]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - include/linux/page-flags.h
mtd: nand: complain loudly when chip->bits_per_cell is not correctly initialized
[karo-tx-linux.git] / include / linux / page-flags.h
1 /*
2  * Macros for manipulating and testing page->flags
3  */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17  * Various page->flags bits:
18  *
19  * PG_reserved is set for special pages, which can never be swapped out. Some
20  * of them might not even exist (eg empty_bad_page)...
21  *
22  * The PG_private bitflag is set on pagecache pages if they contain filesystem
23  * specific data (which is normally at page->private). It can be used by
24  * private allocations for its own usage.
25  *
26  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28  * is set before writeback starts and cleared when it finishes.
29  *
30  * PG_locked also pins a page in pagecache, and blocks truncation of the file
31  * while it is held.
32  *
33  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34  * to become unlocked.
35  *
36  * PG_uptodate tells whether the page's contents is valid.  When a read
37  * completes, the page becomes uptodate, unless a disk I/O error happened.
38  *
39  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40  * file-backed pagecache (see mm/vmscan.c).
41  *
42  * PG_error is set to indicate that an I/O error occurred on this page.
43  *
44  * PG_arch_1 is an architecture specific page state bit.  The generic code
45  * guarantees that this bit is cleared for a page when it first is entered into
46  * the page cache.
47  *
48  * PG_highmem pages are not permanently mapped into the kernel virtual address
49  * space, they need to be kmapped separately for doing IO on the pages.  The
50  * struct page (these bits with information) are always mapped into kernel
51  * address space...
52  *
53  * PG_hwpoison indicates that a page got corrupted in hardware and contains
54  * data with incorrect ECC bits that triggered a machine check. Accessing is
55  * not safe since it may cause another machine check. Don't touch!
56  */
57
58 /*
59  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
60  * locked- and dirty-page accounting.
61  *
62  * The page flags field is split into two parts, the main flags area
63  * which extends from the low bits upwards, and the fields area which
64  * extends from the high bits downwards.
65  *
66  *  | FIELD | ... | FLAGS |
67  *  N-1           ^       0
68  *               (NR_PAGEFLAGS)
69  *
70  * The fields area is reserved for fields mapping zone, node (for NUMA) and
71  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73  */
74 enum pageflags {
75         PG_locked,              /* Page is locked. Don't touch. */
76         PG_error,
77         PG_referenced,
78         PG_uptodate,
79         PG_dirty,
80         PG_lru,
81         PG_active,
82         PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
83         PG_slab,
84         PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
85         PG_arch_1,
86         PG_reserved,
87         PG_private,             /* If pagecache, has fs-private data */
88         PG_private_2,           /* If pagecache, has fs aux data */
89         PG_writeback,           /* Page is under writeback */
90         PG_head,                /* A head page */
91         PG_mappedtodisk,        /* Has blocks allocated on-disk */
92         PG_reclaim,             /* To be reclaimed asap */
93         PG_swapbacked,          /* Page is backed by RAM/swap */
94         PG_unevictable,         /* Page is "unevictable"  */
95 #ifdef CONFIG_MMU
96         PG_mlocked,             /* Page is vma mlocked */
97 #endif
98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
99         PG_uncached,            /* Page has been mapped as uncached */
100 #endif
101 #ifdef CONFIG_MEMORY_FAILURE
102         PG_hwpoison,            /* hardware poisoned page. Don't touch */
103 #endif
104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
105         PG_young,
106         PG_idle,
107 #endif
108         __NR_PAGEFLAGS,
109
110         /* Filesystems */
111         PG_checked = PG_owner_priv_1,
112
113         /* SwapBacked */
114         PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
115
116         /* Two page bits are conscripted by FS-Cache to maintain local caching
117          * state.  These bits are set on pages belonging to the netfs's inodes
118          * when those inodes are being locally cached.
119          */
120         PG_fscache = PG_private_2,      /* page backed by cache */
121
122         /* XEN */
123         /* Pinned in Xen as a read-only pagetable page. */
124         PG_pinned = PG_owner_priv_1,
125         /* Pinned as part of domain save (see xen_mm_pin_all()). */
126         PG_savepinned = PG_dirty,
127         /* Has a grant mapping of another (foreign) domain's page. */
128         PG_foreign = PG_owner_priv_1,
129
130         /* SLOB */
131         PG_slob_free = PG_private,
132
133         /* Compound pages. Stored in first tail page's flags */
134         PG_double_map = PG_private_2,
135
136         /* non-lru isolated movable page */
137         PG_isolated = PG_reclaim,
138 };
139
140 #ifndef __GENERATING_BOUNDS_H
141
142 struct page;    /* forward declaration */
143
144 static inline struct page *compound_head(struct page *page)
145 {
146         unsigned long head = READ_ONCE(page->compound_head);
147
148         if (unlikely(head & 1))
149                 return (struct page *) (head - 1);
150         return page;
151 }
152
153 static __always_inline int PageTail(struct page *page)
154 {
155         return READ_ONCE(page->compound_head) & 1;
156 }
157
158 static __always_inline int PageCompound(struct page *page)
159 {
160         return test_bit(PG_head, &page->flags) || PageTail(page);
161 }
162
163 /*
164  * Page flags policies wrt compound pages
165  *
166  * PF_ANY:
167  *     the page flag is relevant for small, head and tail pages.
168  *
169  * PF_HEAD:
170  *     for compound page all operations related to the page flag applied to
171  *     head page.
172  *
173  * PF_ONLY_HEAD:
174  *     for compound page, callers only ever operate on the head page.
175  *
176  * PF_NO_TAIL:
177  *     modifications of the page flag must be done on small or head pages,
178  *     checks can be done on tail pages too.
179  *
180  * PF_NO_COMPOUND:
181  *     the page flag is not relevant for compound pages.
182  */
183 #define PF_ANY(page, enforce)   page
184 #define PF_HEAD(page, enforce)  compound_head(page)
185 #define PF_ONLY_HEAD(page, enforce) ({                                  \
186                 VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
187                 page;})
188 #define PF_NO_TAIL(page, enforce) ({                                    \
189                 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
190                 compound_head(page);})
191 #define PF_NO_COMPOUND(page, enforce) ({                                \
192                 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
193                 page;})
194
195 /*
196  * Macros to create function definitions for page flags
197  */
198 #define TESTPAGEFLAG(uname, lname, policy)                              \
199 static __always_inline int Page##uname(struct page *page)               \
200         { return test_bit(PG_##lname, &policy(page, 0)->flags); }
201
202 #define SETPAGEFLAG(uname, lname, policy)                               \
203 static __always_inline void SetPage##uname(struct page *page)           \
204         { set_bit(PG_##lname, &policy(page, 1)->flags); }
205
206 #define CLEARPAGEFLAG(uname, lname, policy)                             \
207 static __always_inline void ClearPage##uname(struct page *page)         \
208         { clear_bit(PG_##lname, &policy(page, 1)->flags); }
209
210 #define __SETPAGEFLAG(uname, lname, policy)                             \
211 static __always_inline void __SetPage##uname(struct page *page)         \
212         { __set_bit(PG_##lname, &policy(page, 1)->flags); }
213
214 #define __CLEARPAGEFLAG(uname, lname, policy)                           \
215 static __always_inline void __ClearPage##uname(struct page *page)       \
216         { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
217
218 #define TESTSETFLAG(uname, lname, policy)                               \
219 static __always_inline int TestSetPage##uname(struct page *page)        \
220         { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
221
222 #define TESTCLEARFLAG(uname, lname, policy)                             \
223 static __always_inline int TestClearPage##uname(struct page *page)      \
224         { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
225
226 #define PAGEFLAG(uname, lname, policy)                                  \
227         TESTPAGEFLAG(uname, lname, policy)                              \
228         SETPAGEFLAG(uname, lname, policy)                               \
229         CLEARPAGEFLAG(uname, lname, policy)
230
231 #define __PAGEFLAG(uname, lname, policy)                                \
232         TESTPAGEFLAG(uname, lname, policy)                              \
233         __SETPAGEFLAG(uname, lname, policy)                             \
234         __CLEARPAGEFLAG(uname, lname, policy)
235
236 #define TESTSCFLAG(uname, lname, policy)                                \
237         TESTSETFLAG(uname, lname, policy)                               \
238         TESTCLEARFLAG(uname, lname, policy)
239
240 #define TESTPAGEFLAG_FALSE(uname)                                       \
241 static inline int Page##uname(const struct page *page) { return 0; }
242
243 #define SETPAGEFLAG_NOOP(uname)                                         \
244 static inline void SetPage##uname(struct page *page) {  }
245
246 #define CLEARPAGEFLAG_NOOP(uname)                                       \
247 static inline void ClearPage##uname(struct page *page) {  }
248
249 #define __CLEARPAGEFLAG_NOOP(uname)                                     \
250 static inline void __ClearPage##uname(struct page *page) {  }
251
252 #define TESTSETFLAG_FALSE(uname)                                        \
253 static inline int TestSetPage##uname(struct page *page) { return 0; }
254
255 #define TESTCLEARFLAG_FALSE(uname)                                      \
256 static inline int TestClearPage##uname(struct page *page) { return 0; }
257
258 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
259         SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
260
261 #define TESTSCFLAG_FALSE(uname)                                         \
262         TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
263
264 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
265 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
266 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
267 PAGEFLAG(Referenced, referenced, PF_HEAD)
268         TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
269         __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
270 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
271         __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
272 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
273 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
274         TESTCLEARFLAG(Active, active, PF_HEAD)
275 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
276 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
277 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
278
279 /* Xen */
280 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
281         TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
282 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
283 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
284
285 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
286         __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
287 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
288         __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
289         __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
290
291 /*
292  * Private page markings that may be used by the filesystem that owns the page
293  * for its own purposes.
294  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
295  */
296 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
297         __CLEARPAGEFLAG(Private, private, PF_ANY)
298 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
299 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
300         TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
301
302 /*
303  * Only test-and-set exist for PG_writeback.  The unconditional operators are
304  * risky: they bypass page accounting.
305  */
306 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
307         TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
308 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
309
310 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
311 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
312         TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
313 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
314         TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
315
316 #ifdef CONFIG_HIGHMEM
317 /*
318  * Must use a macro here due to header dependency issues. page_zone() is not
319  * available at this point.
320  */
321 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
322 #else
323 PAGEFLAG_FALSE(HighMem)
324 #endif
325
326 #ifdef CONFIG_SWAP
327 static __always_inline int PageSwapCache(struct page *page)
328 {
329 #ifdef CONFIG_THP_SWAP
330         page = compound_head(page);
331 #endif
332         return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
333
334 }
335 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
336 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
337 #else
338 PAGEFLAG_FALSE(SwapCache)
339 #endif
340
341 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
342         __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
343         TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
344
345 #ifdef CONFIG_MMU
346 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
347         __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
348         TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
349 #else
350 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
351         TESTSCFLAG_FALSE(Mlocked)
352 #endif
353
354 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
355 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
356 #else
357 PAGEFLAG_FALSE(Uncached)
358 #endif
359
360 #ifdef CONFIG_MEMORY_FAILURE
361 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
362 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
363 #define __PG_HWPOISON (1UL << PG_hwpoison)
364 #else
365 PAGEFLAG_FALSE(HWPoison)
366 #define __PG_HWPOISON 0
367 #endif
368
369 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
370 TESTPAGEFLAG(Young, young, PF_ANY)
371 SETPAGEFLAG(Young, young, PF_ANY)
372 TESTCLEARFLAG(Young, young, PF_ANY)
373 PAGEFLAG(Idle, idle, PF_ANY)
374 #endif
375
376 /*
377  * On an anonymous page mapped into a user virtual memory area,
378  * page->mapping points to its anon_vma, not to a struct address_space;
379  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
380  *
381  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
382  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
383  * bit; and then page->mapping points, not to an anon_vma, but to a private
384  * structure which KSM associates with that merged page.  See ksm.h.
385  *
386  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
387  * page and then page->mapping points a struct address_space.
388  *
389  * Please note that, confusingly, "page_mapping" refers to the inode
390  * address_space which maps the page from disk; whereas "page_mapped"
391  * refers to user virtual address space into which the page is mapped.
392  */
393 #define PAGE_MAPPING_ANON       0x1
394 #define PAGE_MAPPING_MOVABLE    0x2
395 #define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
396 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
397
398 static __always_inline int PageMappingFlags(struct page *page)
399 {
400         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
401 }
402
403 static __always_inline int PageAnon(struct page *page)
404 {
405         page = compound_head(page);
406         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
407 }
408
409 static __always_inline int __PageMovable(struct page *page)
410 {
411         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
412                                 PAGE_MAPPING_MOVABLE;
413 }
414
415 #ifdef CONFIG_KSM
416 /*
417  * A KSM page is one of those write-protected "shared pages" or "merged pages"
418  * which KSM maps into multiple mms, wherever identical anonymous page content
419  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
420  * anon_vma, but to that page's node of the stable tree.
421  */
422 static __always_inline int PageKsm(struct page *page)
423 {
424         page = compound_head(page);
425         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
426                                 PAGE_MAPPING_KSM;
427 }
428 #else
429 TESTPAGEFLAG_FALSE(Ksm)
430 #endif
431
432 u64 stable_page_flags(struct page *page);
433
434 static inline int PageUptodate(struct page *page)
435 {
436         int ret;
437         page = compound_head(page);
438         ret = test_bit(PG_uptodate, &(page)->flags);
439         /*
440          * Must ensure that the data we read out of the page is loaded
441          * _after_ we've loaded page->flags to check for PageUptodate.
442          * We can skip the barrier if the page is not uptodate, because
443          * we wouldn't be reading anything from it.
444          *
445          * See SetPageUptodate() for the other side of the story.
446          */
447         if (ret)
448                 smp_rmb();
449
450         return ret;
451 }
452
453 static __always_inline void __SetPageUptodate(struct page *page)
454 {
455         VM_BUG_ON_PAGE(PageTail(page), page);
456         smp_wmb();
457         __set_bit(PG_uptodate, &page->flags);
458 }
459
460 static __always_inline void SetPageUptodate(struct page *page)
461 {
462         VM_BUG_ON_PAGE(PageTail(page), page);
463         /*
464          * Memory barrier must be issued before setting the PG_uptodate bit,
465          * so that all previous stores issued in order to bring the page
466          * uptodate are actually visible before PageUptodate becomes true.
467          */
468         smp_wmb();
469         set_bit(PG_uptodate, &page->flags);
470 }
471
472 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
473
474 int test_clear_page_writeback(struct page *page);
475 int __test_set_page_writeback(struct page *page, bool keep_write);
476
477 #define test_set_page_writeback(page)                   \
478         __test_set_page_writeback(page, false)
479 #define test_set_page_writeback_keepwrite(page) \
480         __test_set_page_writeback(page, true)
481
482 static inline void set_page_writeback(struct page *page)
483 {
484         test_set_page_writeback(page);
485 }
486
487 static inline void set_page_writeback_keepwrite(struct page *page)
488 {
489         test_set_page_writeback_keepwrite(page);
490 }
491
492 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
493
494 static __always_inline void set_compound_head(struct page *page, struct page *head)
495 {
496         WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
497 }
498
499 static __always_inline void clear_compound_head(struct page *page)
500 {
501         WRITE_ONCE(page->compound_head, 0);
502 }
503
504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
505 static inline void ClearPageCompound(struct page *page)
506 {
507         BUG_ON(!PageHead(page));
508         ClearPageHead(page);
509 }
510 #endif
511
512 #define PG_head_mask ((1UL << PG_head))
513
514 #ifdef CONFIG_HUGETLB_PAGE
515 int PageHuge(struct page *page);
516 int PageHeadHuge(struct page *page);
517 bool page_huge_active(struct page *page);
518 #else
519 TESTPAGEFLAG_FALSE(Huge)
520 TESTPAGEFLAG_FALSE(HeadHuge)
521
522 static inline bool page_huge_active(struct page *page)
523 {
524         return 0;
525 }
526 #endif
527
528
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 /*
531  * PageHuge() only returns true for hugetlbfs pages, but not for
532  * normal or transparent huge pages.
533  *
534  * PageTransHuge() returns true for both transparent huge and
535  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
536  * called only in the core VM paths where hugetlbfs pages can't exist.
537  */
538 static inline int PageTransHuge(struct page *page)
539 {
540         VM_BUG_ON_PAGE(PageTail(page), page);
541         return PageHead(page);
542 }
543
544 /*
545  * PageTransCompound returns true for both transparent huge pages
546  * and hugetlbfs pages, so it should only be called when it's known
547  * that hugetlbfs pages aren't involved.
548  */
549 static inline int PageTransCompound(struct page *page)
550 {
551         return PageCompound(page);
552 }
553
554 /*
555  * PageTransCompoundMap is the same as PageTransCompound, but it also
556  * guarantees the primary MMU has the entire compound page mapped
557  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
558  * can also map the entire compound page. This allows the secondary
559  * MMUs to call get_user_pages() only once for each compound page and
560  * to immediately map the entire compound page with a single secondary
561  * MMU fault. If there will be a pmd split later, the secondary MMUs
562  * will get an update through the MMU notifier invalidation through
563  * split_huge_pmd().
564  *
565  * Unlike PageTransCompound, this is safe to be called only while
566  * split_huge_pmd() cannot run from under us, like if protected by the
567  * MMU notifier, otherwise it may result in page->_mapcount < 0 false
568  * positives.
569  */
570 static inline int PageTransCompoundMap(struct page *page)
571 {
572         return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
573 }
574
575 /*
576  * PageTransTail returns true for both transparent huge pages
577  * and hugetlbfs pages, so it should only be called when it's known
578  * that hugetlbfs pages aren't involved.
579  */
580 static inline int PageTransTail(struct page *page)
581 {
582         return PageTail(page);
583 }
584
585 /*
586  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
587  * as PMDs.
588  *
589  * This is required for optimization of rmap operations for THP: we can postpone
590  * per small page mapcount accounting (and its overhead from atomic operations)
591  * until the first PMD split.
592  *
593  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
594  * by one. This reference will go away with last compound_mapcount.
595  *
596  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
597  */
598 static inline int PageDoubleMap(struct page *page)
599 {
600         return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
601 }
602
603 static inline void SetPageDoubleMap(struct page *page)
604 {
605         VM_BUG_ON_PAGE(!PageHead(page), page);
606         set_bit(PG_double_map, &page[1].flags);
607 }
608
609 static inline void ClearPageDoubleMap(struct page *page)
610 {
611         VM_BUG_ON_PAGE(!PageHead(page), page);
612         clear_bit(PG_double_map, &page[1].flags);
613 }
614 static inline int TestSetPageDoubleMap(struct page *page)
615 {
616         VM_BUG_ON_PAGE(!PageHead(page), page);
617         return test_and_set_bit(PG_double_map, &page[1].flags);
618 }
619
620 static inline int TestClearPageDoubleMap(struct page *page)
621 {
622         VM_BUG_ON_PAGE(!PageHead(page), page);
623         return test_and_clear_bit(PG_double_map, &page[1].flags);
624 }
625
626 #else
627 TESTPAGEFLAG_FALSE(TransHuge)
628 TESTPAGEFLAG_FALSE(TransCompound)
629 TESTPAGEFLAG_FALSE(TransCompoundMap)
630 TESTPAGEFLAG_FALSE(TransTail)
631 PAGEFLAG_FALSE(DoubleMap)
632         TESTSETFLAG_FALSE(DoubleMap)
633         TESTCLEARFLAG_FALSE(DoubleMap)
634 #endif
635
636 /*
637  * For pages that are never mapped to userspace, page->mapcount may be
638  * used for storing extra information about page type. Any value used
639  * for this purpose must be <= -2, but it's better start not too close
640  * to -2 so that an underflow of the page_mapcount() won't be mistaken
641  * for a special page.
642  */
643 #define PAGE_MAPCOUNT_OPS(uname, lname)                                 \
644 static __always_inline int Page##uname(struct page *page)               \
645 {                                                                       \
646         return atomic_read(&page->_mapcount) ==                         \
647                                 PAGE_##lname##_MAPCOUNT_VALUE;          \
648 }                                                                       \
649 static __always_inline void __SetPage##uname(struct page *page)         \
650 {                                                                       \
651         VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);      \
652         atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE);    \
653 }                                                                       \
654 static __always_inline void __ClearPage##uname(struct page *page)       \
655 {                                                                       \
656         VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
657         atomic_set(&page->_mapcount, -1);                               \
658 }
659
660 /*
661  * PageBuddy() indicate that the page is free and in the buddy system
662  * (see mm/page_alloc.c).
663  */
664 #define PAGE_BUDDY_MAPCOUNT_VALUE               (-128)
665 PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
666
667 /*
668  * PageBalloon() is set on pages that are on the balloon page list
669  * (see mm/balloon_compaction.c).
670  */
671 #define PAGE_BALLOON_MAPCOUNT_VALUE             (-256)
672 PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
673
674 /*
675  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
676  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
677  */
678 #define PAGE_KMEMCG_MAPCOUNT_VALUE              (-512)
679 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
680
681 extern bool is_free_buddy_page(struct page *page);
682
683 __PAGEFLAG(Isolated, isolated, PF_ANY);
684
685 /*
686  * If network-based swap is enabled, sl*b must keep track of whether pages
687  * were allocated from pfmemalloc reserves.
688  */
689 static inline int PageSlabPfmemalloc(struct page *page)
690 {
691         VM_BUG_ON_PAGE(!PageSlab(page), page);
692         return PageActive(page);
693 }
694
695 static inline void SetPageSlabPfmemalloc(struct page *page)
696 {
697         VM_BUG_ON_PAGE(!PageSlab(page), page);
698         SetPageActive(page);
699 }
700
701 static inline void __ClearPageSlabPfmemalloc(struct page *page)
702 {
703         VM_BUG_ON_PAGE(!PageSlab(page), page);
704         __ClearPageActive(page);
705 }
706
707 static inline void ClearPageSlabPfmemalloc(struct page *page)
708 {
709         VM_BUG_ON_PAGE(!PageSlab(page), page);
710         ClearPageActive(page);
711 }
712
713 #ifdef CONFIG_MMU
714 #define __PG_MLOCKED            (1UL << PG_mlocked)
715 #else
716 #define __PG_MLOCKED            0
717 #endif
718
719 /*
720  * Flags checked when a page is freed.  Pages being freed should not have
721  * these flags set.  It they are, there is a problem.
722  */
723 #define PAGE_FLAGS_CHECK_AT_FREE                                \
724         (1UL << PG_lru          | 1UL << PG_locked      |       \
725          1UL << PG_private      | 1UL << PG_private_2   |       \
726          1UL << PG_writeback    | 1UL << PG_reserved    |       \
727          1UL << PG_slab         | 1UL << PG_active      |       \
728          1UL << PG_unevictable  | __PG_MLOCKED)
729
730 /*
731  * Flags checked when a page is prepped for return by the page allocator.
732  * Pages being prepped should not have these flags set.  It they are set,
733  * there has been a kernel bug or struct page corruption.
734  *
735  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
736  * alloc-free cycle to prevent from reusing the page.
737  */
738 #define PAGE_FLAGS_CHECK_AT_PREP        \
739         (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
740
741 #define PAGE_FLAGS_PRIVATE                              \
742         (1UL << PG_private | 1UL << PG_private_2)
743 /**
744  * page_has_private - Determine if page has private stuff
745  * @page: The page to be checked
746  *
747  * Determine if a page has private stuff, indicating that release routines
748  * should be invoked upon it.
749  */
750 static inline int page_has_private(struct page *page)
751 {
752         return !!(page->flags & PAGE_FLAGS_PRIVATE);
753 }
754
755 #undef PF_ANY
756 #undef PF_HEAD
757 #undef PF_ONLY_HEAD
758 #undef PF_NO_TAIL
759 #undef PF_NO_COMPOUND
760 #endif /* !__GENERATING_BOUNDS_H */
761
762 #endif  /* PAGE_FLAGS_H */