]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - cpu/ppc4xx/44x_spd_ddr2.c
ppc4xx: Add initial 460SX defines for the cpu/ppc4xx directory.
[karo-tx-uboot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4  * DDR2 controller (non Denali Core). Those currently are:
5  *
6  * 405:         405EX(r)
7  * 440/460:     440SP/440SPe/460EX/460GT
8  *
9  * Copyright (c) 2008 Nuovation System Designs, LLC
10  *   Grant Erickson <gerickson@nuovations.com>
11
12  * (C) Copyright 2007-2008
13  * Stefan Roese, DENX Software Engineering, sr@denx.de.
14  *
15  * COPYRIGHT   AMCC   CORPORATION 2004
16  *
17  * See file CREDITS for list of people who contributed to this
18  * project.
19  *
20  * This program is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU General Public License as
22  * published by the Free Software Foundation; either version 2 of
23  * the License, or (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
33  * MA 02111-1307 USA
34  *
35  */
36
37 /* define DEBUG for debugging output (obviously ;-)) */
38 #if 0
39 #define DEBUG
40 #endif
41
42 #include <common.h>
43 #include <command.h>
44 #include <ppc4xx.h>
45 #include <i2c.h>
46 #include <asm/io.h>
47 #include <asm/processor.h>
48 #include <asm/mmu.h>
49 #include <asm/cache.h>
50
51 #include "ecc.h"
52
53 #if defined(CONFIG_SPD_EEPROM) &&                               \
54         (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
55          defined(CONFIG_460EX) || defined(CONFIG_460GT)  || \
56          defined(CONFIG_460SX))
57
58 /*-----------------------------------------------------------------------------+
59  * Defines
60  *-----------------------------------------------------------------------------*/
61 #ifndef TRUE
62 #define TRUE            1
63 #endif
64 #ifndef FALSE
65 #define FALSE           0
66 #endif
67
68 #define SDRAM_DDR1      1
69 #define SDRAM_DDR2      2
70 #define SDRAM_NONE      0
71
72 #define MAXDIMMS        2
73 #define MAXRANKS        4
74 #define MAXBXCF         4
75 #define MAX_SPD_BYTES   256   /* Max number of bytes on the DIMM's SPD EEPROM */
76
77 #define ONE_BILLION     1000000000
78
79 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
80
81 #define CMD_NOP         (7 << 19)
82 #define CMD_PRECHARGE   (2 << 19)
83 #define CMD_REFRESH     (1 << 19)
84 #define CMD_EMR         (0 << 19)
85 #define CMD_READ        (5 << 19)
86 #define CMD_WRITE       (4 << 19)
87
88 #define SELECT_MR       (0 << 16)
89 #define SELECT_EMR      (1 << 16)
90 #define SELECT_EMR2     (2 << 16)
91 #define SELECT_EMR3     (3 << 16)
92
93 /* MR */
94 #define DLL_RESET       0x00000100
95
96 #define WRITE_RECOV_2   (1 << 9)
97 #define WRITE_RECOV_3   (2 << 9)
98 #define WRITE_RECOV_4   (3 << 9)
99 #define WRITE_RECOV_5   (4 << 9)
100 #define WRITE_RECOV_6   (5 << 9)
101
102 #define BURST_LEN_4     0x00000002
103
104 /* EMR */
105 #define ODT_0_OHM       0x00000000
106 #define ODT_50_OHM      0x00000044
107 #define ODT_75_OHM      0x00000004
108 #define ODT_150_OHM     0x00000040
109
110 #define ODS_FULL        0x00000000
111 #define ODS_REDUCED     0x00000002
112
113 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
114 #define ODT_EB0R        (0x80000000 >> 8)
115 #define ODT_EB0W        (0x80000000 >> 7)
116 #define CALC_ODT_R(n)   (ODT_EB0R << (n << 1))
117 #define CALC_ODT_W(n)   (ODT_EB0W << (n << 1))
118 #define CALC_ODT_RW(n)  (CALC_ODT_R(n) | CALC_ODT_W(n))
119
120 /* Defines for the Read Cycle Delay test */
121 #define NUMMEMTESTS     8
122 #define NUMMEMWORDS     8
123 #define NUMLOOPS        64              /* memory test loops */
124
125 /*
126  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
127  * region. Right now the cache should still be disabled in U-Boot because of the
128  * EMAC driver, that need it's buffer descriptor to be located in non cached
129  * memory.
130  *
131  * If at some time this restriction doesn't apply anymore, just define
132  * CONFIG_4xx_DCACHE in the board config file and this code should setup
133  * everything correctly.
134  */
135 #ifdef CONFIG_4xx_DCACHE
136 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
137 #else
138 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
139 #endif
140
141 /*
142  * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
143  * To support such configurations, we "only" map the first 2GB via the TLB's. We
144  * need some free virtual address space for the remaining peripherals like, SoC
145  * devices, FLASH etc.
146  *
147  * Note that ECC is currently not supported on configurations with more than 2GB
148  * SDRAM. This is because we only map the first 2GB on such systems, and therefore
149  * the ECC parity byte of the remaining area can't be written.
150  */
151 #ifndef CONFIG_MAX_MEM_MAPPED
152 #define CONFIG_MAX_MEM_MAPPED   ((phys_size_t)2 << 30)
153 #endif
154
155 /*
156  * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
157  */
158 void __spd_ddr_init_hang (void)
159 {
160         hang ();
161 }
162 void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
163
164 /*
165  * To provide an interface for board specific config values in this common
166  * DDR setup code, we implement he "weak" default functions here. They return
167  * the default value back to the caller.
168  *
169  * Please see include/configs/yucca.h for an example fora board specific
170  * implementation.
171  */
172 u32 __ddr_wrdtr(u32 default_val)
173 {
174         return default_val;
175 }
176 u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
177
178 u32 __ddr_clktr(u32 default_val)
179 {
180         return default_val;
181 }
182 u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
183
184
185 /* Private Structure Definitions */
186
187 /* enum only to ease code for cas latency setting */
188 typedef enum ddr_cas_id {
189         DDR_CAS_2      = 20,
190         DDR_CAS_2_5    = 25,
191         DDR_CAS_3      = 30,
192         DDR_CAS_4      = 40,
193         DDR_CAS_5      = 50
194 } ddr_cas_id_t;
195
196 /*-----------------------------------------------------------------------------+
197  * Prototypes
198  *-----------------------------------------------------------------------------*/
199 static phys_size_t sdram_memsize(void);
200 static void get_spd_info(unsigned long *dimm_populated,
201                          unsigned char *iic0_dimm_addr,
202                          unsigned long num_dimm_banks);
203 static void check_mem_type(unsigned long *dimm_populated,
204                            unsigned char *iic0_dimm_addr,
205                            unsigned long num_dimm_banks);
206 static void check_frequency(unsigned long *dimm_populated,
207                             unsigned char *iic0_dimm_addr,
208                             unsigned long num_dimm_banks);
209 static void check_rank_number(unsigned long *dimm_populated,
210                               unsigned char *iic0_dimm_addr,
211                               unsigned long num_dimm_banks);
212 static void check_voltage_type(unsigned long *dimm_populated,
213                                unsigned char *iic0_dimm_addr,
214                                unsigned long num_dimm_banks);
215 static void program_memory_queue(unsigned long *dimm_populated,
216                                  unsigned char *iic0_dimm_addr,
217                                  unsigned long num_dimm_banks);
218 static void program_codt(unsigned long *dimm_populated,
219                          unsigned char *iic0_dimm_addr,
220                          unsigned long num_dimm_banks);
221 static void program_mode(unsigned long *dimm_populated,
222                          unsigned char *iic0_dimm_addr,
223                          unsigned long num_dimm_banks,
224                          ddr_cas_id_t *selected_cas,
225                          int *write_recovery);
226 static void program_tr(unsigned long *dimm_populated,
227                        unsigned char *iic0_dimm_addr,
228                        unsigned long num_dimm_banks);
229 static void program_rtr(unsigned long *dimm_populated,
230                         unsigned char *iic0_dimm_addr,
231                         unsigned long num_dimm_banks);
232 static void program_bxcf(unsigned long *dimm_populated,
233                          unsigned char *iic0_dimm_addr,
234                          unsigned long num_dimm_banks);
235 static void program_copt1(unsigned long *dimm_populated,
236                           unsigned char *iic0_dimm_addr,
237                           unsigned long num_dimm_banks);
238 static void program_initplr(unsigned long *dimm_populated,
239                             unsigned char *iic0_dimm_addr,
240                             unsigned long num_dimm_banks,
241                             ddr_cas_id_t selected_cas,
242                             int write_recovery);
243 static unsigned long is_ecc_enabled(void);
244 #ifdef CONFIG_DDR_ECC
245 static void program_ecc(unsigned long *dimm_populated,
246                         unsigned char *iic0_dimm_addr,
247                         unsigned long num_dimm_banks,
248                         unsigned long tlb_word2_i_value);
249 static void program_ecc_addr(unsigned long start_address,
250                              unsigned long num_bytes,
251                              unsigned long tlb_word2_i_value);
252 #endif
253 static void program_DQS_calibration(unsigned long *dimm_populated,
254                                     unsigned char *iic0_dimm_addr,
255                                     unsigned long num_dimm_banks);
256 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
257 static void     test(void);
258 #else
259 static void     DQS_calibration_process(void);
260 #endif
261 static void ppc440sp_sdram_register_dump(void);
262 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
263 void dcbz_area(u32 start_address, u32 num_bytes);
264
265 static u32 mfdcr_any(u32 dcr)
266 {
267         u32 val;
268
269         switch (dcr) {
270         case SDRAM_R0BAS + 0:
271                 val = mfdcr(SDRAM_R0BAS + 0);
272                 break;
273         case SDRAM_R0BAS + 1:
274                 val = mfdcr(SDRAM_R0BAS + 1);
275                 break;
276         case SDRAM_R0BAS + 2:
277                 val = mfdcr(SDRAM_R0BAS + 2);
278                 break;
279         case SDRAM_R0BAS + 3:
280                 val = mfdcr(SDRAM_R0BAS + 3);
281                 break;
282         default:
283                 printf("DCR %d not defined in case statement!!!\n", dcr);
284                 val = 0; /* just to satisfy the compiler */
285         }
286
287         return val;
288 }
289
290 static void mtdcr_any(u32 dcr, u32 val)
291 {
292         switch (dcr) {
293         case SDRAM_R0BAS + 0:
294                 mtdcr(SDRAM_R0BAS + 0, val);
295                 break;
296         case SDRAM_R0BAS + 1:
297                 mtdcr(SDRAM_R0BAS + 1, val);
298                 break;
299         case SDRAM_R0BAS + 2:
300                 mtdcr(SDRAM_R0BAS + 2, val);
301                 break;
302         case SDRAM_R0BAS + 3:
303                 mtdcr(SDRAM_R0BAS + 3, val);
304                 break;
305         default:
306                 printf("DCR %d not defined in case statement!!!\n", dcr);
307         }
308 }
309
310 static unsigned char spd_read(uchar chip, uint addr)
311 {
312         unsigned char data[2];
313
314         if (i2c_probe(chip) == 0)
315                 if (i2c_read(chip, addr, 1, data, 1) == 0)
316                         return data[0];
317
318         return 0;
319 }
320
321 /*-----------------------------------------------------------------------------+
322  * sdram_memsize
323  *-----------------------------------------------------------------------------*/
324 static phys_size_t sdram_memsize(void)
325 {
326         phys_size_t mem_size;
327         unsigned long mcopt2;
328         unsigned long mcstat;
329         unsigned long mb0cf;
330         unsigned long sdsz;
331         unsigned long i;
332
333         mem_size = 0;
334
335         mfsdram(SDRAM_MCOPT2, mcopt2);
336         mfsdram(SDRAM_MCSTAT, mcstat);
337
338         /* DDR controller must be enabled and not in self-refresh. */
339         /* Otherwise memsize is zero. */
340         if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
341             && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
342             && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
343                 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
344                 for (i = 0; i < MAXBXCF; i++) {
345                         mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
346                         /* Banks enabled */
347                         if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
348                                 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
349
350                                 switch(sdsz) {
351                                 case SDRAM_RXBAS_SDSZ_8:
352                                         mem_size+=8;
353                                         break;
354                                 case SDRAM_RXBAS_SDSZ_16:
355                                         mem_size+=16;
356                                         break;
357                                 case SDRAM_RXBAS_SDSZ_32:
358                                         mem_size+=32;
359                                         break;
360                                 case SDRAM_RXBAS_SDSZ_64:
361                                         mem_size+=64;
362                                         break;
363                                 case SDRAM_RXBAS_SDSZ_128:
364                                         mem_size+=128;
365                                         break;
366                                 case SDRAM_RXBAS_SDSZ_256:
367                                         mem_size+=256;
368                                         break;
369                                 case SDRAM_RXBAS_SDSZ_512:
370                                         mem_size+=512;
371                                         break;
372                                 case SDRAM_RXBAS_SDSZ_1024:
373                                         mem_size+=1024;
374                                         break;
375                                 case SDRAM_RXBAS_SDSZ_2048:
376                                         mem_size+=2048;
377                                         break;
378                                 case SDRAM_RXBAS_SDSZ_4096:
379                                         mem_size+=4096;
380                                         break;
381                                 default:
382                                         printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n"
383                                                , sdsz);
384                                         mem_size=0;
385                                         break;
386                                 }
387                         }
388                 }
389         }
390
391         return mem_size << 20;
392 }
393
394 /*-----------------------------------------------------------------------------+
395  * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
396  * Note: This routine runs from flash with a stack set up in the chip's
397  * sram space.  It is important that the routine does not require .sbss, .bss or
398  * .data sections.  It also cannot call routines that require these sections.
399  *-----------------------------------------------------------------------------*/
400 /*-----------------------------------------------------------------------------
401  * Function:     initdram
402  * Description:  Configures SDRAM memory banks for DDR operation.
403  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
404  *               via the IIC bus and then configures the DDR SDRAM memory
405  *               banks appropriately. If Auto Memory Configuration is
406  *               not used, it is assumed that no DIMM is plugged
407  *-----------------------------------------------------------------------------*/
408 phys_size_t initdram(int board_type)
409 {
410         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
411         unsigned char spd0[MAX_SPD_BYTES];
412         unsigned char spd1[MAX_SPD_BYTES];
413         unsigned char *dimm_spd[MAXDIMMS];
414         unsigned long dimm_populated[MAXDIMMS];
415         unsigned long num_dimm_banks;           /* on board dimm banks */
416         unsigned long val;
417         ddr_cas_id_t selected_cas = DDR_CAS_5;  /* preset to silence compiler */
418         int write_recovery;
419         phys_size_t dram_size = 0;
420
421         num_dimm_banks = sizeof(iic0_dimm_addr);
422
423         /*------------------------------------------------------------------
424          * Set up an array of SPD matrixes.
425          *-----------------------------------------------------------------*/
426         dimm_spd[0] = spd0;
427         dimm_spd[1] = spd1;
428
429         /*------------------------------------------------------------------
430          * Reset the DDR-SDRAM controller.
431          *-----------------------------------------------------------------*/
432         mtsdr(SDR0_SRST, (0x80000000 >> 10));
433         mtsdr(SDR0_SRST, 0x00000000);
434
435         /*
436          * Make sure I2C controller is initialized
437          * before continuing.
438          */
439
440         /* switch to correct I2C bus */
441         I2C_SET_BUS(CFG_SPD_BUS_NUM);
442         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
443
444         /*------------------------------------------------------------------
445          * Clear out the serial presence detect buffers.
446          * Perform IIC reads from the dimm.  Fill in the spds.
447          * Check to see if the dimm slots are populated
448          *-----------------------------------------------------------------*/
449         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
450
451         /*------------------------------------------------------------------
452          * Check the memory type for the dimms plugged.
453          *-----------------------------------------------------------------*/
454         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
455
456         /*------------------------------------------------------------------
457          * Check the frequency supported for the dimms plugged.
458          *-----------------------------------------------------------------*/
459         check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
460
461         /*------------------------------------------------------------------
462          * Check the total rank number.
463          *-----------------------------------------------------------------*/
464         check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
465
466         /*------------------------------------------------------------------
467          * Check the voltage type for the dimms plugged.
468          *-----------------------------------------------------------------*/
469         check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
470
471         /*------------------------------------------------------------------
472          * Program SDRAM controller options 2 register
473          * Except Enabling of the memory controller.
474          *-----------------------------------------------------------------*/
475         mfsdram(SDRAM_MCOPT2, val);
476         mtsdram(SDRAM_MCOPT2,
477                 (val &
478                  ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
479                    SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
480                    SDRAM_MCOPT2_ISIE_MASK))
481                 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
482                    SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
483                    SDRAM_MCOPT2_ISIE_ENABLE));
484
485         /*------------------------------------------------------------------
486          * Program SDRAM controller options 1 register
487          * Note: Does not enable the memory controller.
488          *-----------------------------------------------------------------*/
489         program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
490
491         /*------------------------------------------------------------------
492          * Set the SDRAM Controller On Die Termination Register
493          *-----------------------------------------------------------------*/
494         program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
495
496         /*------------------------------------------------------------------
497          * Program SDRAM refresh register.
498          *-----------------------------------------------------------------*/
499         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
500
501         /*------------------------------------------------------------------
502          * Program SDRAM mode register.
503          *-----------------------------------------------------------------*/
504         program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
505                      &selected_cas, &write_recovery);
506
507         /*------------------------------------------------------------------
508          * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
509          *-----------------------------------------------------------------*/
510         mfsdram(SDRAM_WRDTR, val);
511         mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
512                 ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
513
514         /*------------------------------------------------------------------
515          * Set the SDRAM Clock Timing Register
516          *-----------------------------------------------------------------*/
517         mfsdram(SDRAM_CLKTR, val);
518         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
519                 ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
520
521         /*------------------------------------------------------------------
522          * Program the BxCF registers.
523          *-----------------------------------------------------------------*/
524         program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
525
526         /*------------------------------------------------------------------
527          * Program SDRAM timing registers.
528          *-----------------------------------------------------------------*/
529         program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
530
531         /*------------------------------------------------------------------
532          * Set the Extended Mode register
533          *-----------------------------------------------------------------*/
534         mfsdram(SDRAM_MEMODE, val);
535         mtsdram(SDRAM_MEMODE,
536                 (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
537                          SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
538                 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
539                  | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
540
541         /*------------------------------------------------------------------
542          * Program Initialization preload registers.
543          *-----------------------------------------------------------------*/
544         program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
545                         selected_cas, write_recovery);
546
547         /*------------------------------------------------------------------
548          * Delay to ensure 200usec have elapsed since reset.
549          *-----------------------------------------------------------------*/
550         udelay(400);
551
552         /*------------------------------------------------------------------
553          * Set the memory queue core base addr.
554          *-----------------------------------------------------------------*/
555         program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
556
557         /*------------------------------------------------------------------
558          * Program SDRAM controller options 2 register
559          * Enable the memory controller.
560          *-----------------------------------------------------------------*/
561         mfsdram(SDRAM_MCOPT2, val);
562         mtsdram(SDRAM_MCOPT2,
563                 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
564                          SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
565                 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
566
567         /*------------------------------------------------------------------
568          * Wait for SDRAM_CFG0_DC_EN to complete.
569          *-----------------------------------------------------------------*/
570         do {
571                 mfsdram(SDRAM_MCSTAT, val);
572         } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
573
574         /* get installed memory size */
575         dram_size = sdram_memsize();
576
577         /*
578          * Limit size to 2GB
579          */
580         if (dram_size > CONFIG_MAX_MEM_MAPPED)
581                 dram_size = CONFIG_MAX_MEM_MAPPED;
582
583         /* and program tlb entries for this size (dynamic) */
584
585         /*
586          * Program TLB entries with caches enabled, for best performace
587          * while auto-calibrating and ECC generation
588          */
589         program_tlb(0, 0, dram_size, 0);
590
591         /*------------------------------------------------------------------
592          * DQS calibration.
593          *-----------------------------------------------------------------*/
594         program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
595
596 #ifdef CONFIG_DDR_ECC
597         /*------------------------------------------------------------------
598          * If ecc is enabled, initialize the parity bits.
599          *-----------------------------------------------------------------*/
600         program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
601 #endif
602
603         /*
604          * Now after initialization (auto-calibration and ECC generation)
605          * remove the TLB entries with caches enabled and program again with
606          * desired cache functionality
607          */
608         remove_tlb(0, dram_size);
609         program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
610
611         ppc440sp_sdram_register_dump();
612
613         /*
614          * Clear potential errors resulting from auto-calibration.
615          * If not done, then we could get an interrupt later on when
616          * exceptions are enabled.
617          */
618         set_mcsr(get_mcsr());
619
620         return sdram_memsize();
621 }
622
623 static void get_spd_info(unsigned long *dimm_populated,
624                          unsigned char *iic0_dimm_addr,
625                          unsigned long num_dimm_banks)
626 {
627         unsigned long dimm_num;
628         unsigned long dimm_found;
629         unsigned char num_of_bytes;
630         unsigned char total_size;
631
632         dimm_found = FALSE;
633         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
634                 num_of_bytes = 0;
635                 total_size = 0;
636
637                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
638                 debug("\nspd_read(0x%x) returned %d\n",
639                       iic0_dimm_addr[dimm_num], num_of_bytes);
640                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
641                 debug("spd_read(0x%x) returned %d\n",
642                       iic0_dimm_addr[dimm_num], total_size);
643
644                 if ((num_of_bytes != 0) && (total_size != 0)) {
645                         dimm_populated[dimm_num] = TRUE;
646                         dimm_found = TRUE;
647                         debug("DIMM slot %lu: populated\n", dimm_num);
648                 } else {
649                         dimm_populated[dimm_num] = FALSE;
650                         debug("DIMM slot %lu: Not populated\n", dimm_num);
651                 }
652         }
653
654         if (dimm_found == FALSE) {
655                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
656                 spd_ddr_init_hang ();
657         }
658 }
659
660 void board_add_ram_info(int use_default)
661 {
662         PPC4xx_SYS_INFO board_cfg;
663         u32 val;
664
665         if (is_ecc_enabled())
666                 puts(" (ECC");
667         else
668                 puts(" (ECC not");
669
670         get_sys_info(&board_cfg);
671
672         mfsdr(SDR0_DDR0, val);
673         val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
674         printf(" enabled, %d MHz", (val * 2) / 1000000);
675
676         mfsdram(SDRAM_MMODE, val);
677         val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
678         printf(", CL%d)", val);
679 }
680
681 /*------------------------------------------------------------------
682  * For the memory DIMMs installed, this routine verifies that they
683  * really are DDR specific DIMMs.
684  *-----------------------------------------------------------------*/
685 static void check_mem_type(unsigned long *dimm_populated,
686                            unsigned char *iic0_dimm_addr,
687                            unsigned long num_dimm_banks)
688 {
689         unsigned long dimm_num;
690         unsigned long dimm_type;
691
692         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
693                 if (dimm_populated[dimm_num] == TRUE) {
694                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
695                         switch (dimm_type) {
696                         case 1:
697                                 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
698                                        "slot %d.\n", (unsigned int)dimm_num);
699                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
700                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
701                                 spd_ddr_init_hang ();
702                                 break;
703                         case 2:
704                                 printf("ERROR: EDO DIMM detected in slot %d.\n",
705                                        (unsigned int)dimm_num);
706                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
707                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
708                                 spd_ddr_init_hang ();
709                                 break;
710                         case 3:
711                                 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
712                                        (unsigned int)dimm_num);
713                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
714                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
715                                 spd_ddr_init_hang ();
716                                 break;
717                         case 4:
718                                 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
719                                        (unsigned int)dimm_num);
720                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
721                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
722                                 spd_ddr_init_hang ();
723                                 break;
724                         case 5:
725                                 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
726                                        (unsigned int)dimm_num);
727                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
728                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
729                                 spd_ddr_init_hang ();
730                                 break;
731                         case 6:
732                                 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
733                                        (unsigned int)dimm_num);
734                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
735                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
736                                 spd_ddr_init_hang ();
737                                 break;
738                         case 7:
739                                 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
740                                 dimm_populated[dimm_num] = SDRAM_DDR1;
741                                 break;
742                         case 8:
743                                 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
744                                 dimm_populated[dimm_num] = SDRAM_DDR2;
745                                 break;
746                         default:
747                                 printf("ERROR: Unknown DIMM detected in slot %d.\n",
748                                        (unsigned int)dimm_num);
749                                 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
750                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
751                                 spd_ddr_init_hang ();
752                                 break;
753                         }
754                 }
755         }
756         for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
757                 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
758                     && (dimm_populated[dimm_num]   != SDRAM_NONE)
759                     && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
760                         printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
761                         spd_ddr_init_hang ();
762                 }
763         }
764 }
765
766 /*------------------------------------------------------------------
767  * For the memory DIMMs installed, this routine verifies that
768  * frequency previously calculated is supported.
769  *-----------------------------------------------------------------*/
770 static void check_frequency(unsigned long *dimm_populated,
771                             unsigned char *iic0_dimm_addr,
772                             unsigned long num_dimm_banks)
773 {
774         unsigned long dimm_num;
775         unsigned long tcyc_reg;
776         unsigned long cycle_time;
777         unsigned long calc_cycle_time;
778         unsigned long sdram_freq;
779         unsigned long sdr_ddrpll;
780         PPC4xx_SYS_INFO board_cfg;
781
782         /*------------------------------------------------------------------
783          * Get the board configuration info.
784          *-----------------------------------------------------------------*/
785         get_sys_info(&board_cfg);
786
787         mfsdr(SDR0_DDR0, sdr_ddrpll);
788         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
789
790         /*
791          * calc_cycle_time is calculated from DDR frequency set by board/chip
792          * and is expressed in multiple of 10 picoseconds
793          * to match the way DIMM cycle time is calculated below.
794          */
795         calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
796
797         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
798                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
799                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
800                         /*
801                          * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
802                          * the higher order nibble (bits 4-7) designates the cycle time
803                          * to a granularity of 1ns;
804                          * the value presented by the lower order nibble (bits 0-3)
805                          * has a granularity of .1ns and is added to the value designated
806                          * by the higher nibble. In addition, four lines of the lower order
807                          * nibble are assigned to support +.25,+.33, +.66 and +.75.
808                          */
809                          /* Convert from hex to decimal */
810                         if ((tcyc_reg & 0x0F) == 0x0D)
811                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
812                         else if ((tcyc_reg & 0x0F) == 0x0C)
813                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
814                         else if ((tcyc_reg & 0x0F) == 0x0B)
815                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
816                         else if ((tcyc_reg & 0x0F) == 0x0A)
817                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
818                         else
819                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
820                                         ((tcyc_reg & 0x0F)*10);
821                         debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
822
823                         if  (cycle_time > (calc_cycle_time + 10)) {
824                                 /*
825                                  * the provided sdram cycle_time is too small
826                                  * for the available DIMM cycle_time.
827                                  * The additionnal 100ps is here to accept a small incertainty.
828                                  */
829                                 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
830                                        "slot %d \n while calculated cycle time is %d ps.\n",
831                                        (unsigned int)(cycle_time*10),
832                                        (unsigned int)dimm_num,
833                                        (unsigned int)(calc_cycle_time*10));
834                                 printf("Replace the DIMM, or change DDR frequency via "
835                                        "strapping bits.\n\n");
836                                 spd_ddr_init_hang ();
837                         }
838                 }
839         }
840 }
841
842 /*------------------------------------------------------------------
843  * For the memory DIMMs installed, this routine verifies two
844  * ranks/banks maximum are availables.
845  *-----------------------------------------------------------------*/
846 static void check_rank_number(unsigned long *dimm_populated,
847                               unsigned char *iic0_dimm_addr,
848                               unsigned long num_dimm_banks)
849 {
850         unsigned long dimm_num;
851         unsigned long dimm_rank;
852         unsigned long total_rank = 0;
853
854         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
855                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
856                         dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
857                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
858                                 dimm_rank = (dimm_rank & 0x0F) +1;
859                         else
860                                 dimm_rank = dimm_rank & 0x0F;
861
862
863                         if (dimm_rank > MAXRANKS) {
864                                 printf("ERROR: DRAM DIMM detected with %lu ranks in "
865                                        "slot %lu is not supported.\n", dimm_rank, dimm_num);
866                                 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
867                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
868                                 spd_ddr_init_hang ();
869                         } else
870                                 total_rank += dimm_rank;
871                 }
872                 if (total_rank > MAXRANKS) {
873                         printf("ERROR: DRAM DIMM detected with a total of %d ranks "
874                                "for all slots.\n", (unsigned int)total_rank);
875                         printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
876                         printf("Remove one of the DIMM modules.\n\n");
877                         spd_ddr_init_hang ();
878                 }
879         }
880 }
881
882 /*------------------------------------------------------------------
883  * only support 2.5V modules.
884  * This routine verifies this.
885  *-----------------------------------------------------------------*/
886 static void check_voltage_type(unsigned long *dimm_populated,
887                                unsigned char *iic0_dimm_addr,
888                                unsigned long num_dimm_banks)
889 {
890         unsigned long dimm_num;
891         unsigned long voltage_type;
892
893         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
894                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
895                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
896                         switch (voltage_type) {
897                         case 0x00:
898                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
899                                 printf("This DIMM is 5.0 Volt/TTL.\n");
900                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
901                                        (unsigned int)dimm_num);
902                                 spd_ddr_init_hang ();
903                                 break;
904                         case 0x01:
905                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
906                                 printf("This DIMM is LVTTL.\n");
907                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
908                                        (unsigned int)dimm_num);
909                                 spd_ddr_init_hang ();
910                                 break;
911                         case 0x02:
912                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
913                                 printf("This DIMM is 1.5 Volt.\n");
914                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
915                                        (unsigned int)dimm_num);
916                                 spd_ddr_init_hang ();
917                                 break;
918                         case 0x03:
919                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
920                                 printf("This DIMM is 3.3 Volt/TTL.\n");
921                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
922                                        (unsigned int)dimm_num);
923                                 spd_ddr_init_hang ();
924                                 break;
925                         case 0x04:
926                                 /* 2.5 Voltage only for DDR1 */
927                                 break;
928                         case 0x05:
929                                 /* 1.8 Voltage only for DDR2 */
930                                 break;
931                         default:
932                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
933                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
934                                        (unsigned int)dimm_num);
935                                 spd_ddr_init_hang ();
936                                 break;
937                         }
938                 }
939         }
940 }
941
942 /*-----------------------------------------------------------------------------+
943  * program_copt1.
944  *-----------------------------------------------------------------------------*/
945 static void program_copt1(unsigned long *dimm_populated,
946                           unsigned char *iic0_dimm_addr,
947                           unsigned long num_dimm_banks)
948 {
949         unsigned long dimm_num;
950         unsigned long mcopt1;
951         unsigned long ecc_enabled;
952         unsigned long ecc = 0;
953         unsigned long data_width = 0;
954         unsigned long dimm_32bit;
955         unsigned long dimm_64bit;
956         unsigned long registered = 0;
957         unsigned long attribute = 0;
958         unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
959         unsigned long bankcount;
960         unsigned long ddrtype;
961         unsigned long val;
962
963 #ifdef CONFIG_DDR_ECC
964         ecc_enabled = TRUE;
965 #else
966         ecc_enabled = FALSE;
967 #endif
968         dimm_32bit = FALSE;
969         dimm_64bit = FALSE;
970         buf0 = FALSE;
971         buf1 = FALSE;
972
973         /*------------------------------------------------------------------
974          * Set memory controller options reg 1, SDRAM_MCOPT1.
975          *-----------------------------------------------------------------*/
976         mfsdram(SDRAM_MCOPT1, val);
977         mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
978                          SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
979                          SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
980                          SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
981                          SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
982                          SDRAM_MCOPT1_DREF_MASK);
983
984         mcopt1 |= SDRAM_MCOPT1_QDEP;
985         mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
986         mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
987         mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
988         mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
989         mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
990
991         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
992                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
993                         /* test ecc support */
994                         ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
995                         if (ecc != 0x02) /* ecc not supported */
996                                 ecc_enabled = FALSE;
997
998                         /* test bank count */
999                         bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
1000                         if (bankcount == 0x04) /* bank count = 4 */
1001                                 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
1002                         else /* bank count = 8 */
1003                                 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
1004
1005                         /* test DDR type */
1006                         ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
1007                         /* test for buffered/unbuffered, registered, differential clocks */
1008                         registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
1009                         attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
1010
1011                         /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
1012                         if (dimm_num == 0) {
1013                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
1014                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
1015                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
1016                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
1017                                 if (registered == 1) { /* DDR2 always buffered */
1018                                         /* TODO: what about above  comments ? */
1019                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
1020                                         buf0 = TRUE;
1021                                 } else {
1022                                         /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
1023                                         if ((attribute & 0x02) == 0x00) {
1024                                                 /* buffered not supported */
1025                                                 buf0 = FALSE;
1026                                         } else {
1027                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
1028                                                 buf0 = TRUE;
1029                                         }
1030                                 }
1031                         }
1032                         else if (dimm_num == 1) {
1033                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
1034                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
1035                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
1036                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
1037                                 if (registered == 1) {
1038                                         /* DDR2 always buffered */
1039                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
1040                                         buf1 = TRUE;
1041                                 } else {
1042                                         if ((attribute & 0x02) == 0x00) {
1043                                                 /* buffered not supported */
1044                                                 buf1 = FALSE;
1045                                         } else {
1046                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
1047                                                 buf1 = TRUE;
1048                                         }
1049                                 }
1050                         }
1051
1052                         /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
1053                         data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
1054                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
1055
1056                         switch (data_width) {
1057                         case 72:
1058                         case 64:
1059                                 dimm_64bit = TRUE;
1060                                 break;
1061                         case 40:
1062                         case 32:
1063                                 dimm_32bit = TRUE;
1064                                 break;
1065                         default:
1066                                 printf("WARNING: Detected a DIMM with a data width of %lu bits.\n",
1067                                        data_width);
1068                                 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1069                                 break;
1070                         }
1071                 }
1072         }
1073
1074         /* verify matching properties */
1075         if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1076                 if (buf0 != buf1) {
1077                         printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1078                         spd_ddr_init_hang ();
1079                 }
1080         }
1081
1082         if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1083                 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1084                 spd_ddr_init_hang ();
1085         }
1086         else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1087                 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1088         } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1089                 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1090         } else {
1091                 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1092                 spd_ddr_init_hang ();
1093         }
1094
1095         if (ecc_enabled == TRUE)
1096                 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1097         else
1098                 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1099
1100         mtsdram(SDRAM_MCOPT1, mcopt1);
1101 }
1102
1103 /*-----------------------------------------------------------------------------+
1104  * program_codt.
1105  *-----------------------------------------------------------------------------*/
1106 static void program_codt(unsigned long *dimm_populated,
1107                          unsigned char *iic0_dimm_addr,
1108                          unsigned long num_dimm_banks)
1109 {
1110         unsigned long codt;
1111         unsigned long modt0 = 0;
1112         unsigned long modt1 = 0;
1113         unsigned long modt2 = 0;
1114         unsigned long modt3 = 0;
1115         unsigned char dimm_num;
1116         unsigned char dimm_rank;
1117         unsigned char total_rank = 0;
1118         unsigned char total_dimm = 0;
1119         unsigned char dimm_type = 0;
1120         unsigned char firstSlot = 0;
1121
1122         /*------------------------------------------------------------------
1123          * Set the SDRAM Controller On Die Termination Register
1124          *-----------------------------------------------------------------*/
1125         mfsdram(SDRAM_CODT, codt);
1126         codt |= (SDRAM_CODT_IO_NMODE
1127                  & (~SDRAM_CODT_DQS_SINGLE_END
1128                     & ~SDRAM_CODT_CKSE_SINGLE_END
1129                     & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1130                     & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1131
1132         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1133                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1134                         dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1135                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1136                                 dimm_rank = (dimm_rank & 0x0F) + 1;
1137                                 dimm_type = SDRAM_DDR2;
1138                         } else {
1139                                 dimm_rank = dimm_rank & 0x0F;
1140                                 dimm_type = SDRAM_DDR1;
1141                         }
1142
1143                         total_rank += dimm_rank;
1144                         total_dimm++;
1145                         if ((dimm_num == 0) && (total_dimm == 1))
1146                                 firstSlot = TRUE;
1147                         else
1148                                 firstSlot = FALSE;
1149                 }
1150         }
1151         if (dimm_type == SDRAM_DDR2) {
1152                 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1153                 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1154                         if (total_rank == 1) {
1155                                 codt |= CALC_ODT_R(0);
1156                                 modt0 = CALC_ODT_W(0);
1157                                 modt1 = 0x00000000;
1158                                 modt2 = 0x00000000;
1159                                 modt3 = 0x00000000;
1160                         }
1161                         if (total_rank == 2) {
1162                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1163                                 modt0 = CALC_ODT_W(0);
1164                                 modt1 = CALC_ODT_W(0);
1165                                 modt2 = 0x00000000;
1166                                 modt3 = 0x00000000;
1167                         }
1168                 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1169                         if (total_rank == 1) {
1170                                 codt |= CALC_ODT_R(2);
1171                                 modt0 = 0x00000000;
1172                                 modt1 = 0x00000000;
1173                                 modt2 = CALC_ODT_W(2);
1174                                 modt3 = 0x00000000;
1175                         }
1176                         if (total_rank == 2) {
1177                                 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1178                                 modt0 = 0x00000000;
1179                                 modt1 = 0x00000000;
1180                                 modt2 = CALC_ODT_W(2);
1181                                 modt3 = CALC_ODT_W(2);
1182                         }
1183                 }
1184                 if (total_dimm == 2) {
1185                         if (total_rank == 2) {
1186                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1187                                 modt0 = CALC_ODT_RW(2);
1188                                 modt1 = 0x00000000;
1189                                 modt2 = CALC_ODT_RW(0);
1190                                 modt3 = 0x00000000;
1191                         }
1192                         if (total_rank == 4) {
1193                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1194                                         CALC_ODT_R(2) | CALC_ODT_R(3);
1195                                 modt0 = CALC_ODT_RW(2);
1196                                 modt1 = 0x00000000;
1197                                 modt2 = CALC_ODT_RW(0);
1198                                 modt3 = 0x00000000;
1199                         }
1200                 }
1201         } else {
1202                 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1203                 modt0 = 0x00000000;
1204                 modt1 = 0x00000000;
1205                 modt2 = 0x00000000;
1206                 modt3 = 0x00000000;
1207
1208                 if (total_dimm == 1) {
1209                         if (total_rank == 1)
1210                                 codt |= 0x00800000;
1211                         if (total_rank == 2)
1212                                 codt |= 0x02800000;
1213                 }
1214                 if (total_dimm == 2) {
1215                         if (total_rank == 2)
1216                                 codt |= 0x08800000;
1217                         if (total_rank == 4)
1218                                 codt |= 0x2a800000;
1219                 }
1220         }
1221
1222         debug("nb of dimm %d\n", total_dimm);
1223         debug("nb of rank %d\n", total_rank);
1224         if (total_dimm == 1)
1225                 debug("dimm in slot %d\n", firstSlot);
1226
1227         mtsdram(SDRAM_CODT, codt);
1228         mtsdram(SDRAM_MODT0, modt0);
1229         mtsdram(SDRAM_MODT1, modt1);
1230         mtsdram(SDRAM_MODT2, modt2);
1231         mtsdram(SDRAM_MODT3, modt3);
1232 }
1233
1234 /*-----------------------------------------------------------------------------+
1235  * program_initplr.
1236  *-----------------------------------------------------------------------------*/
1237 static void program_initplr(unsigned long *dimm_populated,
1238                             unsigned char *iic0_dimm_addr,
1239                             unsigned long num_dimm_banks,
1240                             ddr_cas_id_t selected_cas,
1241                             int write_recovery)
1242 {
1243         u32 cas = 0;
1244         u32 odt = 0;
1245         u32 ods = 0;
1246         u32 mr;
1247         u32 wr;
1248         u32 emr;
1249         u32 emr2;
1250         u32 emr3;
1251         int dimm_num;
1252         int total_dimm = 0;
1253
1254         /******************************************************
1255          ** Assumption: if more than one DIMM, all DIMMs are the same
1256          **             as already checked in check_memory_type
1257          ******************************************************/
1258
1259         if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1260                 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1261                 mtsdram(SDRAM_INITPLR1, 0x81900400);
1262                 mtsdram(SDRAM_INITPLR2, 0x81810000);
1263                 mtsdram(SDRAM_INITPLR3, 0xff800162);
1264                 mtsdram(SDRAM_INITPLR4, 0x81900400);
1265                 mtsdram(SDRAM_INITPLR5, 0x86080000);
1266                 mtsdram(SDRAM_INITPLR6, 0x86080000);
1267                 mtsdram(SDRAM_INITPLR7, 0x81000062);
1268         } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1269                 switch (selected_cas) {
1270                 case DDR_CAS_3:
1271                         cas = 3 << 4;
1272                         break;
1273                 case DDR_CAS_4:
1274                         cas = 4 << 4;
1275                         break;
1276                 case DDR_CAS_5:
1277                         cas = 5 << 4;
1278                         break;
1279                 default:
1280                         printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1281                         spd_ddr_init_hang ();
1282                         break;
1283                 }
1284
1285 #if 0
1286                 /*
1287                  * ToDo - Still a problem with the write recovery:
1288                  * On the Corsair CM2X512-5400C4 module, setting write recovery
1289                  * in the INITPLR reg to the value calculated in program_mode()
1290                  * results in not correctly working DDR2 memory (crash after
1291                  * relocation).
1292                  *
1293                  * So for now, set the write recovery to 3. This seems to work
1294                  * on the Corair module too.
1295                  *
1296                  * 2007-03-01, sr
1297                  */
1298                 switch (write_recovery) {
1299                 case 3:
1300                         wr = WRITE_RECOV_3;
1301                         break;
1302                 case 4:
1303                         wr = WRITE_RECOV_4;
1304                         break;
1305                 case 5:
1306                         wr = WRITE_RECOV_5;
1307                         break;
1308                 case 6:
1309                         wr = WRITE_RECOV_6;
1310                         break;
1311                 default:
1312                         printf("ERROR: write recovery not support (%d)", write_recovery);
1313                         spd_ddr_init_hang ();
1314                         break;
1315                 }
1316 #else
1317                 wr = WRITE_RECOV_3; /* test-only, see description above */
1318 #endif
1319
1320                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1321                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1322                                 total_dimm++;
1323                 if (total_dimm == 1) {
1324                         odt = ODT_150_OHM;
1325                         ods = ODS_FULL;
1326                 } else if (total_dimm == 2) {
1327                         odt = ODT_75_OHM;
1328                         ods = ODS_REDUCED;
1329                 } else {
1330                         printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1331                         spd_ddr_init_hang ();
1332                 }
1333
1334                 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1335                 emr = CMD_EMR | SELECT_EMR | odt | ods;
1336                 emr2 = CMD_EMR | SELECT_EMR2;
1337                 emr3 = CMD_EMR | SELECT_EMR3;
1338                 mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);         /* NOP */
1339                 udelay(1000);
1340                 mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1341                 mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);            /* EMR2 */
1342                 mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);            /* EMR3 */
1343                 mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);             /* EMR DLL ENABLE */
1344                 mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);  /* MR w/ DLL reset */
1345                 udelay(1000);
1346                 mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1347                 mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1348                 mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1349                 mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1350                 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1351                 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);              /* MR w/o DLL reset */
1352                 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);             /* EMR OCD Default */
1353                 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);             /* EMR OCD Exit */
1354         } else {
1355                 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1356                 spd_ddr_init_hang ();
1357         }
1358 }
1359
1360 /*------------------------------------------------------------------
1361  * This routine programs the SDRAM_MMODE register.
1362  * the selected_cas is an output parameter, that will be passed
1363  * by caller to call the above program_initplr( )
1364  *-----------------------------------------------------------------*/
1365 static void program_mode(unsigned long *dimm_populated,
1366                          unsigned char *iic0_dimm_addr,
1367                          unsigned long num_dimm_banks,
1368                          ddr_cas_id_t *selected_cas,
1369                          int *write_recovery)
1370 {
1371         unsigned long dimm_num;
1372         unsigned long sdram_ddr1;
1373         unsigned long t_wr_ns;
1374         unsigned long t_wr_clk;
1375         unsigned long cas_bit;
1376         unsigned long cas_index;
1377         unsigned long sdram_freq;
1378         unsigned long ddr_check;
1379         unsigned long mmode;
1380         unsigned long tcyc_reg;
1381         unsigned long cycle_2_0_clk;
1382         unsigned long cycle_2_5_clk;
1383         unsigned long cycle_3_0_clk;
1384         unsigned long cycle_4_0_clk;
1385         unsigned long cycle_5_0_clk;
1386         unsigned long max_2_0_tcyc_ns_x_100;
1387         unsigned long max_2_5_tcyc_ns_x_100;
1388         unsigned long max_3_0_tcyc_ns_x_100;
1389         unsigned long max_4_0_tcyc_ns_x_100;
1390         unsigned long max_5_0_tcyc_ns_x_100;
1391         unsigned long cycle_time_ns_x_100[3];
1392         PPC4xx_SYS_INFO board_cfg;
1393         unsigned char cas_2_0_available;
1394         unsigned char cas_2_5_available;
1395         unsigned char cas_3_0_available;
1396         unsigned char cas_4_0_available;
1397         unsigned char cas_5_0_available;
1398         unsigned long sdr_ddrpll;
1399
1400         /*------------------------------------------------------------------
1401          * Get the board configuration info.
1402          *-----------------------------------------------------------------*/
1403         get_sys_info(&board_cfg);
1404
1405         mfsdr(SDR0_DDR0, sdr_ddrpll);
1406         sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1407         debug("sdram_freq=%d\n", sdram_freq);
1408
1409         /*------------------------------------------------------------------
1410          * Handle the timing.  We need to find the worst case timing of all
1411          * the dimm modules installed.
1412          *-----------------------------------------------------------------*/
1413         t_wr_ns = 0;
1414         cas_2_0_available = TRUE;
1415         cas_2_5_available = TRUE;
1416         cas_3_0_available = TRUE;
1417         cas_4_0_available = TRUE;
1418         cas_5_0_available = TRUE;
1419         max_2_0_tcyc_ns_x_100 = 10;
1420         max_2_5_tcyc_ns_x_100 = 10;
1421         max_3_0_tcyc_ns_x_100 = 10;
1422         max_4_0_tcyc_ns_x_100 = 10;
1423         max_5_0_tcyc_ns_x_100 = 10;
1424         sdram_ddr1 = TRUE;
1425
1426         /* loop through all the DIMM slots on the board */
1427         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1428                 /* If a dimm is installed in a particular slot ... */
1429                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1430                         if (dimm_populated[dimm_num] == SDRAM_DDR1)
1431                                 sdram_ddr1 = TRUE;
1432                         else
1433                                 sdram_ddr1 = FALSE;
1434
1435                         /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
1436                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1437                         debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
1438
1439                         /* For a particular DIMM, grab the three CAS values it supports */
1440                         for (cas_index = 0; cas_index < 3; cas_index++) {
1441                                 switch (cas_index) {
1442                                 case 0:
1443                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1444                                         break;
1445                                 case 1:
1446                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1447                                         break;
1448                                 default:
1449                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1450                                         break;
1451                                 }
1452
1453                                 if ((tcyc_reg & 0x0F) >= 10) {
1454                                         if ((tcyc_reg & 0x0F) == 0x0D) {
1455                                                 /* Convert from hex to decimal */
1456                                                 cycle_time_ns_x_100[cas_index] =
1457                                                         (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1458                                         } else {
1459                                                 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1460                                                        "in slot %d\n", (unsigned int)dimm_num);
1461                                                 spd_ddr_init_hang ();
1462                                         }
1463                                 } else {
1464                                         /* Convert from hex to decimal */
1465                                         cycle_time_ns_x_100[cas_index] =
1466                                                 (((tcyc_reg & 0xF0) >> 4) * 100) +
1467                                                 ((tcyc_reg & 0x0F)*10);
1468                                 }
1469                                 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1470                                       cycle_time_ns_x_100[cas_index]);
1471                         }
1472
1473                         /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1474                         /* supported for a particular DIMM. */
1475                         cas_index = 0;
1476
1477                         if (sdram_ddr1) {
1478                                 /*
1479                                  * DDR devices use the following bitmask for CAS latency:
1480                                  *  Bit   7    6    5    4    3    2    1    0
1481                                  *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
1482                                  */
1483                                 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1484                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1485                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1486                                                                     cycle_time_ns_x_100[cas_index]);
1487                                         cas_index++;
1488                                 } else {
1489                                         if (cas_index != 0)
1490                                                 cas_index++;
1491                                         cas_4_0_available = FALSE;
1492                                 }
1493
1494                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1495                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1496                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1497                                                                     cycle_time_ns_x_100[cas_index]);
1498                                         cas_index++;
1499                                 } else {
1500                                         if (cas_index != 0)
1501                                                 cas_index++;
1502                                         cas_3_0_available = FALSE;
1503                                 }
1504
1505                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1506                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1507                                         max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1508                                                                     cycle_time_ns_x_100[cas_index]);
1509                                         cas_index++;
1510                                 } else {
1511                                         if (cas_index != 0)
1512                                                 cas_index++;
1513                                         cas_2_5_available = FALSE;
1514                                 }
1515
1516                                 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1517                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1518                                         max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1519                                                                     cycle_time_ns_x_100[cas_index]);
1520                                         cas_index++;
1521                                 } else {
1522                                         if (cas_index != 0)
1523                                                 cas_index++;
1524                                         cas_2_0_available = FALSE;
1525                                 }
1526                         } else {
1527                                 /*
1528                                  * DDR2 devices use the following bitmask for CAS latency:
1529                                  *  Bit   7    6    5    4    3    2    1    0
1530                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
1531                                  */
1532                                 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1533                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1534                                         max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1535                                                                     cycle_time_ns_x_100[cas_index]);
1536                                         cas_index++;
1537                                 } else {
1538                                         if (cas_index != 0)
1539                                                 cas_index++;
1540                                         cas_5_0_available = FALSE;
1541                                 }
1542
1543                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1544                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1545                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1546                                                                     cycle_time_ns_x_100[cas_index]);
1547                                         cas_index++;
1548                                 } else {
1549                                         if (cas_index != 0)
1550                                                 cas_index++;
1551                                         cas_4_0_available = FALSE;
1552                                 }
1553
1554                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1555                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1556                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1557                                                                     cycle_time_ns_x_100[cas_index]);
1558                                         cas_index++;
1559                                 } else {
1560                                         if (cas_index != 0)
1561                                                 cas_index++;
1562                                         cas_3_0_available = FALSE;
1563                                 }
1564                         }
1565                 }
1566         }
1567
1568         /*------------------------------------------------------------------
1569          * Set the SDRAM mode, SDRAM_MMODE
1570          *-----------------------------------------------------------------*/
1571         mfsdram(SDRAM_MMODE, mmode);
1572         mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1573
1574         /* add 10 here because of rounding problems */
1575         cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1576         cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1577         cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1578         cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1579         cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1580         debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1581         debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1582         debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
1583
1584         if (sdram_ddr1 == TRUE) { /* DDR1 */
1585                 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1586                         mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1587                         *selected_cas = DDR_CAS_2;
1588                 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1589                         mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1590                         *selected_cas = DDR_CAS_2_5;
1591                 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1592                         mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1593                         *selected_cas = DDR_CAS_3;
1594                 } else {
1595                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1596                         printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1597                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1598                         spd_ddr_init_hang ();
1599                 }
1600         } else { /* DDR2 */
1601                 debug("cas_3_0_available=%d\n", cas_3_0_available);
1602                 debug("cas_4_0_available=%d\n", cas_4_0_available);
1603                 debug("cas_5_0_available=%d\n", cas_5_0_available);
1604                 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1605                         mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1606                         *selected_cas = DDR_CAS_3;
1607                 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1608                         mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1609                         *selected_cas = DDR_CAS_4;
1610                 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1611                         mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1612                         *selected_cas = DDR_CAS_5;
1613                 } else {
1614                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1615                         printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1616                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1617                         printf("cas3=%d cas4=%d cas5=%d\n",
1618                                cas_3_0_available, cas_4_0_available, cas_5_0_available);
1619                         printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n",
1620                                sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1621                         spd_ddr_init_hang ();
1622                 }
1623         }
1624
1625         if (sdram_ddr1 == TRUE)
1626                 mmode |= SDRAM_MMODE_WR_DDR1;
1627         else {
1628
1629                 /* loop through all the DIMM slots on the board */
1630                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1631                         /* If a dimm is installed in a particular slot ... */
1632                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1633                                 t_wr_ns = max(t_wr_ns,
1634                                               spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1635                 }
1636
1637                 /*
1638                  * convert from nanoseconds to ddr clocks
1639                  * round up if necessary
1640                  */
1641                 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1642                 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1643                 if (sdram_freq != ddr_check)
1644                         t_wr_clk++;
1645
1646                 switch (t_wr_clk) {
1647                 case 0:
1648                 case 1:
1649                 case 2:
1650                 case 3:
1651                         mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1652                         break;
1653                 case 4:
1654                         mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1655                         break;
1656                 case 5:
1657                         mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1658                         break;
1659                 default:
1660                         mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1661                         break;
1662                 }
1663                 *write_recovery = t_wr_clk;
1664         }
1665
1666         debug("CAS latency = %d\n", *selected_cas);
1667         debug("Write recovery = %d\n", *write_recovery);
1668
1669         mtsdram(SDRAM_MMODE, mmode);
1670 }
1671
1672 /*-----------------------------------------------------------------------------+
1673  * program_rtr.
1674  *-----------------------------------------------------------------------------*/
1675 static void program_rtr(unsigned long *dimm_populated,
1676                         unsigned char *iic0_dimm_addr,
1677                         unsigned long num_dimm_banks)
1678 {
1679         PPC4xx_SYS_INFO board_cfg;
1680         unsigned long max_refresh_rate;
1681         unsigned long dimm_num;
1682         unsigned long refresh_rate_type;
1683         unsigned long refresh_rate;
1684         unsigned long rint;
1685         unsigned long sdram_freq;
1686         unsigned long sdr_ddrpll;
1687         unsigned long val;
1688
1689         /*------------------------------------------------------------------
1690          * Get the board configuration info.
1691          *-----------------------------------------------------------------*/
1692         get_sys_info(&board_cfg);
1693
1694         /*------------------------------------------------------------------
1695          * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1696          *-----------------------------------------------------------------*/
1697         mfsdr(SDR0_DDR0, sdr_ddrpll);
1698         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1699
1700         max_refresh_rate = 0;
1701         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1702                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1703
1704                         refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1705                         refresh_rate_type &= 0x7F;
1706                         switch (refresh_rate_type) {
1707                         case 0:
1708                                 refresh_rate =  15625;
1709                                 break;
1710                         case 1:
1711                                 refresh_rate =   3906;
1712                                 break;
1713                         case 2:
1714                                 refresh_rate =   7812;
1715                                 break;
1716                         case 3:
1717                                 refresh_rate =  31250;
1718                                 break;
1719                         case 4:
1720                                 refresh_rate =  62500;
1721                                 break;
1722                         case 5:
1723                                 refresh_rate = 125000;
1724                                 break;
1725                         default:
1726                                 refresh_rate = 0;
1727                                 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1728                                        (unsigned int)dimm_num);
1729                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1730                                 spd_ddr_init_hang ();
1731                                 break;
1732                         }
1733
1734                         max_refresh_rate = max(max_refresh_rate, refresh_rate);
1735                 }
1736         }
1737
1738         rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1739         mfsdram(SDRAM_RTR, val);
1740         mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1741                 (SDRAM_RTR_RINT_ENCODE(rint)));
1742 }
1743
1744 /*------------------------------------------------------------------
1745  * This routine programs the SDRAM_TRx registers.
1746  *-----------------------------------------------------------------*/
1747 static void program_tr(unsigned long *dimm_populated,
1748                        unsigned char *iic0_dimm_addr,
1749                        unsigned long num_dimm_banks)
1750 {
1751         unsigned long dimm_num;
1752         unsigned long sdram_ddr1;
1753         unsigned long t_rp_ns;
1754         unsigned long t_rcd_ns;
1755         unsigned long t_rrd_ns;
1756         unsigned long t_ras_ns;
1757         unsigned long t_rc_ns;
1758         unsigned long t_rfc_ns;
1759         unsigned long t_wpc_ns;
1760         unsigned long t_wtr_ns;
1761         unsigned long t_rpc_ns;
1762         unsigned long t_rp_clk;
1763         unsigned long t_rcd_clk;
1764         unsigned long t_rrd_clk;
1765         unsigned long t_ras_clk;
1766         unsigned long t_rc_clk;
1767         unsigned long t_rfc_clk;
1768         unsigned long t_wpc_clk;
1769         unsigned long t_wtr_clk;
1770         unsigned long t_rpc_clk;
1771         unsigned long sdtr1, sdtr2, sdtr3;
1772         unsigned long ddr_check;
1773         unsigned long sdram_freq;
1774         unsigned long sdr_ddrpll;
1775
1776         PPC4xx_SYS_INFO board_cfg;
1777
1778         /*------------------------------------------------------------------
1779          * Get the board configuration info.
1780          *-----------------------------------------------------------------*/
1781         get_sys_info(&board_cfg);
1782
1783         mfsdr(SDR0_DDR0, sdr_ddrpll);
1784         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1785
1786         /*------------------------------------------------------------------
1787          * Handle the timing.  We need to find the worst case timing of all
1788          * the dimm modules installed.
1789          *-----------------------------------------------------------------*/
1790         t_rp_ns = 0;
1791         t_rrd_ns = 0;
1792         t_rcd_ns = 0;
1793         t_ras_ns = 0;
1794         t_rc_ns = 0;
1795         t_rfc_ns = 0;
1796         t_wpc_ns = 0;
1797         t_wtr_ns = 0;
1798         t_rpc_ns = 0;
1799         sdram_ddr1 = TRUE;
1800
1801         /* loop through all the DIMM slots on the board */
1802         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1803                 /* If a dimm is installed in a particular slot ... */
1804                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1805                         if (dimm_populated[dimm_num] == SDRAM_DDR2)
1806                                 sdram_ddr1 = TRUE;
1807                         else
1808                                 sdram_ddr1 = FALSE;
1809
1810                         t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1811                         t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1812                         t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1813                         t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1814                         t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
1815                         t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1816                 }
1817         }
1818
1819         /*------------------------------------------------------------------
1820          * Set the SDRAM Timing Reg 1, SDRAM_TR1
1821          *-----------------------------------------------------------------*/
1822         mfsdram(SDRAM_SDTR1, sdtr1);
1823         sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1824                    SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1825
1826         /* default values */
1827         sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1828         sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1829
1830         /* normal operations */
1831         sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1832         sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1833
1834         mtsdram(SDRAM_SDTR1, sdtr1);
1835
1836         /*------------------------------------------------------------------
1837          * Set the SDRAM Timing Reg 2, SDRAM_TR2
1838          *-----------------------------------------------------------------*/
1839         mfsdram(SDRAM_SDTR2, sdtr2);
1840         sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
1841                    SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1842                    SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
1843                    SDRAM_SDTR2_RRD_MASK);
1844
1845         /*
1846          * convert t_rcd from nanoseconds to ddr clocks
1847          * round up if necessary
1848          */
1849         t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1850         ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1851         if (sdram_freq != ddr_check)
1852                 t_rcd_clk++;
1853
1854         switch (t_rcd_clk) {
1855         case 0:
1856         case 1:
1857                 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1858                 break;
1859         case 2:
1860                 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1861                 break;
1862         case 3:
1863                 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1864                 break;
1865         case 4:
1866                 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1867                 break;
1868         default:
1869                 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1870                 break;
1871         }
1872
1873         if (sdram_ddr1 == TRUE) { /* DDR1 */
1874                 if (sdram_freq < 200000000) {
1875                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1876                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1877                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1878                 } else {
1879                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1880                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1881                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1882                 }
1883         } else { /* DDR2 */
1884                 /* loop through all the DIMM slots on the board */
1885                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1886                         /* If a dimm is installed in a particular slot ... */
1887                         if (dimm_populated[dimm_num] != SDRAM_NONE) {
1888                                 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1889                                 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1890                                 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1891                         }
1892                 }
1893
1894                 /*
1895                  * convert from nanoseconds to ddr clocks
1896                  * round up if necessary
1897                  */
1898                 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1899                 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1900                 if (sdram_freq != ddr_check)
1901                         t_wpc_clk++;
1902
1903                 switch (t_wpc_clk) {
1904                 case 0:
1905                 case 1:
1906                 case 2:
1907                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1908                         break;
1909                 case 3:
1910                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1911                         break;
1912                 case 4:
1913                         sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1914                         break;
1915                 case 5:
1916                         sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1917                         break;
1918                 default:
1919                         sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1920                         break;
1921                 }
1922
1923                 /*
1924                  * convert from nanoseconds to ddr clocks
1925                  * round up if necessary
1926                  */
1927                 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1928                 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1929                 if (sdram_freq != ddr_check)
1930                         t_wtr_clk++;
1931
1932                 switch (t_wtr_clk) {
1933                 case 0:
1934                 case 1:
1935                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1936                         break;
1937                 case 2:
1938                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1939                         break;
1940                 case 3:
1941                         sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1942                         break;
1943                 default:
1944                         sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1945                         break;
1946                 }
1947
1948                 /*
1949                  * convert from nanoseconds to ddr clocks
1950                  * round up if necessary
1951                  */
1952                 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1953                 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1954                 if (sdram_freq != ddr_check)
1955                         t_rpc_clk++;
1956
1957                 switch (t_rpc_clk) {
1958                 case 0:
1959                 case 1:
1960                 case 2:
1961                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1962                         break;
1963                 case 3:
1964                         sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1965                         break;
1966                 default:
1967                         sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1968                         break;
1969                 }
1970         }
1971
1972         /* default value */
1973         sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1974
1975         /*
1976          * convert t_rrd from nanoseconds to ddr clocks
1977          * round up if necessary
1978          */
1979         t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1980         ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1981         if (sdram_freq != ddr_check)
1982                 t_rrd_clk++;
1983
1984         if (t_rrd_clk == 3)
1985                 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1986         else
1987                 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1988
1989         /*
1990          * convert t_rp from nanoseconds to ddr clocks
1991          * round up if necessary
1992          */
1993         t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1994         ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1995         if (sdram_freq != ddr_check)
1996                 t_rp_clk++;
1997
1998         switch (t_rp_clk) {
1999         case 0:
2000         case 1:
2001         case 2:
2002         case 3:
2003                 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
2004                 break;
2005         case 4:
2006                 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
2007                 break;
2008         case 5:
2009                 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
2010                 break;
2011         case 6:
2012                 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
2013                 break;
2014         default:
2015                 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
2016                 break;
2017         }
2018
2019         mtsdram(SDRAM_SDTR2, sdtr2);
2020
2021         /*------------------------------------------------------------------
2022          * Set the SDRAM Timing Reg 3, SDRAM_TR3
2023          *-----------------------------------------------------------------*/
2024         mfsdram(SDRAM_SDTR3, sdtr3);
2025         sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
2026                    SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
2027
2028         /*
2029          * convert t_ras from nanoseconds to ddr clocks
2030          * round up if necessary
2031          */
2032         t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
2033         ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
2034         if (sdram_freq != ddr_check)
2035                 t_ras_clk++;
2036
2037         sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
2038
2039         /*
2040          * convert t_rc from nanoseconds to ddr clocks
2041          * round up if necessary
2042          */
2043         t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
2044         ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
2045         if (sdram_freq != ddr_check)
2046                 t_rc_clk++;
2047
2048         sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
2049
2050         /* default xcs value */
2051         sdtr3 |= SDRAM_SDTR3_XCS;
2052
2053         /*
2054          * convert t_rfc from nanoseconds to ddr clocks
2055          * round up if necessary
2056          */
2057         t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
2058         ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
2059         if (sdram_freq != ddr_check)
2060                 t_rfc_clk++;
2061
2062         sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
2063
2064         mtsdram(SDRAM_SDTR3, sdtr3);
2065 }
2066
2067 /*-----------------------------------------------------------------------------+
2068  * program_bxcf.
2069  *-----------------------------------------------------------------------------*/
2070 static void program_bxcf(unsigned long *dimm_populated,
2071                          unsigned char *iic0_dimm_addr,
2072                          unsigned long num_dimm_banks)
2073 {
2074         unsigned long dimm_num;
2075         unsigned long num_col_addr;
2076         unsigned long num_ranks;
2077         unsigned long num_banks;
2078         unsigned long mode;
2079         unsigned long ind_rank;
2080         unsigned long ind;
2081         unsigned long ind_bank;
2082         unsigned long bank_0_populated;
2083
2084         /*------------------------------------------------------------------
2085          * Set the BxCF regs.  First, wipe out the bank config registers.
2086          *-----------------------------------------------------------------*/
2087         mtsdram(SDRAM_MB0CF, 0x00000000);
2088         mtsdram(SDRAM_MB1CF, 0x00000000);
2089         mtsdram(SDRAM_MB2CF, 0x00000000);
2090         mtsdram(SDRAM_MB3CF, 0x00000000);
2091
2092         mode = SDRAM_BXCF_M_BE_ENABLE;
2093
2094         bank_0_populated = 0;
2095
2096         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2097                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2098                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2099                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2100                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2101                                 num_ranks = (num_ranks & 0x0F) +1;
2102                         else
2103                                 num_ranks = num_ranks & 0x0F;
2104
2105                         num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2106
2107                         for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2108                                 if (num_banks == 4)
2109                                         ind = 0;
2110                                 else
2111                                         ind = 5 << 8;
2112                                 switch (num_col_addr) {
2113                                 case 0x08:
2114                                         mode |= (SDRAM_BXCF_M_AM_0 + ind);
2115                                         break;
2116                                 case 0x09:
2117                                         mode |= (SDRAM_BXCF_M_AM_1 + ind);
2118                                         break;
2119                                 case 0x0A:
2120                                         mode |= (SDRAM_BXCF_M_AM_2 + ind);
2121                                         break;
2122                                 case 0x0B:
2123                                         mode |= (SDRAM_BXCF_M_AM_3 + ind);
2124                                         break;
2125                                 case 0x0C:
2126                                         mode |= (SDRAM_BXCF_M_AM_4 + ind);
2127                                         break;
2128                                 default:
2129                                         printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2130                                                (unsigned int)dimm_num);
2131                                         printf("ERROR: Unsupported value for number of "
2132                                                "column addresses: %d.\n", (unsigned int)num_col_addr);
2133                                         printf("Replace the DIMM module with a supported DIMM.\n\n");
2134                                         spd_ddr_init_hang ();
2135                                 }
2136                         }
2137
2138                         if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2139                                 bank_0_populated = 1;
2140
2141                         for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2142                                 mtsdram(SDRAM_MB0CF +
2143                                         ((dimm_num + bank_0_populated + ind_rank) << 2),
2144                                         mode);
2145                         }
2146                 }
2147         }
2148 }
2149
2150 /*------------------------------------------------------------------
2151  * program memory queue.
2152  *-----------------------------------------------------------------*/
2153 static void program_memory_queue(unsigned long *dimm_populated,
2154                                  unsigned char *iic0_dimm_addr,
2155                                  unsigned long num_dimm_banks)
2156 {
2157         unsigned long dimm_num;
2158         phys_size_t rank_base_addr;
2159         unsigned long rank_reg;
2160         phys_size_t rank_size_bytes;
2161         unsigned long rank_size_id;
2162         unsigned long num_ranks;
2163         unsigned long baseadd_size;
2164         unsigned long i;
2165         unsigned long bank_0_populated = 0;
2166         phys_size_t total_size = 0;
2167
2168         /*------------------------------------------------------------------
2169          * Reset the rank_base_address.
2170          *-----------------------------------------------------------------*/
2171         rank_reg   = SDRAM_R0BAS;
2172
2173         rank_base_addr = 0x00000000;
2174
2175         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2176                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2177                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2178                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2179                                 num_ranks = (num_ranks & 0x0F) + 1;
2180                         else
2181                                 num_ranks = num_ranks & 0x0F;
2182
2183                         rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2184
2185                         /*------------------------------------------------------------------
2186                          * Set the sizes
2187                          *-----------------------------------------------------------------*/
2188                         baseadd_size = 0;
2189                         switch (rank_size_id) {
2190                         case 0x01:
2191                                 baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
2192                                 total_size = 1024;
2193                                 break;
2194                         case 0x02:
2195                                 baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
2196                                 total_size = 2048;
2197                                 break;
2198                         case 0x04:
2199                                 baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
2200                                 total_size = 4096;
2201                                 break;
2202                         case 0x08:
2203                                 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2204                                 total_size = 32;
2205                                 break;
2206                         case 0x10:
2207                                 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2208                                 total_size = 64;
2209                                 break;
2210                         case 0x20:
2211                                 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2212                                 total_size = 128;
2213                                 break;
2214                         case 0x40:
2215                                 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2216                                 total_size = 256;
2217                                 break;
2218                         case 0x80:
2219                                 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2220                                 total_size = 512;
2221                                 break;
2222                         default:
2223                                 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2224                                        (unsigned int)dimm_num);
2225                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
2226                                        (unsigned int)rank_size_id);
2227                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
2228                                 spd_ddr_init_hang ();
2229                         }
2230                         rank_size_bytes = total_size << 20;
2231
2232                         if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2233                                 bank_0_populated = 1;
2234
2235                         for (i = 0; i < num_ranks; i++) {
2236                                 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2237                                           (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2238                                            baseadd_size));
2239                                 rank_base_addr += rank_size_bytes;
2240                         }
2241                 }
2242         }
2243
2244 #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
2245         /*
2246          * Enable high bandwidth access on 460EX/GT.
2247          * This should/could probably be done on other
2248          * PPC's too, like 440SPe.
2249          * This is currently not used, but with this setup
2250          * it is possible to use it later on in e.g. the Linux
2251          * EMAC driver for performance gain.
2252          */
2253         mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
2254         mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
2255 #endif
2256 }
2257
2258 /*-----------------------------------------------------------------------------+
2259  * is_ecc_enabled.
2260  *-----------------------------------------------------------------------------*/
2261 static unsigned long is_ecc_enabled(void)
2262 {
2263         unsigned long dimm_num;
2264         unsigned long ecc;
2265         unsigned long val;
2266
2267         ecc = 0;
2268         /* loop through all the DIMM slots on the board */
2269         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2270                 mfsdram(SDRAM_MCOPT1, val);
2271                 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2272         }
2273
2274         return ecc;
2275 }
2276
2277 static void blank_string(int size)
2278 {
2279         int i;
2280
2281         for (i=0; i<size; i++)
2282                 putc('\b');
2283         for (i=0; i<size; i++)
2284                 putc(' ');
2285         for (i=0; i<size; i++)
2286                 putc('\b');
2287 }
2288
2289 #ifdef CONFIG_DDR_ECC
2290 /*-----------------------------------------------------------------------------+
2291  * program_ecc.
2292  *-----------------------------------------------------------------------------*/
2293 static void program_ecc(unsigned long *dimm_populated,
2294                         unsigned char *iic0_dimm_addr,
2295                         unsigned long num_dimm_banks,
2296                         unsigned long tlb_word2_i_value)
2297 {
2298         unsigned long mcopt1;
2299         unsigned long mcopt2;
2300         unsigned long mcstat;
2301         unsigned long dimm_num;
2302         unsigned long ecc;
2303
2304         ecc = 0;
2305         /* loop through all the DIMM slots on the board */
2306         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2307                 /* If a dimm is installed in a particular slot ... */
2308                 if (dimm_populated[dimm_num] != SDRAM_NONE)
2309                         ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2310         }
2311         if (ecc == 0)
2312                 return;
2313
2314         if (sdram_memsize() > CONFIG_MAX_MEM_MAPPED) {
2315                 printf("\nWarning: Can't enable ECC on systems with more than 2GB of SDRAM!\n");
2316                 return;
2317         }
2318
2319         mfsdram(SDRAM_MCOPT1, mcopt1);
2320         mfsdram(SDRAM_MCOPT2, mcopt2);
2321
2322         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2323                 /* DDR controller must be enabled and not in self-refresh. */
2324                 mfsdram(SDRAM_MCSTAT, mcstat);
2325                 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2326                     && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2327                     && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2328                         == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2329
2330                         program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2331                 }
2332         }
2333
2334         return;
2335 }
2336
2337 static void wait_ddr_idle(void)
2338 {
2339         u32 val;
2340
2341         do {
2342                 mfsdram(SDRAM_MCSTAT, val);
2343         } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2344 }
2345
2346 /*-----------------------------------------------------------------------------+
2347  * program_ecc_addr.
2348  *-----------------------------------------------------------------------------*/
2349 static void program_ecc_addr(unsigned long start_address,
2350                              unsigned long num_bytes,
2351                              unsigned long tlb_word2_i_value)
2352 {
2353         unsigned long current_address;
2354         unsigned long end_address;
2355         unsigned long address_increment;
2356         unsigned long mcopt1;
2357         char str[] = "ECC generation -";
2358         char slash[] = "\\|/-\\|/-";
2359         int loop = 0;
2360         int loopi = 0;
2361
2362         current_address = start_address;
2363         mfsdram(SDRAM_MCOPT1, mcopt1);
2364         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2365                 mtsdram(SDRAM_MCOPT1,
2366                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2367                 sync();
2368                 eieio();
2369                 wait_ddr_idle();
2370
2371                 puts(str);
2372                 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2373                         /* ECC bit set method for non-cached memory */
2374                         if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2375                                 address_increment = 4;
2376                         else
2377                                 address_increment = 8;
2378                         end_address = current_address + num_bytes;
2379
2380                         while (current_address < end_address) {
2381                                 *((unsigned long *)current_address) = 0x00000000;
2382                                 current_address += address_increment;
2383
2384                                 if ((loop++ % (2 << 20)) == 0) {
2385                                         putc('\b');
2386                                         putc(slash[loopi++ % 8]);
2387                                 }
2388                         }
2389
2390                 } else {
2391                         /* ECC bit set method for cached memory */
2392                         dcbz_area(start_address, num_bytes);
2393                         /* Write modified dcache lines back to memory */
2394                         clean_dcache_range(start_address, start_address + num_bytes);
2395                 }
2396
2397                 blank_string(strlen(str));
2398
2399                 sync();
2400                 eieio();
2401                 wait_ddr_idle();
2402
2403                 /* clear ECC error repoting registers */
2404                 mtsdram(SDRAM_ECCCR, 0xffffffff);
2405                 mtdcr(0x4c, 0xffffffff);
2406
2407                 mtsdram(SDRAM_MCOPT1,
2408                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2409                 sync();
2410                 eieio();
2411                 wait_ddr_idle();
2412         }
2413 }
2414 #endif
2415
2416 /*-----------------------------------------------------------------------------+
2417  * program_DQS_calibration.
2418  *-----------------------------------------------------------------------------*/
2419 static void program_DQS_calibration(unsigned long *dimm_populated,
2420                                     unsigned char *iic0_dimm_addr,
2421                                     unsigned long num_dimm_banks)
2422 {
2423         unsigned long val;
2424
2425 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2426         mtsdram(SDRAM_RQDC, 0x80000037);
2427         mtsdram(SDRAM_RDCC, 0x40000000);
2428         mtsdram(SDRAM_RFDC, 0x000001DF);
2429
2430         test();
2431 #else
2432         /*------------------------------------------------------------------
2433          * Program RDCC register
2434          * Read sample cycle auto-update enable
2435          *-----------------------------------------------------------------*/
2436
2437         mfsdram(SDRAM_RDCC, val);
2438         mtsdram(SDRAM_RDCC,
2439                 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2440                 | SDRAM_RDCC_RSAE_ENABLE);
2441
2442         /*------------------------------------------------------------------
2443          * Program RQDC register
2444          * Internal DQS delay mechanism enable
2445          *-----------------------------------------------------------------*/
2446         mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2447
2448         /*------------------------------------------------------------------
2449          * Program RFDC register
2450          * Set Feedback Fractional Oversample
2451          * Auto-detect read sample cycle enable
2452          *-----------------------------------------------------------------*/
2453         mfsdram(SDRAM_RFDC, val);
2454         mtsdram(SDRAM_RFDC,
2455                 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2456                          SDRAM_RFDC_RFFD_MASK))
2457                 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2458                    SDRAM_RFDC_RFFD_ENCODE(0)));
2459
2460         DQS_calibration_process();
2461 #endif
2462 }
2463
2464 static int short_mem_test(void)
2465 {
2466         u32 *membase;
2467         u32 bxcr_num;
2468         u32 bxcf;
2469         int i;
2470         int j;
2471         phys_size_t base_addr;
2472         u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2473                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2474                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2475                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2476                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2477                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2478                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2479                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2480                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2481                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2482                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2483                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2484                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2485                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2486                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2487                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2488                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2489         int l;
2490
2491         for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2492                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2493
2494                 /* Banks enabled */
2495                 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2496                         /* Bank is enabled */
2497
2498                         /*
2499                          * Only run test on accessable memory (below 2GB)
2500                          */
2501                         base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
2502                         if (base_addr >= CONFIG_MAX_MEM_MAPPED)
2503                                 continue;
2504
2505                         /*------------------------------------------------------------------
2506                          * Run the short memory test.
2507                          *-----------------------------------------------------------------*/
2508                         membase = (u32 *)(u32)base_addr;
2509
2510                         for (i = 0; i < NUMMEMTESTS; i++) {
2511                                 for (j = 0; j < NUMMEMWORDS; j++) {
2512                                         membase[j] = test[i][j];
2513                                         ppcDcbf((u32)&(membase[j]));
2514                                 }
2515                                 sync();
2516                                 for (l=0; l<NUMLOOPS; l++) {
2517                                         for (j = 0; j < NUMMEMWORDS; j++) {
2518                                                 if (membase[j] != test[i][j]) {
2519                                                         ppcDcbf((u32)&(membase[j]));
2520                                                         return 0;
2521                                                 }
2522                                                 ppcDcbf((u32)&(membase[j]));
2523                                         }
2524                                         sync();
2525                                 }
2526                         }
2527                 }       /* if bank enabled */
2528         }               /* for bxcf_num */
2529
2530         return 1;
2531 }
2532
2533 #ifndef HARD_CODED_DQS
2534 /*-----------------------------------------------------------------------------+
2535  * DQS_calibration_process.
2536  *-----------------------------------------------------------------------------*/
2537 static void DQS_calibration_process(void)
2538 {
2539         unsigned long rfdc_reg;
2540         unsigned long rffd;
2541         unsigned long val;
2542         long rffd_average;
2543         long max_start;
2544         long min_end;
2545         unsigned long begin_rqfd[MAXRANKS];
2546         unsigned long begin_rffd[MAXRANKS];
2547         unsigned long end_rqfd[MAXRANKS];
2548         unsigned long end_rffd[MAXRANKS];
2549         char window_found;
2550         unsigned long dlycal;
2551         unsigned long dly_val;
2552         unsigned long max_pass_length;
2553         unsigned long current_pass_length;
2554         unsigned long current_fail_length;
2555         unsigned long current_start;
2556         long max_end;
2557         unsigned char fail_found;
2558         unsigned char pass_found;
2559 #if !defined(CONFIG_DDR_RQDC_FIXED)
2560         u32 rqdc_reg;
2561         u32 rqfd;
2562         u32 rqfd_start;
2563         u32 rqfd_average;
2564         int loopi = 0;
2565         char str[] = "Auto calibration -";
2566         char slash[] = "\\|/-\\|/-";
2567
2568         /*------------------------------------------------------------------
2569          * Test to determine the best read clock delay tuning bits.
2570          *
2571          * Before the DDR controller can be used, the read clock delay needs to be
2572          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2573          * This value cannot be hardcoded into the program because it changes
2574          * depending on the board's setup and environment.
2575          * To do this, all delay values are tested to see if they
2576          * work or not.  By doing this, you get groups of fails with groups of
2577          * passing values.  The idea is to find the start and end of a passing
2578          * window and take the center of it to use as the read clock delay.
2579          *
2580          * A failure has to be seen first so that when we hit a pass, we know
2581          * that it is truely the start of the window.  If we get passing values
2582          * to start off with, we don't know if we are at the start of the window.
2583          *
2584          * The code assumes that a failure will always be found.
2585          * If a failure is not found, there is no easy way to get the middle
2586          * of the passing window.  I guess we can pretty much pick any value
2587          * but some values will be better than others.  Since the lowest speed
2588          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2589          * from experimentation it is safe to say you will always have a failure.
2590          *-----------------------------------------------------------------*/
2591
2592         /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2593         rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2594
2595         puts(str);
2596
2597 calibration_loop:
2598         mfsdram(SDRAM_RQDC, rqdc_reg);
2599         mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2600                 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
2601 #else /* CONFIG_DDR_RQDC_FIXED */
2602         /*
2603          * On Katmai the complete auto-calibration somehow doesn't seem to
2604          * produce the best results, meaning optimal values for RQFD/RFFD.
2605          * This was discovered by GDA using a high bandwidth scope,
2606          * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
2607          * so now on Katmai "only" RFFD is auto-calibrated.
2608          */
2609         mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
2610 #endif /* CONFIG_DDR_RQDC_FIXED */
2611
2612         max_start = 0;
2613         min_end = 0;
2614         begin_rqfd[0] = 0;
2615         begin_rffd[0] = 0;
2616         begin_rqfd[1] = 0;
2617         begin_rffd[1] = 0;
2618         end_rqfd[0] = 0;
2619         end_rffd[0] = 0;
2620         end_rqfd[1] = 0;
2621         end_rffd[1] = 0;
2622         window_found = FALSE;
2623
2624         max_pass_length = 0;
2625         max_start = 0;
2626         max_end = 0;
2627         current_pass_length = 0;
2628         current_fail_length = 0;
2629         current_start = 0;
2630         window_found = FALSE;
2631         fail_found = FALSE;
2632         pass_found = FALSE;
2633
2634         /*
2635          * get the delay line calibration register value
2636          */
2637         mfsdram(SDRAM_DLCR, dlycal);
2638         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2639
2640         for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2641                 mfsdram(SDRAM_RFDC, rfdc_reg);
2642                 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2643
2644                 /*------------------------------------------------------------------
2645                  * Set the timing reg for the test.
2646                  *-----------------------------------------------------------------*/
2647                 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2648
2649                 /*------------------------------------------------------------------
2650                  * See if the rffd value passed.
2651                  *-----------------------------------------------------------------*/
2652                 if (short_mem_test()) {
2653                         if (fail_found == TRUE) {
2654                                 pass_found = TRUE;
2655                                 if (current_pass_length == 0)
2656                                         current_start = rffd;
2657
2658                                 current_fail_length = 0;
2659                                 current_pass_length++;
2660
2661                                 if (current_pass_length > max_pass_length) {
2662                                         max_pass_length = current_pass_length;
2663                                         max_start = current_start;
2664                                         max_end = rffd;
2665                                 }
2666                         }
2667                 } else {
2668                         current_pass_length = 0;
2669                         current_fail_length++;
2670
2671                         if (current_fail_length >= (dly_val >> 2)) {
2672                                 if (fail_found == FALSE) {
2673                                         fail_found = TRUE;
2674                                 } else if (pass_found == TRUE) {
2675                                         window_found = TRUE;
2676                                         break;
2677                                 }
2678                         }
2679                 }
2680         }               /* for rffd */
2681
2682         /*------------------------------------------------------------------
2683          * Set the average RFFD value
2684          *-----------------------------------------------------------------*/
2685         rffd_average = ((max_start + max_end) >> 1);
2686
2687         if (rffd_average < 0)
2688                 rffd_average = 0;
2689
2690         if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2691                 rffd_average = SDRAM_RFDC_RFFD_MAX;
2692         /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2693         mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2694
2695 #if !defined(CONFIG_DDR_RQDC_FIXED)
2696         max_pass_length = 0;
2697         max_start = 0;
2698         max_end = 0;
2699         current_pass_length = 0;
2700         current_fail_length = 0;
2701         current_start = 0;
2702         window_found = FALSE;
2703         fail_found = FALSE;
2704         pass_found = FALSE;
2705
2706         for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2707                 mfsdram(SDRAM_RQDC, rqdc_reg);
2708                 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2709
2710                 /*------------------------------------------------------------------
2711                  * Set the timing reg for the test.
2712                  *-----------------------------------------------------------------*/
2713                 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2714
2715                 /*------------------------------------------------------------------
2716                  * See if the rffd value passed.
2717                  *-----------------------------------------------------------------*/
2718                 if (short_mem_test()) {
2719                         if (fail_found == TRUE) {
2720                                 pass_found = TRUE;
2721                                 if (current_pass_length == 0)
2722                                         current_start = rqfd;
2723
2724                                 current_fail_length = 0;
2725                                 current_pass_length++;
2726
2727                                 if (current_pass_length > max_pass_length) {
2728                                         max_pass_length = current_pass_length;
2729                                         max_start = current_start;
2730                                         max_end = rqfd;
2731                                 }
2732                         }
2733                 } else {
2734                         current_pass_length = 0;
2735                         current_fail_length++;
2736
2737                         if (fail_found == FALSE) {
2738                                 fail_found = TRUE;
2739                         } else if (pass_found == TRUE) {
2740                                 window_found = TRUE;
2741                                 break;
2742                         }
2743                 }
2744         }
2745
2746         rqfd_average = ((max_start + max_end) >> 1);
2747
2748         /*------------------------------------------------------------------
2749          * Make sure we found the valid read passing window.  Halt if not
2750          *-----------------------------------------------------------------*/
2751         if (window_found == FALSE) {
2752                 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2753                         putc('\b');
2754                         putc(slash[loopi++ % 8]);
2755
2756                         /* try again from with a different RQFD start value */
2757                         rqfd_start++;
2758                         goto calibration_loop;
2759                 }
2760
2761                 printf("\nERROR: Cannot determine a common read delay for the "
2762                        "DIMM(s) installed.\n");
2763                 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2764                 ppc440sp_sdram_register_dump();
2765                 spd_ddr_init_hang ();
2766         }
2767
2768         if (rqfd_average < 0)
2769                 rqfd_average = 0;
2770
2771         if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2772                 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2773
2774         mtsdram(SDRAM_RQDC,
2775                 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2776                 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2777
2778         blank_string(strlen(str));
2779 #endif /* CONFIG_DDR_RQDC_FIXED */
2780
2781         /*
2782          * Now complete RDSS configuration as mentioned on page 7 of the AMCC
2783          * PowerPC440SP/SPe DDR2 application note:
2784          * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
2785          */
2786         mfsdram(SDRAM_RTSR, val);
2787         if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
2788                 mfsdram(SDRAM_RDCC, val);
2789                 if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
2790                         val += 0x40000000;
2791                         mtsdram(SDRAM_RDCC, val);
2792                 }
2793         }
2794
2795         mfsdram(SDRAM_DLCR, val);
2796         debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2797         mfsdram(SDRAM_RQDC, val);
2798         debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2799         mfsdram(SDRAM_RFDC, val);
2800         debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2801         mfsdram(SDRAM_RDCC, val);
2802         debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2803 }
2804 #else /* calibration test with hardvalues */
2805 /*-----------------------------------------------------------------------------+
2806  * DQS_calibration_process.
2807  *-----------------------------------------------------------------------------*/
2808 static void test(void)
2809 {
2810         unsigned long dimm_num;
2811         unsigned long ecc_temp;
2812         unsigned long i, j;
2813         unsigned long *membase;
2814         unsigned long bxcf[MAXRANKS];
2815         unsigned long val;
2816         char window_found;
2817         char begin_found[MAXDIMMS];
2818         char end_found[MAXDIMMS];
2819         char search_end[MAXDIMMS];
2820         unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2821                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2822                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2823                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2824                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2825                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2826                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2827                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2828                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2829                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2830                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2831                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2832                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2833                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2834                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2835                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2836                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2837
2838         /*------------------------------------------------------------------
2839          * Test to determine the best read clock delay tuning bits.
2840          *
2841          * Before the DDR controller can be used, the read clock delay needs to be
2842          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2843          * This value cannot be hardcoded into the program because it changes
2844          * depending on the board's setup and environment.
2845          * To do this, all delay values are tested to see if they
2846          * work or not.  By doing this, you get groups of fails with groups of
2847          * passing values.  The idea is to find the start and end of a passing
2848          * window and take the center of it to use as the read clock delay.
2849          *
2850          * A failure has to be seen first so that when we hit a pass, we know
2851          * that it is truely the start of the window.  If we get passing values
2852          * to start off with, we don't know if we are at the start of the window.
2853          *
2854          * The code assumes that a failure will always be found.
2855          * If a failure is not found, there is no easy way to get the middle
2856          * of the passing window.  I guess we can pretty much pick any value
2857          * but some values will be better than others.  Since the lowest speed
2858          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2859          * from experimentation it is safe to say you will always have a failure.
2860          *-----------------------------------------------------------------*/
2861         mfsdram(SDRAM_MCOPT1, ecc_temp);
2862         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2863         mfsdram(SDRAM_MCOPT1, val);
2864         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2865                 SDRAM_MCOPT1_MCHK_NON);
2866
2867         window_found = FALSE;
2868         begin_found[0] = FALSE;
2869         end_found[0] = FALSE;
2870         search_end[0] = FALSE;
2871         begin_found[1] = FALSE;
2872         end_found[1] = FALSE;
2873         search_end[1] = FALSE;
2874
2875         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2876                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2877
2878                 /* Banks enabled */
2879                 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2880
2881                         /* Bank is enabled */
2882                         membase =
2883                                 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2884
2885                         /*------------------------------------------------------------------
2886                          * Run the short memory test.
2887                          *-----------------------------------------------------------------*/
2888                         for (i = 0; i < NUMMEMTESTS; i++) {
2889                                 for (j = 0; j < NUMMEMWORDS; j++) {
2890                                         membase[j] = test[i][j];
2891                                         ppcDcbf((u32)&(membase[j]));
2892                                 }
2893                                 sync();
2894                                 for (j = 0; j < NUMMEMWORDS; j++) {
2895                                         if (membase[j] != test[i][j]) {
2896                                                 ppcDcbf((u32)&(membase[j]));
2897                                                 break;
2898                                         }
2899                                         ppcDcbf((u32)&(membase[j]));
2900                                 }
2901                                 sync();
2902                                 if (j < NUMMEMWORDS)
2903                                         break;
2904                         }
2905
2906                         /*------------------------------------------------------------------
2907                          * See if the rffd value passed.
2908                          *-----------------------------------------------------------------*/
2909                         if (i < NUMMEMTESTS) {
2910                                 if ((end_found[dimm_num] == FALSE) &&
2911                                     (search_end[dimm_num] == TRUE)) {
2912                                         end_found[dimm_num] = TRUE;
2913                                 }
2914                                 if ((end_found[0] == TRUE) &&
2915                                     (end_found[1] == TRUE))
2916                                         break;
2917                         } else {
2918                                 if (begin_found[dimm_num] == FALSE) {
2919                                         begin_found[dimm_num] = TRUE;
2920                                         search_end[dimm_num] = TRUE;
2921                                 }
2922                         }
2923                 } else {
2924                         begin_found[dimm_num] = TRUE;
2925                         end_found[dimm_num] = TRUE;
2926                 }
2927         }
2928
2929         if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2930                 window_found = TRUE;
2931
2932         /*------------------------------------------------------------------
2933          * Make sure we found the valid read passing window.  Halt if not
2934          *-----------------------------------------------------------------*/
2935         if (window_found == FALSE) {
2936                 printf("ERROR: Cannot determine a common read delay for the "
2937                        "DIMM(s) installed.\n");
2938                 spd_ddr_init_hang ();
2939         }
2940
2941         /*------------------------------------------------------------------
2942          * Restore the ECC variable to what it originally was
2943          *-----------------------------------------------------------------*/
2944         mtsdram(SDRAM_MCOPT1,
2945                 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2946                 | ecc_temp);
2947 }
2948 #endif
2949
2950 #if defined(DEBUG)
2951 static void ppc440sp_sdram_register_dump(void)
2952 {
2953         unsigned int sdram_reg;
2954         unsigned int sdram_data;
2955         unsigned int dcr_data;
2956
2957         printf("\n  Register Dump:\n");
2958         sdram_reg = SDRAM_MCSTAT;
2959         mfsdram(sdram_reg, sdram_data);
2960         printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
2961         sdram_reg = SDRAM_MCOPT1;
2962         mfsdram(sdram_reg, sdram_data);
2963         printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
2964         sdram_reg = SDRAM_MCOPT2;
2965         mfsdram(sdram_reg, sdram_data);
2966         printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
2967         sdram_reg = SDRAM_MODT0;
2968         mfsdram(sdram_reg, sdram_data);
2969         printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
2970         sdram_reg = SDRAM_MODT1;
2971         mfsdram(sdram_reg, sdram_data);
2972         printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
2973         sdram_reg = SDRAM_MODT2;
2974         mfsdram(sdram_reg, sdram_data);
2975         printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
2976         sdram_reg = SDRAM_MODT3;
2977         mfsdram(sdram_reg, sdram_data);
2978         printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
2979         sdram_reg = SDRAM_CODT;
2980         mfsdram(sdram_reg, sdram_data);
2981         printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
2982         sdram_reg = SDRAM_VVPR;
2983         mfsdram(sdram_reg, sdram_data);
2984         printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
2985         sdram_reg = SDRAM_OPARS;
2986         mfsdram(sdram_reg, sdram_data);
2987         printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
2988         /*
2989          * OPAR2 is only used as a trigger register.
2990          * No data is contained in this register, and reading or writing
2991          * to is can cause bad things to happen (hangs).  Just skip it
2992          * and report NA
2993          * sdram_reg = SDRAM_OPAR2;
2994          * mfsdram(sdram_reg, sdram_data);
2995          * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
2996          */
2997         printf("        SDRAM_OPART     = N/A       ");
2998         sdram_reg = SDRAM_RTR;
2999         mfsdram(sdram_reg, sdram_data);
3000         printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
3001         sdram_reg = SDRAM_MB0CF;
3002         mfsdram(sdram_reg, sdram_data);
3003         printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
3004         sdram_reg = SDRAM_MB1CF;
3005         mfsdram(sdram_reg, sdram_data);
3006         printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
3007         sdram_reg = SDRAM_MB2CF;
3008         mfsdram(sdram_reg, sdram_data);
3009         printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
3010         sdram_reg = SDRAM_MB3CF;
3011         mfsdram(sdram_reg, sdram_data);
3012         printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
3013         sdram_reg = SDRAM_INITPLR0;
3014         mfsdram(sdram_reg, sdram_data);
3015         printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
3016         sdram_reg = SDRAM_INITPLR1;
3017         mfsdram(sdram_reg, sdram_data);
3018         printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
3019         sdram_reg = SDRAM_INITPLR2;
3020         mfsdram(sdram_reg, sdram_data);
3021         printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
3022         sdram_reg = SDRAM_INITPLR3;
3023         mfsdram(sdram_reg, sdram_data);
3024         printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
3025         sdram_reg = SDRAM_INITPLR4;
3026         mfsdram(sdram_reg, sdram_data);
3027         printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
3028         sdram_reg = SDRAM_INITPLR5;
3029         mfsdram(sdram_reg, sdram_data);
3030         printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
3031         sdram_reg = SDRAM_INITPLR6;
3032         mfsdram(sdram_reg, sdram_data);
3033         printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
3034         sdram_reg = SDRAM_INITPLR7;
3035         mfsdram(sdram_reg, sdram_data);
3036         printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
3037         sdram_reg = SDRAM_INITPLR8;
3038         mfsdram(sdram_reg, sdram_data);
3039         printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
3040         sdram_reg = SDRAM_INITPLR9;
3041         mfsdram(sdram_reg, sdram_data);
3042         printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
3043         sdram_reg = SDRAM_INITPLR10;
3044         mfsdram(sdram_reg, sdram_data);
3045         printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
3046         sdram_reg = SDRAM_INITPLR11;
3047         mfsdram(sdram_reg, sdram_data);
3048         printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
3049         sdram_reg = SDRAM_INITPLR12;
3050         mfsdram(sdram_reg, sdram_data);
3051         printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
3052         sdram_reg = SDRAM_INITPLR13;
3053         mfsdram(sdram_reg, sdram_data);
3054         printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
3055         sdram_reg = SDRAM_INITPLR14;
3056         mfsdram(sdram_reg, sdram_data);
3057         printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
3058         sdram_reg = SDRAM_INITPLR15;
3059         mfsdram(sdram_reg, sdram_data);
3060         printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
3061         sdram_reg = SDRAM_RQDC;
3062         mfsdram(sdram_reg, sdram_data);
3063         printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
3064         sdram_reg = SDRAM_RFDC;
3065         mfsdram(sdram_reg, sdram_data);
3066         printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
3067         sdram_reg = SDRAM_RDCC;
3068         mfsdram(sdram_reg, sdram_data);
3069         printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
3070         sdram_reg = SDRAM_DLCR;
3071         mfsdram(sdram_reg, sdram_data);
3072         printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
3073         sdram_reg = SDRAM_CLKTR;
3074         mfsdram(sdram_reg, sdram_data);
3075         printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
3076         sdram_reg = SDRAM_WRDTR;
3077         mfsdram(sdram_reg, sdram_data);
3078         printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
3079         sdram_reg = SDRAM_SDTR1;
3080         mfsdram(sdram_reg, sdram_data);
3081         printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
3082         sdram_reg = SDRAM_SDTR2;
3083         mfsdram(sdram_reg, sdram_data);
3084         printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
3085         sdram_reg = SDRAM_SDTR3;
3086         mfsdram(sdram_reg, sdram_data);
3087         printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
3088         sdram_reg = SDRAM_MMODE;
3089         mfsdram(sdram_reg, sdram_data);
3090         printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
3091         sdram_reg = SDRAM_MEMODE;
3092         mfsdram(sdram_reg, sdram_data);
3093         printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
3094         sdram_reg = SDRAM_ECCCR;
3095         mfsdram(sdram_reg, sdram_data);
3096         printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
3097
3098         dcr_data = mfdcr(SDRAM_R0BAS);
3099         printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
3100         dcr_data = mfdcr(SDRAM_R1BAS);
3101         printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
3102         dcr_data = mfdcr(SDRAM_R2BAS);
3103         printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
3104         dcr_data = mfdcr(SDRAM_R3BAS);
3105         printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
3106 }
3107 #else /* !defined(DEBUG) */
3108 static void ppc440sp_sdram_register_dump(void)
3109 {
3110 }
3111 #endif /* defined(DEBUG) */
3112 #elif defined(CONFIG_405EX)
3113 /*-----------------------------------------------------------------------------
3114  * Function:    initdram
3115  * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
3116  *              banks. The configuration is performed using static, compile-
3117  *              time parameters.
3118  *---------------------------------------------------------------------------*/
3119 phys_size_t initdram(int board_type)
3120 {
3121         /*
3122          * Only run this SDRAM init code once. For NAND booting
3123          * targets like Kilauea, we call initdram() early from the
3124          * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
3125          * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
3126          * which calls initdram() again. This time the controller
3127          * mustn't be reconfigured again since we're already running
3128          * from SDRAM.
3129          */
3130 #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
3131         unsigned long val;
3132
3133         /* Set Memory Bank Configuration Registers */
3134
3135         mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
3136         mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
3137         mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
3138         mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
3139
3140         /* Set Memory Clock Timing Register */
3141
3142         mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
3143
3144         /* Set Refresh Time Register */
3145
3146         mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
3147
3148         /* Set SDRAM Timing Registers */
3149
3150         mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
3151         mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
3152         mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
3153
3154         /* Set Mode and Extended Mode Registers */
3155
3156         mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
3157         mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
3158
3159         /* Set Memory Controller Options 1 Register */
3160
3161         mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
3162
3163         /* Set Manual Initialization Control Registers */
3164
3165         mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
3166         mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
3167         mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
3168         mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
3169         mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
3170         mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
3171         mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
3172         mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
3173         mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
3174         mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
3175         mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
3176         mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
3177         mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
3178         mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
3179         mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
3180         mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
3181
3182         /* Set On-Die Termination Registers */
3183
3184         mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
3185         mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
3186         mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
3187
3188         /* Set Write Timing Register */
3189
3190         mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
3191
3192         /*
3193          * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
3194          * SDRAM0_MCOPT2[IPTR] = 1
3195          */
3196
3197         mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
3198                                SDRAM_MCOPT2_IPTR_EXECUTE));
3199
3200         /*
3201          * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
3202          * completion of initialization.
3203          */
3204
3205         do {
3206                 mfsdram(SDRAM_MCSTAT, val);
3207         } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
3208
3209         /* Set Delay Control Registers */
3210
3211         mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
3212         mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
3213         mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
3214         mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
3215
3216         /*
3217          * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
3218          */
3219
3220         mfsdram(SDRAM_MCOPT2, val);
3221         mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
3222
3223 #if defined(CONFIG_DDR_ECC)
3224         ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
3225 #endif /* defined(CONFIG_DDR_ECC) */
3226 #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
3227
3228         return (CFG_MBYTES_SDRAM << 20);
3229 }
3230 #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */