]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
OMAP5: EMIF: Add support for DDR3 device
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * See file CREDITS for list of people who contributed to this
10  * project.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of
15  * the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25  * MA 02111-1307 USA
26  */
27
28 #include <common.h>
29 #include <asm/emif.h>
30 #include <asm/arch/clocks.h>
31 #include <asm/arch/sys_proto.h>
32 #include <asm/omap_common.h>
33 #include <asm/utils.h>
34
35 inline u32 emif_num(u32 base)
36 {
37         if (base == EMIF1_BASE)
38                 return 1;
39         else if (base == EMIF2_BASE)
40                 return 2;
41         else
42                 return 0;
43 }
44
45
46 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
47 {
48         u32 mr;
49         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
50
51         mr_addr |= cs << EMIF_REG_CS_SHIFT;
52         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
53         if (omap_revision() == OMAP4430_ES2_0)
54                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
55         else
56                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
57         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
58               cs, mr_addr, mr);
59         return mr;
60 }
61
62 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
63 {
64         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
65
66         mr_addr |= cs << EMIF_REG_CS_SHIFT;
67         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
68         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
69 }
70
71 void emif_reset_phy(u32 base)
72 {
73         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
74         u32 iodft;
75
76         iodft = readl(&emif->emif_iodft_tlgc);
77         iodft |= EMIF_REG_RESET_PHY_MASK;
78         writel(iodft, &emif->emif_iodft_tlgc);
79 }
80
81 static void do_lpddr2_init(u32 base, u32 cs)
82 {
83         u32 mr_addr;
84
85         /* Wait till device auto initialization is complete */
86         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
87                 ;
88         set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
89         /*
90          * tZQINIT = 1 us
91          * Enough loops assuming a maximum of 2GHz
92          */
93
94         sdelay(2000);
95
96         if (omap_revision() >= OMAP5430_ES1_0)
97                 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8);
98         else
99                 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
100
101         set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
102
103         /*
104          * Enable refresh along with writing MR2
105          * Encoding of RL in MR2 is (RL - 2)
106          */
107         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
108         set_mr(base, cs, mr_addr, RL_FINAL - 2);
109
110         if (omap_revision() >= OMAP5430_ES1_0)
111                 set_mr(base, cs, LPDDR2_MR3, 0x1);
112 }
113
114 static void lpddr2_init(u32 base, const struct emif_regs *regs)
115 {
116         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
117         u32 *ext_phy_ctrl_base = 0;
118         u32 *emif_ext_phy_ctrl_base = 0;
119         u32 i = 0;
120
121         /* Not NVM */
122         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
123
124         /*
125          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
126          * when EMIF_SDRAM_CONFIG register is written
127          */
128         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
129
130         /*
131          * Set the SDRAM_CONFIG and PHY_CTRL for the
132          * un-locked frequency & default RL
133          */
134         writel(regs->sdram_config_init, &emif->emif_sdram_config);
135         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
136
137         ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
138         emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
139
140         if (omap_revision() >= OMAP5430_ES1_0) {
141                 /* Configure external phy control timing registers */
142                 for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
143                         writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
144                         /* Update shadow registers */
145                         writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
146                 }
147
148                 /*
149                  * external phy 6-24 registers do not change with
150                  * ddr frequency
151                  */
152                 for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
153                         writel(ext_phy_ctrl_const_base[i],
154                                                 emif_ext_phy_ctrl_base++);
155                         /* Update shadow registers */
156                         writel(ext_phy_ctrl_const_base[i],
157                                                 emif_ext_phy_ctrl_base++);
158                 }
159         }
160
161         do_lpddr2_init(base, CS0);
162         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
163                 do_lpddr2_init(base, CS1);
164
165         writel(regs->sdram_config, &emif->emif_sdram_config);
166         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
167
168         /* Enable refresh now */
169         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
170
171 }
172
173 void emif_update_timings(u32 base, const struct emif_regs *regs)
174 {
175         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
176
177         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
178         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
179         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
180         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
181         if (omap_revision() == OMAP4430_ES1_0) {
182                 /* ES1 bug EMIF should be in force idle during freq_update */
183                 writel(0, &emif->emif_pwr_mgmt_ctrl);
184         } else {
185                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
186                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
187         }
188         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
189         writel(regs->zq_config, &emif->emif_zq_config);
190         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
191         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
192
193         if (omap_revision() >= OMAP5430_ES1_0) {
194                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
195                         &emif->emif_l3_config);
196         } else if (omap_revision() >= OMAP4460_ES1_0) {
197                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
198                         &emif->emif_l3_config);
199         } else {
200                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
201                         &emif->emif_l3_config);
202         }
203 }
204
205 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
206 {
207         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
208
209         /* keep sdram in self-refresh */
210         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
211                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
212         __udelay(130);
213
214         /*
215          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
216          * Invert clock adds an additional half cycle delay on the command
217          * interface.  The additional half cycle, is usually meant to enable
218          * leveling in the situation that DQS is later than CK on the board.It
219          * also helps provide some additional margin for leveling.
220          */
221         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
222         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
223         __udelay(130);
224
225         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228         /* Launch Full leveling */
229         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231         /* Wait till full leveling is complete */
232         readl(&emif->emif_rd_wr_lvl_ctl);
233         __udelay(130);
234
235         /* Read data eye leveling no of samples */
236         config_data_eye_leveling_samples(base);
237
238         /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
239         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
240         __udelay(130);
241
242         /* Launch Incremental leveling */
243         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
244         __udelay(130);
245 }
246
247 static void ddr3_init(u32 base, const struct emif_regs *regs)
248 {
249         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
250         u32 *ext_phy_ctrl_base = 0;
251         u32 *emif_ext_phy_ctrl_base = 0;
252         u32 i = 0;
253
254         /*
255          * Set SDRAM_CONFIG and PHY control registers to locked frequency
256          * and RL =7. As the default values of the Mode Registers are not
257          * defined, contents of mode Registers must be fully initialized.
258          * H/W takes care of this initialization
259          */
260         writel(regs->sdram_config_init, &emif->emif_sdram_config);
261
262         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
263
264         /* Update timing registers */
265         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
266         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
267         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
268
269         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
270         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
271
272         ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
273         emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
274
275         /* Configure external phy control timing registers */
276         for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
277                 writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
278                 /* Update shadow registers */
279                 writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
280         }
281
282         /*
283          * external phy 6-24 registers do not change with
284          * ddr frequency
285          */
286         for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
287                 writel(ddr3_ext_phy_ctrl_const_base[i],
288                                         emif_ext_phy_ctrl_base++);
289                 /* Update shadow registers */
290                 writel(ddr3_ext_phy_ctrl_const_base[i],
291                                         emif_ext_phy_ctrl_base++);
292         }
293
294         /* enable leveling */
295         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
296
297         ddr3_leveling(base, regs);
298 }
299
300 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
301 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
302
303 /*
304  * Organization and refresh requirements for LPDDR2 devices of different
305  * types and densities. Derived from JESD209-2 section 2.4
306  */
307 const struct lpddr2_addressing addressing_table[] = {
308         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
309         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
310         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
311         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
312         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
313         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
314         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
315         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
316         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
317         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
318         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
319 };
320
321 static const u32 lpddr2_density_2_size_in_mbytes[] = {
322         8,                      /* 64Mb */
323         16,                     /* 128Mb */
324         32,                     /* 256Mb */
325         64,                     /* 512Mb */
326         128,                    /* 1Gb   */
327         256,                    /* 2Gb   */
328         512,                    /* 4Gb   */
329         1024,                   /* 8Gb   */
330         2048,                   /* 16Gb  */
331         4096                    /* 32Gb  */
332 };
333
334 /*
335  * Calculate the period of DDR clock from frequency value and set the
336  * denominator and numerator in global variables for easy access later
337  */
338 static void set_ddr_clk_period(u32 freq)
339 {
340         /*
341          * period = 1/freq
342          * period_in_ns = 10^9/freq
343          */
344         *T_num = 1000000000;
345         *T_den = freq;
346         cancel_out(T_num, T_den, 200);
347
348 }
349
350 /*
351  * Convert time in nano seconds to number of cycles of DDR clock
352  */
353 static inline u32 ns_2_cycles(u32 ns)
354 {
355         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
356 }
357
358 /*
359  * ns_2_cycles with the difference that the time passed is 2 times the actual
360  * value(to avoid fractions). The cycles returned is for the original value of
361  * the timing parameter
362  */
363 static inline u32 ns_x2_2_cycles(u32 ns)
364 {
365         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
366 }
367
368 /*
369  * Find addressing table index based on the device's type(S2 or S4) and
370  * density
371  */
372 s8 addressing_table_index(u8 type, u8 density, u8 width)
373 {
374         u8 index;
375         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
376                 return -1;
377
378         /*
379          * Look at the way ADDR_TABLE_INDEX* values have been defined
380          * in emif.h compared to LPDDR2_DENSITY_* values
381          * The table is layed out in the increasing order of density
382          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
383          * at the end
384          */
385         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
386                 index = ADDR_TABLE_INDEX1GS2;
387         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
388                 index = ADDR_TABLE_INDEX2GS2;
389         else
390                 index = density;
391
392         debug("emif: addressing table index %d\n", index);
393
394         return index;
395 }
396
397 /*
398  * Find the the right timing table from the array of timing
399  * tables of the device using DDR clock frequency
400  */
401 static const struct lpddr2_ac_timings *get_timings_table(const struct
402                         lpddr2_ac_timings const *const *device_timings,
403                         u32 freq)
404 {
405         u32 i, temp, freq_nearest;
406         const struct lpddr2_ac_timings *timings = 0;
407
408         emif_assert(freq <= MAX_LPDDR2_FREQ);
409         emif_assert(device_timings);
410
411         /*
412          * Start with the maximum allowed frequency - that is always safe
413          */
414         freq_nearest = MAX_LPDDR2_FREQ;
415         /*
416          * Find the timings table that has the max frequency value:
417          *   i.  Above or equal to the DDR frequency - safe
418          *   ii. The lowest that satisfies condition (i) - optimal
419          */
420         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
421                 temp = device_timings[i]->max_freq;
422                 if ((temp >= freq) && (temp <= freq_nearest)) {
423                         freq_nearest = temp;
424                         timings = device_timings[i];
425                 }
426         }
427         debug("emif: timings table: %d\n", freq_nearest);
428         return timings;
429 }
430
431 /*
432  * Finds the value of emif_sdram_config_reg
433  * All parameters are programmed based on the device on CS0.
434  * If there is a device on CS1, it will be same as that on CS0 or
435  * it will be NVM. We don't support NVM yet.
436  * If cs1_device pointer is NULL it is assumed that there is no device
437  * on CS1
438  */
439 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
440                                 const struct lpddr2_device_details *cs1_device,
441                                 const struct lpddr2_addressing *addressing,
442                                 u8 RL)
443 {
444         u32 config_reg = 0;
445
446         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
447         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
448                         EMIF_REG_IBANK_POS_SHIFT;
449
450         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
451
452         config_reg |= RL << EMIF_REG_CL_SHIFT;
453
454         config_reg |= addressing->row_sz[cs0_device->io_width] <<
455                         EMIF_REG_ROWSIZE_SHIFT;
456
457         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
458
459         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
460                         EMIF_REG_EBANK_SHIFT;
461
462         config_reg |= addressing->col_sz[cs0_device->io_width] <<
463                         EMIF_REG_PAGESIZE_SHIFT;
464
465         return config_reg;
466 }
467
468 static u32 get_sdram_ref_ctrl(u32 freq,
469                               const struct lpddr2_addressing *addressing)
470 {
471         u32 ref_ctrl = 0, val = 0, freq_khz;
472         freq_khz = freq / 1000;
473         /*
474          * refresh rate to be set is 'tREFI * freq in MHz
475          * division by 10000 to account for khz and x10 in t_REFI_us_x10
476          */
477         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
478         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
479
480         return ref_ctrl;
481 }
482
483 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
484                                const struct lpddr2_min_tck *min_tck,
485                                const struct lpddr2_addressing *addressing)
486 {
487         u32 tim1 = 0, val = 0;
488         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
489         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
490
491         if (addressing->num_banks == BANKS8)
492                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
493                                                         (4 * (*T_num)) - 1;
494         else
495                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
496
497         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
498
499         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
500         tim1 |= val << EMIF_REG_T_RC_SHIFT;
501
502         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
503         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
504
505         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
506         tim1 |= val << EMIF_REG_T_WR_SHIFT;
507
508         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
509         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
510
511         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
512         tim1 |= val << EMIF_REG_T_RP_SHIFT;
513
514         return tim1;
515 }
516
517 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
518                                const struct lpddr2_min_tck *min_tck)
519 {
520         u32 tim2 = 0, val = 0;
521         val = max(min_tck->tCKE, timings->tCKE) - 1;
522         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
523
524         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
525         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
526
527         /*
528          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
529          * same value
530          */
531         val = ns_2_cycles(timings->tXSR) - 1;
532         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
533         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
534
535         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
536         tim2 |= val << EMIF_REG_T_XP_SHIFT;
537
538         return tim2;
539 }
540
541 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
542                                const struct lpddr2_min_tck *min_tck,
543                                const struct lpddr2_addressing *addressing)
544 {
545         u32 tim3 = 0, val = 0;
546         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
547         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
548
549         val = ns_2_cycles(timings->tRFCab) - 1;
550         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
551
552         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
553         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
554
555         val = ns_2_cycles(timings->tZQCS) - 1;
556         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
557
558         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
559         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
560
561         return tim3;
562 }
563
564 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
565                              const struct lpddr2_addressing *addressing,
566                              u8 volt_ramp)
567 {
568         u32 zq = 0, val = 0;
569         if (volt_ramp)
570                 val =
571                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
572                     addressing->t_REFI_us_x10;
573         else
574                 val =
575                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
576                     addressing->t_REFI_us_x10;
577         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
578
579         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
580
581         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
582
583         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
584
585         /*
586          * Assuming that two chipselects have a single calibration resistor
587          * If there are indeed two calibration resistors, then this flag should
588          * be enabled to take advantage of dual calibration feature.
589          * This data should ideally come from board files. But considering
590          * that none of the boards today have calibration resistors per CS,
591          * it would be an unnecessary overhead.
592          */
593         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
594
595         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
596
597         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
598
599         return zq;
600 }
601
602 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
603                                  const struct lpddr2_addressing *addressing,
604                                  u8 is_derated)
605 {
606         u32 alert = 0, interval;
607         interval =
608             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
609         if (is_derated)
610                 interval *= 4;
611         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
612
613         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
614
615         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
616
617         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
618
619         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
620
621         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
622
623         return alert;
624 }
625
626 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
627 {
628         u32 idle = 0, val = 0;
629         if (volt_ramp)
630                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
631         else
632                 /*Maximum value in normal conditions - suggested by hw team */
633                 val = 0x1FF;
634         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
635
636         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
637
638         return idle;
639 }
640
641 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
642 {
643         u32 phy = 0, val = 0;
644
645         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
646
647         if (freq <= 100000000)
648                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
649         else if (freq <= 200000000)
650                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
651         else
652                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
653         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
654
655         /* Other fields are constant magic values. Hardcode them together */
656         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
657                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
658
659         return phy;
660 }
661
662 static u32 get_emif_mem_size(struct emif_device_details *devices)
663 {
664         u32 size_mbytes = 0, temp;
665
666         if (!devices)
667                 return 0;
668
669         if (devices->cs0_device_details) {
670                 temp = devices->cs0_device_details->density;
671                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
672         }
673
674         if (devices->cs1_device_details) {
675                 temp = devices->cs1_device_details->density;
676                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
677         }
678         /* convert to bytes */
679         return size_mbytes << 20;
680 }
681
682 /* Gets the encoding corresponding to a given DMM section size */
683 u32 get_dmm_section_size_map(u32 section_size)
684 {
685         /*
686          * Section size mapping:
687          * 0x0: 16-MiB section
688          * 0x1: 32-MiB section
689          * 0x2: 64-MiB section
690          * 0x3: 128-MiB section
691          * 0x4: 256-MiB section
692          * 0x5: 512-MiB section
693          * 0x6: 1-GiB section
694          * 0x7: 2-GiB section
695          */
696         section_size >>= 24; /* divide by 16 MB */
697         return log_2_n_round_down(section_size);
698 }
699
700 static void emif_calculate_regs(
701                 const struct emif_device_details *emif_dev_details,
702                 u32 freq, struct emif_regs *regs)
703 {
704         u32 temp, sys_freq;
705         const struct lpddr2_addressing *addressing;
706         const struct lpddr2_ac_timings *timings;
707         const struct lpddr2_min_tck *min_tck;
708         const struct lpddr2_device_details *cs0_dev_details =
709                                         emif_dev_details->cs0_device_details;
710         const struct lpddr2_device_details *cs1_dev_details =
711                                         emif_dev_details->cs1_device_details;
712         const struct lpddr2_device_timings *cs0_dev_timings =
713                                         emif_dev_details->cs0_device_timings;
714
715         emif_assert(emif_dev_details);
716         emif_assert(regs);
717         /*
718          * You can not have a device on CS1 without one on CS0
719          * So configuring EMIF without a device on CS0 doesn't
720          * make sense
721          */
722         emif_assert(cs0_dev_details);
723         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
724         /*
725          * If there is a device on CS1 it should be same type as CS0
726          * (or NVM. But NVM is not supported in this driver yet)
727          */
728         emif_assert((cs1_dev_details == NULL) ||
729                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
730                     (cs0_dev_details->type == cs1_dev_details->type));
731         emif_assert(freq <= MAX_LPDDR2_FREQ);
732
733         set_ddr_clk_period(freq);
734
735         /*
736          * The device on CS0 is used for all timing calculations
737          * There is only one set of registers for timings per EMIF. So, if the
738          * second CS(CS1) has a device, it should have the same timings as the
739          * device on CS0
740          */
741         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
742         emif_assert(timings);
743         min_tck = cs0_dev_timings->min_tck;
744
745         temp = addressing_table_index(cs0_dev_details->type,
746                                       cs0_dev_details->density,
747                                       cs0_dev_details->io_width);
748
749         emif_assert((temp >= 0));
750         addressing = &(addressing_table[temp]);
751         emif_assert(addressing);
752
753         sys_freq = get_sys_clk_freq();
754
755         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
756                                                         cs1_dev_details,
757                                                         addressing, RL_BOOT);
758
759         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
760                                                 cs1_dev_details,
761                                                 addressing, RL_FINAL);
762
763         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
764
765         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
766
767         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
768
769         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
770
771         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
772
773         regs->temp_alert_config =
774             get_temp_alert_config(cs1_dev_details, addressing, 0);
775
776         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
777                                             LPDDR2_VOLTAGE_STABLE);
778
779         regs->emif_ddr_phy_ctlr_1_init =
780                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
781
782         regs->emif_ddr_phy_ctlr_1 =
783                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
784
785         regs->freq = freq;
786
787         print_timing_reg(regs->sdram_config_init);
788         print_timing_reg(regs->sdram_config);
789         print_timing_reg(regs->ref_ctrl);
790         print_timing_reg(regs->sdram_tim1);
791         print_timing_reg(regs->sdram_tim2);
792         print_timing_reg(regs->sdram_tim3);
793         print_timing_reg(regs->read_idle_ctrl);
794         print_timing_reg(regs->temp_alert_config);
795         print_timing_reg(regs->zq_config);
796         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
797         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
798 }
799 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
800
801 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
802 const char *get_lpddr2_type(u8 type_id)
803 {
804         switch (type_id) {
805         case LPDDR2_TYPE_S4:
806                 return "LPDDR2-S4";
807         case LPDDR2_TYPE_S2:
808                 return "LPDDR2-S2";
809         default:
810                 return NULL;
811         }
812 }
813
814 const char *get_lpddr2_io_width(u8 width_id)
815 {
816         switch (width_id) {
817         case LPDDR2_IO_WIDTH_8:
818                 return "x8";
819         case LPDDR2_IO_WIDTH_16:
820                 return "x16";
821         case LPDDR2_IO_WIDTH_32:
822                 return "x32";
823         default:
824                 return NULL;
825         }
826 }
827
828 const char *get_lpddr2_manufacturer(u32 manufacturer)
829 {
830         switch (manufacturer) {
831         case LPDDR2_MANUFACTURER_SAMSUNG:
832                 return "Samsung";
833         case LPDDR2_MANUFACTURER_QIMONDA:
834                 return "Qimonda";
835         case LPDDR2_MANUFACTURER_ELPIDA:
836                 return "Elpida";
837         case LPDDR2_MANUFACTURER_ETRON:
838                 return "Etron";
839         case LPDDR2_MANUFACTURER_NANYA:
840                 return "Nanya";
841         case LPDDR2_MANUFACTURER_HYNIX:
842                 return "Hynix";
843         case LPDDR2_MANUFACTURER_MOSEL:
844                 return "Mosel";
845         case LPDDR2_MANUFACTURER_WINBOND:
846                 return "Winbond";
847         case LPDDR2_MANUFACTURER_ESMT:
848                 return "ESMT";
849         case LPDDR2_MANUFACTURER_SPANSION:
850                 return "Spansion";
851         case LPDDR2_MANUFACTURER_SST:
852                 return "SST";
853         case LPDDR2_MANUFACTURER_ZMOS:
854                 return "ZMOS";
855         case LPDDR2_MANUFACTURER_INTEL:
856                 return "Intel";
857         case LPDDR2_MANUFACTURER_NUMONYX:
858                 return "Numonyx";
859         case LPDDR2_MANUFACTURER_MICRON:
860                 return "Micron";
861         default:
862                 return NULL;
863         }
864 }
865
866 static void display_sdram_details(u32 emif_nr, u32 cs,
867                                   struct lpddr2_device_details *device)
868 {
869         const char *mfg_str;
870         const char *type_str;
871         char density_str[10];
872         u32 density;
873
874         debug("EMIF%d CS%d\t", emif_nr, cs);
875
876         if (!device) {
877                 debug("None\n");
878                 return;
879         }
880
881         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
882         type_str = get_lpddr2_type(device->type);
883
884         density = lpddr2_density_2_size_in_mbytes[device->density];
885         if ((density / 1024 * 1024) == density) {
886                 density /= 1024;
887                 sprintf(density_str, "%d GB", density);
888         } else
889                 sprintf(density_str, "%d MB", density);
890         if (mfg_str && type_str)
891                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
892 }
893
894 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
895                                   struct lpddr2_device_details *lpddr2_device)
896 {
897         u32 mr = 0, temp;
898
899         mr = get_mr(base, cs, LPDDR2_MR0);
900         if (mr > 0xFF) {
901                 /* Mode register value bigger than 8 bit */
902                 return 0;
903         }
904
905         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
906         if (temp) {
907                 /* Not SDRAM */
908                 return 0;
909         }
910         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
911
912         if (temp) {
913                 /* DNV supported - But DNV is only supported for NVM */
914                 return 0;
915         }
916
917         mr = get_mr(base, cs, LPDDR2_MR4);
918         if (mr > 0xFF) {
919                 /* Mode register value bigger than 8 bit */
920                 return 0;
921         }
922
923         mr = get_mr(base, cs, LPDDR2_MR5);
924         if (mr >= 0xFF) {
925                 /* Mode register value bigger than 8 bit */
926                 return 0;
927         }
928
929         if (!get_lpddr2_manufacturer(mr)) {
930                 /* Manufacturer not identified */
931                 return 0;
932         }
933         lpddr2_device->manufacturer = mr;
934
935         mr = get_mr(base, cs, LPDDR2_MR6);
936         if (mr >= 0xFF) {
937                 /* Mode register value bigger than 8 bit */
938                 return 0;
939         }
940
941         mr = get_mr(base, cs, LPDDR2_MR7);
942         if (mr >= 0xFF) {
943                 /* Mode register value bigger than 8 bit */
944                 return 0;
945         }
946
947         mr = get_mr(base, cs, LPDDR2_MR8);
948         if (mr >= 0xFF) {
949                 /* Mode register value bigger than 8 bit */
950                 return 0;
951         }
952
953         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
954         if (!get_lpddr2_type(temp)) {
955                 /* Not SDRAM */
956                 return 0;
957         }
958         lpddr2_device->type = temp;
959
960         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
961         if (temp > LPDDR2_DENSITY_32Gb) {
962                 /* Density not supported */
963                 return 0;
964         }
965         lpddr2_device->density = temp;
966
967         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
968         if (!get_lpddr2_io_width(temp)) {
969                 /* IO width unsupported value */
970                 return 0;
971         }
972         lpddr2_device->io_width = temp;
973
974         /*
975          * If all the above tests pass we should
976          * have a device on this chip-select
977          */
978         return 1;
979 }
980
981 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
982                         struct lpddr2_device_details *lpddr2_dev_details)
983 {
984         u32 phy;
985         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
986
987         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
988
989         if (!lpddr2_dev_details)
990                 return NULL;
991
992         /* Do the minimum init for mode register accesses */
993         if (!running_from_sdram()) {
994                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
995                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
996         }
997
998         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
999                 return NULL;
1000
1001         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1002
1003         return lpddr2_dev_details;
1004 }
1005 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1006
1007 static void do_sdram_init(u32 base)
1008 {
1009         const struct emif_regs *regs;
1010         u32 in_sdram, emif_nr;
1011
1012         debug(">>do_sdram_init() %x\n", base);
1013
1014         in_sdram = running_from_sdram();
1015         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1016
1017 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1018         emif_get_reg_dump(emif_nr, &regs);
1019         if (!regs) {
1020                 debug("EMIF: reg dump not provided\n");
1021                 return;
1022         }
1023 #else
1024         /*
1025          * The user has not provided the register values. We need to
1026          * calculate it based on the timings and the DDR frequency
1027          */
1028         struct emif_device_details dev_details;
1029         struct emif_regs calculated_regs;
1030
1031         /*
1032          * Get device details:
1033          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1034          * - Obtained from user otherwise
1035          */
1036         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1037         emif_reset_phy(base);
1038         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1039                                                 &cs0_dev_details);
1040         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1041                                                 &cs1_dev_details);
1042         emif_reset_phy(base);
1043
1044         /* Return if no devices on this EMIF */
1045         if (!dev_details.cs0_device_details &&
1046             !dev_details.cs1_device_details) {
1047                 emif_sizes[emif_nr - 1] = 0;
1048                 return;
1049         }
1050
1051         if (!in_sdram)
1052                 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1053
1054         /*
1055          * Get device timings:
1056          * - Default timings specified by JESD209-2 if
1057          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1058          * - Obtained from user otherwise
1059          */
1060         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1061                                 &dev_details.cs1_device_timings);
1062
1063         /* Calculate the register values */
1064         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1065         regs = &calculated_regs;
1066 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1067
1068         /*
1069          * Initializing the LPDDR2 device can not happen from SDRAM.
1070          * Changing the timing registers in EMIF can happen(going from one
1071          * OPP to another)
1072          */
1073         if (!in_sdram) {
1074                 if (omap_revision() != OMAP5432_ES1_0)
1075                         lpddr2_init(base, regs);
1076                 else
1077                         ddr3_init(base, regs);
1078         }
1079
1080         /* Write to the shadow registers */
1081         emif_update_timings(base, regs);
1082
1083         debug("<<do_sdram_init() %x\n", base);
1084 }
1085
1086 void emif_post_init_config(u32 base)
1087 {
1088         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1089         u32 omap_rev = omap_revision();
1090
1091         if (omap_rev == OMAP5430_ES1_0)
1092                 return;
1093
1094         /* reset phy on ES2.0 */
1095         if (omap_rev == OMAP4430_ES2_0)
1096                 emif_reset_phy(base);
1097
1098         /* Put EMIF back in smart idle on ES1.0 */
1099         if (omap_rev == OMAP4430_ES1_0)
1100                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1101 }
1102
1103 void dmm_init(u32 base)
1104 {
1105         const struct dmm_lisa_map_regs *lisa_map_regs;
1106
1107 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1108         emif_get_dmm_regs(&lisa_map_regs);
1109 #else
1110         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1111         u32 section_cnt, sys_addr;
1112         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1113
1114         mapped_size = 0;
1115         section_cnt = 3;
1116         sys_addr = CONFIG_SYS_SDRAM_BASE;
1117         emif1_size = emif_sizes[0];
1118         emif2_size = emif_sizes[1];
1119         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1120
1121         if (!emif1_size && !emif2_size)
1122                 return;
1123
1124         /* symmetric interleaved section */
1125         if (emif1_size && emif2_size) {
1126                 mapped_size = min(emif1_size, emif2_size);
1127                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1128                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1129                 /* only MSB */
1130                 section_map |= (sys_addr >> 24) <<
1131                                 EMIF_SYS_ADDR_SHIFT;
1132                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1133                                 << EMIF_SYS_SIZE_SHIFT;
1134                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1135                 emif1_size -= mapped_size;
1136                 emif2_size -= mapped_size;
1137                 sys_addr += (mapped_size * 2);
1138                 section_cnt--;
1139         }
1140
1141         /*
1142          * Single EMIF section(we can have a maximum of 1 single EMIF
1143          * section- either EMIF1 or EMIF2 or none, but not both)
1144          */
1145         if (emif1_size) {
1146                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1147                 section_map |= get_dmm_section_size_map(emif1_size)
1148                                 << EMIF_SYS_SIZE_SHIFT;
1149                 /* only MSB */
1150                 section_map |= (mapped_size >> 24) <<
1151                                 EMIF_SDRC_ADDR_SHIFT;
1152                 /* only MSB */
1153                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1154                 section_cnt--;
1155         }
1156         if (emif2_size) {
1157                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1158                 section_map |= get_dmm_section_size_map(emif2_size) <<
1159                                 EMIF_SYS_SIZE_SHIFT;
1160                 /* only MSB */
1161                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1162                 /* only MSB */
1163                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1164                 section_cnt--;
1165         }
1166
1167         if (section_cnt == 2) {
1168                 /* Only 1 section - either symmetric or single EMIF */
1169                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1170                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1171                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1172         } else {
1173                 /* 2 sections - 1 symmetric, 1 single EMIF */
1174                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1175                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1176         }
1177
1178         /* TRAP for invalid TILER mappings in section 0 */
1179         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1180
1181         lisa_map_regs = &lis_map_regs_calculated;
1182 #endif
1183         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1184             (struct dmm_lisa_map_regs *)base;
1185
1186         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1187         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1188         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1189         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1190
1191         writel(lisa_map_regs->dmm_lisa_map_3,
1192                 &hw_lisa_map_regs->dmm_lisa_map_3);
1193         writel(lisa_map_regs->dmm_lisa_map_2,
1194                 &hw_lisa_map_regs->dmm_lisa_map_2);
1195         writel(lisa_map_regs->dmm_lisa_map_1,
1196                 &hw_lisa_map_regs->dmm_lisa_map_1);
1197         writel(lisa_map_regs->dmm_lisa_map_0,
1198                 &hw_lisa_map_regs->dmm_lisa_map_0);
1199
1200         if (omap_revision() >= OMAP4460_ES1_0) {
1201                 hw_lisa_map_regs =
1202                     (struct dmm_lisa_map_regs *)MA_BASE;
1203
1204                 writel(lisa_map_regs->dmm_lisa_map_3,
1205                         &hw_lisa_map_regs->dmm_lisa_map_3);
1206                 writel(lisa_map_regs->dmm_lisa_map_2,
1207                         &hw_lisa_map_regs->dmm_lisa_map_2);
1208                 writel(lisa_map_regs->dmm_lisa_map_1,
1209                         &hw_lisa_map_regs->dmm_lisa_map_1);
1210                 writel(lisa_map_regs->dmm_lisa_map_0,
1211                         &hw_lisa_map_regs->dmm_lisa_map_0);
1212         }
1213 }
1214
1215 /*
1216  * SDRAM initialization:
1217  * SDRAM initialization has two parts:
1218  * 1. Configuring the SDRAM device
1219  * 2. Update the AC timings related parameters in the EMIF module
1220  * (1) should be done only once and should not be done while we are
1221  * running from SDRAM.
1222  * (2) can and should be done more than once if OPP changes.
1223  * Particularly, this may be needed when we boot without SPL and
1224  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1225  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1226  * the frequency. So,
1227  * Doing (1) and (2) makes sense - first time initialization
1228  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1229  * Doing (1) and not (2) doen't make sense
1230  * See do_sdram_init() for the details
1231  */
1232 void sdram_init(void)
1233 {
1234         u32 in_sdram, size_prog, size_detect;
1235
1236         debug(">>sdram_init()\n");
1237
1238         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1239                 return;
1240
1241         in_sdram = running_from_sdram();
1242         debug("in_sdram = %d\n", in_sdram);
1243
1244         if (!in_sdram)
1245                 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1246
1247
1248         do_sdram_init(EMIF1_BASE);
1249         do_sdram_init(EMIF2_BASE);
1250
1251         if (!in_sdram) {
1252                 dmm_init(DMM_BASE);
1253                 emif_post_init_config(EMIF1_BASE);
1254                 emif_post_init_config(EMIF2_BASE);
1255         }
1256
1257         /* for the shadow registers to take effect */
1258         freq_update_core();
1259
1260         /* Do some testing after the init */
1261         if (!in_sdram) {
1262                 size_prog = omap_sdram_size();
1263                 size_prog = log_2_n_round_down(size_prog);
1264                 size_prog = (1 << size_prog);
1265
1266                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1267                                                 size_prog);
1268                 /* Compare with the size programmed */
1269                 if (size_detect != size_prog) {
1270                         printf("SDRAM: identified size not same as expected"
1271                                 " size identified: %x expected: %x\n",
1272                                 size_detect,
1273                                 size_prog);
1274                 } else
1275                         debug("get_ram_size() successful");
1276         }
1277
1278         debug("<<sdram_init()\n");
1279 }