep, struct usb_request *req,
119                 gfp_t gfp_flags);
120         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
121
122         int (*set_halt) (struct usb_ep *ep, int value);
123         int (*fifo_status) (struct usb_ep *ep);
124         void (*fifo_flush) (struct usb_ep *ep);
125 };
126
127 /**
128  * struct usb_ep - device side representation of USB endpoint
129  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
130  * @ops: Function pointers used to access hardware-specific operations.
131  * @ep_list:the gadget's ep_list holds all of its endpoints
132  * @maxpacket:The maximum packet size used on this endpoint.  The initial
133  *      value can sometimes be reduced (hardware allowing), according to
134  *      the endpoint descriptor used to configure the endpoint.
135  * @driver_data:for use by the gadget driver.  all other fields are
136  *      read-only to gadget drivers.
137  *
138  * the bus controller driver lists all the general purpose endpoints in
139  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
140  * and is accessed only in response to a driver setup() callback.
141  */
142 struct usb_ep {
143         void                    *driver_data;
144         const char              *name;
145         const struct usb_ep_ops *ops;
146         struct list_head        ep_list;
147         unsigned                maxpacket:16;
148 };
149
150 /*-------------------------------------------------------------------------*/
151
152 /**
153  * usb_ep_enable - configure endpoint, making it usable
154  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
155  *      drivers discover endpoints through the ep_list of a usb_gadget.
156  * @desc:descriptor for desired behavior.  caller guarantees this pointer
157  *      remains valid until the endpoint is disabled; the data byte order
158  *      is little-endian (usb-standard).
159  *
160  * when configurations are set, or when interface settings change, the driver
161  * will enable or disable the relevant endpoints.  while it is enabled, an
162  * endpoint may be used for i/o until the driver receives a disconnect() from
163  * the host or until the endpoint is disabled.
164  *
165  * the ep0 implementation (which calls this routine) must ensure that the
166  * hardware capabilities of each endpoint match the descriptor provided
167  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
168  * for interrupt transfers as well as bulk, but it likely couldn't be used
169  * for iso transfers or for endpoint 14.  some endpoints are fully
170  * configurable, with more generic names like "ep-a".  (remember that for
171  * USB, "in" means "towards the USB master".)
172  *
173  * returns zero, or a negative error code.
174  */
175 static inline int usb_ep_enable(struct usb_ep *ep,
176                                 const struct usb_endpoint_descriptor *desc)
177 {
178         return ep->ops->enable(ep, desc);
179 }
180
181 /**
182  * usb_ep_disable - endpoint is no longer usable
183  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
184  *
185  * no other task may be using this endpoint when this is called.
186  * any pending and uncompleted requests will complete with status
187  * indicating disconnect (-ESHUTDOWN) before this call returns.
188  * gadget drivers must call usb_ep_enable() again before queueing
189  * requests to the endpoint.
190  *
191  * returns zero, or a negative error code.
192  */
193 static inline int usb_ep_disable(struct usb_ep *ep)
194 {
195         return ep->ops->disable(ep);
196 }
197
198 /**
199  * usb_ep_alloc_request - allocate a request object to use with this endpoint
200  * @ep:the endpoint to be used with with the request
201  * @gfp_flags:GFP_* flags to use
202  *
203  * Request objects must be allocated with this call, since they normally
204  * need controller-specific setup and may even need endpoint-specific
205  * resources such as allocation of DMA descriptors.
206  * Requests may be submitted with usb_ep_queue(), and receive a single
207  * completion callback.  Free requests with usb_ep_free_request(), when
208  * they are no longer needed.
209  *
210  * Returns the request, or null if one could not be allocated.
211  */
212 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
213                                                        gfp_t gfp_flags)
214 {
215         return ep->ops->alloc_request(ep, gfp_flags);
216 }
217
218 /**
219  * usb_ep_free_request - frees a request object
220  * @ep:the endpoint associated with the request
221  * @req:the request being freed
222  *
223  * Reverses the effect of usb_ep_alloc_request().
224  * Caller guarantees the request is not queued, and that it will
225  * no longer be requeued (or otherwise used).
226  */
227 static inline void usb_ep_free_request(struct usb_ep *ep,
228                                        struct usb_request *req)
229 {
230         ep->ops->free_request(ep, req);
231 }
232
233 /**
234  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
235  * @ep:the endpoint associated with the request
236  * @req:the request being submitted
237  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
238  *      pre-allocate all necessary memory with the request.
239  *
240  * This tells the device controller to perform the specified request through
241  * that endpoint (reading or writing a buffer).  When the request completes,
242  * including being canceled by usb_ep_dequeue(), the request's completion
243  * routine is called to return the request to the driver.  Any endpoint
244  * (except control endpoints like ep0) may have more than one transfer
245  * request queued; they complete in FIFO order.  Once a gadget driver
246  * submits a request, that request may not be examined or modified until it
247  * is given back to that driver through the completion callback.
248  *
249  * Each request is turned into one or more packets.  The controller driver
250  * never merges adjacent requests into the same packet.  OUT transfers
251  * will sometimes use data that's already buffered in the hardware.
252  * Drivers can rely on the fact that the first byte of the request's buffer
253  * always corresponds to the first byte of some USB packet, for both
254  * IN and OUT transfers.
255  *
256  * Bulk endpoints can queue any amount of data; the transfer is packetized
257  * automatically.  The last packet will be short if the request doesn't fill it
258  * out completely.  Zero length packets (ZLPs) should be avoided in portable
259  * protocols since not all usb hardware can successfully handle zero length
260  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
261  * the request 'zero' flag is set.)  Bulk endpoints may also be used
262  * for interrupt transfers; but the reverse is not true, and some endpoints
263  * won't support every interrupt transfer.  (Such as 768 byte packets.)
264  *
265  * Interrupt-only endpoints are less functional than bulk endpoints, for
266  * example by not supporting queueing or not handling buffers that are
267  * larger than the endpoint's maxpacket size.  They may also treat data
268  * toggle differently.
269  *
270  * Control endpoints ... after getting a setup() callback, the driver queues
271  * one response (even if it would be zero length).  That enables the
272  * status ack, after transfering data as specified in the response.  Setup
273  * functions may return negative error codes to generate protocol stalls.
274  * (Note that some USB device controllers disallow protocol stall responses
275  * in some cases.)  When control responses are deferred (the response is
276  * written after the setup callback returns), then usb_ep_set_halt() may be
277  * used on ep0 to trigger protocol stalls.
278  *
279  * For periodic endpoints, like interrupt or isochronous ones, the usb host
280  * arranges to poll once per interval, and the gadget driver usually will
281  * have queued some data to transfer at that time.
282  *
283  * Returns zero, or a negative error code.  Endpoints that are not enabled
284  * report errors; errors will also be
285  * reported when the usb peripheral is disconnected.
286  */
287 static inline int usb_ep_queue(struct usb_ep *ep,
288                                struct usb_request *req, gfp_t gfp_flags)
289 {
290         return ep->ops->queue(ep, req, gfp_flags);
291 }
292
293 /**
294  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
295  * @ep:the endpoint associated with the request
296  * @req:the request being canceled
297  *
298  * if the request is still active on the endpoint, it is dequeued and its
299  * completion routine is called (with status -ECONNRESET); else a negative
300  * error code is returned.
301  *
302  * note that some hardware can't clear out write fifos (to unlink the request
303  * at the head of the queue) except as part of disconnecting from usb.  such
304  * restrictions prevent drivers from supporting configuration changes,
305  * even to configuration zero (a "chapter 9" requirement).
306  */
307 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
308 {
309         return ep->ops->dequeue(ep, req);
310 }
311
312 /**
313  * usb_ep_set_halt - sets the endpoint halt feature.
314  * @ep: the non-isochronous endpoint being stalled
315  *
316  * Use this to stall an endpoint, perhaps as an error report.
317  * Except for control endpoints,
318  * the endpoint stays halted (will not stream any data) until the host
319  * clears this feature; drivers may need to empty the endpoint's request
320  * queue first, to make sure no inappropriate transfers happen.
321  *
322  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
323  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
324  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
325  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
326  *
327  * Returns zero, or a negative error code.  On success, this call sets
328  * underlying hardware state that blocks data transfers.
329  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
330  * transfer requests are still queued, or if the controller hardware
331  * (usually a FIFO) still holds bytes that the host hasn't collected.
332  */
333 static inline int usb_ep_set_halt(struct usb_ep *ep)
334 {
335         return ep->ops->set_halt(ep, 1);
336 }
337
338 /**
339  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
340  * @ep:the bulk or interrupt endpoint being reset
341  *
342  * Use this when responding to the standard usb "set interface" request,
343  * for endpoints that aren't reconfigured, after clearing any other state
344  * in the endpoint's i/o queue.
345  *
346  * Returns zero, or a negative error code.  On success, this call clears
347  * the underlying hardware state reflecting endpoint halt and data toggle.
348  * Note that some hardware can't support this request (like pxa2xx_udc),
349  * and accordingly can't correctly implement interface altsettings.
350  */
351 static inline int usb_ep_clear_halt(struct usb_ep *ep)
352 {
353         return ep->ops->set_halt(ep, 0);
354 }
355
356 /**
357  * usb_ep_fifo_status - returns number of bytes in fifo, or error
358  * @ep: the endpoint whose fifo status is being checked.
359  *
360  * FIFO endpoints may have "unclaimed data" in them in certain cases,
361  * such as after aborted transfers.  Hosts may not have collected all
362  * the IN data written by the gadget driver (and reported by a request
363  * completion).  The gadget driver may not have collected all the data
364  * written OUT to it by the host.  Drivers that need precise handling for
365  * fault reporting or recovery may need to use this call.
366  *
367  * This returns the number of such bytes in the fifo, or a negative
368  * errno if the endpoint doesn't use a FIFO or doesn't support such
369  * precise handling.
370  */
371 static inline int usb_ep_fifo_status(struct usb_ep *ep)
372 {
373         if (ep->ops->fifo_status)
374                 return ep->ops->fifo_status(ep);
375         else
376                 return -EOPNOTSUPP;
377 }
378
379 /**
380  * usb_ep_fifo_flush - flushes contents of a fifo
381  * @ep: the endpoint whose fifo is being flushed.
382  *
383  * This call may be used to flush the "unclaimed data" that may exist in
384  * an endpoint fifo after abnormal transaction terminations.  The call
385  * must never be used except when endpoint is not being used for any
386  * protocol translation.
387  */
388 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
389 {
390         if (ep->ops->fifo_flush)
391                 ep->ops->fifo_flush(ep);
392 }
393
394
395 /*-------------------------------------------------------------------------*/
396
397 struct usb_gadget;
398
399 /* the rest of the api to the controller hardware: device operations,
400  * which don't involve endpoints (or i/o).
401  */
402 struct usb_gadget_ops {
403         int     (*get_frame)(struct usb_gadget *);
404         int     (*wakeup)(struct usb_gadget *);
405         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
406         int     (*vbus_session) (struct usb_gadget *, int is_active);
407         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
408         int     (*pullup) (struct usb_gadget *, int is_on);
409         int     (*ioctl)(struct usb_gadget *,
410                                 unsigned code, unsigned long param);
411 };
412
413 struct device {
414         void            *driver_data;   /* data private to the driver */
415         void            *device_data;   /* data private to the device */
416 };
417
418 /**
419  * struct usb_gadget - represents a usb slave device
420  * @ops: Function pointers used to access hardware-specific operations.
421  * @ep0: Endpoint zero, used when reading or writing responses to
422  *      driver setup() requests
423  * @ep_list: List of other endpoints supported by the device.
424  * @speed: Speed of current connection to USB host.
425  * @is_dualspeed: true if the controller supports both high and full speed
426  *      operation.  If it does, the gadget driver must also support both.
427  * @is_otg: true if the USB device port uses a Mini-AB jack, so that the
428  *      gadget driver must provide a USB OTG descriptor.
429  * @is_a_peripheral: false unless is_otg, the "A" end of a USB cable
430  *      is in the Mini-AB jack, and HNP has been used to switch roles
431  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
432  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
433  *      supports HNP at this port.
434  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
435  *      only supports HNP on a different root port.
436  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
437  *      enabled HNP support.
438  * @name: Identifies the controller hardware type.  Used in diagnostics
439  *      and sometimes configuration.
440  * @dev: Driver model state for this abstract device.
441  *
442  * Gadgets have a mostly-portable "gadget driver" implementing device
443  * functions, handling all usb configurations and interfaces.  Gadget
444  * drivers talk to hardware-specific code indirectly, through ops vectors.
445  * That insulates the gadget driver from hardware details, and packages
446  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
447  * and "usb_ep" interfaces provide that insulation from the hardware.
448  *
449  * Except for the driver data, all fields in this structure are
450  * read-only to the gadget driver.  That driver data is part of the
451  * "driver model" infrastructure in 2.6 (and later) kernels, and for
452  * earlier systems is grouped in a similar structure that's not known
453  * to the rest of the kernel.
454  *
455  * Values of the three OTG device feature flags are updated before the
456  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
457  * driver suspend() calls.  They are valid only when is_otg, and when the
458  * device is acting as a B-Peripheral (so is_a_peripheral is false).
459  */
460 struct usb_gadget {
461         /* readonly to gadget driver */
462         const struct usb_gadget_ops     *ops;
463         struct usb_ep                   *ep0;
464         struct list_head                ep_list;        /* of usb_ep */
465         enum usb_device_speed           speed;
466         unsigned                        is_dualspeed:1;
467         unsigned                        is_otg:1;
468         unsigned                        is_a_peripheral:1;
469         unsigned                        b_hnp_enable:1;
470         unsigned                        a_hnp_support:1;
471         unsigned                        a_alt_hnp_support:1;
472         const char                      *name;
473         struct device                   dev;
474 };
475
476 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
477 {
478         gadget->dev.driver_data = data;
479 }
480
481 static inline void *get_gadget_data(struct usb_gadget *gadget)
482 {
483         return gadget->dev.driver_data;
484 }
485
486 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
487 {
488         return container_of(dev, struct usb_gadget, dev);
489 }
490
491 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
492 #define gadget_for_each_ep(tmp, gadget) \
493         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
494
495
496 /**
497  * gadget_is_dualspeed - return true iff the hardware handles high speed
498  * @g: controller that might support both high and full speeds
499  */
500 static inline int gadget_is_dualspeed(struct usb_gadget *g)
501 {
502 #ifdef CONFIG_USB_GADGET_DUALSPEED
503         /* runtime test would check "g->is_dualspeed" ... that might be
504          * useful to work around hardware bugs, but is mostly pointless
505          */
506         return 1;
507 #else
508         return 0;
509 #endif
510 }
511
512 /**
513  * gadget_is_otg - return true iff the hardware is OTG-ready
514  * @g: controller that might have a Mini-AB connector
515  *
516  * This is a runtime test, since kernels with a USB-OTG stack sometimes
517  * run on boards which only have a Mini-B (or Mini-A) connector.
518  */
519 static inline int gadget_is_otg(struct usb_gadget *g)
520 {
521 #ifdef CONFIG_USB_OTG
522         return g->is_otg;
523 #else
524         return 0;
525 #endif
526 }
527
528 /**
529  * usb_gadget_frame_number - returns the current frame number
530  * @gadget: controller that reports the frame number
531  *
532  * Returns the usb frame number, normally eleven bits from a SOF packet,
533  * or negative errno if this device doesn't support this capability.
534  */
535 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
536 {
537         return gadget->ops->get_frame(gadget);
538 }
539
540 /**
541  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
542  * @gadget: controller used to wake up the host
543  *
544  * Returns zero on success, else negative error code if the hardware
545  * doesn't support such attempts, or its support has not been enabled
546  * by the usb host.  Drivers must return device descriptors that report
547  * their ability to support this, or hosts won't enable it.
548  *
549  * This may also try to use SRP to wake the host and start enumeration,
550  * even if OTG isn't otherwise in use.  OTG devices may also start
551  * remote wakeup even when hosts don't explicitly enable it.
552  */
553 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
554 {
555         if (!gadget->ops->wakeup)
556                 return -EOPNOTSUPP;
557         return gadget->ops->wakeup(gadget);
558 }
559
560 /**
561  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
562  * @gadget:the device being declared as self-powered
563  *
564  * this affects the device status reported by the hardware driver
565  * to reflect that it now has a local power supply.
566  *
567  * returns zero on success, else negative errno.
568  */
569 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
570 {
571         if (!gadget->ops->set_selfpowered)
572                 return -EOPNOTSUPP;
573         return gadget->ops->set_selfpowered(gadget, 1);
574 }
575
576 /**
577  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
578  * @gadget:the device being declared as bus-powered
579  *
580  * this affects the device status reported by the hardware driver.
581  * some hardware may not support bus-powered operation, in which
582  * case this feature's value can never change.
583  *
584  * returns zero on success, else negative errno.
585  */
586 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
587 {
588         if (!gadget->ops->set_selfpowered)
589                 return -EOPNOTSUPP;
590         return gadget->ops->set_selfpowered(gadget, 0);
591 }
592
593 /**
594  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
595  * @gadget:The device which now has VBUS power.
596  *
597  * This call is used by a driver for an external transceiver (or GPIO)
598  * that detects a VBUS power session starting.  Common responses include
599  * resuming the controller, activating the D+ (or D-) pullup to let the
600  * host detect that a USB device is attached, and starting to draw power
601  * (8mA or possibly more, especially after SET_CONFIGURATION).
602  *
603  * Returns zero on success, else negative errno.
604  */
605 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
606 {
607         if (!gadget->ops->vbus_session)
608                 return -EOPNOTSUPP;
609         return gadget->ops->vbus_session(gadget, 1);
610 }
611
612 /**
613  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
614  * @gadget:The device whose VBUS usage is being described
615  * @mA:How much current to draw, in milliAmperes.  This should be twice
616  *      the value listed in the configuration descriptor bMaxPower field.
617  *
618  * This call is used by gadget drivers during SET_CONFIGURATION calls,
619  * reporting how much power the device may consume.  For example, this
620  * could affect how quickly batteries are recharged.
621  *
622  * Returns zero on success, else negative errno.
623  */
624 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
625 {
626         if (!gadget->ops->vbus_draw)
627                 return -EOPNOTSUPP;
628         return gadget->ops->vbus_draw(gadget, mA);
629 }
630
631 /**
632  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
633  * @gadget:the device whose VBUS supply is being described
634  *
635  * This call is used by a driver for an external transceiver (or GPIO)
636  * that detects a VBUS power session ending.  Common responses include
637  * reversing everything done in usb_gadget_vbus_connect().
638  *
639  * Returns zero on success, else negative errno.
640  */
641 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
642 {
643         if (!gadget->ops->vbus_session)
644                 return -EOPNOTSUPP;
645         return gadget->ops->vbus_session(gadget, 0);
646 }
647
648 /**
649  * usb_gadget_connect - software-controlled connect to USB host
650  * @gadget:the peripheral being connected
651  *
652  * Enables the D+ (or potentially D-) pullup.  The host will start
653  * enumerating this gadget when the pullup is active and a VBUS session
654  * is active (the link is powered).  This pullup is always enabled unless
655  * usb_gadget_disconnect() has been used to disable it.
656  *
657  * Returns zero on success, else negative errno.
658  */
659 static inline int usb_gadget_connect(struct usb_gadget *gadget)
660 {
661         if (!gadget->ops->pullup)
662                 return -EOPNOTSUPP;
663         return gadget->ops->pullup(gadget, 1);
664 }
665
666 /**
667  * usb_gadget_disconnect - software-controlled disconnect from USB host
668  * @gadget:the peripheral being disconnected
669  *
670  * Disables the D+ (or potentially D-) pullup, which the host may see
671  * as a disconnect (when a VBUS session is active).  Not all systems
672  * support software pullup controls.
673  *
674  * This routine may be used during the gadget driver bind() call to prevent
675  * the peripheral from ever being visible to the USB host, unless later
676  * usb_gadget_connect() is called.  For example, user mode components may
677  * need to be activated before the system can talk to hosts.
678  *
679  * Returns zero on success, else negative errno.
680  */
681 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
682 {
683         if (!gadget->ops->pullup)
684                 return -EOPNOTSUPP;
685         return gadget->ops->pullup(gadget, 0);
686 }
687
688
689 /*-------------------------------------------------------------------------*/
690
691 /**
692  * struct usb_gadget_driver - driver for usb 'slave' devices
693  * @speed: Highest speed the driver handles.
694  * @bind: Invoked when the driver is bound to a gadget, usually
695  *      after registering the driver.
696  *      At that point, ep0 is fully initialized, and ep_list holds
697  *      the currently-available endpoints.
698  *      Called in a context that permits sleeping.
699  * @setup: Invoked for ep0 control requests that aren't handled by
700  *      the hardware level driver. Most calls must be handled by
701  *      the gadget driver, including descriptor and configuration
702  *      management.  The 16 bit members of the setup data are in
703  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
704  *      queues a response to ep0, or returns negative to stall.
705  * @disconnect: Invoked after all transfers have been stopped,
706  *      when the host is disconnected.  May be called in_interrupt; this
707  *      may not sleep.  Some devices can't detect disconnect, so this might
708  *      not be called except as part of controller shutdown.
709  * @unbind: Invoked when the driver is unbound from a gadget,
710  *      usually from rmmod (after a disconnect is reported).
711  *      Called in a context that permits sleeping.
712  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
713  * @resume: Invoked on USB resume.  May be called in_interrupt.
714  *
715  * Devices are disabled till a gadget driver successfully bind()s, which
716  * means the driver will handle setup() requests needed to enumerate (and
717  * meet "chapter 9" requirements) then do some useful work.
718  *
719  * If gadget->is_otg is true, the gadget driver must provide an OTG
720  * descriptor during enumeration, or else fail the bind() call.  In such
721  * cases, no USB traffic may flow until both bind() returns without
722  * having called usb_gadget_disconnect(), and the USB host stack has
723  * initialized.
724  *
725  * Drivers use hardware-specific knowledge to configure the usb hardware.
726  * endpoint addressing is only one of several hardware characteristics that
727  * are in descriptors the ep0 implementation returns from setup() calls.
728  *
729  * Except for ep0 implementation, most driver code shouldn't need change to
730  * run on top of different usb controllers.  It'll use endpoints set up by
731  * that ep0 implementation.
732  *
733  * The usb controller driver handles a few standard usb requests.  Those
734  * include set_address, and feature flags for devices, interfaces, and
735  * endpoints (the get_status, set_feature, and clear_feature requests).
736  *
737  * Accordingly, the driver's setup() callback must always implement all
738  * get_descriptor requests, returning at least a device descriptor and
739  * a configuration descriptor.  Drivers must make sure the endpoint
740  * descriptors match any hardware constraints. Some hardware also constrains
741  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
742  *
743  * The driver's setup() callback must also implement set_configuration,
744  * and should also implement set_interface, get_configuration, and
745  * get_interface.  Setting a configuration (or interface) is where
746  * endpoints should be activated or (config 0) shut down.
747  *
748  * (Note that only the default control endpoint is supported.  Neither
749  * hosts nor devices generally support control traffic except to ep0.)
750  *
751  * Most devices will ignore USB suspend/resume operations, and so will
752  * not provide those callbacks.  However, some may need to change modes
753  * when the host is not longer directing those activities.  For example,
754  * local controls (buttons, dials, etc) may need to be re-enabled since
755  * the (remote) host can't do that any longer; or an error state might
756  * be cleared, to make the device behave identically whether or not
757  * power is maintained.
758  */
759 struct usb_gadget_driver {
760         enum usb_device_speed   speed;
761         int                     (*bind)(struct usb_gadget *);
762         void                    (*unbind)(struct usb_gadget *);
763         int                     (*setup)(struct usb_gadget *,
764                                         const struct usb_ctrlrequest *);
765         void                    (*disconnect)(struct usb_gadget *);
766         void                    (*suspend)(struct usb_gadget *);
767         void                    (*resume)(struct usb_gadget *);
768 };
769
770
771 /*-------------------------------------------------------------------------*/
772
773 /* driver modules register and unregister, as usual.
774  * these calls must be made in a context that can sleep.
775  *
776  * these will usually be implemented directly by the hardware-dependent
777  * usb bus interface driver, which will only support a single driver.
778  */
779
780 /**
781  * usb_gadget_register_driver - register a gadget driver
782  * @driver:the driver being registered
783  *
784  * Call this in your gadget driver's module initialization function,
785  * to tell the underlying usb controller driver about your driver.
786  * The driver's bind() function will be called to bind it to a
787  * gadget before this registration call returns.  It's expected that
788  * the bind() functions will be in init sections.
789  * This function must be called in a context that can sleep.
790  */
791 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
792
793 /**
794  * usb_gadget_unregister_driver - unregister a gadget driver
795  * @driver:the driver being unregistered
796  *
797  * Call this in your gadget driver's module cleanup function,
798  * to tell the underlying usb controller that your driver is
799  * going away.  If the controller is connected to a USB host,
800  * it will first disconnect().  The driver is also requested
801  * to unbind() and clean up any device state, before this procedure
802  * finally returns.  It's expected that the unbind() functions
803  * will in in exit sections, so may not be linked in some kernels.
804  * This function must be called in a context that can sleep.
805  */
806 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
807
808 /*-------------------------------------------------------------------------*/
809
810 /* utility to simplify dealing with string descriptors */
811
812 /**
813  * struct usb_string - wraps a C string and its USB id
814  * @id:the (nonzero) ID for this string
815  * @s:the string, in UTF-8 encoding
816  *
817  * If you're using usb_gadget_get_string(), use this to wrap a string
818  * together with its ID.
819  */
820 struct usb_string {
821         u8                      id;
822         const char              *s;
823 };
824
825 /**
826  * struct usb_gadget_strings - a set of USB strings in a given language
827  * @language:identifies the strings' language (0x0409 for en-us)
828  * @strings:array of strings with their ids
829  *
830  * If you're using usb_gadget_get_string(), use this to wrap all the
831  * strings for a given language.
832  */
833 struct usb_gadget_strings {
834         u16                     language;       /* 0x0409 for en-us */
835         struct usb_string       *strings;
836 };
837
838 /* put descriptor for string with that id into buf (buflen >= 256) */
839 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
840
841 /*-------------------------------------------------------------------------*/
842
843 /* utility to simplify managing config descriptors */
844
845 /* write vector of descriptors into buffer */
846 int usb_descriptor_fillbuf(void *, unsigned,
847                 const struct usb_descriptor_header **);
848
849 /* build config descriptor from single descriptor vector */
850 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
851         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
852
853 /*-------------------------------------------------------------------------*/
854
855 /* utility wrapping a simple endpoint selection policy */
856
857 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
858                         struct usb_endpoint_descriptor *);
859
860 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
861
862 extern int usb_gadget_handle_interrupts(void);
863
864 #endif  /* __LINUX_USB_GADGET_H */