]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
ARM: DRA7: EMIF: Update SDRAM_REF_CTRL register value
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170         if (omap_revision() == OMAP4430_ES1_0) {
171                 /* ES1 bug EMIF should be in force idle during freq_update */
172                 writel(0, &emif->emif_pwr_mgmt_ctrl);
173         } else {
174                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176         }
177         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178         writel(regs->zq_config, &emif->emif_zq_config);
179         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
181
182         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
183                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
184                         &emif->emif_l3_config);
185         } else if (omap_revision() >= OMAP4460_ES1_0) {
186                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
187                         &emif->emif_l3_config);
188         } else {
189                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
190                         &emif->emif_l3_config);
191         }
192 }
193
194 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
195 {
196         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198         /* keep sdram in self-refresh */
199         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
200                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
201         __udelay(130);
202
203         /*
204          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
205          * Invert clock adds an additional half cycle delay on the
206          * command interface.  The additional half cycle, is usually
207          * meant to enable leveling in the situation that DQS is later
208          * than CK on the board.It also helps provide some additional
209          * margin for leveling.
210          */
211         writel(regs->emif_ddr_phy_ctlr_1,
212                &emif->emif_ddr_phy_ctrl_1);
213
214         writel(regs->emif_ddr_phy_ctlr_1,
215                &emif->emif_ddr_phy_ctrl_1_shdw);
216         __udelay(130);
217
218         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
219                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
220
221         /* Launch Full leveling */
222         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
223
224         /* Wait till full leveling is complete */
225         readl(&emif->emif_rd_wr_lvl_ctl);
226               __udelay(130);
227
228         /* Read data eye leveling no of samples */
229         config_data_eye_leveling_samples(base);
230
231         /*
232          * Launch 8 incremental WR_LVL- to compensate for
233          * PHY limitation.
234          */
235         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
236                &emif->emif_rd_wr_lvl_ctl);
237
238         __udelay(130);
239
240         /* Launch Incremental leveling */
241         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
242                __udelay(130);
243 }
244
245 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
246 {
247         if (is_omap54xx())
248                 omap5_ddr3_leveling(base, regs);
249 }
250
251 static void ddr3_init(u32 base, const struct emif_regs *regs)
252 {
253         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
254
255         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
256         writel(regs->sdram_config_init, &emif->emif_sdram_config);
257         /*
258          * Set SDRAM_CONFIG and PHY control registers to locked frequency
259          * and RL =7. As the default values of the Mode Registers are not
260          * defined, contents of mode Registers must be fully initialized.
261          * H/W takes care of this initialization
262          */
263         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
264
265         /* Update timing registers */
266         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
267         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
268         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
269
270         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
271
272         /*
273          * The same sequence should work on OMAP5432 as well. But strange that
274          * it is not working
275          */
276         if (is_dra7xx()) {
277                 do_ext_phy_settings(base, regs);
278                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
279                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
280                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
281         } else {
282                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
283                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
284                 do_ext_phy_settings(base, regs);
285         }
286
287         /* enable leveling */
288         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
289
290         ddr3_leveling(base, regs);
291 }
292
293 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
294 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
295
296 /*
297  * Organization and refresh requirements for LPDDR2 devices of different
298  * types and densities. Derived from JESD209-2 section 2.4
299  */
300 const struct lpddr2_addressing addressing_table[] = {
301         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
302         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
303         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
304         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
305         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
306         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
307         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
308         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
309         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
310         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
311         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
312 };
313
314 static const u32 lpddr2_density_2_size_in_mbytes[] = {
315         8,                      /* 64Mb */
316         16,                     /* 128Mb */
317         32,                     /* 256Mb */
318         64,                     /* 512Mb */
319         128,                    /* 1Gb   */
320         256,                    /* 2Gb   */
321         512,                    /* 4Gb   */
322         1024,                   /* 8Gb   */
323         2048,                   /* 16Gb  */
324         4096                    /* 32Gb  */
325 };
326
327 /*
328  * Calculate the period of DDR clock from frequency value and set the
329  * denominator and numerator in global variables for easy access later
330  */
331 static void set_ddr_clk_period(u32 freq)
332 {
333         /*
334          * period = 1/freq
335          * period_in_ns = 10^9/freq
336          */
337         *T_num = 1000000000;
338         *T_den = freq;
339         cancel_out(T_num, T_den, 200);
340
341 }
342
343 /*
344  * Convert time in nano seconds to number of cycles of DDR clock
345  */
346 static inline u32 ns_2_cycles(u32 ns)
347 {
348         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
349 }
350
351 /*
352  * ns_2_cycles with the difference that the time passed is 2 times the actual
353  * value(to avoid fractions). The cycles returned is for the original value of
354  * the timing parameter
355  */
356 static inline u32 ns_x2_2_cycles(u32 ns)
357 {
358         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
359 }
360
361 /*
362  * Find addressing table index based on the device's type(S2 or S4) and
363  * density
364  */
365 s8 addressing_table_index(u8 type, u8 density, u8 width)
366 {
367         u8 index;
368         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
369                 return -1;
370
371         /*
372          * Look at the way ADDR_TABLE_INDEX* values have been defined
373          * in emif.h compared to LPDDR2_DENSITY_* values
374          * The table is layed out in the increasing order of density
375          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
376          * at the end
377          */
378         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
379                 index = ADDR_TABLE_INDEX1GS2;
380         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
381                 index = ADDR_TABLE_INDEX2GS2;
382         else
383                 index = density;
384
385         debug("emif: addressing table index %d\n", index);
386
387         return index;
388 }
389
390 /*
391  * Find the the right timing table from the array of timing
392  * tables of the device using DDR clock frequency
393  */
394 static const struct lpddr2_ac_timings *get_timings_table(const struct
395                         lpddr2_ac_timings const *const *device_timings,
396                         u32 freq)
397 {
398         u32 i, temp, freq_nearest;
399         const struct lpddr2_ac_timings *timings = 0;
400
401         emif_assert(freq <= MAX_LPDDR2_FREQ);
402         emif_assert(device_timings);
403
404         /*
405          * Start with the maximum allowed frequency - that is always safe
406          */
407         freq_nearest = MAX_LPDDR2_FREQ;
408         /*
409          * Find the timings table that has the max frequency value:
410          *   i.  Above or equal to the DDR frequency - safe
411          *   ii. The lowest that satisfies condition (i) - optimal
412          */
413         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
414                 temp = device_timings[i]->max_freq;
415                 if ((temp >= freq) && (temp <= freq_nearest)) {
416                         freq_nearest = temp;
417                         timings = device_timings[i];
418                 }
419         }
420         debug("emif: timings table: %d\n", freq_nearest);
421         return timings;
422 }
423
424 /*
425  * Finds the value of emif_sdram_config_reg
426  * All parameters are programmed based on the device on CS0.
427  * If there is a device on CS1, it will be same as that on CS0 or
428  * it will be NVM. We don't support NVM yet.
429  * If cs1_device pointer is NULL it is assumed that there is no device
430  * on CS1
431  */
432 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
433                                 const struct lpddr2_device_details *cs1_device,
434                                 const struct lpddr2_addressing *addressing,
435                                 u8 RL)
436 {
437         u32 config_reg = 0;
438
439         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
440         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
441                         EMIF_REG_IBANK_POS_SHIFT;
442
443         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
444
445         config_reg |= RL << EMIF_REG_CL_SHIFT;
446
447         config_reg |= addressing->row_sz[cs0_device->io_width] <<
448                         EMIF_REG_ROWSIZE_SHIFT;
449
450         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
451
452         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
453                         EMIF_REG_EBANK_SHIFT;
454
455         config_reg |= addressing->col_sz[cs0_device->io_width] <<
456                         EMIF_REG_PAGESIZE_SHIFT;
457
458         return config_reg;
459 }
460
461 static u32 get_sdram_ref_ctrl(u32 freq,
462                               const struct lpddr2_addressing *addressing)
463 {
464         u32 ref_ctrl = 0, val = 0, freq_khz;
465         freq_khz = freq / 1000;
466         /*
467          * refresh rate to be set is 'tREFI * freq in MHz
468          * division by 10000 to account for khz and x10 in t_REFI_us_x10
469          */
470         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
471         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
472
473         return ref_ctrl;
474 }
475
476 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
477                                const struct lpddr2_min_tck *min_tck,
478                                const struct lpddr2_addressing *addressing)
479 {
480         u32 tim1 = 0, val = 0;
481         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
482         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
483
484         if (addressing->num_banks == BANKS8)
485                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
486                                                         (4 * (*T_num)) - 1;
487         else
488                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
489
490         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
491
492         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
493         tim1 |= val << EMIF_REG_T_RC_SHIFT;
494
495         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
496         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
497
498         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
499         tim1 |= val << EMIF_REG_T_WR_SHIFT;
500
501         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
502         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
503
504         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
505         tim1 |= val << EMIF_REG_T_RP_SHIFT;
506
507         return tim1;
508 }
509
510 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
511                                const struct lpddr2_min_tck *min_tck)
512 {
513         u32 tim2 = 0, val = 0;
514         val = max(min_tck->tCKE, timings->tCKE) - 1;
515         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
516
517         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
518         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
519
520         /*
521          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
522          * same value
523          */
524         val = ns_2_cycles(timings->tXSR) - 1;
525         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
526         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
527
528         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
529         tim2 |= val << EMIF_REG_T_XP_SHIFT;
530
531         return tim2;
532 }
533
534 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
535                                const struct lpddr2_min_tck *min_tck,
536                                const struct lpddr2_addressing *addressing)
537 {
538         u32 tim3 = 0, val = 0;
539         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
540         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
541
542         val = ns_2_cycles(timings->tRFCab) - 1;
543         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
544
545         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
546         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
547
548         val = ns_2_cycles(timings->tZQCS) - 1;
549         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
550
551         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
552         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
553
554         return tim3;
555 }
556
557 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
558                              const struct lpddr2_addressing *addressing,
559                              u8 volt_ramp)
560 {
561         u32 zq = 0, val = 0;
562         if (volt_ramp)
563                 val =
564                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
565                     addressing->t_REFI_us_x10;
566         else
567                 val =
568                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
569                     addressing->t_REFI_us_x10;
570         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
571
572         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
573
574         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
575
576         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
577
578         /*
579          * Assuming that two chipselects have a single calibration resistor
580          * If there are indeed two calibration resistors, then this flag should
581          * be enabled to take advantage of dual calibration feature.
582          * This data should ideally come from board files. But considering
583          * that none of the boards today have calibration resistors per CS,
584          * it would be an unnecessary overhead.
585          */
586         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
587
588         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
589
590         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
591
592         return zq;
593 }
594
595 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
596                                  const struct lpddr2_addressing *addressing,
597                                  u8 is_derated)
598 {
599         u32 alert = 0, interval;
600         interval =
601             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
602         if (is_derated)
603                 interval *= 4;
604         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
605
606         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
607
608         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
609
610         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
611
612         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
613
614         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
615
616         return alert;
617 }
618
619 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
620 {
621         u32 idle = 0, val = 0;
622         if (volt_ramp)
623                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
624         else
625                 /*Maximum value in normal conditions - suggested by hw team */
626                 val = 0x1FF;
627         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
628
629         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
630
631         return idle;
632 }
633
634 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
635 {
636         u32 phy = 0, val = 0;
637
638         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
639
640         if (freq <= 100000000)
641                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
642         else if (freq <= 200000000)
643                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
644         else
645                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
646         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
647
648         /* Other fields are constant magic values. Hardcode them together */
649         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
650                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
651
652         return phy;
653 }
654
655 static u32 get_emif_mem_size(u32 base)
656 {
657         u32 size_mbytes = 0, temp;
658         struct emif_device_details dev_details;
659         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
660         u32 emif_nr = emif_num(base);
661
662         emif_reset_phy(base);
663         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
664                                                 &cs0_dev_details);
665         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
666                                                 &cs1_dev_details);
667         emif_reset_phy(base);
668
669         if (dev_details.cs0_device_details) {
670                 temp = dev_details.cs0_device_details->density;
671                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
672         }
673
674         if (dev_details.cs1_device_details) {
675                 temp = dev_details.cs1_device_details->density;
676                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
677         }
678         /* convert to bytes */
679         return size_mbytes << 20;
680 }
681
682 /* Gets the encoding corresponding to a given DMM section size */
683 u32 get_dmm_section_size_map(u32 section_size)
684 {
685         /*
686          * Section size mapping:
687          * 0x0: 16-MiB section
688          * 0x1: 32-MiB section
689          * 0x2: 64-MiB section
690          * 0x3: 128-MiB section
691          * 0x4: 256-MiB section
692          * 0x5: 512-MiB section
693          * 0x6: 1-GiB section
694          * 0x7: 2-GiB section
695          */
696         section_size >>= 24; /* divide by 16 MB */
697         return log_2_n_round_down(section_size);
698 }
699
700 static void emif_calculate_regs(
701                 const struct emif_device_details *emif_dev_details,
702                 u32 freq, struct emif_regs *regs)
703 {
704         u32 temp, sys_freq;
705         const struct lpddr2_addressing *addressing;
706         const struct lpddr2_ac_timings *timings;
707         const struct lpddr2_min_tck *min_tck;
708         const struct lpddr2_device_details *cs0_dev_details =
709                                         emif_dev_details->cs0_device_details;
710         const struct lpddr2_device_details *cs1_dev_details =
711                                         emif_dev_details->cs1_device_details;
712         const struct lpddr2_device_timings *cs0_dev_timings =
713                                         emif_dev_details->cs0_device_timings;
714
715         emif_assert(emif_dev_details);
716         emif_assert(regs);
717         /*
718          * You can not have a device on CS1 without one on CS0
719          * So configuring EMIF without a device on CS0 doesn't
720          * make sense
721          */
722         emif_assert(cs0_dev_details);
723         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
724         /*
725          * If there is a device on CS1 it should be same type as CS0
726          * (or NVM. But NVM is not supported in this driver yet)
727          */
728         emif_assert((cs1_dev_details == NULL) ||
729                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
730                     (cs0_dev_details->type == cs1_dev_details->type));
731         emif_assert(freq <= MAX_LPDDR2_FREQ);
732
733         set_ddr_clk_period(freq);
734
735         /*
736          * The device on CS0 is used for all timing calculations
737          * There is only one set of registers for timings per EMIF. So, if the
738          * second CS(CS1) has a device, it should have the same timings as the
739          * device on CS0
740          */
741         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
742         emif_assert(timings);
743         min_tck = cs0_dev_timings->min_tck;
744
745         temp = addressing_table_index(cs0_dev_details->type,
746                                       cs0_dev_details->density,
747                                       cs0_dev_details->io_width);
748
749         emif_assert((temp >= 0));
750         addressing = &(addressing_table[temp]);
751         emif_assert(addressing);
752
753         sys_freq = get_sys_clk_freq();
754
755         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
756                                                         cs1_dev_details,
757                                                         addressing, RL_BOOT);
758
759         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
760                                                 cs1_dev_details,
761                                                 addressing, RL_FINAL);
762
763         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
764
765         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
766
767         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
768
769         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
770
771         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
772
773         regs->temp_alert_config =
774             get_temp_alert_config(cs1_dev_details, addressing, 0);
775
776         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
777                                             LPDDR2_VOLTAGE_STABLE);
778
779         regs->emif_ddr_phy_ctlr_1_init =
780                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
781
782         regs->emif_ddr_phy_ctlr_1 =
783                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
784
785         regs->freq = freq;
786
787         print_timing_reg(regs->sdram_config_init);
788         print_timing_reg(regs->sdram_config);
789         print_timing_reg(regs->ref_ctrl);
790         print_timing_reg(regs->sdram_tim1);
791         print_timing_reg(regs->sdram_tim2);
792         print_timing_reg(regs->sdram_tim3);
793         print_timing_reg(regs->read_idle_ctrl);
794         print_timing_reg(regs->temp_alert_config);
795         print_timing_reg(regs->zq_config);
796         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
797         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
798 }
799 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
800
801 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
802 const char *get_lpddr2_type(u8 type_id)
803 {
804         switch (type_id) {
805         case LPDDR2_TYPE_S4:
806                 return "LPDDR2-S4";
807         case LPDDR2_TYPE_S2:
808                 return "LPDDR2-S2";
809         default:
810                 return NULL;
811         }
812 }
813
814 const char *get_lpddr2_io_width(u8 width_id)
815 {
816         switch (width_id) {
817         case LPDDR2_IO_WIDTH_8:
818                 return "x8";
819         case LPDDR2_IO_WIDTH_16:
820                 return "x16";
821         case LPDDR2_IO_WIDTH_32:
822                 return "x32";
823         default:
824                 return NULL;
825         }
826 }
827
828 const char *get_lpddr2_manufacturer(u32 manufacturer)
829 {
830         switch (manufacturer) {
831         case LPDDR2_MANUFACTURER_SAMSUNG:
832                 return "Samsung";
833         case LPDDR2_MANUFACTURER_QIMONDA:
834                 return "Qimonda";
835         case LPDDR2_MANUFACTURER_ELPIDA:
836                 return "Elpida";
837         case LPDDR2_MANUFACTURER_ETRON:
838                 return "Etron";
839         case LPDDR2_MANUFACTURER_NANYA:
840                 return "Nanya";
841         case LPDDR2_MANUFACTURER_HYNIX:
842                 return "Hynix";
843         case LPDDR2_MANUFACTURER_MOSEL:
844                 return "Mosel";
845         case LPDDR2_MANUFACTURER_WINBOND:
846                 return "Winbond";
847         case LPDDR2_MANUFACTURER_ESMT:
848                 return "ESMT";
849         case LPDDR2_MANUFACTURER_SPANSION:
850                 return "Spansion";
851         case LPDDR2_MANUFACTURER_SST:
852                 return "SST";
853         case LPDDR2_MANUFACTURER_ZMOS:
854                 return "ZMOS";
855         case LPDDR2_MANUFACTURER_INTEL:
856                 return "Intel";
857         case LPDDR2_MANUFACTURER_NUMONYX:
858                 return "Numonyx";
859         case LPDDR2_MANUFACTURER_MICRON:
860                 return "Micron";
861         default:
862                 return NULL;
863         }
864 }
865
866 static void display_sdram_details(u32 emif_nr, u32 cs,
867                                   struct lpddr2_device_details *device)
868 {
869         const char *mfg_str;
870         const char *type_str;
871         char density_str[10];
872         u32 density;
873
874         debug("EMIF%d CS%d\t", emif_nr, cs);
875
876         if (!device) {
877                 debug("None\n");
878                 return;
879         }
880
881         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
882         type_str = get_lpddr2_type(device->type);
883
884         density = lpddr2_density_2_size_in_mbytes[device->density];
885         if ((density / 1024 * 1024) == density) {
886                 density /= 1024;
887                 sprintf(density_str, "%d GB", density);
888         } else
889                 sprintf(density_str, "%d MB", density);
890         if (mfg_str && type_str)
891                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
892 }
893
894 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
895                                   struct lpddr2_device_details *lpddr2_device)
896 {
897         u32 mr = 0, temp;
898
899         mr = get_mr(base, cs, LPDDR2_MR0);
900         if (mr > 0xFF) {
901                 /* Mode register value bigger than 8 bit */
902                 return 0;
903         }
904
905         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
906         if (temp) {
907                 /* Not SDRAM */
908                 return 0;
909         }
910         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
911
912         if (temp) {
913                 /* DNV supported - But DNV is only supported for NVM */
914                 return 0;
915         }
916
917         mr = get_mr(base, cs, LPDDR2_MR4);
918         if (mr > 0xFF) {
919                 /* Mode register value bigger than 8 bit */
920                 return 0;
921         }
922
923         mr = get_mr(base, cs, LPDDR2_MR5);
924         if (mr > 0xFF) {
925                 /* Mode register value bigger than 8 bit */
926                 return 0;
927         }
928
929         if (!get_lpddr2_manufacturer(mr)) {
930                 /* Manufacturer not identified */
931                 return 0;
932         }
933         lpddr2_device->manufacturer = mr;
934
935         mr = get_mr(base, cs, LPDDR2_MR6);
936         if (mr >= 0xFF) {
937                 /* Mode register value bigger than 8 bit */
938                 return 0;
939         }
940
941         mr = get_mr(base, cs, LPDDR2_MR7);
942         if (mr >= 0xFF) {
943                 /* Mode register value bigger than 8 bit */
944                 return 0;
945         }
946
947         mr = get_mr(base, cs, LPDDR2_MR8);
948         if (mr >= 0xFF) {
949                 /* Mode register value bigger than 8 bit */
950                 return 0;
951         }
952
953         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
954         if (!get_lpddr2_type(temp)) {
955                 /* Not SDRAM */
956                 return 0;
957         }
958         lpddr2_device->type = temp;
959
960         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
961         if (temp > LPDDR2_DENSITY_32Gb) {
962                 /* Density not supported */
963                 return 0;
964         }
965         lpddr2_device->density = temp;
966
967         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
968         if (!get_lpddr2_io_width(temp)) {
969                 /* IO width unsupported value */
970                 return 0;
971         }
972         lpddr2_device->io_width = temp;
973
974         /*
975          * If all the above tests pass we should
976          * have a device on this chip-select
977          */
978         return 1;
979 }
980
981 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
982                         struct lpddr2_device_details *lpddr2_dev_details)
983 {
984         u32 phy;
985         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
986
987         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
988
989         if (!lpddr2_dev_details)
990                 return NULL;
991
992         /* Do the minimum init for mode register accesses */
993         if (!(running_from_sdram() || warm_reset())) {
994                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
995                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
996         }
997
998         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
999                 return NULL;
1000
1001         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1002
1003         return lpddr2_dev_details;
1004 }
1005 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1006
1007 static void do_sdram_init(u32 base)
1008 {
1009         const struct emif_regs *regs;
1010         u32 in_sdram, emif_nr;
1011
1012         debug(">>do_sdram_init() %x\n", base);
1013
1014         in_sdram = running_from_sdram();
1015         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1016
1017 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1018         emif_get_reg_dump(emif_nr, &regs);
1019         if (!regs) {
1020                 debug("EMIF: reg dump not provided\n");
1021                 return;
1022         }
1023 #else
1024         /*
1025          * The user has not provided the register values. We need to
1026          * calculate it based on the timings and the DDR frequency
1027          */
1028         struct emif_device_details dev_details;
1029         struct emif_regs calculated_regs;
1030
1031         /*
1032          * Get device details:
1033          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1034          * - Obtained from user otherwise
1035          */
1036         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1037         emif_reset_phy(base);
1038         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1039                                                 &cs0_dev_details);
1040         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1041                                                 &cs1_dev_details);
1042         emif_reset_phy(base);
1043
1044         /* Return if no devices on this EMIF */
1045         if (!dev_details.cs0_device_details &&
1046             !dev_details.cs1_device_details) {
1047                 return;
1048         }
1049
1050         /*
1051          * Get device timings:
1052          * - Default timings specified by JESD209-2 if
1053          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1054          * - Obtained from user otherwise
1055          */
1056         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1057                                 &dev_details.cs1_device_timings);
1058
1059         /* Calculate the register values */
1060         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1061         regs = &calculated_regs;
1062 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1063
1064         /*
1065          * Initializing the LPDDR2 device can not happen from SDRAM.
1066          * Changing the timing registers in EMIF can happen(going from one
1067          * OPP to another)
1068          */
1069         if (!(in_sdram || warm_reset())) {
1070                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1071                         lpddr2_init(base, regs);
1072                 else
1073                         ddr3_init(base, regs);
1074         }
1075         if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1076                 set_lpmode_selfrefresh(base);
1077                 emif_reset_phy(base);
1078                 ddr3_leveling(base, regs);
1079         }
1080
1081         /* Write to the shadow registers */
1082         emif_update_timings(base, regs);
1083
1084         debug("<<do_sdram_init() %x\n", base);
1085 }
1086
1087 void emif_post_init_config(u32 base)
1088 {
1089         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1090         u32 omap_rev = omap_revision();
1091
1092         /* reset phy on ES2.0 */
1093         if (omap_rev == OMAP4430_ES2_0)
1094                 emif_reset_phy(base);
1095
1096         /* Put EMIF back in smart idle on ES1.0 */
1097         if (omap_rev == OMAP4430_ES1_0)
1098                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1099 }
1100
1101 void dmm_init(u32 base)
1102 {
1103         const struct dmm_lisa_map_regs *lisa_map_regs;
1104         u32 i, section, valid;
1105
1106 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1107         emif_get_dmm_regs(&lisa_map_regs);
1108 #else
1109         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1110         u32 section_cnt, sys_addr;
1111         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1112
1113         mapped_size = 0;
1114         section_cnt = 3;
1115         sys_addr = CONFIG_SYS_SDRAM_BASE;
1116         emif1_size = get_emif_mem_size(EMIF1_BASE);
1117         emif2_size = get_emif_mem_size(EMIF2_BASE);
1118         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1119
1120         if (!emif1_size && !emif2_size)
1121                 return;
1122
1123         /* symmetric interleaved section */
1124         if (emif1_size && emif2_size) {
1125                 mapped_size = min(emif1_size, emif2_size);
1126                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1127                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1128                 /* only MSB */
1129                 section_map |= (sys_addr >> 24) <<
1130                                 EMIF_SYS_ADDR_SHIFT;
1131                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1132                                 << EMIF_SYS_SIZE_SHIFT;
1133                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1134                 emif1_size -= mapped_size;
1135                 emif2_size -= mapped_size;
1136                 sys_addr += (mapped_size * 2);
1137                 section_cnt--;
1138         }
1139
1140         /*
1141          * Single EMIF section(we can have a maximum of 1 single EMIF
1142          * section- either EMIF1 or EMIF2 or none, but not both)
1143          */
1144         if (emif1_size) {
1145                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1146                 section_map |= get_dmm_section_size_map(emif1_size)
1147                                 << EMIF_SYS_SIZE_SHIFT;
1148                 /* only MSB */
1149                 section_map |= (mapped_size >> 24) <<
1150                                 EMIF_SDRC_ADDR_SHIFT;
1151                 /* only MSB */
1152                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1153                 section_cnt--;
1154         }
1155         if (emif2_size) {
1156                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1157                 section_map |= get_dmm_section_size_map(emif2_size) <<
1158                                 EMIF_SYS_SIZE_SHIFT;
1159                 /* only MSB */
1160                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1161                 /* only MSB */
1162                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1163                 section_cnt--;
1164         }
1165
1166         if (section_cnt == 2) {
1167                 /* Only 1 section - either symmetric or single EMIF */
1168                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1169                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1170                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1171         } else {
1172                 /* 2 sections - 1 symmetric, 1 single EMIF */
1173                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1174                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1175         }
1176
1177         /* TRAP for invalid TILER mappings in section 0 */
1178         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1179
1180         if (omap_revision() >= OMAP4460_ES1_0)
1181                 lis_map_regs_calculated.is_ma_present = 1;
1182
1183         lisa_map_regs = &lis_map_regs_calculated;
1184 #endif
1185         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1186             (struct dmm_lisa_map_regs *)base;
1187
1188         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1189         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1190         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1191         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1192
1193         writel(lisa_map_regs->dmm_lisa_map_3,
1194                 &hw_lisa_map_regs->dmm_lisa_map_3);
1195         writel(lisa_map_regs->dmm_lisa_map_2,
1196                 &hw_lisa_map_regs->dmm_lisa_map_2);
1197         writel(lisa_map_regs->dmm_lisa_map_1,
1198                 &hw_lisa_map_regs->dmm_lisa_map_1);
1199         writel(lisa_map_regs->dmm_lisa_map_0,
1200                 &hw_lisa_map_regs->dmm_lisa_map_0);
1201
1202         if (lisa_map_regs->is_ma_present) {
1203                 hw_lisa_map_regs =
1204                     (struct dmm_lisa_map_regs *)MA_BASE;
1205
1206                 writel(lisa_map_regs->dmm_lisa_map_3,
1207                         &hw_lisa_map_regs->dmm_lisa_map_3);
1208                 writel(lisa_map_regs->dmm_lisa_map_2,
1209                         &hw_lisa_map_regs->dmm_lisa_map_2);
1210                 writel(lisa_map_regs->dmm_lisa_map_1,
1211                         &hw_lisa_map_regs->dmm_lisa_map_1);
1212                 writel(lisa_map_regs->dmm_lisa_map_0,
1213                         &hw_lisa_map_regs->dmm_lisa_map_0);
1214         }
1215
1216         /*
1217          * EMIF should be configured only when
1218          * memory is mapped on it. Using emif1_enabled
1219          * and emif2_enabled variables for this.
1220          */
1221         emif1_enabled = 0;
1222         emif2_enabled = 0;
1223         for (i = 0; i < 4; i++) {
1224                 section = __raw_readl(DMM_BASE + i*4);
1225                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1226                         (EMIF_SDRC_MAP_SHIFT);
1227                 if (valid == 3) {
1228                         emif1_enabled = 1;
1229                         emif2_enabled = 1;
1230                         break;
1231                 }
1232
1233                 if (valid == 1)
1234                         emif1_enabled = 1;
1235
1236                 if (valid == 2)
1237                         emif2_enabled = 1;
1238         }
1239 }
1240
1241 static void do_bug0039_workaround(u32 base)
1242 {
1243         u32 val, i, clkctrl;
1244         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1245         const struct read_write_regs *bug_00339_regs;
1246         u32 iterations;
1247         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1248         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1249
1250         if (is_dra7xx())
1251                 phy_status_base++;
1252
1253         bug_00339_regs = get_bug_regs(&iterations);
1254
1255         /* Put EMIF in to idle */
1256         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1257         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1258
1259         /* Copy the phy status registers in to phy ctrl shadow registers */
1260         for (i = 0; i < iterations; i++) {
1261                 val = __raw_readl(phy_status_base +
1262                                   bug_00339_regs[i].read_reg - 1);
1263
1264                 __raw_writel(val, phy_ctrl_base +
1265                              ((bug_00339_regs[i].write_reg - 1) << 1));
1266
1267                 __raw_writel(val, phy_ctrl_base +
1268                              (bug_00339_regs[i].write_reg << 1) - 1);
1269         }
1270
1271         /* Disable leveling */
1272         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1273
1274         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1275 }
1276
1277 /*
1278  * SDRAM initialization:
1279  * SDRAM initialization has two parts:
1280  * 1. Configuring the SDRAM device
1281  * 2. Update the AC timings related parameters in the EMIF module
1282  * (1) should be done only once and should not be done while we are
1283  * running from SDRAM.
1284  * (2) can and should be done more than once if OPP changes.
1285  * Particularly, this may be needed when we boot without SPL and
1286  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1287  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1288  * the frequency. So,
1289  * Doing (1) and (2) makes sense - first time initialization
1290  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1291  * Doing (1) and not (2) doen't make sense
1292  * See do_sdram_init() for the details
1293  */
1294 void sdram_init(void)
1295 {
1296         u32 in_sdram, size_prog, size_detect;
1297         u32 sdram_type = emif_sdram_type();
1298
1299         debug(">>sdram_init()\n");
1300
1301         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1302                 return;
1303
1304         in_sdram = running_from_sdram();
1305         debug("in_sdram = %d\n", in_sdram);
1306
1307         if (!in_sdram) {
1308                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1309                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1310                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1311                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1312         }
1313
1314         if (!in_sdram)
1315                 dmm_init(DMM_BASE);
1316
1317         if (emif1_enabled)
1318                 do_sdram_init(EMIF1_BASE);
1319
1320         if (emif2_enabled)
1321                 do_sdram_init(EMIF2_BASE);
1322
1323         if (!(in_sdram || warm_reset())) {
1324                 if (emif1_enabled)
1325                         emif_post_init_config(EMIF1_BASE);
1326                 if (emif2_enabled)
1327                         emif_post_init_config(EMIF2_BASE);
1328         }
1329
1330         /* for the shadow registers to take effect */
1331         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1332                 freq_update_core();
1333
1334         /* Do some testing after the init */
1335         if (!in_sdram) {
1336                 size_prog = omap_sdram_size();
1337                 size_prog = log_2_n_round_down(size_prog);
1338                 size_prog = (1 << size_prog);
1339
1340                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1341                                                 size_prog);
1342                 /* Compare with the size programmed */
1343                 if (size_detect != size_prog) {
1344                         printf("SDRAM: identified size not same as expected"
1345                                 " size identified: %x expected: %x\n",
1346                                 size_detect,
1347                                 size_prog);
1348                 } else
1349                         debug("get_ram_size() successful");
1350         }
1351
1352         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1353             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1354                 if (emif1_enabled)
1355                         do_bug0039_workaround(EMIF1_BASE);
1356                 if (emif2_enabled)
1357                         do_bug0039_workaround(EMIF2_BASE);
1358         }
1359
1360         debug("<<sdram_init()\n");
1361 }