]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - cpu/ppc4xx/44x_spd_ddr.c
rename CFG_ macros to CONFIG_SYS
[karo-tx-uboot.git] / cpu / ppc4xx / 44x_spd_ddr.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr.c
3  * This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a
4  * DDR controller. Those are 440GP/GX/EP/GR.
5  *
6  * (C) Copyright 2001
7  * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
8  *
9  * Based on code by:
10  *
11  * Kenneth Johansson ,Ericsson AB.
12  * kenneth.johansson@etx.ericsson.se
13  *
14  * hacked up by bill hunter. fixed so we could run before
15  * serial_init and console_init. previous version avoided this by
16  * running out of cache memory during serial/console init, then running
17  * this code later.
18  *
19  * (C) Copyright 2002
20  * Jun Gu, Artesyn Technology, jung@artesyncp.com
21  * Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
22  *
23  * (C) Copyright 2005-2007
24  * Stefan Roese, DENX Software Engineering, sr@denx.de.
25  *
26  * See file CREDITS for list of people who contributed to this
27  * project.
28  *
29  * This program is free software; you can redistribute it and/or
30  * modify it under the terms of the GNU General Public License as
31  * published by the Free Software Foundation; either version 2 of
32  * the License, or (at your option) any later version.
33  *
34  * This program is distributed in the hope that it will be useful,
35  * but WITHOUT ANY WARRANTY; without even the implied warranty of
36  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  * GNU General Public License for more details.
38  *
39  * You should have received a copy of the GNU General Public License
40  * along with this program; if not, write to the Free Software
41  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
42  * MA 02111-1307 USA
43  */
44
45 /* define DEBUG for debugging output (obviously ;-)) */
46 #if 0
47 #define DEBUG
48 #endif
49
50 #include <common.h>
51 #include <asm/processor.h>
52 #include <i2c.h>
53 #include <ppc4xx.h>
54 #include <asm/mmu.h>
55
56 #include "ecc.h"
57
58 #if defined(CONFIG_SPD_EEPROM) &&                                       \
59         (defined(CONFIG_440GP) || defined(CONFIG_440GX) ||              \
60          defined(CONFIG_440EP) || defined(CONFIG_440GR))
61
62 /*
63  * Set default values
64  */
65 #ifndef CONFIG_SYS_I2C_SPEED
66 #define CONFIG_SYS_I2C_SPEED    50000
67 #endif
68
69 #ifndef CONFIG_SYS_I2C_SLAVE
70 #define CONFIG_SYS_I2C_SLAVE    0xFE
71 #endif
72
73 #define ONE_BILLION     1000000000
74
75 /*
76  * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
77  */
78 void __spd_ddr_init_hang (void)
79 {
80         hang ();
81 }
82 void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
83
84 /*-----------------------------------------------------------------------------+
85   |  General Definition
86   +-----------------------------------------------------------------------------*/
87 #define DEFAULT_SPD_ADDR1       0x53
88 #define DEFAULT_SPD_ADDR2       0x52
89 #define MAXBANKS                4               /* at most 4 dimm banks */
90 #define MAX_SPD_BYTES           256
91 #define NUMHALFCYCLES           4
92 #define NUMMEMTESTS             8
93 #define NUMMEMWORDS             8
94 #define MAXBXCR                 4
95 #define TRUE                    1
96 #define FALSE                   0
97
98 /*
99  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
100  * region. Right now the cache should still be disabled in U-Boot because of the
101  * EMAC driver, that need it's buffer descriptor to be located in non cached
102  * memory.
103  *
104  * If at some time this restriction doesn't apply anymore, just define
105  * CONFIG_4xx_DCACHE in the board config file and this code should setup
106  * everything correctly.
107  */
108 #ifdef CONFIG_4xx_DCACHE
109 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
110 #else
111 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
112 #endif
113
114 /* bank_parms is used to sort the bank sizes by descending order */
115 struct bank_param {
116         unsigned long cr;
117         unsigned long bank_size_bytes;
118 };
119
120 typedef struct bank_param BANKPARMS;
121
122 #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
123 extern const unsigned char cfg_simulate_spd_eeprom[128];
124 #endif
125
126 static unsigned char spd_read(uchar chip, uint addr);
127 static void get_spd_info(unsigned long *dimm_populated,
128                          unsigned char *iic0_dimm_addr,
129                          unsigned long num_dimm_banks);
130 static void check_mem_type(unsigned long *dimm_populated,
131                            unsigned char *iic0_dimm_addr,
132                            unsigned long num_dimm_banks);
133 static void check_volt_type(unsigned long *dimm_populated,
134                             unsigned char *iic0_dimm_addr,
135                             unsigned long num_dimm_banks);
136 static void program_cfg0(unsigned long *dimm_populated,
137                          unsigned char *iic0_dimm_addr,
138                          unsigned long  num_dimm_banks);
139 static void program_cfg1(unsigned long *dimm_populated,
140                          unsigned char *iic0_dimm_addr,
141                          unsigned long num_dimm_banks);
142 static void program_rtr(unsigned long *dimm_populated,
143                         unsigned char *iic0_dimm_addr,
144                         unsigned long num_dimm_banks);
145 static void program_tr0(unsigned long *dimm_populated,
146                         unsigned char *iic0_dimm_addr,
147                         unsigned long num_dimm_banks);
148 static void program_tr1(void);
149
150 static unsigned long program_bxcr(unsigned long *dimm_populated,
151                                   unsigned char *iic0_dimm_addr,
152                                   unsigned long num_dimm_banks);
153
154 /*
155  * This function is reading data from the DIMM module EEPROM over the SPD bus
156  * and uses that to program the sdram controller.
157  *
158  * This works on boards that has the same schematics that the AMCC walnut has.
159  *
160  * BUG: Don't handle ECC memory
161  * BUG: A few values in the TR register is currently hardcoded
162  */
163 long int spd_sdram(void) {
164         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
165         unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
166         unsigned long total_size;
167         unsigned long cfg0;
168         unsigned long mcsts;
169         unsigned long num_dimm_banks;               /* on board dimm banks */
170
171         num_dimm_banks = sizeof(iic0_dimm_addr);
172
173         /*
174          * Make sure I2C controller is initialized
175          * before continuing.
176          */
177         i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
178
179         /*
180          * Read the SPD information using I2C interface. Check to see if the
181          * DIMM slots are populated.
182          */
183         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
184
185         /*
186          * Check the memory type for the dimms plugged.
187          */
188         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
189
190         /*
191          * Check the voltage type for the dimms plugged.
192          */
193         check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
194
195 #if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR)
196         /*
197          * Soft-reset SDRAM controller.
198          */
199         mtsdr(sdr_srst, SDR0_SRST_DMC);
200         mtsdr(sdr_srst, 0x00000000);
201 #endif
202
203         /*
204          * program 440GP SDRAM controller options (SDRAM0_CFG0)
205          */
206         program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
207
208         /*
209          * program 440GP SDRAM controller options (SDRAM0_CFG1)
210          */
211         program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
212
213         /*
214          * program SDRAM refresh register (SDRAM0_RTR)
215          */
216         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
217
218         /*
219          * program SDRAM Timing Register 0 (SDRAM0_TR0)
220          */
221         program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
222
223         /*
224          * program the BxCR registers to find out total sdram installed
225          */
226         total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
227                                   num_dimm_banks);
228
229 #ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */
230         /* and program tlb entries for this size (dynamic) */
231         program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE);
232 #endif
233
234         /*
235          * program SDRAM Clock Timing Register (SDRAM0_CLKTR)
236          */
237         mtsdram(mem_clktr, 0x40000000);
238
239         /*
240          * delay to ensure 200 usec has elapsed
241          */
242         udelay(400);
243
244         /*
245          * enable the memory controller
246          */
247         mfsdram(mem_cfg0, cfg0);
248         mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);
249
250         /*
251          * wait for SDRAM_CFG0_DC_EN to complete
252          */
253         while (1) {
254                 mfsdram(mem_mcsts, mcsts);
255                 if ((mcsts & SDRAM_MCSTS_MRSC) != 0)
256                         break;
257         }
258
259         /*
260          * program SDRAM Timing Register 1, adding some delays
261          */
262         program_tr1();
263
264 #ifdef CONFIG_DDR_ECC
265         /*
266          * If ecc is enabled, initialize the parity bits.
267          */
268         ecc_init(CONFIG_SYS_SDRAM_BASE, total_size);
269 #endif
270
271         return total_size;
272 }
273
274 static unsigned char spd_read(uchar chip, uint addr)
275 {
276         unsigned char data[2];
277
278 #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
279         if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) {
280                 /*
281                  * Onboard spd eeprom requested -> simulate values
282                  */
283                 return cfg_simulate_spd_eeprom[addr];
284         }
285 #endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */
286
287         if (i2c_probe(chip) == 0) {
288                 if (i2c_read(chip, addr, 1, data, 1) == 0) {
289                         return data[0];
290                 }
291         }
292
293         return 0;
294 }
295
296 static void get_spd_info(unsigned long *dimm_populated,
297                          unsigned char *iic0_dimm_addr,
298                          unsigned long num_dimm_banks)
299 {
300         unsigned long dimm_num;
301         unsigned long dimm_found;
302         unsigned char num_of_bytes;
303         unsigned char total_size;
304
305         dimm_found = FALSE;
306         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
307                 num_of_bytes = 0;
308                 total_size = 0;
309
310                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
311                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
312
313                 if ((num_of_bytes != 0) && (total_size != 0)) {
314                         dimm_populated[dimm_num] = TRUE;
315                         dimm_found = TRUE;
316                         debug("DIMM slot %lu: populated\n", dimm_num);
317                 } else {
318                         dimm_populated[dimm_num] = FALSE;
319                         debug("DIMM slot %lu: Not populated\n", dimm_num);
320                 }
321         }
322
323         if (dimm_found == FALSE) {
324                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
325                 spd_ddr_init_hang ();
326         }
327 }
328
329 static void check_mem_type(unsigned long *dimm_populated,
330                            unsigned char *iic0_dimm_addr,
331                            unsigned long num_dimm_banks)
332 {
333         unsigned long dimm_num;
334         unsigned char dimm_type;
335
336         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
337                 if (dimm_populated[dimm_num] == TRUE) {
338                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
339                         switch (dimm_type) {
340                         case 7:
341                                 debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
342                                 break;
343                         default:
344                                 printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
345                                        dimm_num);
346                                 printf("Only DDR SDRAM DIMMs are supported.\n");
347                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
348                                 spd_ddr_init_hang ();
349                                 break;
350                         }
351                 }
352         }
353 }
354
355 static void check_volt_type(unsigned long *dimm_populated,
356                             unsigned char *iic0_dimm_addr,
357                             unsigned long num_dimm_banks)
358 {
359         unsigned long dimm_num;
360         unsigned long voltage_type;
361
362         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
363                 if (dimm_populated[dimm_num] == TRUE) {
364                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
365                         if (voltage_type != 0x04) {
366                                 printf("ERROR: DIMM %lu with unsupported voltage level.\n",
367                                        dimm_num);
368                                 spd_ddr_init_hang ();
369                         } else {
370                                 debug("DIMM %lu voltage level supported.\n", dimm_num);
371                         }
372                         break;
373                 }
374         }
375 }
376
377 static void program_cfg0(unsigned long *dimm_populated,
378                          unsigned char *iic0_dimm_addr,
379                          unsigned long num_dimm_banks)
380 {
381         unsigned long dimm_num;
382         unsigned long cfg0;
383         unsigned long ecc_enabled;
384         unsigned char ecc;
385         unsigned char attributes;
386         unsigned long data_width;
387         unsigned long dimm_32bit;
388         unsigned long dimm_64bit;
389
390         /*
391          * get Memory Controller Options 0 data
392          */
393         mfsdram(mem_cfg0, cfg0);
394
395         /*
396          * clear bits
397          */
398         cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
399                   SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
400                   SDRAM_CFG0_DMWD_MASK |
401                   SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
402
403
404         /*
405          * FIXME: assume the DDR SDRAMs in both banks are the same
406          */
407         ecc_enabled = TRUE;
408         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
409                 if (dimm_populated[dimm_num] == TRUE) {
410                         ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
411                         if (ecc != 0x02) {
412                                 ecc_enabled = FALSE;
413                         }
414
415                         /*
416                          * program Registered DIMM Enable
417                          */
418                         attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
419                         if ((attributes & 0x02) != 0x00) {
420                                 cfg0 |= SDRAM_CFG0_RDEN;
421                         }
422
423                         /*
424                          * program DDR SDRAM Data Width
425                          */
426                         data_width =
427                                 (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
428                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
429                         if (data_width == 64 || data_width == 72) {
430                                 dimm_64bit = TRUE;
431                                 cfg0 |= SDRAM_CFG0_DMWD_64;
432                         } else if (data_width == 32 || data_width == 40) {
433                                 dimm_32bit = TRUE;
434                                 cfg0 |= SDRAM_CFG0_DMWD_32;
435                         } else {
436                                 printf("WARNING: DIMM with datawidth of %lu bits.\n",
437                                        data_width);
438                                 printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
439                                 spd_ddr_init_hang ();
440                         }
441                         break;
442                 }
443         }
444
445         /*
446          * program Memory Data Error Checking
447          */
448         if (ecc_enabled == TRUE) {
449                 cfg0 |= SDRAM_CFG0_MCHK_GEN;
450         } else {
451                 cfg0 |= SDRAM_CFG0_MCHK_NON;
452         }
453
454         /*
455          * program Page Management Unit (0 == enabled)
456          */
457         cfg0 &= ~SDRAM_CFG0_PMUD;
458
459         /*
460          * program Memory Controller Options 0
461          * Note: DCEN must be enabled after all DDR SDRAM controller
462          * configuration registers get initialized.
463          */
464         mtsdram(mem_cfg0, cfg0);
465 }
466
467 static void program_cfg1(unsigned long *dimm_populated,
468                          unsigned char *iic0_dimm_addr,
469                          unsigned long num_dimm_banks)
470 {
471         unsigned long cfg1;
472         mfsdram(mem_cfg1, cfg1);
473
474         /*
475          * Self-refresh exit, disable PM
476          */
477         cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
478
479         /*
480          * program Memory Controller Options 1
481          */
482         mtsdram(mem_cfg1, cfg1);
483 }
484
485 static void program_rtr(unsigned long *dimm_populated,
486                         unsigned char *iic0_dimm_addr,
487                         unsigned long num_dimm_banks)
488 {
489         unsigned long dimm_num;
490         unsigned long bus_period_x_10;
491         unsigned long refresh_rate = 0;
492         unsigned char refresh_rate_type;
493         unsigned long refresh_interval;
494         unsigned long sdram_rtr;
495         PPC4xx_SYS_INFO sys_info;
496
497         /*
498          * get the board info
499          */
500         get_sys_info(&sys_info);
501         bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
502
503         for (dimm_num = 0;  dimm_num < num_dimm_banks; dimm_num++) {
504                 if (dimm_populated[dimm_num] == TRUE) {
505                         refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
506                         switch (refresh_rate_type) {
507                         case 0x00:
508                                 refresh_rate = 15625;
509                                 break;
510                         case 0x01:
511                                 refresh_rate = 15625/4;
512                                 break;
513                         case 0x02:
514                                 refresh_rate = 15625/2;
515                                 break;
516                         case 0x03:
517                                 refresh_rate = 15626*2;
518                                 break;
519                         case 0x04:
520                                 refresh_rate = 15625*4;
521                                 break;
522                         case 0x05:
523                                 refresh_rate = 15625*8;
524                                 break;
525                         default:
526                                 printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
527                                        dimm_num);
528                                 printf("Replace the DIMM module with a supported DIMM.\n");
529                                 break;
530                         }
531
532                         break;
533                 }
534         }
535
536         refresh_interval = refresh_rate * 10 / bus_period_x_10;
537         sdram_rtr = (refresh_interval & 0x3ff8) <<  16;
538
539         /*
540          * program Refresh Timer Register (SDRAM0_RTR)
541          */
542         mtsdram(mem_rtr, sdram_rtr);
543 }
544
545 static void program_tr0(unsigned long *dimm_populated,
546                          unsigned char *iic0_dimm_addr,
547                          unsigned long num_dimm_banks)
548 {
549         unsigned long dimm_num;
550         unsigned long tr0;
551         unsigned char wcsbc;
552         unsigned char t_rp_ns;
553         unsigned char t_rcd_ns;
554         unsigned char t_ras_ns;
555         unsigned long t_rp_clk;
556         unsigned long t_ras_rcd_clk;
557         unsigned long t_rcd_clk;
558         unsigned long t_rfc_clk;
559         unsigned long plb_check;
560         unsigned char cas_bit;
561         unsigned long cas_index;
562         unsigned char cas_2_0_available;
563         unsigned char cas_2_5_available;
564         unsigned char cas_3_0_available;
565         unsigned long cycle_time_ns_x_10[3];
566         unsigned long tcyc_3_0_ns_x_10;
567         unsigned long tcyc_2_5_ns_x_10;
568         unsigned long tcyc_2_0_ns_x_10;
569         unsigned long tcyc_reg;
570         unsigned long bus_period_x_10;
571         PPC4xx_SYS_INFO sys_info;
572         unsigned long residue;
573
574         /*
575          * get the board info
576          */
577         get_sys_info(&sys_info);
578         bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
579
580         /*
581          * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
582          */
583         mfsdram(mem_tr0, tr0);
584         tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
585                  SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
586                  SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
587                  SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
588
589         /*
590          * initialization
591          */
592         wcsbc = 0;
593         t_rp_ns = 0;
594         t_rcd_ns = 0;
595         t_ras_ns = 0;
596         cas_2_0_available = TRUE;
597         cas_2_5_available = TRUE;
598         cas_3_0_available = TRUE;
599         tcyc_2_0_ns_x_10 = 0;
600         tcyc_2_5_ns_x_10 = 0;
601         tcyc_3_0_ns_x_10 = 0;
602
603         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
604                 if (dimm_populated[dimm_num] == TRUE) {
605                         wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
606                         t_rp_ns  = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
607                         t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
608                         t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
609                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
610
611                         for (cas_index = 0; cas_index < 3; cas_index++) {
612                                 switch (cas_index) {
613                                 case 0:
614                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
615                                         break;
616                                 case 1:
617                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
618                                         break;
619                                 default:
620                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
621                                         break;
622                                 }
623
624                                 if ((tcyc_reg & 0x0F) >= 10) {
625                                         printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
626                                                dimm_num);
627                                         spd_ddr_init_hang ();
628                                 }
629
630                                 cycle_time_ns_x_10[cas_index] =
631                                         (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
632                         }
633
634                         cas_index = 0;
635
636                         if ((cas_bit & 0x80) != 0) {
637                                 cas_index += 3;
638                         } else if ((cas_bit & 0x40) != 0) {
639                                 cas_index += 2;
640                         } else if ((cas_bit & 0x20) != 0) {
641                                 cas_index += 1;
642                         }
643
644                         if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
645                                 tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
646                                 cas_index++;
647                         } else {
648                                 if (cas_index != 0) {
649                                         cas_index++;
650                                 }
651                                 cas_3_0_available = FALSE;
652                         }
653
654                         if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
655                                 tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
656                                 cas_index++;
657                         } else {
658                                 if (cas_index != 0) {
659                                         cas_index++;
660                                 }
661                                 cas_2_5_available = FALSE;
662                         }
663
664                         if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
665                                 tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
666                                 cas_index++;
667                         } else {
668                                 if (cas_index != 0) {
669                                         cas_index++;
670                                 }
671                                 cas_2_0_available = FALSE;
672                         }
673
674                         break;
675                 }
676         }
677
678         /*
679          * Program SD_WR and SD_WCSBC fields
680          */
681         tr0 |= SDRAM_TR0_SDWR_2_CLK;                /* Write Recovery: 2 CLK */
682         switch (wcsbc) {
683         case 0:
684                 tr0 |= SDRAM_TR0_SDWD_0_CLK;
685                 break;
686         default:
687                 tr0 |= SDRAM_TR0_SDWD_1_CLK;
688                 break;
689         }
690
691         /*
692          * Program SD_CASL field
693          */
694         if ((cas_2_0_available == TRUE) &&
695             (bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
696                 tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
697         } else if ((cas_2_5_available == TRUE) &&
698                  (bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
699                 tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
700         } else if ((cas_3_0_available == TRUE) &&
701                  (bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
702                 tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
703         } else {
704                 printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
705                 printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
706                 printf("Make sure the PLB speed is within the supported range.\n");
707                 spd_ddr_init_hang ();
708         }
709
710         /*
711          * Calculate Trp in clock cycles and round up if necessary
712          * Program SD_PTA field
713          */
714         t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
715         plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
716         if (sys_info.freqPLB != plb_check) {
717                 t_rp_clk++;
718         }
719         switch ((unsigned long)t_rp_clk) {
720         case 0:
721         case 1:
722         case 2:
723                 tr0 |= SDRAM_TR0_SDPA_2_CLK;
724                 break;
725         case 3:
726                 tr0 |= SDRAM_TR0_SDPA_3_CLK;
727                 break;
728         default:
729                 tr0 |= SDRAM_TR0_SDPA_4_CLK;
730                 break;
731         }
732
733         /*
734          * Program SD_CTP field
735          */
736         t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
737         plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
738         if (sys_info.freqPLB != plb_check) {
739                 t_ras_rcd_clk++;
740         }
741         switch (t_ras_rcd_clk) {
742         case 0:
743         case 1:
744         case 2:
745                 tr0 |= SDRAM_TR0_SDCP_2_CLK;
746                 break;
747         case 3:
748                 tr0 |= SDRAM_TR0_SDCP_3_CLK;
749                 break;
750         case 4:
751                 tr0 |= SDRAM_TR0_SDCP_4_CLK;
752                 break;
753         default:
754                 tr0 |= SDRAM_TR0_SDCP_5_CLK;
755                 break;
756         }
757
758         /*
759          * Program SD_LDF field
760          */
761         tr0 |= SDRAM_TR0_SDLD_2_CLK;
762
763         /*
764          * Program SD_RFTA field
765          * FIXME tRFC hardcoded as 75 nanoseconds
766          */
767         t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
768         residue = sys_info.freqPLB % (ONE_BILLION / 75);
769         if (residue >= (ONE_BILLION / 150)) {
770                 t_rfc_clk++;
771         }
772         switch (t_rfc_clk) {
773         case 0:
774         case 1:
775         case 2:
776         case 3:
777         case 4:
778         case 5:
779         case 6:
780                 tr0 |= SDRAM_TR0_SDRA_6_CLK;
781                 break;
782         case 7:
783                 tr0 |= SDRAM_TR0_SDRA_7_CLK;
784                 break;
785         case 8:
786                 tr0 |= SDRAM_TR0_SDRA_8_CLK;
787                 break;
788         case 9:
789                 tr0 |= SDRAM_TR0_SDRA_9_CLK;
790                 break;
791         case 10:
792                 tr0 |= SDRAM_TR0_SDRA_10_CLK;
793                 break;
794         case 11:
795                 tr0 |= SDRAM_TR0_SDRA_11_CLK;
796                 break;
797         case 12:
798                 tr0 |= SDRAM_TR0_SDRA_12_CLK;
799                 break;
800         default:
801                 tr0 |= SDRAM_TR0_SDRA_13_CLK;
802                 break;
803         }
804
805         /*
806          * Program SD_RCD field
807          */
808         t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
809         plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
810         if (sys_info.freqPLB != plb_check) {
811                 t_rcd_clk++;
812         }
813         switch (t_rcd_clk) {
814         case 0:
815         case 1:
816         case 2:
817                 tr0 |= SDRAM_TR0_SDRD_2_CLK;
818                 break;
819         case 3:
820                 tr0 |= SDRAM_TR0_SDRD_3_CLK;
821                 break;
822         default:
823                 tr0 |= SDRAM_TR0_SDRD_4_CLK;
824                 break;
825         }
826
827         debug("tr0: %x\n", tr0);
828         mtsdram(mem_tr0, tr0);
829 }
830
831 static int short_mem_test(void)
832 {
833         unsigned long i, j;
834         unsigned long bxcr_num;
835         unsigned long *membase;
836         const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
837                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
838                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
839                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
840                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
841                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
842                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
843                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
844                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
845                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
846                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
847                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
848                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
849                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
850                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
851                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
852                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}};
853
854         for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
855                 mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
856                 if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
857                         /* Bank is enabled */
858                         membase = (unsigned long*)
859                                 (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);
860
861                         /*
862                          * Run the short memory test
863                          */
864                         for (i = 0; i < NUMMEMTESTS; i++) {
865                                 for (j = 0; j < NUMMEMWORDS; j++) {
866                                         /* printf("bank enabled base:%x\n", &membase[j]); */
867                                         membase[j] = test[i][j];
868                                         ppcDcbf((unsigned long)&(membase[j]));
869                                 }
870
871                                 for (j = 0; j < NUMMEMWORDS; j++) {
872                                         if (membase[j] != test[i][j]) {
873                                                 ppcDcbf((unsigned long)&(membase[j]));
874                                                 return 0;
875                                         }
876                                         ppcDcbf((unsigned long)&(membase[j]));
877                                 }
878
879                                 if (j < NUMMEMWORDS)
880                                         return 0;
881                         }
882
883                         /*
884                          * see if the rdclt value passed
885                          */
886                         if (i < NUMMEMTESTS)
887                                 return 0;
888                 }
889         }
890
891         return 1;
892 }
893
894 static void program_tr1(void)
895 {
896         unsigned long tr0;
897         unsigned long tr1;
898         unsigned long cfg0;
899         unsigned long ecc_temp;
900         unsigned long dlycal;
901         unsigned long dly_val;
902         unsigned long k;
903         unsigned long max_pass_length;
904         unsigned long current_pass_length;
905         unsigned long current_fail_length;
906         unsigned long current_start;
907         unsigned long rdclt;
908         unsigned long rdclt_offset;
909         long max_start;
910         long max_end;
911         long rdclt_average;
912         unsigned char window_found;
913         unsigned char fail_found;
914         unsigned char pass_found;
915         PPC4xx_SYS_INFO sys_info;
916
917         /*
918          * get the board info
919          */
920         get_sys_info(&sys_info);
921
922         /*
923          * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
924          */
925         mfsdram(mem_tr1, tr1);
926         tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
927                  SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
928
929         mfsdram(mem_tr0, tr0);
930         if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
931             (sys_info.freqPLB > 100000000)) {
932                 tr1 |= SDRAM_TR1_RDSS_TR2;
933                 tr1 |= SDRAM_TR1_RDSL_STAGE3;
934                 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
935         } else {
936                 tr1 |= SDRAM_TR1_RDSS_TR1;
937                 tr1 |= SDRAM_TR1_RDSL_STAGE2;
938                 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
939         }
940
941         /*
942          * save CFG0 ECC setting to a temporary variable and turn ECC off
943          */
944         mfsdram(mem_cfg0, cfg0);
945         ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
946         mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
947
948         /*
949          * get the delay line calibration register value
950          */
951         mfsdram(mem_dlycal, dlycal);
952         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
953
954         max_pass_length = 0;
955         max_start = 0;
956         max_end = 0;
957         current_pass_length = 0;
958         current_fail_length = 0;
959         current_start = 0;
960         rdclt_offset = 0;
961         window_found = FALSE;
962         fail_found = FALSE;
963         pass_found = FALSE;
964         debug("Starting memory test ");
965
966         for (k = 0; k < NUMHALFCYCLES; k++) {
967                 for (rdclt = 0; rdclt < dly_val; rdclt++) {
968                         /*
969                          * Set the timing reg for the test.
970                          */
971                         mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
972
973                         if (short_mem_test()) {
974                                 if (fail_found == TRUE) {
975                                         pass_found = TRUE;
976                                         if (current_pass_length == 0) {
977                                                 current_start = rdclt_offset + rdclt;
978                                         }
979
980                                         current_fail_length = 0;
981                                         current_pass_length++;
982
983                                         if (current_pass_length > max_pass_length) {
984                                                 max_pass_length = current_pass_length;
985                                                 max_start = current_start;
986                                                 max_end = rdclt_offset + rdclt;
987                                         }
988                                 }
989                         } else {
990                                 current_pass_length = 0;
991                                 current_fail_length++;
992
993                                 if (current_fail_length >= (dly_val>>2)) {
994                                         if (fail_found == FALSE) {
995                                                 fail_found = TRUE;
996                                         } else if (pass_found == TRUE) {
997                                                 window_found = TRUE;
998                                                 break;
999                                         }
1000                                 }
1001                         }
1002                 }
1003                 debug(".");
1004
1005                 if (window_found == TRUE) {
1006                         break;
1007                 }
1008
1009                 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1010                 rdclt_offset += dly_val;
1011         }
1012         debug("\n");
1013
1014         /*
1015          * make sure we find the window
1016          */
1017         if (window_found == FALSE) {
1018                 printf("ERROR: Cannot determine a common read delay.\n");
1019                 spd_ddr_init_hang ();
1020         }
1021
1022         /*
1023          * restore the orignal ECC setting
1024          */
1025         mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
1026
1027         /*
1028          * set the SDRAM TR1 RDCD value
1029          */
1030         tr1 &= ~SDRAM_TR1_RDCD_MASK;
1031         if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
1032                 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
1033         } else {
1034                 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
1035         }
1036
1037         /*
1038          * set the SDRAM TR1 RDCLT value
1039          */
1040         tr1 &= ~SDRAM_TR1_RDCT_MASK;
1041         while (max_end >= (dly_val << 1)) {
1042                 max_end -= (dly_val << 1);
1043                 max_start -= (dly_val << 1);
1044         }
1045
1046         rdclt_average = ((max_start + max_end) >> 1);
1047
1048         if (rdclt_average < 0) {
1049                 rdclt_average = 0;
1050         }
1051
1052         if (rdclt_average >= dly_val) {
1053                 rdclt_average -= dly_val;
1054                 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1055         }
1056         tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
1057
1058         debug("tr1: %x\n", tr1);
1059
1060         /*
1061          * program SDRAM Timing Register 1 TR1
1062          */
1063         mtsdram(mem_tr1, tr1);
1064 }
1065
1066 static unsigned long program_bxcr(unsigned long *dimm_populated,
1067                                   unsigned char *iic0_dimm_addr,
1068                                   unsigned long num_dimm_banks)
1069 {
1070         unsigned long dimm_num;
1071         unsigned long bank_base_addr;
1072         unsigned long cr;
1073         unsigned long i;
1074         unsigned long j;
1075         unsigned long temp;
1076         unsigned char num_row_addr;
1077         unsigned char num_col_addr;
1078         unsigned char num_banks;
1079         unsigned char bank_size_id;
1080         unsigned long ctrl_bank_num[MAXBANKS];
1081         unsigned long bx_cr_num;
1082         unsigned long largest_size_index;
1083         unsigned long largest_size;
1084         unsigned long current_size_index;
1085         BANKPARMS bank_parms[MAXBXCR];
1086         unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */
1087         unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/
1088
1089         /*
1090          * Set the BxCR regs.  First, wipe out the bank config registers.
1091          */
1092         for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
1093                 mtdcr(memcfga, mem_b0cr + (bx_cr_num << 2));
1094                 mtdcr(memcfgd, 0x00000000);
1095                 bank_parms[bx_cr_num].bank_size_bytes = 0;
1096         }
1097
1098 #ifdef CONFIG_BAMBOO
1099         /*
1100          * This next section is hardware dependent and must be programmed
1101          * to match the hardware.  For bamboo, the following holds...
1102          * 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard)
1103          * 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1
1104          * 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1
1105          * 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3
1106          * ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM
1107          */
1108         ctrl_bank_num[0] = 0;
1109         ctrl_bank_num[1] = 1;
1110         ctrl_bank_num[2] = 3;
1111 #else
1112         /*
1113          * Ocotea, Ebony and the other IBM/AMCC eval boards have
1114          * 2 DIMM slots with each max 2 banks
1115          */
1116         ctrl_bank_num[0] = 0;
1117         ctrl_bank_num[1] = 2;
1118 #endif
1119
1120         /*
1121          * reset the bank_base address
1122          */
1123         bank_base_addr = CONFIG_SYS_SDRAM_BASE;
1124
1125         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1126                 if (dimm_populated[dimm_num] == TRUE) {
1127                         num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
1128                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
1129                         num_banks    = spd_read(iic0_dimm_addr[dimm_num], 5);
1130                         bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
1131                         debug("DIMM%d: row=%d col=%d banks=%d\n", dimm_num,
1132                               num_row_addr, num_col_addr, num_banks);
1133
1134                         /*
1135                          * Set the SDRAM0_BxCR regs
1136                          */
1137                         cr = 0;
1138                         switch (bank_size_id) {
1139                         case 0x02:
1140                                 cr |= SDRAM_BXCR_SDSZ_8;
1141                                 break;
1142                         case 0x04:
1143                                 cr |= SDRAM_BXCR_SDSZ_16;
1144                                 break;
1145                         case 0x08:
1146                                 cr |= SDRAM_BXCR_SDSZ_32;
1147                                 break;
1148                         case 0x10:
1149                                 cr |= SDRAM_BXCR_SDSZ_64;
1150                                 break;
1151                         case 0x20:
1152                                 cr |= SDRAM_BXCR_SDSZ_128;
1153                                 break;
1154                         case 0x40:
1155                                 cr |= SDRAM_BXCR_SDSZ_256;
1156                                 break;
1157                         case 0x80:
1158                                 cr |= SDRAM_BXCR_SDSZ_512;
1159                                 break;
1160                         default:
1161                                 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1162                                        dimm_num);
1163                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
1164                                        bank_size_id);
1165                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1166                                 spd_ddr_init_hang ();
1167                         }
1168
1169                         switch (num_col_addr) {
1170                         case 0x08:
1171                                 cr |= SDRAM_BXCR_SDAM_1;
1172                                 break;
1173                         case 0x09:
1174                                 cr |= SDRAM_BXCR_SDAM_2;
1175                                 break;
1176                         case 0x0A:
1177                                 cr |= SDRAM_BXCR_SDAM_3;
1178                                 break;
1179                         case 0x0B:
1180                                 cr |= SDRAM_BXCR_SDAM_4;
1181                                 break;
1182                         default:
1183                                 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1184                                        dimm_num);
1185                                 printf("ERROR: Unsupported value for number of "
1186                                        "column addresses: %d.\n", num_col_addr);
1187                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1188                                 spd_ddr_init_hang ();
1189                         }
1190
1191                         /*
1192                          * enable the bank
1193                          */
1194                         cr |= SDRAM_BXCR_SDBE;
1195
1196                         for (i = 0; i < num_banks; i++) {
1197                                 bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes =
1198                                         (4 << 20) * bank_size_id;
1199                                 bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr;
1200                                 debug("DIMM%d-bank %d (SDRAM0_B%dCR): bank_size_bytes=%d\n",
1201                                       dimm_num, i, ctrl_bank_num[dimm_num]+i,
1202                                       bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes);
1203                         }
1204                 }
1205         }
1206
1207         /* Initialize sort tables */
1208         for (i = 0; i < MAXBXCR; i++) {
1209                 sorted_bank_num[i] = i;
1210                 sorted_bank_size[i] = bank_parms[i].bank_size_bytes;
1211         }
1212
1213         for (i = 0; i < MAXBXCR-1; i++) {
1214                 largest_size = sorted_bank_size[i];
1215                 largest_size_index = 255;
1216
1217                 /* Find the largest remaining value */
1218                 for (j = i + 1; j < MAXBXCR; j++) {
1219                         if (sorted_bank_size[j] > largest_size) {
1220                                 /* Save largest remaining value and its index */
1221                                 largest_size = sorted_bank_size[j];
1222                                 largest_size_index = j;
1223                         }
1224                 }
1225
1226                 if (largest_size_index != 255) {
1227                         /* Swap the current and largest values */
1228                         current_size_index = sorted_bank_num[largest_size_index];
1229                         sorted_bank_size[largest_size_index] = sorted_bank_size[i];
1230                         sorted_bank_size[i] = largest_size;
1231                         sorted_bank_num[largest_size_index] = sorted_bank_num[i];
1232                         sorted_bank_num[i] = current_size_index;
1233                 }
1234         }
1235
1236         /* Set the SDRAM0_BxCR regs thanks to sort tables */
1237         for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
1238                 if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) {
1239                         mtdcr(memcfga, mem_b0cr + (sorted_bank_num[bx_cr_num] << 2));
1240                         temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK |
1241                                                   SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE);
1242                         temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) |
1243                                 bank_parms[sorted_bank_num[bx_cr_num]].cr;
1244                         mtdcr(memcfgd, temp);
1245                         bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes;
1246                         debug("SDRAM0_B%dCR=0x%08lx\n", sorted_bank_num[bx_cr_num], temp);
1247                 }
1248         }
1249
1250         return(bank_base_addr);
1251 }
1252 #endif /* CONFIG_SPD_EEPROM */