]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up of delay_for_n_mem_clocks() part 1
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84         uint32_t substage)
85 {
86         /*
87          * Only set the global stage if there was not been any other
88          * failing group
89          */
90         if (gbl->error_stage == CAL_STAGE_NIL)  {
91                 gbl->error_substage = substage;
92                 gbl->error_stage = stage;
93                 gbl->error_group = group;
94         }
95 }
96
97 static void reg_file_set_group(u16 set_group)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101
102 static void reg_file_set_stage(u8 set_stage)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109         set_sub_stage &= 0xff;
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120         u32 ratio;
121
122         debug("%s:%d\n", __func__, __LINE__);
123         /* Calibration has control over path to memory */
124         /*
125          * In Hard PHY this is a 2-bit control:
126          * 0: AFI Mux Select
127          * 1: DDIO Mux Select
128          */
129         writel(0x3, &phy_mgr_cfg->mux_sel);
130
131         /* USER memory clock is not stable we begin initialization  */
132         writel(0, &phy_mgr_cfg->reset_mem_stbl);
133
134         /* USER calibration status all set to zero */
135         writel(0, &phy_mgr_cfg->cal_status);
136
137         writel(0, &phy_mgr_cfg->cal_debug_info);
138
139         /* Init params only if we do NOT skip calibration. */
140         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141                 return;
142
143         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145         param->read_correct_mask_vg = (1 << ratio) - 1;
146         param->write_correct_mask_vg = (1 << ratio) - 1;
147         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149         ratio = RW_MGR_MEM_DATA_WIDTH /
150                 RW_MGR_MEM_DATA_MASK_WIDTH;
151         param->dm_correct_mask = (1 << ratio) - 1;
152 }
153
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:       Rank mask
157  * @odt_mode:   ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163         u32 odt_mask_0 = 0;
164         u32 odt_mask_1 = 0;
165         u32 cs_and_odt_mask;
166
167         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168                 odt_mask_0 = 0x0;
169                 odt_mask_1 = 0x0;
170         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
171                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172                 case 1: /* 1 Rank */
173                         /* Read: ODT = 0 ; Write: ODT = 1 */
174                         odt_mask_0 = 0x0;
175                         odt_mask_1 = 0x1;
176                         break;
177                 case 2: /* 2 Ranks */
178                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179                                 /*
180                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
181                                  *   OR
182                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183                                  *
184                                  * Since MEM_NUMBER_OF_RANKS is 2, they
185                                  * are both single rank with 2 CS each
186                                  * (special for RDIMM).
187                                  *
188                                  * Read: Turn on ODT on the opposite rank
189                                  * Write: Turn on ODT on all ranks
190                                  */
191                                 odt_mask_0 = 0x3 & ~(1 << rank);
192                                 odt_mask_1 = 0x3;
193                         } else {
194                                 /*
195                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
196                                  *
197                                  * Read: Turn on ODT off on all ranks
198                                  * Write: Turn on ODT on active rank
199                                  */
200                                 odt_mask_0 = 0x0;
201                                 odt_mask_1 = 0x3 & (1 << rank);
202                         }
203                         break;
204                 case 4: /* 4 Ranks */
205                         /* Read:
206                          * ----------+-----------------------+
207                          *           |         ODT           |
208                          * Read From +-----------------------+
209                          *   Rank    |  3  |  2  |  1  |  0  |
210                          * ----------+-----+-----+-----+-----+
211                          *     0     |  0  |  1  |  0  |  0  |
212                          *     1     |  1  |  0  |  0  |  0  |
213                          *     2     |  0  |  0  |  0  |  1  |
214                          *     3     |  0  |  0  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *
217                          * Write:
218                          * ----------+-----------------------+
219                          *           |         ODT           |
220                          * Write To  +-----------------------+
221                          *   Rank    |  3  |  2  |  1  |  0  |
222                          * ----------+-----+-----+-----+-----+
223                          *     0     |  0  |  1  |  0  |  1  |
224                          *     1     |  1  |  0  |  1  |  0  |
225                          *     2     |  0  |  1  |  0  |  1  |
226                          *     3     |  1  |  0  |  1  |  0  |
227                          * ----------+-----+-----+-----+-----+
228                          */
229                         switch (rank) {
230                         case 0:
231                                 odt_mask_0 = 0x4;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 1:
235                                 odt_mask_0 = 0x8;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 odt_mask_1 = 0x5;
241                                 break;
242                         case 3:
243                                 odt_mask_0 = 0x2;
244                                 odt_mask_1 = 0xA;
245                                 break;
246                         }
247                         break;
248                 }
249         }
250
251         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252                           ((0xFF & odt_mask_0) << 8) |
253                           ((0xFF & odt_mask_1) << 16);
254         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:        Base offset in SCC Manager space
261  * @grp:        Read/Write group
262  * @val:        Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278         /*
279          * Clear register file for HPS. 16 (2^4) is the size of the
280          * full register file in the scc mgr:
281          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282          *                             MEM_IF_READ_DQS_WIDTH - 1);
283          */
284         int i;
285
286         for (i = 0; i < 16; i++) {
287                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288                            __func__, __LINE__, i);
289                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290         }
291 }
292
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316                     delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407                                                      uint32_t phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422                                                uint32_t delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434         writel(0, &sdr_scc_mgr->update);
435 }
436
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:        Write group
440  * @delay:              Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448         const int base = write_group * ratio;
449         int i;
450         /*
451          * Load the setting in the SCC manager
452          * Although OCT affects only write data, the OCT delay is controlled
453          * by the DQS logic block which is instantiated once per read group.
454          * For protocols where a write group consists of multiple read groups,
455          * the setting must be set multiple times.
456          */
457         for (i = 0; i < ratio; i++)
458                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468         /*
469          * Load the fixed setting in the SCC manager
470          * bits: 0:0 = 1'b1     - DQS bypass
471          * bits: 1:1 = 1'b1     - DQ bypass
472          * bits: 4:2 = 3'b001   - rfifo_mode
473          * bits: 6:5 = 2'b01    - rfifo clock_select
474          * bits: 7:7 = 1'b0     - separate gating from ungating setting
475          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
476          */
477         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478                           (1 << 2) | (1 << 1) | (1 << 0);
479         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480                          SCC_MGR_HHP_GLOBALS_OFFSET |
481                          SCC_MGR_HHP_EXTRAS_OFFSET;
482
483         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484                    __func__, __LINE__);
485         writel(value, addr);
486         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487                    __func__, __LINE__);
488 }
489
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497         int i, r;
498
499         /*
500          * USER Zero all DQS config settings, across all groups and all
501          * shadow registers
502          */
503         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504              r += NUM_RANKS_PER_SHADOW_REG) {
505                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506                         /*
507                          * The phases actually don't exist on a per-rank basis,
508                          * but there's no harm updating them several times, so
509                          * let's keep the code simple.
510                          */
511                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512                         scc_mgr_set_dqs_en_phase(i, 0);
513                         scc_mgr_set_dqs_en_delay(i, 0);
514                 }
515
516                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517                         scc_mgr_set_dqdqs_output_phase(i, 0);
518                         /* Arria V/Cyclone V don't have out2. */
519                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520                 }
521         }
522
523         /* Multicast to all DQS group enables. */
524         writel(0xff, &sdr_scc_mgr->dqs_ena);
525         writel(0, &sdr_scc_mgr->update);
526 }
527
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:        Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536         /* Multicast to all DQ enables. */
537         writel(0xff, &sdr_scc_mgr->dq_ena);
538         writel(0xff, &sdr_scc_mgr->dm_ena);
539
540         /* Update current DQS IO enable. */
541         writel(0, &sdr_scc_mgr->dqs_io_ena);
542
543         /* Update the DQS logic. */
544         writel(write_group, &sdr_scc_mgr->dqs_ena);
545
546         /* Hit update. */
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:        Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560         const int base = write_group * ratio;
561         int i;
562         /*
563          * Load the setting in the SCC manager
564          * Although OCT affects only write data, the OCT delay is controlled
565          * by the DQS logic block which is instantiated once per read group.
566          * For protocols where a write group consists of multiple read groups,
567          * the setting must be set multiple times.
568          */
569         for (i = 0; i < ratio; i++)
570                 writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580         int i, r;
581
582         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583              r += NUM_RANKS_PER_SHADOW_REG) {
584                 /* Zero all DQ config settings. */
585                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586                         scc_mgr_set_dq_out1_delay(i, 0);
587                         if (!out_only)
588                                 scc_mgr_set_dq_in_delay(i, 0);
589                 }
590
591                 /* Multicast to all DQ enables. */
592                 writel(0xff, &sdr_scc_mgr->dq_ena);
593
594                 /* Zero all DM config settings. */
595                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596                         scc_mgr_set_dm_out1_delay(i, 0);
597
598                 /* Multicast to all DM enables. */
599                 writel(0xff, &sdr_scc_mgr->dm_ena);
600
601                 /* Zero all DQS IO settings. */
602                 if (!out_only)
603                         scc_mgr_set_dqs_io_in_delay(0);
604
605                 /* Arria V/Cyclone V don't have out2. */
606                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608                 scc_mgr_load_dqs_for_write_group(write_group);
609
610                 /* Multicast to all DQS IO enables (only 1 in total). */
611                 writel(0, &sdr_scc_mgr->dqs_io_ena);
612
613                 /* Hit update to zero everything. */
614                 writel(0, &sdr_scc_mgr->update);
615         }
616 }
617
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:              Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640         int i;
641
642         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643                 scc_mgr_set_dq_out1_delay(i, delay);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651         uint32_t i;
652
653         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654                 scc_mgr_set_dm_out1_delay(i, delay1);
655                 scc_mgr_load_dm(i);
656         }
657 }
658
659
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662                                                     uint32_t delay)
663 {
664         scc_mgr_set_dqs_out1_delay(delay);
665         scc_mgr_load_dqs_io();
666
667         scc_mgr_set_oct_out1_delay(write_group, delay);
668         scc_mgr_load_dqs_for_write_group(write_group);
669 }
670
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:        Write group
674  * @delay:              Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679                                                   const u32 delay)
680 {
681         u32 i, new_delay;
682
683         /* DQ shift */
684         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685                 scc_mgr_load_dq(i);
686
687         /* DM shift */
688         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689                 scc_mgr_load_dm(i);
690
691         /* DQS shift */
692         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694                 debug_cond(DLEVEL == 1,
695                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696                            __func__, __LINE__, write_group, delay, new_delay,
697                            IO_IO_OUT2_DELAY_MAX,
698                            new_delay - IO_IO_OUT2_DELAY_MAX);
699                 new_delay -= IO_IO_OUT2_DELAY_MAX;
700                 scc_mgr_set_dqs_out1_delay(new_delay);
701         }
702
703         scc_mgr_load_dqs_io();
704
705         /* OCT shift */
706         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708                 debug_cond(DLEVEL == 1,
709                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710                            __func__, __LINE__, write_group, delay,
711                            new_delay, IO_IO_OUT2_DELAY_MAX,
712                            new_delay - IO_IO_OUT2_DELAY_MAX);
713                 new_delay -= IO_IO_OUT2_DELAY_MAX;
714                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
715         }
716
717         scc_mgr_load_dqs_for_write_group(write_group);
718 }
719
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:        Write group
723  * @delay:              Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729                                                 const u32 delay)
730 {
731         int r;
732
733         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734              r += NUM_RANKS_PER_SHADOW_REG) {
735                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736                 writel(0, &sdr_scc_mgr->update);
737         }
738 }
739
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748         /*
749          * To save space, we replace return with jump to special shared
750          * RETURN instruction so we set the counter to large value so that
751          * we always jump.
752          */
753         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const u32 clocks)
762 {
763         u32 afi_clocks;
764         u16 c_loop = 0;
765         u8 inner = 0;
766         u8 outer = 0;
767
768         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769
770         /* scale (rounding up) to get afi clocks */
771         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
772
773         /*
774          * Note, we don't bother accounting for being off a little
775          * bit because of a few extra instructions in outer loops.
776          * Note, the loops have a test at the end, and do the test
777          * before the decrement, and so always perform the loop
778          * 1 time more than the counter value
779          */
780         if (afi_clocks == 0) {
781                 ;
782         } else if (afi_clocks <= 0x100) {
783                 inner = afi_clocks - 1;
784                 outer = 0;
785                 c_loop = 0;
786         } else if (afi_clocks <= 0x10000) {
787                 inner = 0xff;
788                 outer = (afi_clocks - 1) >> 8;
789                 c_loop = 0;
790         } else {
791                 inner = 0xff;
792                 outer = 0xff;
793                 c_loop = (afi_clocks - 1) >> 16;
794         }
795
796         /*
797          * rom instructions are structured as follows:
798          *
799          *    IDLE_LOOP2: jnz cntr0, TARGET_A
800          *    IDLE_LOOP1: jnz cntr1, TARGET_B
801          *                return
802          *
803          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
804          * TARGET_B is set to IDLE_LOOP2 as well
805          *
806          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
807          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
808          *
809          * a little confusing, but it helps save precious space in the inst_rom
810          * and sequencer rom and keeps the delays more accurate and reduces
811          * overhead
812          */
813         if (afi_clocks <= 0x100) {
814                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
815                         &sdr_rw_load_mgr_regs->load_cntr1);
816
817                 writel(RW_MGR_IDLE_LOOP1,
818                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
819
820                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
821                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
822         } else {
823                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
824                         &sdr_rw_load_mgr_regs->load_cntr0);
825
826                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
827                         &sdr_rw_load_mgr_regs->load_cntr1);
828
829                 writel(RW_MGR_IDLE_LOOP2,
830                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
831
832                 writel(RW_MGR_IDLE_LOOP2,
833                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
834
835                 /* hack to get around compiler not being smart enough */
836                 if (afi_clocks <= 0x10000) {
837                         /* only need to run once */
838                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
839                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
840                 } else {
841                         do {
842                                 writel(RW_MGR_IDLE_LOOP2,
843                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                         } while (c_loop-- != 0);
846                 }
847         }
848         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
849 }
850
851 /**
852  * rw_mgr_mem_init_load_regs() - Load instruction registers
853  * @cntr0:      Counter 0 value
854  * @cntr1:      Counter 1 value
855  * @cntr2:      Counter 2 value
856  * @jump:       Jump instruction value
857  *
858  * Load instruction registers.
859  */
860 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
861 {
862         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
863                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
864
865         /* Load counters */
866         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
867                &sdr_rw_load_mgr_regs->load_cntr0);
868         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
869                &sdr_rw_load_mgr_regs->load_cntr1);
870         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
871                &sdr_rw_load_mgr_regs->load_cntr2);
872
873         /* Load jump address */
874         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
875         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
876         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
877
878         /* Execute count instruction */
879         writel(jump, grpaddr);
880 }
881
882 /**
883  * rw_mgr_mem_load_user() - Load user calibration values
884  * @fin1:       Final instruction 1
885  * @fin2:       Final instruction 2
886  * @precharge:  If 1, precharge the banks at the end
887  *
888  * Load user calibration values and optionally precharge the banks.
889  */
890 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
891                                  const int precharge)
892 {
893         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
894                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
895         u32 r;
896
897         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
898                 if (param->skip_ranks[r]) {
899                         /* request to skip the rank */
900                         continue;
901                 }
902
903                 /* set rank */
904                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
905
906                 /* precharge all banks ... */
907                 if (precharge)
908                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
909
910                 /*
911                  * USER Use Mirror-ed commands for odd ranks if address
912                  * mirrorring is on
913                  */
914                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
915                         set_jump_as_return();
916                         writel(RW_MGR_MRS2_MIRR, grpaddr);
917                         delay_for_n_mem_clocks(4);
918                         set_jump_as_return();
919                         writel(RW_MGR_MRS3_MIRR, grpaddr);
920                         delay_for_n_mem_clocks(4);
921                         set_jump_as_return();
922                         writel(RW_MGR_MRS1_MIRR, grpaddr);
923                         delay_for_n_mem_clocks(4);
924                         set_jump_as_return();
925                         writel(fin1, grpaddr);
926                 } else {
927                         set_jump_as_return();
928                         writel(RW_MGR_MRS2, grpaddr);
929                         delay_for_n_mem_clocks(4);
930                         set_jump_as_return();
931                         writel(RW_MGR_MRS3, grpaddr);
932                         delay_for_n_mem_clocks(4);
933                         set_jump_as_return();
934                         writel(RW_MGR_MRS1, grpaddr);
935                         set_jump_as_return();
936                         writel(fin2, grpaddr);
937                 }
938
939                 if (precharge)
940                         continue;
941
942                 set_jump_as_return();
943                 writel(RW_MGR_ZQCL, grpaddr);
944
945                 /* tZQinit = tDLLK = 512 ck cycles */
946                 delay_for_n_mem_clocks(512);
947         }
948 }
949
950 /**
951  * rw_mgr_mem_initialize() - Initialize RW Manager
952  *
953  * Initialize RW Manager.
954  */
955 static void rw_mgr_mem_initialize(void)
956 {
957         debug("%s:%d\n", __func__, __LINE__);
958
959         /* The reset / cke part of initialization is broadcasted to all ranks */
960         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
961                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
962
963         /*
964          * Here's how you load register for a loop
965          * Counters are located @ 0x800
966          * Jump address are located @ 0xC00
967          * For both, registers 0 to 3 are selected using bits 3 and 2, like
968          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
969          * I know this ain't pretty, but Avalon bus throws away the 2 least
970          * significant bits
971          */
972
973         /* Start with memory RESET activated */
974
975         /* tINIT = 200us */
976
977         /*
978          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
979          * If a and b are the number of iteration in 2 nested loops
980          * it takes the following number of cycles to complete the operation:
981          * number_of_cycles = ((2 + n) * a + 2) * b
982          * where n is the number of instruction in the inner loop
983          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
984          * b = 6A
985          */
986         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
987                                   SEQ_TINIT_CNTR2_VAL,
988                                   RW_MGR_INIT_RESET_0_CKE_0);
989
990         /* Indicate that memory is stable. */
991         writel(1, &phy_mgr_cfg->reset_mem_stbl);
992
993         /*
994          * transition the RESET to high
995          * Wait for 500us
996          */
997
998         /*
999          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1000          * If a and b are the number of iteration in 2 nested loops
1001          * it takes the following number of cycles to complete the operation
1002          * number_of_cycles = ((2 + n) * a + 2) * b
1003          * where n is the number of instruction in the inner loop
1004          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1005          * b = FF
1006          */
1007         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1008                                   SEQ_TRESET_CNTR2_VAL,
1009                                   RW_MGR_INIT_RESET_1_CKE_0);
1010
1011         /* Bring up clock enable. */
1012
1013         /* tXRP < 250 ck cycles */
1014         delay_for_n_mem_clocks(250);
1015
1016         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1017                              0);
1018 }
1019
1020 /**
1021  * rw_mgr_mem_handoff() - Hand off the memory to user
1022  *
1023  * At the end of calibration we have to program the user settings in
1024  * and hand off the memory to the user.
1025  */
1026 static void rw_mgr_mem_handoff(void)
1027 {
1028         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1029         /*
1030          * Need to wait tMOD (12CK or 15ns) time before issuing other
1031          * commands, but we will have plenty of NIOS cycles before actual
1032          * handoff so its okay.
1033          */
1034 }
1035
1036 /**
1037  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1038  * @group:      Write Group
1039  * @use_dm:     Use DM
1040  *
1041  * Issue write test command. Two variants are provided, one that just tests
1042  * a write pattern and another that tests datamask functionality.
1043  */
1044 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1045                                                   u32 test_dm)
1046 {
1047         const u32 quick_write_mode =
1048                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1049                 ENABLE_SUPER_QUICK_CALIBRATION;
1050         u32 mcc_instruction;
1051         u32 rw_wl_nop_cycles;
1052
1053         /*
1054          * Set counter and jump addresses for the right
1055          * number of NOP cycles.
1056          * The number of supported NOP cycles can range from -1 to infinity
1057          * Three different cases are handled:
1058          *
1059          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1060          *    mechanism will be used to insert the right number of NOPs
1061          *
1062          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1063          *    issuing the write command will jump straight to the
1064          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1065          *    data (for RLD), skipping
1066          *    the NOP micro-instruction all together
1067          *
1068          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1069          *    turned on in the same micro-instruction that issues the write
1070          *    command. Then we need
1071          *    to directly jump to the micro-instruction that sends out the data
1072          *
1073          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1074          *       (2 and 3). One jump-counter (0) is used to perform multiple
1075          *       write-read operations.
1076          *       one counter left to issue this command in "multiple-group" mode
1077          */
1078
1079         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1080
1081         if (rw_wl_nop_cycles == -1) {
1082                 /*
1083                  * CNTR 2 - We want to execute the special write operation that
1084                  * turns on DQS right away and then skip directly to the
1085                  * instruction that sends out the data. We set the counter to a
1086                  * large number so that the jump is always taken.
1087                  */
1088                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1089
1090                 /* CNTR 3 - Not used */
1091                 if (test_dm) {
1092                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1093                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1094                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1095                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1096                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1097                 } else {
1098                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1099                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1100                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1101                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1102                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1103                 }
1104         } else if (rw_wl_nop_cycles == 0) {
1105                 /*
1106                  * CNTR 2 - We want to skip the NOP operation and go straight
1107                  * to the DQS enable instruction. We set the counter to a large
1108                  * number so that the jump is always taken.
1109                  */
1110                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1111
1112                 /* CNTR 3 - Not used */
1113                 if (test_dm) {
1114                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1115                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1116                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1117                 } else {
1118                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1119                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1120                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1121                 }
1122         } else {
1123                 /*
1124                  * CNTR 2 - In this case we want to execute the next instruction
1125                  * and NOT take the jump. So we set the counter to 0. The jump
1126                  * address doesn't count.
1127                  */
1128                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1129                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1130
1131                 /*
1132                  * CNTR 3 - Set the nop counter to the number of cycles we
1133                  * need to loop for, minus 1.
1134                  */
1135                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1136                 if (test_dm) {
1137                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1138                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1139                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1140                 } else {
1141                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1142                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1143                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1144                 }
1145         }
1146
1147         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1148                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1149
1150         if (quick_write_mode)
1151                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1152         else
1153                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1154
1155         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1156
1157         /*
1158          * CNTR 1 - This is used to ensure enough time elapses
1159          * for read data to come back.
1160          */
1161         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1162
1163         if (test_dm) {
1164                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1165                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1166         } else {
1167                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1168                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1169         }
1170
1171         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1172                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1173                                 (group << 2));
1174 }
1175
1176 /**
1177  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1178  * @rank_bgn:           Rank number
1179  * @write_group:        Write Group
1180  * @use_dm:             Use DM
1181  * @all_correct:        All bits must be correct in the mask
1182  * @bit_chk:            Resulting bit mask after the test
1183  * @all_ranks:          Test all ranks
1184  *
1185  * Test writes, can check for a single bit pass or multiple bit pass.
1186  */
1187 static int
1188 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1189                                 const u32 use_dm, const u32 all_correct,
1190                                 u32 *bit_chk, const u32 all_ranks)
1191 {
1192         const u32 rank_end = all_ranks ?
1193                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1194                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1195         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1196                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1197         const u32 correct_mask_vg = param->write_correct_mask_vg;
1198
1199         u32 tmp_bit_chk, base_rw_mgr;
1200         int vg, r;
1201
1202         *bit_chk = param->write_correct_mask;
1203
1204         for (r = rank_bgn; r < rank_end; r++) {
1205                 /* Request to skip the rank */
1206                 if (param->skip_ranks[r])
1207                         continue;
1208
1209                 /* Set rank */
1210                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1211
1212                 tmp_bit_chk = 0;
1213                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1214                      vg >= 0; vg--) {
1215                         /* Reset the FIFOs to get pointers to known state. */
1216                         writel(0, &phy_mgr_cmd->fifo_reset);
1217
1218                         rw_mgr_mem_calibrate_write_test_issue(
1219                                 write_group *
1220                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1221                                 use_dm);
1222
1223                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1224                         tmp_bit_chk <<= shift_ratio;
1225                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1226                 }
1227
1228                 *bit_chk &= tmp_bit_chk;
1229         }
1230
1231         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1232         if (all_correct) {
1233                 debug_cond(DLEVEL == 2,
1234                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1235                            write_group, use_dm, *bit_chk,
1236                            param->write_correct_mask,
1237                            *bit_chk == param->write_correct_mask);
1238                 return *bit_chk == param->write_correct_mask;
1239         } else {
1240                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1241                 debug_cond(DLEVEL == 2,
1242                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1243                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1244                 return *bit_chk != 0x00;
1245         }
1246 }
1247
1248 /**
1249  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1250  * @rank_bgn:   Rank number
1251  * @group:      Read/Write Group
1252  * @all_ranks:  Test all ranks
1253  *
1254  * Performs a guaranteed read on the patterns we are going to use during a
1255  * read test to ensure memory works.
1256  */
1257 static int
1258 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1259                                         const u32 all_ranks)
1260 {
1261         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1262                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1263         const u32 addr_offset =
1264                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1265         const u32 rank_end = all_ranks ?
1266                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1267                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1268         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1269                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1270         const u32 correct_mask_vg = param->read_correct_mask_vg;
1271
1272         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1273         int vg, r;
1274         int ret = 0;
1275
1276         bit_chk = param->read_correct_mask;
1277
1278         for (r = rank_bgn; r < rank_end; r++) {
1279                 /* Request to skip the rank */
1280                 if (param->skip_ranks[r])
1281                         continue;
1282
1283                 /* Set rank */
1284                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1285
1286                 /* Load up a constant bursts of read commands */
1287                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1288                 writel(RW_MGR_GUARANTEED_READ,
1289                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1290
1291                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1292                 writel(RW_MGR_GUARANTEED_READ_CONT,
1293                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1294
1295                 tmp_bit_chk = 0;
1296                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1297                      vg >= 0; vg--) {
1298                         /* Reset the FIFOs to get pointers to known state. */
1299                         writel(0, &phy_mgr_cmd->fifo_reset);
1300                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1301                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1302                         writel(RW_MGR_GUARANTEED_READ,
1303                                addr + addr_offset + (vg << 2));
1304
1305                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1306                         tmp_bit_chk <<= shift_ratio;
1307                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1308                 }
1309
1310                 bit_chk &= tmp_bit_chk;
1311         }
1312
1313         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1314
1315         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1316
1317         if (bit_chk != param->read_correct_mask)
1318                 ret = -EIO;
1319
1320         debug_cond(DLEVEL == 1,
1321                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1322                    __func__, __LINE__, group, bit_chk,
1323                    param->read_correct_mask, ret);
1324
1325         return ret;
1326 }
1327
1328 /**
1329  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1330  * @rank_bgn:   Rank number
1331  * @all_ranks:  Test all ranks
1332  *
1333  * Load up the patterns we are going to use during a read test.
1334  */
1335 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1336                                                     const int all_ranks)
1337 {
1338         const u32 rank_end = all_ranks ?
1339                         RW_MGR_MEM_NUMBER_OF_RANKS :
1340                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1341         u32 r;
1342
1343         debug("%s:%d\n", __func__, __LINE__);
1344
1345         for (r = rank_bgn; r < rank_end; r++) {
1346                 if (param->skip_ranks[r])
1347                         /* request to skip the rank */
1348                         continue;
1349
1350                 /* set rank */
1351                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1352
1353                 /* Load up a constant bursts */
1354                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1355
1356                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1357                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1358
1359                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1360
1361                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1362                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1363
1364                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1365
1366                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1367                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1368
1369                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1370
1371                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1372                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1373
1374                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1375                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1376         }
1377
1378         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1379 }
1380
1381 /**
1382  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1383  * @rank_bgn:           Rank number
1384  * @group:              Read/Write group
1385  * @num_tries:          Number of retries of the test
1386  * @all_correct:        All bits must be correct in the mask
1387  * @bit_chk:            Resulting bit mask after the test
1388  * @all_groups:         Test all R/W groups
1389  * @all_ranks:          Test all ranks
1390  *
1391  * Try a read and see if it returns correct data back. Test has dummy reads
1392  * inserted into the mix used to align DQS enable. Test has more thorough
1393  * checks than the regular read test.
1394  */
1395 static int
1396 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1397                                const u32 num_tries, const u32 all_correct,
1398                                u32 *bit_chk,
1399                                const u32 all_groups, const u32 all_ranks)
1400 {
1401         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1402                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1403         const u32 quick_read_mode =
1404                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1405                  ENABLE_SUPER_QUICK_CALIBRATION);
1406         u32 correct_mask_vg = param->read_correct_mask_vg;
1407         u32 tmp_bit_chk;
1408         u32 base_rw_mgr;
1409         u32 addr;
1410
1411         int r, vg, ret;
1412
1413         *bit_chk = param->read_correct_mask;
1414
1415         for (r = rank_bgn; r < rank_end; r++) {
1416                 if (param->skip_ranks[r])
1417                         /* request to skip the rank */
1418                         continue;
1419
1420                 /* set rank */
1421                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1422
1423                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1424
1425                 writel(RW_MGR_READ_B2B_WAIT1,
1426                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1427
1428                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1429                 writel(RW_MGR_READ_B2B_WAIT2,
1430                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1431
1432                 if (quick_read_mode)
1433                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1434                         /* need at least two (1+1) reads to capture failures */
1435                 else if (all_groups)
1436                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1437                 else
1438                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1439
1440                 writel(RW_MGR_READ_B2B,
1441                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1442                 if (all_groups)
1443                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1444                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1445                                &sdr_rw_load_mgr_regs->load_cntr3);
1446                 else
1447                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1448
1449                 writel(RW_MGR_READ_B2B,
1450                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1451
1452                 tmp_bit_chk = 0;
1453                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1454                      vg--) {
1455                         /* Reset the FIFOs to get pointers to known state. */
1456                         writel(0, &phy_mgr_cmd->fifo_reset);
1457                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1458                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1459
1460                         if (all_groups) {
1461                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1462                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1463                         } else {
1464                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1465                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1466                         }
1467
1468                         writel(RW_MGR_READ_B2B, addr +
1469                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1470                                vg) << 2));
1471
1472                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1473                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1474                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1475                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1476                 }
1477
1478                 *bit_chk &= tmp_bit_chk;
1479         }
1480
1481         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1482         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1483
1484         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1485
1486         if (all_correct) {
1487                 ret = (*bit_chk == param->read_correct_mask);
1488                 debug_cond(DLEVEL == 2,
1489                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1490                            __func__, __LINE__, group, all_groups, *bit_chk,
1491                            param->read_correct_mask, ret);
1492         } else  {
1493                 ret = (*bit_chk != 0x00);
1494                 debug_cond(DLEVEL == 2,
1495                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1496                            __func__, __LINE__, group, all_groups, *bit_chk,
1497                            0, ret);
1498         }
1499
1500         return ret;
1501 }
1502
1503 /**
1504  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1505  * @grp:                Read/Write group
1506  * @num_tries:          Number of retries of the test
1507  * @all_correct:        All bits must be correct in the mask
1508  * @all_groups:         Test all R/W groups
1509  *
1510  * Perform a READ test across all memory ranks.
1511  */
1512 static int
1513 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1514                                          const u32 all_correct,
1515                                          const u32 all_groups)
1516 {
1517         u32 bit_chk;
1518         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1519                                               &bit_chk, all_groups, 1);
1520 }
1521
1522 /**
1523  * rw_mgr_incr_vfifo() - Increase VFIFO value
1524  * @grp:        Read/Write group
1525  *
1526  * Increase VFIFO value.
1527  */
1528 static void rw_mgr_incr_vfifo(const u32 grp)
1529 {
1530         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1531 }
1532
1533 /**
1534  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1535  * @grp:        Read/Write group
1536  *
1537  * Decrease VFIFO value.
1538  */
1539 static void rw_mgr_decr_vfifo(const u32 grp)
1540 {
1541         u32 i;
1542
1543         for (i = 0; i < VFIFO_SIZE - 1; i++)
1544                 rw_mgr_incr_vfifo(grp);
1545 }
1546
1547 /**
1548  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1549  * @grp:        Read/Write group
1550  *
1551  * Push VFIFO until a failing read happens.
1552  */
1553 static int find_vfifo_failing_read(const u32 grp)
1554 {
1555         u32 v, ret, fail_cnt = 0;
1556
1557         for (v = 0; v < VFIFO_SIZE; v++) {
1558                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1559                            __func__, __LINE__, v);
1560                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1561                                                 PASS_ONE_BIT, 0);
1562                 if (!ret) {
1563                         fail_cnt++;
1564
1565                         if (fail_cnt == 2)
1566                                 return v;
1567                 }
1568
1569                 /* Fiddle with FIFO. */
1570                 rw_mgr_incr_vfifo(grp);
1571         }
1572
1573         /* No failing read found! Something must have gone wrong. */
1574         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1575         return 0;
1576 }
1577
1578 /**
1579  * sdr_find_phase_delay() - Find DQS enable phase or delay
1580  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1581  * @delay:      If 1, look for delay, if 0, look for phase
1582  * @grp:        Read/Write group
1583  * @work:       Working window position
1584  * @work_inc:   Working window increment
1585  * @pd:         DQS Phase/Delay Iterator
1586  *
1587  * Find working or non-working DQS enable phase setting.
1588  */
1589 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1590                                 u32 *work, const u32 work_inc, u32 *pd)
1591 {
1592         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1593         u32 ret;
1594
1595         for (; *pd <= max; (*pd)++) {
1596                 if (delay)
1597                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1598                 else
1599                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1600
1601                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1602                                         PASS_ONE_BIT, 0);
1603                 if (!working)
1604                         ret = !ret;
1605
1606                 if (ret)
1607                         return 0;
1608
1609                 if (work)
1610                         *work += work_inc;
1611         }
1612
1613         return -EINVAL;
1614 }
1615 /**
1616  * sdr_find_phase() - Find DQS enable phase
1617  * @working:    If 1, look for working phase, if 0, look for non-working phase
1618  * @grp:        Read/Write group
1619  * @work:       Working window position
1620  * @i:          Iterator
1621  * @p:          DQS Phase Iterator
1622  *
1623  * Find working or non-working DQS enable phase setting.
1624  */
1625 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1626                           u32 *i, u32 *p)
1627 {
1628         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1629         int ret;
1630
1631         for (; *i < end; (*i)++) {
1632                 if (working)
1633                         *p = 0;
1634
1635                 ret = sdr_find_phase_delay(working, 0, grp, work,
1636                                            IO_DELAY_PER_OPA_TAP, p);
1637                 if (!ret)
1638                         return 0;
1639
1640                 if (*p > IO_DQS_EN_PHASE_MAX) {
1641                         /* Fiddle with FIFO. */
1642                         rw_mgr_incr_vfifo(grp);
1643                         if (!working)
1644                                 *p = 0;
1645                 }
1646         }
1647
1648         return -EINVAL;
1649 }
1650
1651 /**
1652  * sdr_working_phase() - Find working DQS enable phase
1653  * @grp:        Read/Write group
1654  * @work_bgn:   Working window start position
1655  * @d:          dtaps output value
1656  * @p:          DQS Phase Iterator
1657  * @i:          Iterator
1658  *
1659  * Find working DQS enable phase setting.
1660  */
1661 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1662                              u32 *p, u32 *i)
1663 {
1664         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1665                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1666         int ret;
1667
1668         *work_bgn = 0;
1669
1670         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1671                 *i = 0;
1672                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1673                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1674                 if (!ret)
1675                         return 0;
1676                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1677         }
1678
1679         /* Cannot find working solution */
1680         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1681                    __func__, __LINE__);
1682         return -EINVAL;
1683 }
1684
1685 /**
1686  * sdr_backup_phase() - Find DQS enable backup phase
1687  * @grp:        Read/Write group
1688  * @work_bgn:   Working window start position
1689  * @p:          DQS Phase Iterator
1690  *
1691  * Find DQS enable backup phase setting.
1692  */
1693 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1694 {
1695         u32 tmp_delay, d;
1696         int ret;
1697
1698         /* Special case code for backing up a phase */
1699         if (*p == 0) {
1700                 *p = IO_DQS_EN_PHASE_MAX;
1701                 rw_mgr_decr_vfifo(grp);
1702         } else {
1703                 (*p)--;
1704         }
1705         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1706         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1707
1708         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1709                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1710
1711                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1712                                         PASS_ONE_BIT, 0);
1713                 if (ret) {
1714                         *work_bgn = tmp_delay;
1715                         break;
1716                 }
1717
1718                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1719         }
1720
1721         /* Restore VFIFO to old state before we decremented it (if needed). */
1722         (*p)++;
1723         if (*p > IO_DQS_EN_PHASE_MAX) {
1724                 *p = 0;
1725                 rw_mgr_incr_vfifo(grp);
1726         }
1727
1728         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1729 }
1730
1731 /**
1732  * sdr_nonworking_phase() - Find non-working DQS enable phase
1733  * @grp:        Read/Write group
1734  * @work_end:   Working window end position
1735  * @p:          DQS Phase Iterator
1736  * @i:          Iterator
1737  *
1738  * Find non-working DQS enable phase setting.
1739  */
1740 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1741 {
1742         int ret;
1743
1744         (*p)++;
1745         *work_end += IO_DELAY_PER_OPA_TAP;
1746         if (*p > IO_DQS_EN_PHASE_MAX) {
1747                 /* Fiddle with FIFO. */
1748                 *p = 0;
1749                 rw_mgr_incr_vfifo(grp);
1750         }
1751
1752         ret = sdr_find_phase(0, grp, work_end, i, p);
1753         if (ret) {
1754                 /* Cannot see edge of failing read. */
1755                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1756                            __func__, __LINE__);
1757         }
1758
1759         return ret;
1760 }
1761
1762 /**
1763  * sdr_find_window_center() - Find center of the working DQS window.
1764  * @grp:        Read/Write group
1765  * @work_bgn:   First working settings
1766  * @work_end:   Last working settings
1767  *
1768  * Find center of the working DQS enable window.
1769  */
1770 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1771                                   const u32 work_end)
1772 {
1773         u32 work_mid;
1774         int tmp_delay = 0;
1775         int i, p, d;
1776
1777         work_mid = (work_bgn + work_end) / 2;
1778
1779         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1780                    work_bgn, work_end, work_mid);
1781         /* Get the middle delay to be less than a VFIFO delay */
1782         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1783
1784         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1785         work_mid %= tmp_delay;
1786         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1787
1788         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1789         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1790                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1791         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1792
1793         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1794
1795         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1796         if (d > IO_DQS_EN_DELAY_MAX)
1797                 d = IO_DQS_EN_DELAY_MAX;
1798         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1799
1800         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1801
1802         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1803         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1804
1805         /*
1806          * push vfifo until we can successfully calibrate. We can do this
1807          * because the largest possible margin in 1 VFIFO cycle.
1808          */
1809         for (i = 0; i < VFIFO_SIZE; i++) {
1810                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1811                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1812                                                              PASS_ONE_BIT,
1813                                                              0)) {
1814                         debug_cond(DLEVEL == 2,
1815                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1816                                    __func__, __LINE__, p, d);
1817                         return 0;
1818                 }
1819
1820                 /* Fiddle with FIFO. */
1821                 rw_mgr_incr_vfifo(grp);
1822         }
1823
1824         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1825                    __func__, __LINE__);
1826         return -EINVAL;
1827 }
1828
1829 /**
1830  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1831  * @grp:        Read/Write Group
1832  *
1833  * Find a good DQS enable to use.
1834  */
1835 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1836 {
1837         u32 d, p, i;
1838         u32 dtaps_per_ptap;
1839         u32 work_bgn, work_end;
1840         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1841         int ret;
1842
1843         debug("%s:%d %u\n", __func__, __LINE__, grp);
1844
1845         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1846
1847         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1848         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1849
1850         /* Step 0: Determine number of delay taps for each phase tap. */
1851         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1852
1853         /* Step 1: First push vfifo until we get a failing read. */
1854         find_vfifo_failing_read(grp);
1855
1856         /* Step 2: Find first working phase, increment in ptaps. */
1857         work_bgn = 0;
1858         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1859         if (ret)
1860                 return ret;
1861
1862         work_end = work_bgn;
1863
1864         /*
1865          * If d is 0 then the working window covers a phase tap and we can
1866          * follow the old procedure. Otherwise, we've found the beginning
1867          * and we need to increment the dtaps until we find the end.
1868          */
1869         if (d == 0) {
1870                 /*
1871                  * Step 3a: If we have room, back off by one and
1872                  *          increment in dtaps.
1873                  */
1874                 sdr_backup_phase(grp, &work_bgn, &p);
1875
1876                 /*
1877                  * Step 4a: go forward from working phase to non working
1878                  * phase, increment in ptaps.
1879                  */
1880                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1881                 if (ret)
1882                         return ret;
1883
1884                 /* Step 5a: Back off one from last, increment in dtaps. */
1885
1886                 /* Special case code for backing up a phase */
1887                 if (p == 0) {
1888                         p = IO_DQS_EN_PHASE_MAX;
1889                         rw_mgr_decr_vfifo(grp);
1890                 } else {
1891                         p = p - 1;
1892                 }
1893
1894                 work_end -= IO_DELAY_PER_OPA_TAP;
1895                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1896
1897                 d = 0;
1898
1899                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1900                            __func__, __LINE__, p);
1901         }
1902
1903         /* The dtap increment to find the failing edge is done here. */
1904         sdr_find_phase_delay(0, 1, grp, &work_end,
1905                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1906
1907         /* Go back to working dtap */
1908         if (d != 0)
1909                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1910
1911         debug_cond(DLEVEL == 2,
1912                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1913                    __func__, __LINE__, p, d - 1, work_end);
1914
1915         if (work_end < work_bgn) {
1916                 /* nil range */
1917                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1918                            __func__, __LINE__);
1919                 return -EINVAL;
1920         }
1921
1922         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1923                    __func__, __LINE__, work_bgn, work_end);
1924
1925         /*
1926          * We need to calculate the number of dtaps that equal a ptap.
1927          * To do that we'll back up a ptap and re-find the edge of the
1928          * window using dtaps
1929          */
1930         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1931                    __func__, __LINE__);
1932
1933         /* Special case code for backing up a phase */
1934         if (p == 0) {
1935                 p = IO_DQS_EN_PHASE_MAX;
1936                 rw_mgr_decr_vfifo(grp);
1937                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1938                            __func__, __LINE__, p);
1939         } else {
1940                 p = p - 1;
1941                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1942                            __func__, __LINE__, p);
1943         }
1944
1945         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1946
1947         /*
1948          * Increase dtap until we first see a passing read (in case the
1949          * window is smaller than a ptap), and then a failing read to
1950          * mark the edge of the window again.
1951          */
1952
1953         /* Find a passing read. */
1954         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1955                    __func__, __LINE__);
1956
1957         initial_failing_dtap = d;
1958
1959         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1960         if (found_passing_read) {
1961                 /* Find a failing read. */
1962                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1963                            __func__, __LINE__);
1964                 d++;
1965                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1966                                                            &d);
1967         } else {
1968                 debug_cond(DLEVEL == 1,
1969                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1970                            __func__, __LINE__);
1971         }
1972
1973         /*
1974          * The dynamically calculated dtaps_per_ptap is only valid if we
1975          * found a passing/failing read. If we didn't, it means d hit the max
1976          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1977          * statically calculated value.
1978          */
1979         if (found_passing_read && found_failing_read)
1980                 dtaps_per_ptap = d - initial_failing_dtap;
1981
1982         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1983         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1984                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1985
1986         /* Step 6: Find the centre of the window. */
1987         ret = sdr_find_window_center(grp, work_bgn, work_end);
1988
1989         return ret;
1990 }
1991
1992 /**
1993  * search_stop_check() - Check if the detected edge is valid
1994  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1995  * @d:                  DQS delay
1996  * @rank_bgn:           Rank number
1997  * @write_group:        Write Group
1998  * @read_group:         Read Group
1999  * @bit_chk:            Resulting bit mask after the test
2000  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2001  * @use_read_test:      Perform read test
2002  *
2003  * Test if the found edge is valid.
2004  */
2005 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
2006                              const u32 write_group, const u32 read_group,
2007                              u32 *bit_chk, u32 *sticky_bit_chk,
2008                              const u32 use_read_test)
2009 {
2010         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2011                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2012         const u32 correct_mask = write ? param->write_correct_mask :
2013                                          param->read_correct_mask;
2014         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2015                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2016         u32 ret;
2017         /*
2018          * Stop searching when the read test doesn't pass AND when
2019          * we've seen a passing read on every bit.
2020          */
2021         if (write) {                    /* WRITE-ONLY */
2022                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2023                                                          0, PASS_ONE_BIT,
2024                                                          bit_chk, 0);
2025         } else if (use_read_test) {     /* READ-ONLY */
2026                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2027                                                         NUM_READ_PB_TESTS,
2028                                                         PASS_ONE_BIT, bit_chk,
2029                                                         0, 0);
2030         } else {                        /* READ-ONLY */
2031                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2032                                                 PASS_ONE_BIT, bit_chk, 0);
2033                 *bit_chk = *bit_chk >> (per_dqs *
2034                         (read_group - (write_group * ratio)));
2035                 ret = (*bit_chk == 0);
2036         }
2037         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2038         ret = ret && (*sticky_bit_chk == correct_mask);
2039         debug_cond(DLEVEL == 2,
2040                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2041                    __func__, __LINE__, d,
2042                    *sticky_bit_chk, correct_mask, ret);
2043         return ret;
2044 }
2045
2046 /**
2047  * search_left_edge() - Find left edge of DQ/DQS working phase
2048  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2049  * @rank_bgn:           Rank number
2050  * @write_group:        Write Group
2051  * @read_group:         Read Group
2052  * @test_bgn:           Rank number to begin the test
2053  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2054  * @left_edge:          Left edge of the DQ/DQS phase
2055  * @right_edge:         Right edge of the DQ/DQS phase
2056  * @use_read_test:      Perform read test
2057  *
2058  * Find left edge of DQ/DQS working phase.
2059  */
2060 static void search_left_edge(const int write, const int rank_bgn,
2061         const u32 write_group, const u32 read_group, const u32 test_bgn,
2062         u32 *sticky_bit_chk,
2063         int *left_edge, int *right_edge, const u32 use_read_test)
2064 {
2065         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2066         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2067         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2068                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2069         u32 stop, bit_chk;
2070         int i, d;
2071
2072         for (d = 0; d <= dqs_max; d++) {
2073                 if (write)
2074                         scc_mgr_apply_group_dq_out1_delay(d);
2075                 else
2076                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2077
2078                 writel(0, &sdr_scc_mgr->update);
2079
2080                 stop = search_stop_check(write, d, rank_bgn, write_group,
2081                                          read_group, &bit_chk, sticky_bit_chk,
2082                                          use_read_test);
2083                 if (stop == 1)
2084                         break;
2085
2086                 /* stop != 1 */
2087                 for (i = 0; i < per_dqs; i++) {
2088                         if (bit_chk & 1) {
2089                                 /*
2090                                  * Remember a passing test as
2091                                  * the left_edge.
2092                                  */
2093                                 left_edge[i] = d;
2094                         } else {
2095                                 /*
2096                                  * If a left edge has not been seen
2097                                  * yet, then a future passing test
2098                                  * will mark this edge as the right
2099                                  * edge.
2100                                  */
2101                                 if (left_edge[i] == delay_max + 1)
2102                                         right_edge[i] = -(d + 1);
2103                         }
2104                         bit_chk >>= 1;
2105                 }
2106         }
2107
2108         /* Reset DQ delay chains to 0 */
2109         if (write)
2110                 scc_mgr_apply_group_dq_out1_delay(0);
2111         else
2112                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2113
2114         *sticky_bit_chk = 0;
2115         for (i = per_dqs - 1; i >= 0; i--) {
2116                 debug_cond(DLEVEL == 2,
2117                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2118                            __func__, __LINE__, i, left_edge[i],
2119                            i, right_edge[i]);
2120
2121                 /*
2122                  * Check for cases where we haven't found the left edge,
2123                  * which makes our assignment of the the right edge invalid.
2124                  * Reset it to the illegal value.
2125                  */
2126                 if ((left_edge[i] == delay_max + 1) &&
2127                     (right_edge[i] != delay_max + 1)) {
2128                         right_edge[i] = delay_max + 1;
2129                         debug_cond(DLEVEL == 2,
2130                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2131                                    __func__, __LINE__, i, right_edge[i]);
2132                 }
2133
2134                 /*
2135                  * Reset sticky bit
2136                  * READ: except for bits where we have seen both
2137                  *       the left and right edge.
2138                  * WRITE: except for bits where we have seen the
2139                  *        left edge.
2140                  */
2141                 *sticky_bit_chk <<= 1;
2142                 if (write) {
2143                         if (left_edge[i] != delay_max + 1)
2144                                 *sticky_bit_chk |= 1;
2145                 } else {
2146                         if ((left_edge[i] != delay_max + 1) &&
2147                             (right_edge[i] != delay_max + 1))
2148                                 *sticky_bit_chk |= 1;
2149                 }
2150         }
2151
2152
2153 }
2154
2155 /**
2156  * search_right_edge() - Find right edge of DQ/DQS working phase
2157  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2158  * @rank_bgn:           Rank number
2159  * @write_group:        Write Group
2160  * @read_group:         Read Group
2161  * @start_dqs:          DQS start phase
2162  * @start_dqs_en:       DQS enable start phase
2163  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2164  * @left_edge:          Left edge of the DQ/DQS phase
2165  * @right_edge:         Right edge of the DQ/DQS phase
2166  * @use_read_test:      Perform read test
2167  *
2168  * Find right edge of DQ/DQS working phase.
2169  */
2170 static int search_right_edge(const int write, const int rank_bgn,
2171         const u32 write_group, const u32 read_group,
2172         const int start_dqs, const int start_dqs_en,
2173         u32 *sticky_bit_chk,
2174         int *left_edge, int *right_edge, const u32 use_read_test)
2175 {
2176         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2177         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2178         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2179                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2180         u32 stop, bit_chk;
2181         int i, d;
2182
2183         for (d = 0; d <= dqs_max - start_dqs; d++) {
2184                 if (write) {    /* WRITE-ONLY */
2185                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2186                                                                 d + start_dqs);
2187                 } else {        /* READ-ONLY */
2188                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2189                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2190                                 uint32_t delay = d + start_dqs_en;
2191                                 if (delay > IO_DQS_EN_DELAY_MAX)
2192                                         delay = IO_DQS_EN_DELAY_MAX;
2193                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2194                         }
2195                         scc_mgr_load_dqs(read_group);
2196                 }
2197
2198                 writel(0, &sdr_scc_mgr->update);
2199
2200                 stop = search_stop_check(write, d, rank_bgn, write_group,
2201                                          read_group, &bit_chk, sticky_bit_chk,
2202                                          use_read_test);
2203                 if (stop == 1) {
2204                         if (write && (d == 0)) {        /* WRITE-ONLY */
2205                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2206                                         /*
2207                                          * d = 0 failed, but it passed when
2208                                          * testing the left edge, so it must be
2209                                          * marginal, set it to -1
2210                                          */
2211                                         if (right_edge[i] == delay_max + 1 &&
2212                                             left_edge[i] != delay_max + 1)
2213                                                 right_edge[i] = -1;
2214                                 }
2215                         }
2216                         break;
2217                 }
2218
2219                 /* stop != 1 */
2220                 for (i = 0; i < per_dqs; i++) {
2221                         if (bit_chk & 1) {
2222                                 /*
2223                                  * Remember a passing test as
2224                                  * the right_edge.
2225                                  */
2226                                 right_edge[i] = d;
2227                         } else {
2228                                 if (d != 0) {
2229                                         /*
2230                                          * If a right edge has not
2231                                          * been seen yet, then a future
2232                                          * passing test will mark this
2233                                          * edge as the left edge.
2234                                          */
2235                                         if (right_edge[i] == delay_max + 1)
2236                                                 left_edge[i] = -(d + 1);
2237                                 } else {
2238                                         /*
2239                                          * d = 0 failed, but it passed
2240                                          * when testing the left edge,
2241                                          * so it must be marginal, set
2242                                          * it to -1
2243                                          */
2244                                         if (right_edge[i] == delay_max + 1 &&
2245                                             left_edge[i] != delay_max + 1)
2246                                                 right_edge[i] = -1;
2247                                         /*
2248                                          * If a right edge has not been
2249                                          * seen yet, then a future
2250                                          * passing test will mark this
2251                                          * edge as the left edge.
2252                                          */
2253                                         else if (right_edge[i] == delay_max + 1)
2254                                                 left_edge[i] = -(d + 1);
2255                                 }
2256                         }
2257
2258                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2259                                    __func__, __LINE__, d);
2260                         debug_cond(DLEVEL == 2,
2261                                    "bit_chk_test=%i left_edge[%u]: %d ",
2262                                    bit_chk & 1, i, left_edge[i]);
2263                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2264                                    right_edge[i]);
2265                         bit_chk >>= 1;
2266                 }
2267         }
2268
2269         /* Check that all bits have a window */
2270         for (i = 0; i < per_dqs; i++) {
2271                 debug_cond(DLEVEL == 2,
2272                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2273                            __func__, __LINE__, i, left_edge[i],
2274                            i, right_edge[i]);
2275                 if ((left_edge[i] == dqs_max + 1) ||
2276                     (right_edge[i] == dqs_max + 1))
2277                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2278         }
2279
2280         return 0;
2281 }
2282
2283 /**
2284  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2285  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2286  * @left_edge:          Left edge of the DQ/DQS phase
2287  * @right_edge:         Right edge of the DQ/DQS phase
2288  * @mid_min:            Best DQ/DQS phase middle setting
2289  *
2290  * Find index and value of the middle of the DQ/DQS working phase.
2291  */
2292 static int get_window_mid_index(const int write, int *left_edge,
2293                                 int *right_edge, int *mid_min)
2294 {
2295         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2296                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2297         int i, mid, min_index;
2298
2299         /* Find middle of window for each DQ bit */
2300         *mid_min = left_edge[0] - right_edge[0];
2301         min_index = 0;
2302         for (i = 1; i < per_dqs; i++) {
2303                 mid = left_edge[i] - right_edge[i];
2304                 if (mid < *mid_min) {
2305                         *mid_min = mid;
2306                         min_index = i;
2307                 }
2308         }
2309
2310         /*
2311          * -mid_min/2 represents the amount that we need to move DQS.
2312          * If mid_min is odd and positive we'll need to add one to make
2313          * sure the rounding in further calculations is correct (always
2314          * bias to the right), so just add 1 for all positive values.
2315          */
2316         if (*mid_min > 0)
2317                 (*mid_min)++;
2318         *mid_min = *mid_min / 2;
2319
2320         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2321                    __func__, __LINE__, *mid_min, min_index);
2322         return min_index;
2323 }
2324
2325 /**
2326  * center_dq_windows() - Center the DQ/DQS windows
2327  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2328  * @left_edge:          Left edge of the DQ/DQS phase
2329  * @right_edge:         Right edge of the DQ/DQS phase
2330  * @mid_min:            Adjusted DQ/DQS phase middle setting
2331  * @orig_mid_min:       Original DQ/DQS phase middle setting
2332  * @min_index:          DQ/DQS phase middle setting index
2333  * @test_bgn:           Rank number to begin the test
2334  * @dq_margin:          Amount of shift for the DQ
2335  * @dqs_margin:         Amount of shift for the DQS
2336  *
2337  * Align the DQ/DQS windows in each group.
2338  */
2339 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2340                               const int mid_min, const int orig_mid_min,
2341                               const int min_index, const int test_bgn,
2342                               int *dq_margin, int *dqs_margin)
2343 {
2344         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2345         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2346                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2347         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2348                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2349         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2350
2351         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2352         int shift_dq, i, p;
2353
2354         /* Initialize data for export structures */
2355         *dqs_margin = delay_max + 1;
2356         *dq_margin  = delay_max + 1;
2357
2358         /* add delay to bring centre of all DQ windows to the same "level" */
2359         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2360                 /* Use values before divide by 2 to reduce round off error */
2361                 shift_dq = (left_edge[i] - right_edge[i] -
2362                         (left_edge[min_index] - right_edge[min_index]))/2  +
2363                         (orig_mid_min - mid_min);
2364
2365                 debug_cond(DLEVEL == 2,
2366                            "vfifo_center: before: shift_dq[%u]=%d\n",
2367                            i, shift_dq);
2368
2369                 temp_dq_io_delay1 = readl(addr + (p << 2));
2370                 temp_dq_io_delay2 = readl(addr + (i << 2));
2371
2372                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2373                         shift_dq = delay_max - temp_dq_io_delay2;
2374                 else if (shift_dq + temp_dq_io_delay1 < 0)
2375                         shift_dq = -temp_dq_io_delay1;
2376
2377                 debug_cond(DLEVEL == 2,
2378                            "vfifo_center: after: shift_dq[%u]=%d\n",
2379                            i, shift_dq);
2380
2381                 if (write)
2382                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2383                 else
2384                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2385
2386                 scc_mgr_load_dq(p);
2387
2388                 debug_cond(DLEVEL == 2,
2389                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2390                            left_edge[i] - shift_dq + (-mid_min),
2391                            right_edge[i] + shift_dq - (-mid_min));
2392
2393                 /* To determine values for export structures */
2394                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2395                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2396
2397                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2398                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2399         }
2400
2401 }
2402
2403 /**
2404  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2405  * @rank_bgn:           Rank number
2406  * @rw_group:           Read/Write Group
2407  * @test_bgn:           Rank at which the test begins
2408  * @use_read_test:      Perform a read test
2409  * @update_fom:         Update FOM
2410  *
2411  * Per-bit deskew DQ and centering.
2412  */
2413 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2414                         const u32 rw_group, const u32 test_bgn,
2415                         const int use_read_test, const int update_fom)
2416 {
2417         const u32 addr =
2418                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2419                 (rw_group << 2);
2420         /*
2421          * Store these as signed since there are comparisons with
2422          * signed numbers.
2423          */
2424         uint32_t sticky_bit_chk;
2425         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2426         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2427         int32_t orig_mid_min, mid_min;
2428         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2429         int32_t dq_margin, dqs_margin;
2430         int i, min_index;
2431         int ret;
2432
2433         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2434
2435         start_dqs = readl(addr);
2436         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2437                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2438
2439         /* set the left and right edge of each bit to an illegal value */
2440         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2441         sticky_bit_chk = 0;
2442         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2443                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2444                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2445         }
2446
2447         /* Search for the left edge of the window for each bit */
2448         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2449                          &sticky_bit_chk,
2450                          left_edge, right_edge, use_read_test);
2451
2452
2453         /* Search for the right edge of the window for each bit */
2454         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2455                                 start_dqs, start_dqs_en,
2456                                 &sticky_bit_chk,
2457                                 left_edge, right_edge, use_read_test);
2458         if (ret) {
2459                 /*
2460                  * Restore delay chain settings before letting the loop
2461                  * in rw_mgr_mem_calibrate_vfifo to retry different
2462                  * dqs/ck relationships.
2463                  */
2464                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2465                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2466                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2467
2468                 scc_mgr_load_dqs(rw_group);
2469                 writel(0, &sdr_scc_mgr->update);
2470
2471                 debug_cond(DLEVEL == 1,
2472                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2473                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2474                 if (use_read_test) {
2475                         set_failing_group_stage(rw_group *
2476                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2477                                 CAL_STAGE_VFIFO,
2478                                 CAL_SUBSTAGE_VFIFO_CENTER);
2479                 } else {
2480                         set_failing_group_stage(rw_group *
2481                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2482                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2483                                 CAL_SUBSTAGE_VFIFO_CENTER);
2484                 }
2485                 return -EIO;
2486         }
2487
2488         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2489
2490         /* Determine the amount we can change DQS (which is -mid_min) */
2491         orig_mid_min = mid_min;
2492         new_dqs = start_dqs - mid_min;
2493         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2494                 new_dqs = IO_DQS_IN_DELAY_MAX;
2495         else if (new_dqs < 0)
2496                 new_dqs = 0;
2497
2498         mid_min = start_dqs - new_dqs;
2499         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2500                    mid_min, new_dqs);
2501
2502         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2503                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2504                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2505                 else if (start_dqs_en - mid_min < 0)
2506                         mid_min += start_dqs_en - mid_min;
2507         }
2508         new_dqs = start_dqs - mid_min;
2509
2510         debug_cond(DLEVEL == 1,
2511                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2512                    start_dqs,
2513                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2514                    new_dqs, mid_min);
2515
2516         /* Add delay to bring centre of all DQ windows to the same "level". */
2517         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2518                           min_index, test_bgn, &dq_margin, &dqs_margin);
2519
2520         /* Move DQS-en */
2521         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2522                 final_dqs_en = start_dqs_en - mid_min;
2523                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2524                 scc_mgr_load_dqs(rw_group);
2525         }
2526
2527         /* Move DQS */
2528         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2529         scc_mgr_load_dqs(rw_group);
2530         debug_cond(DLEVEL == 2,
2531                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2532                    __func__, __LINE__, dq_margin, dqs_margin);
2533
2534         /*
2535          * Do not remove this line as it makes sure all of our decisions
2536          * have been applied. Apply the update bit.
2537          */
2538         writel(0, &sdr_scc_mgr->update);
2539
2540         if ((dq_margin < 0) || (dqs_margin < 0))
2541                 return -EINVAL;
2542
2543         return 0;
2544 }
2545
2546 /**
2547  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2548  * @rw_group:   Read/Write Group
2549  * @phase:      DQ/DQS phase
2550  *
2551  * Because initially no communication ca be reliably performed with the memory
2552  * device, the sequencer uses a guaranteed write mechanism to write data into
2553  * the memory device.
2554  */
2555 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2556                                                  const u32 phase)
2557 {
2558         int ret;
2559
2560         /* Set a particular DQ/DQS phase. */
2561         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2562
2563         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2564                    __func__, __LINE__, rw_group, phase);
2565
2566         /*
2567          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2568          * Load up the patterns used by read calibration using the
2569          * current DQDQS phase.
2570          */
2571         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2572
2573         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2574                 return 0;
2575
2576         /*
2577          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2578          * Back-to-Back reads of the patterns used for calibration.
2579          */
2580         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2581         if (ret)
2582                 debug_cond(DLEVEL == 1,
2583                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2584                            __func__, __LINE__, rw_group, phase);
2585         return ret;
2586 }
2587
2588 /**
2589  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2590  * @rw_group:   Read/Write Group
2591  * @test_bgn:   Rank at which the test begins
2592  *
2593  * DQS enable calibration ensures reliable capture of the DQ signal without
2594  * glitches on the DQS line.
2595  */
2596 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2597                                                        const u32 test_bgn)
2598 {
2599         /*
2600          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2601          * DQS and DQS Eanble Signal Relationships.
2602          */
2603
2604         /* We start at zero, so have one less dq to devide among */
2605         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2606                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2607         int ret;
2608         u32 i, p, d, r;
2609
2610         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2611
2612         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2613         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2614              r += NUM_RANKS_PER_SHADOW_REG) {
2615                 for (i = 0, p = test_bgn, d = 0;
2616                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2617                      i++, p++, d += delay_step) {
2618                         debug_cond(DLEVEL == 1,
2619                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2620                                    __func__, __LINE__, rw_group, r, i, p, d);
2621
2622                         scc_mgr_set_dq_in_delay(p, d);
2623                         scc_mgr_load_dq(p);
2624                 }
2625
2626                 writel(0, &sdr_scc_mgr->update);
2627         }
2628
2629         /*
2630          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2631          * dq_in_delay values
2632          */
2633         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2634
2635         debug_cond(DLEVEL == 1,
2636                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2637                    __func__, __LINE__, rw_group, !ret);
2638
2639         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2640              r += NUM_RANKS_PER_SHADOW_REG) {
2641                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2642                 writel(0, &sdr_scc_mgr->update);
2643         }
2644
2645         return ret;
2646 }
2647
2648 /**
2649  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2650  * @rw_group:           Read/Write Group
2651  * @test_bgn:           Rank at which the test begins
2652  * @use_read_test:      Perform a read test
2653  * @update_fom:         Update FOM
2654  *
2655  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2656  * within a group.
2657  */
2658 static int
2659 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2660                                       const int use_read_test,
2661                                       const int update_fom)
2662
2663 {
2664         int ret, grp_calibrated;
2665         u32 rank_bgn, sr;
2666
2667         /*
2668          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2669          * Read per-bit deskew can be done on a per shadow register basis.
2670          */
2671         grp_calibrated = 1;
2672         for (rank_bgn = 0, sr = 0;
2673              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2674              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2675                 /* Check if this set of ranks should be skipped entirely. */
2676                 if (param->skip_shadow_regs[sr])
2677                         continue;
2678
2679                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2680                                                         test_bgn,
2681                                                         use_read_test,
2682                                                         update_fom);
2683                 if (!ret)
2684                         continue;
2685
2686                 grp_calibrated = 0;
2687         }
2688
2689         if (!grp_calibrated)
2690                 return -EIO;
2691
2692         return 0;
2693 }
2694
2695 /**
2696  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2697  * @rw_group:           Read/Write Group
2698  * @test_bgn:           Rank at which the test begins
2699  *
2700  * Stage 1: Calibrate the read valid prediction FIFO.
2701  *
2702  * This function implements UniPHY calibration Stage 1, as explained in
2703  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2704  *
2705  * - read valid prediction will consist of finding:
2706  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2707  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2708  *  - we also do a per-bit deskew on the DQ lines.
2709  */
2710 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2711 {
2712         uint32_t p, d;
2713         uint32_t dtaps_per_ptap;
2714         uint32_t failed_substage;
2715
2716         int ret;
2717
2718         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2719
2720         /* Update info for sims */
2721         reg_file_set_group(rw_group);
2722         reg_file_set_stage(CAL_STAGE_VFIFO);
2723         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2724
2725         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2726
2727         /* USER Determine number of delay taps for each phase tap. */
2728         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2729                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2730
2731         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2732                 /*
2733                  * In RLDRAMX we may be messing the delay of pins in
2734                  * the same write rw_group but outside of the current read
2735                  * the rw_group, but that's ok because we haven't calibrated
2736                  * output side yet.
2737                  */
2738                 if (d > 0) {
2739                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2740                                                                 rw_group, d);
2741                 }
2742
2743                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2744                         /* 1) Guaranteed Write */
2745                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2746                         if (ret)
2747                                 break;
2748
2749                         /* 2) DQS Enable Calibration */
2750                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2751                                                                           test_bgn);
2752                         if (ret) {
2753                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2754                                 continue;
2755                         }
2756
2757                         /* 3) Centering DQ/DQS */
2758                         /*
2759                          * If doing read after write calibration, do not update
2760                          * FOM now. Do it then.
2761                          */
2762                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2763                                                                 test_bgn, 1, 0);
2764                         if (ret) {
2765                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2766                                 continue;
2767                         }
2768
2769                         /* All done. */
2770                         goto cal_done_ok;
2771                 }
2772         }
2773
2774         /* Calibration Stage 1 failed. */
2775         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2776         return 0;
2777
2778         /* Calibration Stage 1 completed OK. */
2779 cal_done_ok:
2780         /*
2781          * Reset the delay chains back to zero if they have moved > 1
2782          * (check for > 1 because loop will increase d even when pass in
2783          * first case).
2784          */
2785         if (d > 2)
2786                 scc_mgr_zero_group(rw_group, 1);
2787
2788         return 1;
2789 }
2790
2791 /**
2792  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2793  * @rw_group:           Read/Write Group
2794  * @test_bgn:           Rank at which the test begins
2795  *
2796  * Stage 3: DQ/DQS Centering.
2797  *
2798  * This function implements UniPHY calibration Stage 3, as explained in
2799  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800  */
2801 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2802                                           const u32 test_bgn)
2803 {
2804         int ret;
2805
2806         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2807
2808         /* Update info for sims. */
2809         reg_file_set_group(rw_group);
2810         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2811         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2812
2813         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2814         if (ret)
2815                 set_failing_group_stage(rw_group,
2816                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2817                                         CAL_SUBSTAGE_VFIFO_CENTER);
2818         return ret;
2819 }
2820
2821 /**
2822  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2823  *
2824  * Stage 4: Minimize latency.
2825  *
2826  * This function implements UniPHY calibration Stage 4, as explained in
2827  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2828  * Calibrate LFIFO to find smallest read latency.
2829  */
2830 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2831 {
2832         int found_one = 0;
2833
2834         debug("%s:%d\n", __func__, __LINE__);
2835
2836         /* Update info for sims. */
2837         reg_file_set_stage(CAL_STAGE_LFIFO);
2838         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2839
2840         /* Load up the patterns used by read calibration for all ranks */
2841         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2842
2843         do {
2844                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2845                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2846                            __func__, __LINE__, gbl->curr_read_lat);
2847
2848                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2849                                                               PASS_ALL_BITS, 1))
2850                         break;
2851
2852                 found_one = 1;
2853                 /*
2854                  * Reduce read latency and see if things are
2855                  * working correctly.
2856                  */
2857                 gbl->curr_read_lat--;
2858         } while (gbl->curr_read_lat > 0);
2859
2860         /* Reset the fifos to get pointers to known state. */
2861         writel(0, &phy_mgr_cmd->fifo_reset);
2862
2863         if (found_one) {
2864                 /* Add a fudge factor to the read latency that was determined */
2865                 gbl->curr_read_lat += 2;
2866                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2867                 debug_cond(DLEVEL == 2,
2868                            "%s:%d lfifo: success: using read_lat=%u\n",
2869                            __func__, __LINE__, gbl->curr_read_lat);
2870         } else {
2871                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2872                                         CAL_SUBSTAGE_READ_LATENCY);
2873
2874                 debug_cond(DLEVEL == 2,
2875                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2876                            __func__, __LINE__, gbl->curr_read_lat);
2877         }
2878
2879         return found_one;
2880 }
2881
2882 /**
2883  * search_window() - Search for the/part of the window with DM/DQS shift
2884  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2885  * @rank_bgn:           Rank number
2886  * @write_group:        Write Group
2887  * @bgn_curr:           Current window begin
2888  * @end_curr:           Current window end
2889  * @bgn_best:           Current best window begin
2890  * @end_best:           Current best window end
2891  * @win_best:           Size of the best window
2892  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2893  *
2894  * Search for the/part of the window with DM/DQS shift.
2895  */
2896 static void search_window(const int search_dm,
2897                           const u32 rank_bgn, const u32 write_group,
2898                           int *bgn_curr, int *end_curr, int *bgn_best,
2899                           int *end_best, int *win_best, int new_dqs)
2900 {
2901         u32 bit_chk;
2902         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2903         int d, di;
2904
2905         /* Search for the/part of the window with DM/DQS shift. */
2906         for (di = max; di >= 0; di -= DELTA_D) {
2907                 if (search_dm) {
2908                         d = di;
2909                         scc_mgr_apply_group_dm_out1_delay(d);
2910                 } else {
2911                         /* For DQS, we go from 0...max */
2912                         d = max - di;
2913                         /*
2914                          * Note: This only shifts DQS, so are we limiting ourselve to
2915                          * width of DQ unnecessarily.
2916                          */
2917                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2918                                                                 d + new_dqs);
2919                 }
2920
2921                 writel(0, &sdr_scc_mgr->update);
2922
2923                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2924                                                     PASS_ALL_BITS, &bit_chk,
2925                                                     0)) {
2926                         /* Set current end of the window. */
2927                         *end_curr = search_dm ? -d : d;
2928
2929                         /*
2930                          * If a starting edge of our window has not been seen
2931                          * this is our current start of the DM window.
2932                          */
2933                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2934                                 *bgn_curr = search_dm ? -d : d;
2935
2936                         /*
2937                          * If current window is bigger than best seen.
2938                          * Set best seen to be current window.
2939                          */
2940                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2941                                 *win_best = *end_curr - *bgn_curr + 1;
2942                                 *bgn_best = *bgn_curr;
2943                                 *end_best = *end_curr;
2944                         }
2945                 } else {
2946                         /* We just saw a failing test. Reset temp edge. */
2947                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2948                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949
2950                         /* Early exit is only applicable to DQS. */
2951                         if (search_dm)
2952                                 continue;
2953
2954                         /*
2955                          * Early exit optimization: if the remaining delay
2956                          * chain space is less than already seen largest
2957                          * window we can exit.
2958                          */
2959                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2960                                 break;
2961                 }
2962         }
2963 }
2964
2965 /*
2966  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2967  * @rank_bgn:           Rank number
2968  * @write_group:        Write group
2969  * @test_bgn:           Rank at which the test begins
2970  *
2971  * Center all windows. Do per-bit-deskew to possibly increase size of
2972  * certain windows.
2973  */
2974 static int
2975 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2976                                    const u32 test_bgn)
2977 {
2978         int i;
2979         u32 sticky_bit_chk;
2980         u32 min_index;
2981         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2982         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2983         int mid;
2984         int mid_min, orig_mid_min;
2985         int new_dqs, start_dqs;
2986         int dq_margin, dqs_margin, dm_margin;
2987         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2988         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2989         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2990         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2991         int win_best = 0;
2992
2993         int ret;
2994
2995         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2996
2997         dm_margin = 0;
2998
2999         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3000                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3001                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3002
3003         /* Per-bit deskew. */
3004
3005         /*
3006          * Set the left and right edge of each bit to an illegal value.
3007          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3008          */
3009         sticky_bit_chk = 0;
3010         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3011                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3012                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3013         }
3014
3015         /* Search for the left edge of the window for each bit. */
3016         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3017                          &sticky_bit_chk,
3018                          left_edge, right_edge, 0);
3019
3020         /* Search for the right edge of the window for each bit. */
3021         ret = search_right_edge(1, rank_bgn, write_group, 0,
3022                                 start_dqs, 0,
3023                                 &sticky_bit_chk,
3024                                 left_edge, right_edge, 0);
3025         if (ret) {
3026                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3027                                         CAL_SUBSTAGE_WRITES_CENTER);
3028                 return -EINVAL;
3029         }
3030
3031         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3032
3033         /* Determine the amount we can change DQS (which is -mid_min). */
3034         orig_mid_min = mid_min;
3035         new_dqs = start_dqs;
3036         mid_min = 0;
3037         debug_cond(DLEVEL == 1,
3038                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3039                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3040
3041         /* Add delay to bring centre of all DQ windows to the same "level". */
3042         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3043                           min_index, 0, &dq_margin, &dqs_margin);
3044
3045         /* Move DQS */
3046         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3047         writel(0, &sdr_scc_mgr->update);
3048
3049         /* Centre DM */
3050         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3051
3052         /*
3053          * Set the left and right edge of each bit to an illegal value.
3054          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3055          */
3056         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3057         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3058
3059         /* Search for the/part of the window with DM shift. */
3060         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3061                       &bgn_best, &end_best, &win_best, 0);
3062
3063         /* Reset DM delay chains to 0. */
3064         scc_mgr_apply_group_dm_out1_delay(0);
3065
3066         /*
3067          * Check to see if the current window nudges up aganist 0 delay.
3068          * If so we need to continue the search by shifting DQS otherwise DQS
3069          * search begins as a new search.
3070          */
3071         if (end_curr != 0) {
3072                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3073                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3074         }
3075
3076         /* Search for the/part of the window with DQS shifts. */
3077         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3078                       &bgn_best, &end_best, &win_best, new_dqs);
3079
3080         /* Assign left and right edge for cal and reporting. */
3081         left_edge[0] = -1 * bgn_best;
3082         right_edge[0] = end_best;
3083
3084         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3085                    __func__, __LINE__, left_edge[0], right_edge[0]);
3086
3087         /* Move DQS (back to orig). */
3088         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3089
3090         /* Move DM */
3091
3092         /* Find middle of window for the DM bit. */
3093         mid = (left_edge[0] - right_edge[0]) / 2;
3094
3095         /* Only move right, since we are not moving DQS/DQ. */
3096         if (mid < 0)
3097                 mid = 0;
3098
3099         /* dm_marign should fail if we never find a window. */
3100         if (win_best == 0)
3101                 dm_margin = -1;
3102         else
3103                 dm_margin = left_edge[0] - mid;
3104
3105         scc_mgr_apply_group_dm_out1_delay(mid);
3106         writel(0, &sdr_scc_mgr->update);
3107
3108         debug_cond(DLEVEL == 2,
3109                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3110                    __func__, __LINE__, left_edge[0], right_edge[0],
3111                    mid, dm_margin);
3112         /* Export values. */
3113         gbl->fom_out += dq_margin + dqs_margin;
3114
3115         debug_cond(DLEVEL == 2,
3116                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3117                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3118
3119         /*
3120          * Do not remove this line as it makes sure all of our
3121          * decisions have been applied.
3122          */
3123         writel(0, &sdr_scc_mgr->update);
3124
3125         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3126                 return -EINVAL;
3127
3128         return 0;
3129 }
3130
3131 /**
3132  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3133  * @rank_bgn:           Rank number
3134  * @group:              Read/Write Group
3135  * @test_bgn:           Rank at which the test begins
3136  *
3137  * Stage 2: Write Calibration Part One.
3138  *
3139  * This function implements UniPHY calibration Stage 2, as explained in
3140  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3141  */
3142 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3143                                        const u32 test_bgn)
3144 {
3145         int ret;
3146
3147         /* Update info for sims */
3148         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3149
3150         reg_file_set_group(group);
3151         reg_file_set_stage(CAL_STAGE_WRITES);
3152         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3153
3154         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3155         if (ret)
3156                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3157                                         CAL_SUBSTAGE_WRITES_CENTER);
3158
3159         return ret;
3160 }
3161
3162 /**
3163  * mem_precharge_and_activate() - Precharge all banks and activate
3164  *
3165  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3166  */
3167 static void mem_precharge_and_activate(void)
3168 {
3169         int r;
3170
3171         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3172                 /* Test if the rank should be skipped. */
3173                 if (param->skip_ranks[r])
3174                         continue;
3175
3176                 /* Set rank. */
3177                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3178
3179                 /* Precharge all banks. */
3180                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3181                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3182
3183                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3184                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3185                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3186
3187                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3188                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3189                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3190
3191                 /* Activate rows. */
3192                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3193                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3194         }
3195 }
3196
3197 /**
3198  * mem_init_latency() - Configure memory RLAT and WLAT settings
3199  *
3200  * Configure memory RLAT and WLAT parameters.
3201  */
3202 static void mem_init_latency(void)
3203 {
3204         /*
3205          * For AV/CV, LFIFO is hardened and always runs at full rate
3206          * so max latency in AFI clocks, used here, is correspondingly
3207          * smaller.
3208          */
3209         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3210         u32 rlat, wlat;
3211
3212         debug("%s:%d\n", __func__, __LINE__);
3213
3214         /*
3215          * Read in write latency.
3216          * WL for Hard PHY does not include additive latency.
3217          */
3218         wlat = readl(&data_mgr->t_wl_add);
3219         wlat += readl(&data_mgr->mem_t_add);
3220
3221         gbl->rw_wl_nop_cycles = wlat - 1;
3222
3223         /* Read in readl latency. */
3224         rlat = readl(&data_mgr->t_rl_add);
3225
3226         /* Set a pretty high read latency initially. */
3227         gbl->curr_read_lat = rlat + 16;
3228         if (gbl->curr_read_lat > max_latency)
3229                 gbl->curr_read_lat = max_latency;
3230
3231         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3232
3233         /* Advertise write latency. */
3234         writel(wlat, &phy_mgr_cfg->afi_wlat);
3235 }
3236
3237 /**
3238  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3239  *
3240  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3241  */
3242 static void mem_skip_calibrate(void)
3243 {
3244         uint32_t vfifo_offset;
3245         uint32_t i, j, r;
3246
3247         debug("%s:%d\n", __func__, __LINE__);
3248         /* Need to update every shadow register set used by the interface */
3249         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3250              r += NUM_RANKS_PER_SHADOW_REG) {
3251                 /*
3252                  * Set output phase alignment settings appropriate for
3253                  * skip calibration.
3254                  */
3255                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3256                         scc_mgr_set_dqs_en_phase(i, 0);
3257 #if IO_DLL_CHAIN_LENGTH == 6
3258                         scc_mgr_set_dqdqs_output_phase(i, 6);
3259 #else
3260                         scc_mgr_set_dqdqs_output_phase(i, 7);
3261 #endif
3262                         /*
3263                          * Case:33398
3264                          *
3265                          * Write data arrives to the I/O two cycles before write
3266                          * latency is reached (720 deg).
3267                          *   -> due to bit-slip in a/c bus
3268                          *   -> to allow board skew where dqs is longer than ck
3269                          *      -> how often can this happen!?
3270                          *      -> can claim back some ptaps for high freq
3271                          *       support if we can relax this, but i digress...
3272                          *
3273                          * The write_clk leads mem_ck by 90 deg
3274                          * The minimum ptap of the OPA is 180 deg
3275                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3276                          * The write_clk is always delayed by 2 ptaps
3277                          *
3278                          * Hence, to make DQS aligned to CK, we need to delay
3279                          * DQS by:
3280                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3281                          *
3282                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3283                          * gives us the number of ptaps, which simplies to:
3284                          *
3285                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3286                          */
3287                         scc_mgr_set_dqdqs_output_phase(i,
3288                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3289                 }
3290                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3291                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3292
3293                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3294                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3295                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3296                 }
3297                 writel(0xff, &sdr_scc_mgr->dq_ena);
3298                 writel(0xff, &sdr_scc_mgr->dm_ena);
3299                 writel(0, &sdr_scc_mgr->update);
3300         }
3301
3302         /* Compensate for simulation model behaviour */
3303         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3304                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3305                 scc_mgr_load_dqs(i);
3306         }
3307         writel(0, &sdr_scc_mgr->update);
3308
3309         /*
3310          * ArriaV has hard FIFOs that can only be initialized by incrementing
3311          * in sequencer.
3312          */
3313         vfifo_offset = CALIB_VFIFO_OFFSET;
3314         for (j = 0; j < vfifo_offset; j++)
3315                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3316         writel(0, &phy_mgr_cmd->fifo_reset);
3317
3318         /*
3319          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3320          * setting from generation-time constant.
3321          */
3322         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3323         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3324 }
3325
3326 /**
3327  * mem_calibrate() - Memory calibration entry point.
3328  *
3329  * Perform memory calibration.
3330  */
3331 static uint32_t mem_calibrate(void)
3332 {
3333         uint32_t i;
3334         uint32_t rank_bgn, sr;
3335         uint32_t write_group, write_test_bgn;
3336         uint32_t read_group, read_test_bgn;
3337         uint32_t run_groups, current_run;
3338         uint32_t failing_groups = 0;
3339         uint32_t group_failed = 0;
3340
3341         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3342                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3343
3344         debug("%s:%d\n", __func__, __LINE__);
3345
3346         /* Initialize the data settings */
3347         gbl->error_substage = CAL_SUBSTAGE_NIL;
3348         gbl->error_stage = CAL_STAGE_NIL;
3349         gbl->error_group = 0xff;
3350         gbl->fom_in = 0;
3351         gbl->fom_out = 0;
3352
3353         /* Initialize WLAT and RLAT. */
3354         mem_init_latency();
3355
3356         /* Initialize bit slips. */
3357         mem_precharge_and_activate();
3358
3359         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3360                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3361                           SCC_MGR_GROUP_COUNTER_OFFSET);
3362                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3363                 if (i == 0)
3364                         scc_mgr_set_hhp_extras();
3365
3366                 scc_set_bypass_mode(i);
3367         }
3368
3369         /* Calibration is skipped. */
3370         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3371                 /*
3372                  * Set VFIFO and LFIFO to instant-on settings in skip
3373                  * calibration mode.
3374                  */
3375                 mem_skip_calibrate();
3376
3377                 /*
3378                  * Do not remove this line as it makes sure all of our
3379                  * decisions have been applied.
3380                  */
3381                 writel(0, &sdr_scc_mgr->update);
3382                 return 1;
3383         }
3384
3385         /* Calibration is not skipped. */
3386         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3387                 /*
3388                  * Zero all delay chain/phase settings for all
3389                  * groups and all shadow register sets.
3390                  */
3391                 scc_mgr_zero_all();
3392
3393                 run_groups = ~param->skip_groups;
3394
3395                 for (write_group = 0, write_test_bgn = 0; write_group
3396                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3397                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3398
3399                         /* Initialize the group failure */
3400                         group_failed = 0;
3401
3402                         current_run = run_groups & ((1 <<
3403                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3404                         run_groups = run_groups >>
3405                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3406
3407                         if (current_run == 0)
3408                                 continue;
3409
3410                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3411                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3412                         scc_mgr_zero_group(write_group, 0);
3413
3414                         for (read_group = write_group * rwdqs_ratio,
3415                              read_test_bgn = 0;
3416                              read_group < (write_group + 1) * rwdqs_ratio;
3417                              read_group++,
3418                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3419                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3420                                         continue;
3421
3422                                 /* Calibrate the VFIFO */
3423                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3424                                                                read_test_bgn))
3425                                         continue;
3426
3427                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3428                                         return 0;
3429
3430                                 /* The group failed, we're done. */
3431                                 goto grp_failed;
3432                         }
3433
3434                         /* Calibrate the output side */
3435                         for (rank_bgn = 0, sr = 0;
3436                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3437                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3438                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3439                                         continue;
3440
3441                                 /* Not needed in quick mode! */
3442                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3443                                         continue;
3444
3445                                 /*
3446                                  * Determine if this set of ranks
3447                                  * should be skipped entirely.
3448                                  */
3449                                 if (param->skip_shadow_regs[sr])
3450                                         continue;
3451
3452                                 /* Calibrate WRITEs */
3453                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3454                                                 write_group, write_test_bgn))
3455                                         continue;
3456
3457                                 group_failed = 1;
3458                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459                                         return 0;
3460                         }
3461
3462                         /* Some group failed, we're done. */
3463                         if (group_failed)
3464                                 goto grp_failed;
3465
3466                         for (read_group = write_group * rwdqs_ratio,
3467                              read_test_bgn = 0;
3468                              read_group < (write_group + 1) * rwdqs_ratio;
3469                              read_group++,
3470                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3471                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3472                                         continue;
3473
3474                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3475                                                                 read_test_bgn))
3476                                         continue;
3477
3478                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3479                                         return 0;
3480
3481                                 /* The group failed, we're done. */
3482                                 goto grp_failed;
3483                         }
3484
3485                         /* No group failed, continue as usual. */
3486                         continue;
3487
3488 grp_failed:             /* A group failed, increment the counter. */
3489                         failing_groups++;
3490                 }
3491
3492                 /*
3493                  * USER If there are any failing groups then report
3494                  * the failure.
3495                  */
3496                 if (failing_groups != 0)
3497                         return 0;
3498
3499                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3500                         continue;
3501
3502                 /*
3503                  * If we're skipping groups as part of debug,
3504                  * don't calibrate LFIFO.
3505                  */
3506                 if (param->skip_groups != 0)
3507                         continue;
3508
3509                 /* Calibrate the LFIFO */
3510                 if (!rw_mgr_mem_calibrate_lfifo())
3511                         return 0;
3512         }
3513
3514         /*
3515          * Do not remove this line as it makes sure all of our decisions
3516          * have been applied.
3517          */
3518         writel(0, &sdr_scc_mgr->update);
3519         return 1;
3520 }
3521
3522 /**
3523  * run_mem_calibrate() - Perform memory calibration
3524  *
3525  * This function triggers the entire memory calibration procedure.
3526  */
3527 static int run_mem_calibrate(void)
3528 {
3529         int pass;
3530
3531         debug("%s:%d\n", __func__, __LINE__);
3532
3533         /* Reset pass/fail status shown on afi_cal_success/fail */
3534         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3535
3536         /* Stop tracking manager. */
3537         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3538
3539         phy_mgr_initialize();
3540         rw_mgr_mem_initialize();
3541
3542         /* Perform the actual memory calibration. */
3543         pass = mem_calibrate();
3544
3545         mem_precharge_and_activate();
3546         writel(0, &phy_mgr_cmd->fifo_reset);
3547
3548         /* Handoff. */
3549         rw_mgr_mem_handoff();
3550         /*
3551          * In Hard PHY this is a 2-bit control:
3552          * 0: AFI Mux Select
3553          * 1: DDIO Mux Select
3554          */
3555         writel(0x2, &phy_mgr_cfg->mux_sel);
3556
3557         /* Start tracking manager. */
3558         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3559
3560         return pass;
3561 }
3562
3563 /**
3564  * debug_mem_calibrate() - Report result of memory calibration
3565  * @pass:       Value indicating whether calibration passed or failed
3566  *
3567  * This function reports the results of the memory calibration
3568  * and writes debug information into the register file.
3569  */
3570 static void debug_mem_calibrate(int pass)
3571 {
3572         uint32_t debug_info;
3573
3574         if (pass) {
3575                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3576
3577                 gbl->fom_in /= 2;
3578                 gbl->fom_out /= 2;
3579
3580                 if (gbl->fom_in > 0xff)
3581                         gbl->fom_in = 0xff;
3582
3583                 if (gbl->fom_out > 0xff)
3584                         gbl->fom_out = 0xff;
3585
3586                 /* Update the FOM in the register file */
3587                 debug_info = gbl->fom_in;
3588                 debug_info |= gbl->fom_out << 8;
3589                 writel(debug_info, &sdr_reg_file->fom);
3590
3591                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3593         } else {
3594                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3595
3596                 debug_info = gbl->error_stage;
3597                 debug_info |= gbl->error_substage << 8;
3598                 debug_info |= gbl->error_group << 16;
3599
3600                 writel(debug_info, &sdr_reg_file->failing_stage);
3601                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3602                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3603
3604                 /* Update the failing group/stage in the register file */
3605                 debug_info = gbl->error_stage;
3606                 debug_info |= gbl->error_substage << 8;
3607                 debug_info |= gbl->error_group << 16;
3608                 writel(debug_info, &sdr_reg_file->failing_stage);
3609         }
3610
3611         printf("%s: Calibration complete\n", __FILE__);
3612 }
3613
3614 /**
3615  * hc_initialize_rom_data() - Initialize ROM data
3616  *
3617  * Initialize ROM data.
3618  */
3619 static void hc_initialize_rom_data(void)
3620 {
3621         u32 i, addr;
3622
3623         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3624         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3625                 writel(inst_rom_init[i], addr + (i << 2));
3626
3627         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3628         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3629                 writel(ac_rom_init[i], addr + (i << 2));
3630 }
3631
3632 /**
3633  * initialize_reg_file() - Initialize SDR register file
3634  *
3635  * Initialize SDR register file.
3636  */
3637 static void initialize_reg_file(void)
3638 {
3639         /* Initialize the register file with the correct data */
3640         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3641         writel(0, &sdr_reg_file->debug_data_addr);
3642         writel(0, &sdr_reg_file->cur_stage);
3643         writel(0, &sdr_reg_file->fom);
3644         writel(0, &sdr_reg_file->failing_stage);
3645         writel(0, &sdr_reg_file->debug1);
3646         writel(0, &sdr_reg_file->debug2);
3647 }
3648
3649 /**
3650  * initialize_hps_phy() - Initialize HPS PHY
3651  *
3652  * Initialize HPS PHY.
3653  */
3654 static void initialize_hps_phy(void)
3655 {
3656         uint32_t reg;
3657         /*
3658          * Tracking also gets configured here because it's in the
3659          * same register.
3660          */
3661         uint32_t trk_sample_count = 7500;
3662         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3663         /*
3664          * Format is number of outer loops in the 16 MSB, sample
3665          * count in 16 LSB.
3666          */
3667
3668         reg = 0;
3669         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3670         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3672         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3674         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3675         /*
3676          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3677          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3678          */
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3680         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3681                 trk_sample_count);
3682         writel(reg, &sdr_ctrl->phy_ctrl0);
3683
3684         reg = 0;
3685         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3686                 trk_sample_count >>
3687                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3688         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3689                 trk_long_idle_sample_count);
3690         writel(reg, &sdr_ctrl->phy_ctrl1);
3691
3692         reg = 0;
3693         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3694                 trk_long_idle_sample_count >>
3695                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3696         writel(reg, &sdr_ctrl->phy_ctrl2);
3697 }
3698
3699 /**
3700  * initialize_tracking() - Initialize tracking
3701  *
3702  * Initialize the register file with usable initial data.
3703  */
3704 static void initialize_tracking(void)
3705 {
3706         /*
3707          * Initialize the register file with the correct data.
3708          * Compute usable version of value in case we skip full
3709          * computation later.
3710          */
3711         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3712                &sdr_reg_file->dtaps_per_ptap);
3713
3714         /* trk_sample_count */
3715         writel(7500, &sdr_reg_file->trk_sample_count);
3716
3717         /* longidle outer loop [15:0] */
3718         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3719
3720         /*
3721          * longidle sample count [31:24]
3722          * trfc, worst case of 933Mhz 4Gb [23:16]
3723          * trcd, worst case [15:8]
3724          * vfifo wait [7:0]
3725          */
3726         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3727                &sdr_reg_file->delays);
3728
3729         /* mux delay */
3730         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3731                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3732                &sdr_reg_file->trk_rw_mgr_addr);
3733
3734         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3735                &sdr_reg_file->trk_read_dqs_width);
3736
3737         /* trefi [7:0] */
3738         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3739                &sdr_reg_file->trk_rfsh);
3740 }
3741
3742 int sdram_calibration_full(void)
3743 {
3744         struct param_type my_param;
3745         struct gbl_type my_gbl;
3746         uint32_t pass;
3747
3748         memset(&my_param, 0, sizeof(my_param));
3749         memset(&my_gbl, 0, sizeof(my_gbl));
3750
3751         param = &my_param;
3752         gbl = &my_gbl;
3753
3754         /* Set the calibration enabled by default */
3755         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3756         /*
3757          * Only sweep all groups (regardless of fail state) by default
3758          * Set enabled read test by default.
3759          */
3760 #if DISABLE_GUARANTEED_READ
3761         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3762 #endif
3763         /* Initialize the register file */
3764         initialize_reg_file();
3765
3766         /* Initialize any PHY CSR */
3767         initialize_hps_phy();
3768
3769         scc_mgr_initialize();
3770
3771         initialize_tracking();
3772
3773         printf("%s: Preparing to start memory calibration\n", __FILE__);
3774
3775         debug("%s:%d\n", __func__, __LINE__);
3776         debug_cond(DLEVEL == 1,
3777                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3778                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3779                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3780                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3781                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3782         debug_cond(DLEVEL == 1,
3783                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3784                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3785                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3786                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3787         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3788                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3789         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3790                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3791                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3792         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3793                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3794                    IO_IO_OUT2_DELAY_MAX);
3795         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3796                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3797
3798         hc_initialize_rom_data();
3799
3800         /* update info for sims */
3801         reg_file_set_stage(CAL_STAGE_NIL);
3802         reg_file_set_group(0);
3803
3804         /*
3805          * Load global needed for those actions that require
3806          * some dynamic calibration support.
3807          */
3808         dyn_calib_steps = STATIC_CALIB_STEPS;
3809         /*
3810          * Load global to allow dynamic selection of delay loop settings
3811          * based on calibration mode.
3812          */
3813         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3814                 skip_delay_mask = 0xff;
3815         else
3816                 skip_delay_mask = 0x0;
3817
3818         pass = run_mem_calibrate();
3819         debug_mem_calibrate(pass);
3820         return pass;
3821 }