]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - cpu/mpc8260/i2c.c
* Patches by Robert Schwebel, 06 Mar 2003:
[karo-tx-uboot.git] / cpu / mpc8260 / i2c.c
1 /*
2  * (C) Copyright 2000
3  * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4  *
5  * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6  * Marius Groeger <mgroeger@sysgo.de>
7  *
8  * See file CREDITS for list of people who contributed to this
9  * project.
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of
14  * the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24  * MA 02111-1307 USA
25  */
26
27 #include <common.h>
28
29 #if defined(CONFIG_HARD_I2C)
30
31 #include <asm/cpm_8260.h>
32 #include <i2c.h>
33
34 /* define to enable debug messages */
35 #undef  DEBUG_I2C
36
37 /* uSec to wait between polls of the i2c */
38 #define DELAY_US        100
39 /* uSec to wait for the CPM to start processing the buffer */
40 #define START_DELAY_US  1000
41
42 /*
43  * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
44  * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
45  */
46 #define TOUT_LOOP 5
47
48 /*-----------------------------------------------------------------------
49  * Set default values
50  */
51 #ifndef CFG_I2C_SPEED
52 #define CFG_I2C_SPEED   50000
53 #endif
54
55 #ifndef CFG_I2C_SLAVE
56 #define CFG_I2C_SLAVE   0xFE
57 #endif
58 /*-----------------------------------------------------------------------
59  */
60
61 typedef void (*i2c_ecb_t)(int, int);    /* error callback function */
62
63 /* This structure keeps track of the bd and buffer space usage. */
64 typedef struct i2c_state {
65         int             rx_idx;         /* index   to next free Rx BD */
66         int             tx_idx;         /* index   to next free Tx BD */
67         void            *rxbd;          /* pointer to next free Rx BD */
68         void            *txbd;          /* pointer to next free Tx BD */
69         int             tx_space;       /* number  of Tx bytes left   */
70         unsigned char   *tx_buf;        /* pointer to free Tx area    */
71         i2c_ecb_t       err_cb;         /* error callback function    */
72 } i2c_state_t;
73
74 /* flags for i2c_send() and i2c_receive() */
75 #define I2CF_ENABLE_SECONDARY   0x01    /* secondary_address is valid   */
76 #define I2CF_START_COND         0x02    /* tx: generate start condition */
77 #define I2CF_STOP_COND          0x04    /* tx: generate stop  condition */
78
79 /* return codes */
80 #define I2CERR_NO_BUFFERS       0x01    /* no more BDs or buffer space  */
81 #define I2CERR_MSG_TOO_LONG     0x02    /* tried to send/receive to much data   */
82 #define I2CERR_TIMEOUT          0x03    /* timeout in i2c_doio()        */
83 #define I2CERR_QUEUE_EMPTY      0x04    /* i2c_doio called without send/receive */
84
85 /* error callback flags */
86 #define I2CECB_RX_ERR           0x10    /* this is a receive error      */
87 #define     I2CECB_RX_ERR_OV    0x02    /* receive overrun error        */
88 #define     I2CECB_RX_MASK      0x0f    /* mask for error bits          */
89 #define I2CECB_TX_ERR           0x20    /* this is a transmit error     */
90 #define     I2CECB_TX_CL        0x01    /* transmit collision error     */
91 #define     I2CECB_TX_UN        0x02    /* transmit underflow error     */
92 #define     I2CECB_TX_NAK       0x04    /* transmit no ack error        */
93 #define     I2CECB_TX_MASK      0x0f    /* mask for error bits          */
94 #define I2CECB_TIMEOUT          0x40    /* this is a timeout error      */
95
96 #define ERROR_I2C_NONE          0
97 #define ERROR_I2C_LENGTH        1
98
99 #define I2C_WRITE_BIT           0x00
100 #define I2C_READ_BIT            0x01
101
102 #define I2C_RXTX_LEN    128     /* maximum tx/rx buffer length */
103
104
105 #define NUM_RX_BDS 4
106 #define NUM_TX_BDS 4
107 #define MAX_TX_SPACE 256
108
109 typedef struct I2C_BD
110 {
111   unsigned short status;
112   unsigned short length;
113   unsigned char *addr;
114 } I2C_BD;
115 #define BD_I2C_TX_START 0x0400  /* special status for i2c: Start condition */
116
117 #define BD_I2C_TX_CL    0x0001  /* collision error */
118 #define BD_I2C_TX_UN    0x0002  /* underflow error */
119 #define BD_I2C_TX_NAK   0x0004  /* no acknowledge error */
120 #define BD_I2C_TX_ERR   (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
121
122 #define BD_I2C_RX_ERR   BD_SC_OV
123
124 #ifdef DEBUG_I2C
125 #define PRINTD(x) printf x
126 #else
127 #define PRINTD(x)
128 #endif
129
130 /*
131  * Returns the best value of I2BRG to meet desired clock speed of I2C with
132  * input parameters (clock speed, filter, and predivider value).
133  * It returns computer speed value and the difference between it and desired
134  * speed.
135  */
136 static inline int
137 i2c_roundrate(int hz, int speed, int filter, int modval,
138                 int *brgval, int *totspeed)
139 {
140     int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
141
142     PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
143         hz, speed, filter, modval));
144
145     div = moddiv * speed;
146     brgdiv = (hz + div - 1) / div;
147
148     PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
149
150     *brgval = (brgdiv / 2) - 3 - (2*filter);
151
152     if ((*brgval < 0) || (*brgval > 255)) {
153           PRINTD(("\t\trejected brgval=%d\n", *brgval));
154           return -1;
155     }
156
157     brgdiv = 2 * (*brgval + 3 + (2 * filter));
158     div = moddiv * brgdiv ;
159     *totspeed = (hz + div - 1) / div;
160
161     PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
162
163     return  0;
164 }
165
166 /*
167  * Sets the I2C clock predivider and divider to meet required clock speed.
168  */
169 static int i2c_setrate(int hz, int speed)
170 {
171     immap_t     *immap = (immap_t *)CFG_IMMR ;
172     volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
173     int brgval,
174           modval,       /* 0-3 */
175           bestspeed_diff = speed,
176           bestspeed_brgval=0,
177           bestspeed_modval=0,
178           bestspeed_filter=0,
179           totspeed,
180           filter = 0; /* Use this fixed value */
181
182         for (modval = 0; modval < 4; modval++)
183         {
184                 if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
185                 {
186                         int diff = speed - totspeed ;
187
188                         if ((diff >= 0) && (diff < bestspeed_diff))
189                         {
190                                 bestspeed_diff  = diff ;
191                                 bestspeed_modval        = modval;
192                                 bestspeed_brgval        = brgval;
193                                 bestspeed_filter        = filter;
194                         }
195                 }
196         }
197
198     PRINTD(("[I2C] Best is:\n"));
199     PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
200                    hz, speed,
201                    bestspeed_filter, bestspeed_modval, bestspeed_brgval,
202                    bestspeed_diff));
203
204     i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
205     i2c->i2c_i2brg = bestspeed_brgval & 0xff;
206
207     PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
208
209     return 1 ;
210 }
211
212 void i2c_init(int speed, int slaveadd)
213 {
214         DECLARE_GLOBAL_DATA_PTR;
215
216         volatile immap_t *immap = (immap_t *)CFG_IMMR ;
217         volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
218         volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
219         volatile iic_t *iip;
220         ulong rbase, tbase;
221         volatile I2C_BD *rxbd, *txbd;
222         uint dpaddr;
223
224 #ifdef CFG_I2C_INIT_BOARD        
225         /* call board specific i2c bus reset routine before accessing the   */
226         /* environment, which might be in a chip on that bus. For details   */
227         /* about this problem see doc/I2C_Edge_Conditions.                  */
228         i2c_init_board();
229 #endif
230
231         dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
232         if (dpaddr == 0) {
233             /* need to allocate dual port ram */
234             dpaddr = m8260_cpm_dpalloc(64 +
235                 (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
236                 MAX_TX_SPACE, 64);
237             *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
238         }
239
240         /*
241          * initialise data in dual port ram:
242          *
243          *        dpaddr -> parameter ram (64 bytes)
244          *         rbase -> rx BD         (NUM_RX_BDS * sizeof(I2C_BD) bytes)
245          *         tbase -> tx BD         (NUM_TX_BDS * sizeof(I2C_BD) bytes)
246          *                  tx buffer     (MAX_TX_SPACE bytes)
247          */
248
249         iip = (iic_t *)&immap->im_dprambase[dpaddr];
250         memset((void*)iip, 0, sizeof(iic_t));
251
252         rbase = dpaddr + 64;
253         tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
254
255         /* Disable interrupts */
256         i2c->i2c_i2mod = 0x00;
257         i2c->i2c_i2cmr = 0x00;
258         i2c->i2c_i2cer = 0xff;
259         i2c->i2c_i2add = slaveadd;
260
261         /*
262          * Set the I2C BRG Clock division factor from desired i2c rate
263          * and current CPU rate (we assume sccr dfbgr field is 0;
264          * divide BRGCLK by 1)
265          */
266         PRINTD(("[I2C] Setting rate...\n"));
267         i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ;
268
269         /* Set I2C controller in master mode */
270         i2c->i2c_i2com = 0x01;
271
272         /* Initialize Tx/Rx parameters */
273         iip->iic_rbase = rbase;
274         iip->iic_tbase = tbase;
275         rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
276         txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
277
278         PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
279         PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
280         PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
281         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
282
283         /* Set big endian byte order */
284         iip->iic_tfcr = 0x10;
285         iip->iic_rfcr = 0x10;
286
287         /* Set maximum receive size. */
288         iip->iic_mrblr = I2C_RXTX_LEN;
289
290     cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
291                                                         CPM_CR_I2C_SBLOCK,
292                                                         0x00,
293                                                         CPM_CR_INIT_TRX) | CPM_CR_FLG;
294     do {
295                 __asm__ __volatile__ ("eieio");
296     } while (cp->cp_cpcr & CPM_CR_FLG);
297
298         /* Clear events and interrupts */
299         i2c->i2c_i2cer = 0xff;
300         i2c->i2c_i2cmr = 0x00;
301 }
302
303 static
304 void i2c_newio(i2c_state_t *state)
305 {
306         volatile immap_t *immap = (immap_t *)CFG_IMMR ;
307         volatile iic_t *iip;
308         uint dpaddr;
309
310         PRINTD(("[I2C] i2c_newio\n"));
311
312         dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
313         iip = (iic_t *)&immap->im_dprambase[dpaddr];
314         state->rx_idx = 0;
315         state->tx_idx = 0;
316         state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
317         state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
318         state->tx_space = MAX_TX_SPACE;
319         state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
320         state->err_cb = NULL;
321
322         PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
323         PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
324         PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
325
326         /* clear the buffer memory */
327         memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
328 }
329
330 static
331 int i2c_send(i2c_state_t *state,
332                          unsigned char address,
333                          unsigned char secondary_address,
334                          unsigned int flags,
335                          unsigned short size,
336                          unsigned char *dataout)
337 {
338         volatile I2C_BD *txbd;
339         int i,j;
340
341         PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
342                         address, secondary_address, flags, size));
343
344         /* trying to send message larger than BD */
345         if (size > I2C_RXTX_LEN)
346           return I2CERR_MSG_TOO_LONG;
347
348         /* no more free bds */
349         if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
350           return I2CERR_NO_BUFFERS;
351
352         txbd = (I2C_BD *)state->txbd;
353         txbd->addr = state->tx_buf;
354
355         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
356
357     if (flags & I2CF_START_COND)
358     {
359         PRINTD(("[I2C] Formatting addresses...\n"));
360         if (flags & I2CF_ENABLE_SECONDARY)
361         {
362                 txbd->length = size + 2;  /* Length of message plus dest addresses */
363                 txbd->addr[0] = address << 1;
364                 txbd->addr[1] = secondary_address;
365                 i = 2;
366         }
367         else
368         {
369                 txbd->length = size + 1;  /* Length of message plus dest address */
370                 txbd->addr[0] = address << 1;  /* Write destination address to BD */
371                 i = 1;
372         }
373     }
374     else
375     {
376         txbd->length = size;  /* Length of message */
377         i = 0;
378     }
379
380         /* set up txbd */
381         txbd->status = BD_SC_READY;
382         if (flags & I2CF_START_COND)
383           txbd->status |= BD_I2C_TX_START;
384         if (flags & I2CF_STOP_COND)
385           txbd->status |= BD_SC_LAST | BD_SC_WRAP;
386
387         /* Copy data to send into buffer */
388         PRINTD(("[I2C] copy data...\n"));
389         for(j = 0; j < size; i++, j++)
390           txbd->addr[i] = dataout[j];
391
392         PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
393                    txbd->length,
394                    txbd->status,
395                    txbd->addr[0],
396                    txbd->addr[1]));
397
398         /* advance state */
399         state->tx_buf += txbd->length;
400         state->tx_space -= txbd->length;
401         state->tx_idx++;
402         state->txbd = (void*)(txbd + 1);
403
404         return 0;
405 }
406
407 static
408 int i2c_receive(i2c_state_t *state,
409                                 unsigned char address,
410                                 unsigned char secondary_address,
411                                 unsigned int flags,
412                                 unsigned short size_to_expect,
413                                 unsigned char *datain)
414 {
415         volatile I2C_BD *rxbd, *txbd;
416
417         PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
418
419         /* Expected to receive too much */
420         if (size_to_expect > I2C_RXTX_LEN)
421           return I2CERR_MSG_TOO_LONG;
422
423         /* no more free bds */
424         if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
425                  || state->tx_space < 2)
426           return I2CERR_NO_BUFFERS;
427
428         rxbd = (I2C_BD *)state->rxbd;
429         txbd = (I2C_BD *)state->txbd;
430
431         PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
432         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
433
434         txbd->addr = state->tx_buf;
435
436         /* set up TXBD for destination address */
437         if (flags & I2CF_ENABLE_SECONDARY)
438         {
439                 txbd->length = 2;
440                 txbd->addr[0] = address << 1;   /* Write data */
441                 txbd->addr[1] = secondary_address;  /* Internal address */
442                 txbd->status = BD_SC_READY;
443         }
444         else
445         {
446                 txbd->length = 1 + size_to_expect;
447                 txbd->addr[0] = (address << 1) | 0x01;
448                 txbd->status = BD_SC_READY;
449                 memset(&txbd->addr[1], 0, txbd->length);
450         }
451
452         /* set up rxbd for reception */
453         rxbd->status = BD_SC_EMPTY;
454         rxbd->length = size_to_expect;
455         rxbd->addr = datain;
456
457         txbd->status |= BD_I2C_TX_START;
458         if (flags & I2CF_STOP_COND)
459         {
460                 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
461                 rxbd->status |= BD_SC_WRAP;
462         }
463
464         PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
465                    txbd->length,
466                    txbd->status,
467                    txbd->addr[0],
468                    txbd->addr[1]));
469         PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
470                    rxbd->length,
471                    rxbd->status,
472                    rxbd->addr[0],
473                    rxbd->addr[1]));
474
475         /* advance state */
476         state->tx_buf += txbd->length;
477         state->tx_space -= txbd->length;
478         state->tx_idx++;
479         state->txbd = (void*)(txbd + 1);
480         state->rx_idx++;
481         state->rxbd = (void*)(rxbd + 1);
482
483         return 0;
484 }
485
486
487 static
488 int i2c_doio(i2c_state_t *state)
489 {
490         volatile immap_t *immap = (immap_t *)CFG_IMMR ;
491         volatile iic_t *iip;
492         volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
493         volatile I2C_BD *txbd, *rxbd;
494         int  j;
495         int  timeout;
496         uint dpaddr;
497
498         PRINTD(("[I2C] i2c_doio\n"));
499
500         timeout = TOUT_LOOP * 256;      /* arbitrarily long */
501
502         if (state->tx_idx <= 0 && state->rx_idx <= 0) {
503                 PRINTD(("[I2C] No I/O is queued\n"));
504                 return I2CERR_QUEUE_EMPTY;
505         }
506
507         dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
508         iip = (iic_t *)&immap->im_dprambase[dpaddr];
509         iip->iic_rbptr = iip->iic_rbase;
510         iip->iic_tbptr = iip->iic_tbase;
511
512         /* Enable I2C */
513         PRINTD(("[I2C] Enabling I2C...\n"));
514         i2c->i2c_i2mod |= 0x01;
515
516         /* Begin transmission */
517         i2c->i2c_i2com |= 0x80;
518
519         /* Loop until transmit & receive completed */
520
521         txbd = ((I2C_BD*)state->txbd) - 1;
522         j = 0;
523         if (state->tx_idx > 0) {
524                 timeout = TOUT_LOOP * txbd->length;
525
526                 PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
527                 udelay(START_DELAY_US); /* give it time to start */
528                 while((txbd->status & BD_SC_READY) && (j++ < timeout)) {
529                         udelay(DELAY_US);
530                         if (ctrlc())
531                                 return (-1);
532                         __asm__ __volatile__ ("eieio");
533                 }
534         }
535
536         rxbd = ((I2C_BD*)state->rxbd) - 1;
537         j = 0;
538         if ((state->rx_idx > 0) && (j < timeout)) {
539                 timeout = TOUT_LOOP * rxbd->length;
540                 PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
541                 udelay(START_DELAY_US); /* give it time to start */
542                 while((rxbd->status & BD_SC_EMPTY) && (j++ < timeout)) {
543                         udelay(DELAY_US);
544                         if (ctrlc())
545                                 return (-1);
546                         __asm__ __volatile__ ("eieio");
547                 }
548         }
549
550         /* Turn off I2C */
551         i2c->i2c_i2mod &= ~0x01;
552
553         if (state->err_cb != NULL) {
554                 int n, i, b;
555
556                 /*
557                  * if we have an error callback function, look at the
558                  * error bits in the bd status and pass them back
559                  */
560
561                 if ((n = state->tx_idx) > 0) {
562                         for (i = 0; i < n; i++) {
563                                 txbd = ((I2C_BD*)state->txbd) - (n - i);
564                                 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
565                                         (*state->err_cb)(I2CECB_TX_ERR|b, i);
566                         }
567                 }
568
569                 if ((n = state->rx_idx) > 0) {
570                         for (i = 0; i < n; i++) {
571                                 rxbd = ((I2C_BD*)state->rxbd) - (n - i);
572                                 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
573                                         (*state->err_cb)(I2CECB_RX_ERR|b, i);
574                         }
575                 }
576
577                 if (j >= timeout)
578                         (*state->err_cb)(I2CECB_TIMEOUT, 0);
579         }
580
581         /* sort out errors and return appropriate good/error status */
582         if(j >= timeout)
583                 return(I2CERR_TIMEOUT);
584         if((txbd->status & BD_I2C_TX_ERR) != 0)
585                 return(I2CECB_TX_ERR | (txbd->status & I2CECB_TX_MASK));
586         if((rxbd->status & BD_I2C_RX_ERR) != 0)
587                 return(I2CECB_RX_ERR | (rxbd->status & I2CECB_RX_MASK));
588
589         return(0);
590 }
591
592 static int had_tx_nak;
593
594 static void
595 i2c_test_callback(int flags, int xnum)
596 {
597         if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
598                 had_tx_nak = 1;
599 }
600
601 int i2c_probe(uchar chip)
602 {
603         i2c_state_t state;
604         int rc;
605         uchar buf[1];
606
607         i2c_newio(&state);
608
609         state.err_cb = i2c_test_callback;
610         had_tx_nak = 0;
611
612         rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
613
614         if (rc != 0)
615                 return (rc);
616
617         rc = i2c_doio(&state);
618
619         if ((rc != 0) && (rc != I2CERR_TIMEOUT))
620                 return (rc);
621
622         return (had_tx_nak);
623 }
624
625
626 int
627 i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
628 {
629         i2c_state_t state;
630         uchar xaddr[4];
631         int rc;
632
633         xaddr[0] = (addr >> 24) & 0xFF;
634         xaddr[1] = (addr >> 16) & 0xFF;
635         xaddr[2] = (addr >>  8) & 0xFF;
636         xaddr[3] =  addr        & 0xFF;
637
638 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
639          /*
640           * EEPROM chips that implement "address overflow" are ones
641           * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
642           * and the extra bits end up in the "chip address" bit slots.
643           * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
644           * chips.
645           *
646           * Note that we consider the length of the address field to still
647           * be one byte because the extra address bits are hidden in the
648           * chip address.
649           */
650         chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
651 #endif
652
653         i2c_newio(&state);
654
655         rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
656         if (rc != 0) {
657                 printf("i2c_read: i2c_send failed (%d)\n", rc);
658                 return 1;
659         }
660
661         rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
662         if (rc != 0) {
663                 printf("i2c_read: i2c_receive failed (%d)\n", rc);
664                 return 1;
665         }
666
667         rc = i2c_doio(&state);
668         if (rc != 0) {
669                 printf("i2c_read: i2c_doio failed (%d)\n", rc);
670                 return 1;
671         }
672         return 0;
673 }
674
675 int
676 i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
677 {
678         i2c_state_t state;
679         uchar xaddr[4];
680         int rc;
681
682         xaddr[0] = (addr >> 24) & 0xFF;
683         xaddr[1] = (addr >> 16) & 0xFF;
684         xaddr[2] = (addr >>  8) & 0xFF;
685         xaddr[3] =  addr        & 0xFF;
686
687 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
688          /*
689           * EEPROM chips that implement "address overflow" are ones
690           * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
691           * and the extra bits end up in the "chip address" bit slots.
692           * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
693           * chips.
694           *
695           * Note that we consider the length of the address field to still
696           * be one byte because the extra address bits are hidden in the
697           * chip address.
698           */
699         chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
700 #endif
701
702         i2c_newio(&state);
703
704         rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
705         if (rc != 0) {
706                 printf("i2c_write: first i2c_send failed (%d)\n", rc);
707                 return 1;
708         }
709
710         rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
711         if (rc != 0) {
712                 printf("i2c_write: second i2c_send failed (%d)\n", rc);
713                 return 1;
714         }
715
716         rc = i2c_doio(&state);
717         if (rc != 0) {
718                 printf("i2c_write: i2c_doio failed (%d)\n", rc);
719                 return 1;
720         }
721         return 0;
722 }
723
724 uchar
725 i2c_reg_read(uchar chip, uchar reg)
726 {
727         char buf;
728
729         i2c_read(chip, reg, 1, &buf, 1);
730
731         return (buf);
732 }
733
734 void
735 i2c_reg_write(uchar chip, uchar reg, uchar val)
736 {
737         i2c_write(chip, reg, 1, &val, 1);
738 }
739
740 #endif  /* CONFIG_HARD_I2C */