]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() part 2
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 /**
1290  * rw_mgr_incr_vfifo() - Increase VFIFO value
1291  * @grp:        Read/Write group
1292  *
1293  * Increase VFIFO value.
1294  */
1295 static void rw_mgr_incr_vfifo(const u32 grp)
1296 {
1297         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1298 }
1299
1300 /**
1301  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302  * @grp:        Read/Write group
1303  *
1304  * Decrease VFIFO value.
1305  */
1306 static void rw_mgr_decr_vfifo(const u32 grp)
1307 {
1308         u32 i;
1309
1310         for (i = 0; i < VFIFO_SIZE - 1; i++)
1311                 rw_mgr_incr_vfifo(grp);
1312 }
1313
1314 /**
1315  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1316  * @grp:        Read/Write group
1317  *
1318  * Push VFIFO until a failing read happens.
1319  */
1320 static int find_vfifo_failing_read(const u32 grp)
1321 {
1322         u32 v, ret, bit_chk, fail_cnt = 0;
1323
1324         for (v = 0; v < VFIFO_SIZE; v++) {
1325                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1326                            __func__, __LINE__, v);
1327                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1328                                                 PASS_ONE_BIT, &bit_chk, 0);
1329                 if (!ret) {
1330                         fail_cnt++;
1331
1332                         if (fail_cnt == 2)
1333                                 return v;
1334                 }
1335
1336                 /* Fiddle with FIFO. */
1337                 rw_mgr_incr_vfifo(grp);
1338         }
1339
1340         /* No failing read found! Something must have gone wrong. */
1341         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1342         return 0;
1343 }
1344
1345 /**
1346  * sdr_find_phase() - Find DQS enable phase
1347  * @working:    If 1, look for working phase, if 0, look for non-working phase
1348  * @grp:        Read/Write group
1349  * @work:       Working window position
1350  * @i:          Iterator
1351  * @p:          DQS Phase Iterator
1352  *
1353  * Find working or non-working DQS enable phase setting.
1354  */
1355 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1356                           u32 *i, u32 *p)
1357 {
1358         u32 ret, bit_chk;
1359         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1360
1361         for (; *i < end; (*i)++) {
1362                 if (working)
1363                         *p = 0;
1364
1365                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1366                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1367
1368                         ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1369                                                 PASS_ONE_BIT, &bit_chk, 0);
1370                         if (!working)
1371                                 ret = !ret;
1372
1373                         if (ret)
1374                                 return 0;
1375
1376                         *work += IO_DELAY_PER_OPA_TAP;
1377                 }
1378
1379                 if (*p > IO_DQS_EN_PHASE_MAX) {
1380                         /* Fiddle with FIFO. */
1381                         rw_mgr_incr_vfifo(grp);
1382                         if (!working)
1383                                 *p = 0;
1384                 }
1385         }
1386
1387         return -EINVAL;
1388 }
1389
1390 /**
1391  * sdr_working_phase() - Find working DQS enable phase
1392  * @grp:        Read/Write group
1393  * @work_bgn:   Working window start position
1394  * @d:          dtaps output value
1395  * @p:          DQS Phase Iterator
1396  * @i:          Iterator
1397  *
1398  * Find working DQS enable phase setting.
1399  */
1400 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1401                              u32 *p, u32 *i)
1402 {
1403         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1404                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1405         int ret;
1406
1407         *work_bgn = 0;
1408
1409         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1410                 *i = 0;
1411                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1412                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1413                 if (!ret)
1414                         return 0;
1415                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1416         }
1417
1418         /* Cannot find working solution */
1419         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1420                    __func__, __LINE__);
1421         return -EINVAL;
1422 }
1423
1424 /**
1425  * sdr_backup_phase() - Find DQS enable backup phase
1426  * @grp:        Read/Write group
1427  * @work_bgn:   Working window start position
1428  * @p:          DQS Phase Iterator
1429  *
1430  * Find DQS enable backup phase setting.
1431  */
1432 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1433 {
1434         u32 tmp_delay, bit_chk, d;
1435         int ret;
1436
1437         /* Special case code for backing up a phase */
1438         if (*p == 0) {
1439                 *p = IO_DQS_EN_PHASE_MAX;
1440                 rw_mgr_decr_vfifo(grp);
1441         } else {
1442                 (*p)--;
1443         }
1444         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1445         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1446
1447         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1448                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1449
1450                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1451                                         PASS_ONE_BIT, &bit_chk, 0);
1452                 if (ret) {
1453                         *work_bgn = tmp_delay;
1454                         break;
1455                 }
1456
1457                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1458         }
1459
1460         /* Restore VFIFO to old state before we decremented it (if needed). */
1461         (*p)++;
1462         if (*p > IO_DQS_EN_PHASE_MAX) {
1463                 *p = 0;
1464                 rw_mgr_incr_vfifo(grp);
1465         }
1466
1467         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1468 }
1469
1470 /**
1471  * sdr_nonworking_phase() - Find non-working DQS enable phase
1472  * @grp:        Read/Write group
1473  * @work_end:   Working window end position
1474  * @p:          DQS Phase Iterator
1475  * @i:          Iterator
1476  *
1477  * Find non-working DQS enable phase setting.
1478  */
1479 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1480 {
1481         int ret;
1482
1483         (*p)++;
1484         *work_end += IO_DELAY_PER_OPA_TAP;
1485         if (*p > IO_DQS_EN_PHASE_MAX) {
1486                 /* Fiddle with FIFO. */
1487                 *p = 0;
1488                 rw_mgr_incr_vfifo(grp);
1489         }
1490
1491         ret = sdr_find_phase(0, grp, work_end, i, p);
1492         if (ret) {
1493                 /* Cannot see edge of failing read. */
1494                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1495                            __func__, __LINE__);
1496         }
1497
1498         return ret;
1499 }
1500
1501 /**
1502  * sdr_find_window_center() - Find center of the working DQS window.
1503  * @grp:        Read/Write group
1504  * @work_bgn:   First working settings
1505  * @work_end:   Last working settings
1506  *
1507  * Find center of the working DQS enable window.
1508  */
1509 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1510                                   const u32 work_end)
1511 {
1512         u32 bit_chk, work_mid;
1513         int tmp_delay = 0;
1514         int i, p, d;
1515
1516         work_mid = (work_bgn + work_end) / 2;
1517
1518         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1519                    work_bgn, work_end, work_mid);
1520         /* Get the middle delay to be less than a VFIFO delay */
1521         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1522
1523         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1524         work_mid %= tmp_delay;
1525         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1526
1527         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1528         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1529                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1530         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1531
1532         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1533
1534         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1535         if (d > IO_DQS_EN_DELAY_MAX)
1536                 d = IO_DQS_EN_DELAY_MAX;
1537         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1538
1539         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1540
1541         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1542         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1543
1544         /*
1545          * push vfifo until we can successfully calibrate. We can do this
1546          * because the largest possible margin in 1 VFIFO cycle.
1547          */
1548         for (i = 0; i < VFIFO_SIZE; i++) {
1549                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1550                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1551                                                              PASS_ONE_BIT,
1552                                                              &bit_chk, 0)) {
1553                         debug_cond(DLEVEL == 2,
1554                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1555                                    __func__, __LINE__, p, d);
1556                         return 0;
1557                 }
1558
1559                 /* Fiddle with FIFO. */
1560                 rw_mgr_incr_vfifo(grp);
1561         }
1562
1563         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1564                    __func__, __LINE__);
1565         return -EINVAL;
1566 }
1567
1568 /* find a good dqs enable to use */
1569 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(u32 grp)
1570 {
1571         uint32_t d, p, i;
1572         uint32_t bit_chk;
1573         uint32_t dtaps_per_ptap;
1574         uint32_t work_bgn, work_end;
1575         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1576
1577         debug("%s:%d %u\n", __func__, __LINE__, grp);
1578
1579         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1580
1581         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1582         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1583
1584         /* Step 0: Determine number of delay taps for each phase tap. */
1585         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1586
1587         /* Step 1: First push vfifo until we get a failing read. */
1588         find_vfifo_failing_read(grp);
1589
1590         /* Step 2: Find first working phase, increment in ptaps. */
1591         work_bgn = 0;
1592         if (sdr_working_phase(grp, &work_bgn, &d, &p, &i))
1593                 return 0;
1594
1595         work_end = work_bgn;
1596
1597         /*
1598          * If d is 0 then the working window covers a phase tap and we can
1599          * follow the old procedure. Otherwise, we've found the beginning
1600          * and we need to increment the dtaps until we find the end.
1601          */
1602         if (d == 0) {
1603                 /*
1604                  * Step 3a: If we have room, back off by one and
1605                  *          increment in dtaps.
1606                  */
1607                 sdr_backup_phase(grp, &work_bgn, &p);
1608
1609                 /*
1610                  * Step 4a: go forward from working phase to non working
1611                  * phase, increment in ptaps.
1612                  */
1613                 if (sdr_nonworking_phase(grp, &work_end, &p, &i))
1614                         return 0;
1615
1616                 /* Step 5a: Back off one from last, increment in dtaps. */
1617
1618                 /* Special case code for backing up a phase */
1619                 if (p == 0) {
1620                         p = IO_DQS_EN_PHASE_MAX;
1621                         rw_mgr_decr_vfifo(grp);
1622                 } else {
1623                         p = p - 1;
1624                 }
1625
1626                 work_end -= IO_DELAY_PER_OPA_TAP;
1627                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1628
1629                 d = 0;
1630
1631                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1632                            __func__, __LINE__, p);
1633         }
1634
1635         /* The dtap increment to find the failing edge is done here. */
1636         for (; d <= IO_DQS_EN_DELAY_MAX;
1637              d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1638                 debug_cond(DLEVEL == 2, "%s:%d end-2: dtap=%u\n",
1639                            __func__, __LINE__, d);
1640
1641                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1642
1643                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1644                                                               PASS_ONE_BIT,
1645                                                               &bit_chk, 0)) {
1646                         break;
1647                 }
1648         }
1649
1650         /* Go back to working dtap */
1651         if (d != 0)
1652                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1653
1654         debug_cond(DLEVEL == 2,
1655                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1656                    __func__, __LINE__, p, d - 1, work_end);
1657
1658         if (work_end < work_bgn) {
1659                 /* nil range */
1660                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1661                            __func__, __LINE__);
1662                 return 0;
1663         }
1664
1665         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1666                    __func__, __LINE__, work_bgn, work_end);
1667
1668         /*
1669          * We need to calculate the number of dtaps that equal a ptap.
1670          * To do that we'll back up a ptap and re-find the edge of the
1671          * window using dtaps
1672          */
1673         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1674                    __func__, __LINE__);
1675
1676         /* Special case code for backing up a phase */
1677         if (p == 0) {
1678                 p = IO_DQS_EN_PHASE_MAX;
1679                 rw_mgr_decr_vfifo(grp);
1680                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1681                            __func__, __LINE__, p);
1682         } else {
1683                 p = p - 1;
1684                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1685                            __func__, __LINE__, p);
1686         }
1687
1688         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1689
1690         /*
1691          * Increase dtap until we first see a passing read (in case the
1692          * window is smaller than a ptap), and then a failing read to
1693          * mark the edge of the window again.
1694          */
1695
1696         /* Find a passing read. */
1697         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1698                    __func__, __LINE__);
1699         found_passing_read = 0;
1700         found_failing_read = 0;
1701         initial_failing_dtap = d;
1702         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1703                 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n",
1704                            __func__, __LINE__, d);
1705                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1706
1707                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1708                                                              PASS_ONE_BIT,
1709                                                              &bit_chk, 0)) {
1710                         found_passing_read = 1;
1711                         break;
1712                 }
1713         }
1714
1715         if (found_passing_read) {
1716                 /* Find a failing read. */
1717                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1718                            __func__, __LINE__);
1719                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1720                         debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n",
1721                                    __func__, __LINE__, d);
1722                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1723
1724                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1725                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1726                                 found_failing_read = 1;
1727                                 break;
1728                         }
1729                 }
1730         } else {
1731                 debug_cond(DLEVEL == 1,
1732                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1733                            __func__, __LINE__);
1734         }
1735
1736         /*
1737          * The dynamically calculated dtaps_per_ptap is only valid if we
1738          * found a passing/failing read. If we didn't, it means d hit the max
1739          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1740          * statically calculated value.
1741          */
1742         if (found_passing_read && found_failing_read)
1743                 dtaps_per_ptap = d - initial_failing_dtap;
1744
1745         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1746         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1747                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1748
1749         /* Step 6: Find the centre of the window. */
1750         if (sdr_find_window_centre(grp, work_bgn, work_end))
1751                 return 0;
1752
1753         return 1;
1754 }
1755
1756 /* per-bit deskew DQ and center */
1757 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1758         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1759         uint32_t use_read_test, uint32_t update_fom)
1760 {
1761         uint32_t i, p, d, min_index;
1762         /*
1763          * Store these as signed since there are comparisons with
1764          * signed numbers.
1765          */
1766         uint32_t bit_chk;
1767         uint32_t sticky_bit_chk;
1768         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1769         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1770         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1771         int32_t mid;
1772         int32_t orig_mid_min, mid_min;
1773         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1774                 final_dqs_en;
1775         int32_t dq_margin, dqs_margin;
1776         uint32_t stop;
1777         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1778         uint32_t addr;
1779
1780         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1781
1782         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1783         start_dqs = readl(addr + (read_group << 2));
1784         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1785                 start_dqs_en = readl(addr + ((read_group << 2)
1786                                      - IO_DQS_EN_DELAY_OFFSET));
1787
1788         /* set the left and right edge of each bit to an illegal value */
1789         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1790         sticky_bit_chk = 0;
1791         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1792                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1793                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1794         }
1795
1796         /* Search for the left edge of the window for each bit */
1797         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1798                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1799
1800                 writel(0, &sdr_scc_mgr->update);
1801
1802                 /*
1803                  * Stop searching when the read test doesn't pass AND when
1804                  * we've seen a passing read on every bit.
1805                  */
1806                 if (use_read_test) {
1807                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1808                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1809                                 &bit_chk, 0, 0);
1810                 } else {
1811                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1812                                                         0, PASS_ONE_BIT,
1813                                                         &bit_chk, 0);
1814                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1815                                 (read_group - (write_group *
1816                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1817                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1818                         stop = (bit_chk == 0);
1819                 }
1820                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1821                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1822                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1823                            && %u", __func__, __LINE__, d,
1824                            sticky_bit_chk,
1825                         param->read_correct_mask, stop);
1826
1827                 if (stop == 1) {
1828                         break;
1829                 } else {
1830                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1831                                 if (bit_chk & 1) {
1832                                         /* Remember a passing test as the
1833                                         left_edge */
1834                                         left_edge[i] = d;
1835                                 } else {
1836                                         /* If a left edge has not been seen yet,
1837                                         then a future passing test will mark
1838                                         this edge as the right edge */
1839                                         if (left_edge[i] ==
1840                                                 IO_IO_IN_DELAY_MAX + 1) {
1841                                                 right_edge[i] = -(d + 1);
1842                                         }
1843                                 }
1844                                 bit_chk = bit_chk >> 1;
1845                         }
1846                 }
1847         }
1848
1849         /* Reset DQ delay chains to 0 */
1850         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1851         sticky_bit_chk = 0;
1852         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1853                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1854                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1855                            i, left_edge[i], i, right_edge[i]);
1856
1857                 /*
1858                  * Check for cases where we haven't found the left edge,
1859                  * which makes our assignment of the the right edge invalid.
1860                  * Reset it to the illegal value.
1861                  */
1862                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1863                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1864                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1865                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1866                                    right_edge[%u]: %d\n", __func__, __LINE__,
1867                                    i, right_edge[i]);
1868                 }
1869
1870                 /*
1871                  * Reset sticky bit (except for bits where we have seen
1872                  * both the left and right edge).
1873                  */
1874                 sticky_bit_chk = sticky_bit_chk << 1;
1875                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1876                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1877                         sticky_bit_chk = sticky_bit_chk | 1;
1878                 }
1879
1880                 if (i == 0)
1881                         break;
1882         }
1883
1884         /* Search for the right edge of the window for each bit */
1885         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1886                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1887                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1888                         uint32_t delay = d + start_dqs_en;
1889                         if (delay > IO_DQS_EN_DELAY_MAX)
1890                                 delay = IO_DQS_EN_DELAY_MAX;
1891                         scc_mgr_set_dqs_en_delay(read_group, delay);
1892                 }
1893                 scc_mgr_load_dqs(read_group);
1894
1895                 writel(0, &sdr_scc_mgr->update);
1896
1897                 /*
1898                  * Stop searching when the read test doesn't pass AND when
1899                  * we've seen a passing read on every bit.
1900                  */
1901                 if (use_read_test) {
1902                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1903                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1904                                 &bit_chk, 0, 0);
1905                 } else {
1906                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1907                                                         0, PASS_ONE_BIT,
1908                                                         &bit_chk, 0);
1909                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1910                                 (read_group - (write_group *
1911                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1912                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1913                         stop = (bit_chk == 0);
1914                 }
1915                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1916                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1917
1918                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1919                            %u && %u", __func__, __LINE__, d,
1920                            sticky_bit_chk, param->read_correct_mask, stop);
1921
1922                 if (stop == 1) {
1923                         break;
1924                 } else {
1925                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1926                                 if (bit_chk & 1) {
1927                                         /* Remember a passing test as
1928                                         the right_edge */
1929                                         right_edge[i] = d;
1930                                 } else {
1931                                         if (d != 0) {
1932                                                 /* If a right edge has not been
1933                                                 seen yet, then a future passing
1934                                                 test will mark this edge as the
1935                                                 left edge */
1936                                                 if (right_edge[i] ==
1937                                                 IO_IO_IN_DELAY_MAX + 1) {
1938                                                         left_edge[i] = -(d + 1);
1939                                                 }
1940                                         } else {
1941                                                 /* d = 0 failed, but it passed
1942                                                 when testing the left edge,
1943                                                 so it must be marginal,
1944                                                 set it to -1 */
1945                                                 if (right_edge[i] ==
1946                                                         IO_IO_IN_DELAY_MAX + 1 &&
1947                                                         left_edge[i] !=
1948                                                         IO_IO_IN_DELAY_MAX
1949                                                         + 1) {
1950                                                         right_edge[i] = -1;
1951                                                 }
1952                                                 /* If a right edge has not been
1953                                                 seen yet, then a future passing
1954                                                 test will mark this edge as the
1955                                                 left edge */
1956                                                 else if (right_edge[i] ==
1957                                                         IO_IO_IN_DELAY_MAX +
1958                                                         1) {
1959                                                         left_edge[i] = -(d + 1);
1960                                                 }
1961                                         }
1962                                 }
1963
1964                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1965                                            d=%u]: ", __func__, __LINE__, d);
1966                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1967                                            (int)(bit_chk & 1), i, left_edge[i]);
1968                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1969                                            right_edge[i]);
1970                                 bit_chk = bit_chk >> 1;
1971                         }
1972                 }
1973         }
1974
1975         /* Check that all bits have a window */
1976         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1977                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1978                            %d right_edge[%u]: %d", __func__, __LINE__,
1979                            i, left_edge[i], i, right_edge[i]);
1980                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1981                         == IO_IO_IN_DELAY_MAX + 1)) {
1982                         /*
1983                          * Restore delay chain settings before letting the loop
1984                          * in rw_mgr_mem_calibrate_vfifo to retry different
1985                          * dqs/ck relationships.
1986                          */
1987                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1988                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1989                                 scc_mgr_set_dqs_en_delay(read_group,
1990                                                          start_dqs_en);
1991                         }
1992                         scc_mgr_load_dqs(read_group);
1993                         writel(0, &sdr_scc_mgr->update);
1994
1995                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1996                                    find edge [%u]: %d %d", __func__, __LINE__,
1997                                    i, left_edge[i], right_edge[i]);
1998                         if (use_read_test) {
1999                                 set_failing_group_stage(read_group *
2000                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2001                                         CAL_STAGE_VFIFO,
2002                                         CAL_SUBSTAGE_VFIFO_CENTER);
2003                         } else {
2004                                 set_failing_group_stage(read_group *
2005                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2006                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2007                                         CAL_SUBSTAGE_VFIFO_CENTER);
2008                         }
2009                         return 0;
2010                 }
2011         }
2012
2013         /* Find middle of window for each DQ bit */
2014         mid_min = left_edge[0] - right_edge[0];
2015         min_index = 0;
2016         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2017                 mid = left_edge[i] - right_edge[i];
2018                 if (mid < mid_min) {
2019                         mid_min = mid;
2020                         min_index = i;
2021                 }
2022         }
2023
2024         /*
2025          * -mid_min/2 represents the amount that we need to move DQS.
2026          * If mid_min is odd and positive we'll need to add one to
2027          * make sure the rounding in further calculations is correct
2028          * (always bias to the right), so just add 1 for all positive values.
2029          */
2030         if (mid_min > 0)
2031                 mid_min++;
2032
2033         mid_min = mid_min / 2;
2034
2035         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2036                    __func__, __LINE__, mid_min, min_index);
2037
2038         /* Determine the amount we can change DQS (which is -mid_min) */
2039         orig_mid_min = mid_min;
2040         new_dqs = start_dqs - mid_min;
2041         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2042                 new_dqs = IO_DQS_IN_DELAY_MAX;
2043         else if (new_dqs < 0)
2044                 new_dqs = 0;
2045
2046         mid_min = start_dqs - new_dqs;
2047         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2048                    mid_min, new_dqs);
2049
2050         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2051                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2052                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2053                 else if (start_dqs_en - mid_min < 0)
2054                         mid_min += start_dqs_en - mid_min;
2055         }
2056         new_dqs = start_dqs - mid_min;
2057
2058         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2059                    new_dqs=%d mid_min=%d\n", start_dqs,
2060                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2061                    new_dqs, mid_min);
2062
2063         /* Initialize data for export structures */
2064         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2065         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2066
2067         /* add delay to bring centre of all DQ windows to the same "level" */
2068         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2069                 /* Use values before divide by 2 to reduce round off error */
2070                 shift_dq = (left_edge[i] - right_edge[i] -
2071                         (left_edge[min_index] - right_edge[min_index]))/2  +
2072                         (orig_mid_min - mid_min);
2073
2074                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2075                            shift_dq[%u]=%d\n", i, shift_dq);
2076
2077                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2078                 temp_dq_in_delay1 = readl(addr + (p << 2));
2079                 temp_dq_in_delay2 = readl(addr + (i << 2));
2080
2081                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2082                         (int32_t)IO_IO_IN_DELAY_MAX) {
2083                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2084                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2085                         shift_dq = -(int32_t)temp_dq_in_delay1;
2086                 }
2087                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2088                            shift_dq[%u]=%d\n", i, shift_dq);
2089                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2090                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2091                 scc_mgr_load_dq(p);
2092
2093                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2094                            left_edge[i] - shift_dq + (-mid_min),
2095                            right_edge[i] + shift_dq - (-mid_min));
2096                 /* To determine values for export structures */
2097                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2098                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2099
2100                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2101                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2102         }
2103
2104         final_dqs = new_dqs;
2105         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2106                 final_dqs_en = start_dqs_en - mid_min;
2107
2108         /* Move DQS-en */
2109         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2110                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2111                 scc_mgr_load_dqs(read_group);
2112         }
2113
2114         /* Move DQS */
2115         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2116         scc_mgr_load_dqs(read_group);
2117         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2118                    dqs_margin=%d", __func__, __LINE__,
2119                    dq_margin, dqs_margin);
2120
2121         /*
2122          * Do not remove this line as it makes sure all of our decisions
2123          * have been applied. Apply the update bit.
2124          */
2125         writel(0, &sdr_scc_mgr->update);
2126
2127         return (dq_margin >= 0) && (dqs_margin >= 0);
2128 }
2129
2130 /**
2131  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2132  * @rw_group:   Read/Write Group
2133  * @phase:      DQ/DQS phase
2134  *
2135  * Because initially no communication ca be reliably performed with the memory
2136  * device, the sequencer uses a guaranteed write mechanism to write data into
2137  * the memory device.
2138  */
2139 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2140                                                  const u32 phase)
2141 {
2142         int ret;
2143
2144         /* Set a particular DQ/DQS phase. */
2145         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2146
2147         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2148                    __func__, __LINE__, rw_group, phase);
2149
2150         /*
2151          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2152          * Load up the patterns used by read calibration using the
2153          * current DQDQS phase.
2154          */
2155         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2156
2157         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2158                 return 0;
2159
2160         /*
2161          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2162          * Back-to-Back reads of the patterns used for calibration.
2163          */
2164         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2165         if (ret)
2166                 debug_cond(DLEVEL == 1,
2167                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2168                            __func__, __LINE__, rw_group, phase);
2169         return ret;
2170 }
2171
2172 /**
2173  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2174  * @rw_group:   Read/Write Group
2175  * @test_bgn:   Rank at which the test begins
2176  *
2177  * DQS enable calibration ensures reliable capture of the DQ signal without
2178  * glitches on the DQS line.
2179  */
2180 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2181                                                        const u32 test_bgn)
2182 {
2183         /*
2184          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2185          * DQS and DQS Eanble Signal Relationships.
2186          */
2187
2188         /* We start at zero, so have one less dq to devide among */
2189         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2190                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2191         int found;
2192         u32 i, p, d, r;
2193
2194         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2195
2196         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2197         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2198              r += NUM_RANKS_PER_SHADOW_REG) {
2199                 for (i = 0, p = test_bgn, d = 0;
2200                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2201                      i++, p++, d += delay_step) {
2202                         debug_cond(DLEVEL == 1,
2203                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2204                                    __func__, __LINE__, rw_group, r, i, p, d);
2205
2206                         scc_mgr_set_dq_in_delay(p, d);
2207                         scc_mgr_load_dq(p);
2208                 }
2209
2210                 writel(0, &sdr_scc_mgr->update);
2211         }
2212
2213         /*
2214          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2215          * dq_in_delay values
2216          */
2217         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2218
2219         debug_cond(DLEVEL == 1,
2220                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2221                    __func__, __LINE__, rw_group, found);
2222
2223         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2224              r += NUM_RANKS_PER_SHADOW_REG) {
2225                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2226                 writel(0, &sdr_scc_mgr->update);
2227         }
2228
2229         if (!found)
2230                 return -EINVAL;
2231
2232         return 0;
2233
2234 }
2235
2236 /**
2237  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2238  * @rw_group:           Read/Write Group
2239  * @test_bgn:           Rank at which the test begins
2240  * @use_read_test:      Perform a read test
2241  * @update_fom:         Update FOM
2242  *
2243  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2244  * within a group.
2245  */
2246 static int
2247 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2248                                       const int use_read_test,
2249                                       const int update_fom)
2250
2251 {
2252         int ret, grp_calibrated;
2253         u32 rank_bgn, sr;
2254
2255         /*
2256          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2257          * Read per-bit deskew can be done on a per shadow register basis.
2258          */
2259         grp_calibrated = 1;
2260         for (rank_bgn = 0, sr = 0;
2261              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2262              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2263                 /* Check if this set of ranks should be skipped entirely. */
2264                 if (param->skip_shadow_regs[sr])
2265                         continue;
2266
2267                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2268                                                         rw_group, test_bgn,
2269                                                         use_read_test,
2270                                                         update_fom);
2271                 if (ret)
2272                         continue;
2273
2274                 grp_calibrated = 0;
2275         }
2276
2277         if (!grp_calibrated)
2278                 return -EIO;
2279
2280         return 0;
2281 }
2282
2283 /**
2284  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2285  * @rw_group:           Read/Write Group
2286  * @test_bgn:           Rank at which the test begins
2287  *
2288  * Stage 1: Calibrate the read valid prediction FIFO.
2289  *
2290  * This function implements UniPHY calibration Stage 1, as explained in
2291  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2292  *
2293  * - read valid prediction will consist of finding:
2294  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2295  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2296  *  - we also do a per-bit deskew on the DQ lines.
2297  */
2298 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2299 {
2300         uint32_t p, d;
2301         uint32_t dtaps_per_ptap;
2302         uint32_t failed_substage;
2303
2304         int ret;
2305
2306         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2307
2308         /* Update info for sims */
2309         reg_file_set_group(rw_group);
2310         reg_file_set_stage(CAL_STAGE_VFIFO);
2311         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2312
2313         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2314
2315         /* USER Determine number of delay taps for each phase tap. */
2316         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2317                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2318
2319         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2320                 /*
2321                  * In RLDRAMX we may be messing the delay of pins in
2322                  * the same write rw_group but outside of the current read
2323                  * the rw_group, but that's ok because we haven't calibrated
2324                  * output side yet.
2325                  */
2326                 if (d > 0) {
2327                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2328                                                                 rw_group, d);
2329                 }
2330
2331                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2332                         /* 1) Guaranteed Write */
2333                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2334                         if (ret)
2335                                 break;
2336
2337                         /* 2) DQS Enable Calibration */
2338                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2339                                                                           test_bgn);
2340                         if (ret) {
2341                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2342                                 continue;
2343                         }
2344
2345                         /* 3) Centering DQ/DQS */
2346                         /*
2347                          * If doing read after write calibration, do not update
2348                          * FOM now. Do it then.
2349                          */
2350                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2351                                                                 test_bgn, 1, 0);
2352                         if (ret) {
2353                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2354                                 continue;
2355                         }
2356
2357                         /* All done. */
2358                         goto cal_done_ok;
2359                 }
2360         }
2361
2362         /* Calibration Stage 1 failed. */
2363         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2364         return 0;
2365
2366         /* Calibration Stage 1 completed OK. */
2367 cal_done_ok:
2368         /*
2369          * Reset the delay chains back to zero if they have moved > 1
2370          * (check for > 1 because loop will increase d even when pass in
2371          * first case).
2372          */
2373         if (d > 2)
2374                 scc_mgr_zero_group(rw_group, 1);
2375
2376         return 1;
2377 }
2378
2379 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2380 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2381                                                uint32_t test_bgn)
2382 {
2383         uint32_t rank_bgn, sr;
2384         uint32_t grp_calibrated;
2385         uint32_t write_group;
2386
2387         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2388
2389         /* update info for sims */
2390
2391         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2392         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2393
2394         write_group = read_group;
2395
2396         /* update info for sims */
2397         reg_file_set_group(read_group);
2398
2399         grp_calibrated = 1;
2400         /* Read per-bit deskew can be done on a per shadow register basis */
2401         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2402                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2403                 /* Determine if this set of ranks should be skipped entirely */
2404                 if (!param->skip_shadow_regs[sr]) {
2405                 /* This is the last calibration round, update FOM here */
2406                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2407                                                                 write_group,
2408                                                                 read_group,
2409                                                                 test_bgn, 0,
2410                                                                 1)) {
2411                                 grp_calibrated = 0;
2412                         }
2413                 }
2414         }
2415
2416
2417         if (grp_calibrated == 0) {
2418                 set_failing_group_stage(write_group,
2419                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2420                                         CAL_SUBSTAGE_VFIFO_CENTER);
2421                 return 0;
2422         }
2423
2424         return 1;
2425 }
2426
2427 /* Calibrate LFIFO to find smallest read latency */
2428 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2429 {
2430         uint32_t found_one;
2431         uint32_t bit_chk;
2432
2433         debug("%s:%d\n", __func__, __LINE__);
2434
2435         /* update info for sims */
2436         reg_file_set_stage(CAL_STAGE_LFIFO);
2437         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2438
2439         /* Load up the patterns used by read calibration for all ranks */
2440         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2441         found_one = 0;
2442
2443         do {
2444                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2445                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2446                            __func__, __LINE__, gbl->curr_read_lat);
2447
2448                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2449                                                               NUM_READ_TESTS,
2450                                                               PASS_ALL_BITS,
2451                                                               &bit_chk, 1)) {
2452                         break;
2453                 }
2454
2455                 found_one = 1;
2456                 /* reduce read latency and see if things are working */
2457                 /* correctly */
2458                 gbl->curr_read_lat--;
2459         } while (gbl->curr_read_lat > 0);
2460
2461         /* reset the fifos to get pointers to known state */
2462
2463         writel(0, &phy_mgr_cmd->fifo_reset);
2464
2465         if (found_one) {
2466                 /* add a fudge factor to the read latency that was determined */
2467                 gbl->curr_read_lat += 2;
2468                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2469                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2470                            read_lat=%u\n", __func__, __LINE__,
2471                            gbl->curr_read_lat);
2472                 return 1;
2473         } else {
2474                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2475                                         CAL_SUBSTAGE_READ_LATENCY);
2476
2477                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2478                            read_lat=%u\n", __func__, __LINE__,
2479                            gbl->curr_read_lat);
2480                 return 0;
2481         }
2482 }
2483
2484 /*
2485  * issue write test command.
2486  * two variants are provided. one that just tests a write pattern and
2487  * another that tests datamask functionality.
2488  */
2489 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2490                                                   uint32_t test_dm)
2491 {
2492         uint32_t mcc_instruction;
2493         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2494                 ENABLE_SUPER_QUICK_CALIBRATION);
2495         uint32_t rw_wl_nop_cycles;
2496         uint32_t addr;
2497
2498         /*
2499          * Set counter and jump addresses for the right
2500          * number of NOP cycles.
2501          * The number of supported NOP cycles can range from -1 to infinity
2502          * Three different cases are handled:
2503          *
2504          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2505          *    mechanism will be used to insert the right number of NOPs
2506          *
2507          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2508          *    issuing the write command will jump straight to the
2509          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2510          *    data (for RLD), skipping
2511          *    the NOP micro-instruction all together
2512          *
2513          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2514          *    turned on in the same micro-instruction that issues the write
2515          *    command. Then we need
2516          *    to directly jump to the micro-instruction that sends out the data
2517          *
2518          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2519          *       (2 and 3). One jump-counter (0) is used to perform multiple
2520          *       write-read operations.
2521          *       one counter left to issue this command in "multiple-group" mode
2522          */
2523
2524         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2525
2526         if (rw_wl_nop_cycles == -1) {
2527                 /*
2528                  * CNTR 2 - We want to execute the special write operation that
2529                  * turns on DQS right away and then skip directly to the
2530                  * instruction that sends out the data. We set the counter to a
2531                  * large number so that the jump is always taken.
2532                  */
2533                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2534
2535                 /* CNTR 3 - Not used */
2536                 if (test_dm) {
2537                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2538                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2539                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2540                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2541                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2542                 } else {
2543                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2544                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2545                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2546                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2547                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2548                 }
2549         } else if (rw_wl_nop_cycles == 0) {
2550                 /*
2551                  * CNTR 2 - We want to skip the NOP operation and go straight
2552                  * to the DQS enable instruction. We set the counter to a large
2553                  * number so that the jump is always taken.
2554                  */
2555                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2556
2557                 /* CNTR 3 - Not used */
2558                 if (test_dm) {
2559                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2560                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2561                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2562                 } else {
2563                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2564                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2565                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2566                 }
2567         } else {
2568                 /*
2569                  * CNTR 2 - In this case we want to execute the next instruction
2570                  * and NOT take the jump. So we set the counter to 0. The jump
2571                  * address doesn't count.
2572                  */
2573                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2574                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575
2576                 /*
2577                  * CNTR 3 - Set the nop counter to the number of cycles we
2578                  * need to loop for, minus 1.
2579                  */
2580                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2581                 if (test_dm) {
2582                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2583                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2584                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2585                 } else {
2586                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2587                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2588                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2589                 }
2590         }
2591
2592         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2593                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2594
2595         if (quick_write_mode)
2596                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2597         else
2598                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2599
2600         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2601
2602         /*
2603          * CNTR 1 - This is used to ensure enough time elapses
2604          * for read data to come back.
2605          */
2606         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2607
2608         if (test_dm) {
2609                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2610                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2611         } else {
2612                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2613                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2614         }
2615
2616         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2617         writel(mcc_instruction, addr + (group << 2));
2618 }
2619
2620 /* Test writes, can check for a single bit pass or multiple bit pass */
2621 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2622         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2623         uint32_t *bit_chk, uint32_t all_ranks)
2624 {
2625         uint32_t r;
2626         uint32_t correct_mask_vg;
2627         uint32_t tmp_bit_chk;
2628         uint32_t vg;
2629         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2630                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2631         uint32_t addr_rw_mgr;
2632         uint32_t base_rw_mgr;
2633
2634         *bit_chk = param->write_correct_mask;
2635         correct_mask_vg = param->write_correct_mask_vg;
2636
2637         for (r = rank_bgn; r < rank_end; r++) {
2638                 if (param->skip_ranks[r]) {
2639                         /* request to skip the rank */
2640                         continue;
2641                 }
2642
2643                 /* set rank */
2644                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2645
2646                 tmp_bit_chk = 0;
2647                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2648                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2649                         /* reset the fifos to get pointers to known state */
2650                         writel(0, &phy_mgr_cmd->fifo_reset);
2651
2652                         tmp_bit_chk = tmp_bit_chk <<
2653                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2654                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2655                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2656                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2657                                 use_dm);
2658
2659                         base_rw_mgr = readl(addr_rw_mgr);
2660                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2661                         if (vg == 0)
2662                                 break;
2663                 }
2664                 *bit_chk &= tmp_bit_chk;
2665         }
2666
2667         if (all_correct) {
2668                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2669                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2670                            %u => %lu", write_group, use_dm,
2671                            *bit_chk, param->write_correct_mask,
2672                            (long unsigned int)(*bit_chk ==
2673                            param->write_correct_mask));
2674                 return *bit_chk == param->write_correct_mask;
2675         } else {
2676                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2677                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2678                        write_group, use_dm, *bit_chk);
2679                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2680                         (long unsigned int)(*bit_chk != 0));
2681                 return *bit_chk != 0x00;
2682         }
2683 }
2684
2685 /*
2686  * center all windows. do per-bit-deskew to possibly increase size of
2687  * certain windows.
2688  */
2689 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2690         uint32_t write_group, uint32_t test_bgn)
2691 {
2692         uint32_t i, p, min_index;
2693         int32_t d;
2694         /*
2695          * Store these as signed since there are comparisons with
2696          * signed numbers.
2697          */
2698         uint32_t bit_chk;
2699         uint32_t sticky_bit_chk;
2700         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2701         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2702         int32_t mid;
2703         int32_t mid_min, orig_mid_min;
2704         int32_t new_dqs, start_dqs, shift_dq;
2705         int32_t dq_margin, dqs_margin, dm_margin;
2706         uint32_t stop;
2707         uint32_t temp_dq_out1_delay;
2708         uint32_t addr;
2709
2710         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2711
2712         dm_margin = 0;
2713
2714         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2715         start_dqs = readl(addr +
2716                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2717
2718         /* per-bit deskew */
2719
2720         /*
2721          * set the left and right edge of each bit to an illegal value
2722          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2723          */
2724         sticky_bit_chk = 0;
2725         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2726                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2727                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2728         }
2729
2730         /* Search for the left edge of the window for each bit */
2731         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2732                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2733
2734                 writel(0, &sdr_scc_mgr->update);
2735
2736                 /*
2737                  * Stop searching when the read test doesn't pass AND when
2738                  * we've seen a passing read on every bit.
2739                  */
2740                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2741                         0, PASS_ONE_BIT, &bit_chk, 0);
2742                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2743                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2744                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2745                            == %u && %u [bit_chk= %u ]\n",
2746                         d, sticky_bit_chk, param->write_correct_mask,
2747                         stop, bit_chk);
2748
2749                 if (stop == 1) {
2750                         break;
2751                 } else {
2752                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2753                                 if (bit_chk & 1) {
2754                                         /*
2755                                          * Remember a passing test as the
2756                                          * left_edge.
2757                                          */
2758                                         left_edge[i] = d;
2759                                 } else {
2760                                         /*
2761                                          * If a left edge has not been seen
2762                                          * yet, then a future passing test will
2763                                          * mark this edge as the right edge.
2764                                          */
2765                                         if (left_edge[i] ==
2766                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2767                                                 right_edge[i] = -(d + 1);
2768                                         }
2769                                 }
2770                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2771                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2772                                            (int)(bit_chk & 1), i, left_edge[i]);
2773                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2774                                        right_edge[i]);
2775                                 bit_chk = bit_chk >> 1;
2776                         }
2777                 }
2778         }
2779
2780         /* Reset DQ delay chains to 0 */
2781         scc_mgr_apply_group_dq_out1_delay(0);
2782         sticky_bit_chk = 0;
2783         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2784                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2785                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2786                            i, left_edge[i], i, right_edge[i]);
2787
2788                 /*
2789                  * Check for cases where we haven't found the left edge,
2790                  * which makes our assignment of the the right edge invalid.
2791                  * Reset it to the illegal value.
2792                  */
2793                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2794                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2795                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2796                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2797                                    right_edge[%u]: %d\n", __func__, __LINE__,
2798                                    i, right_edge[i]);
2799                 }
2800
2801                 /*
2802                  * Reset sticky bit (except for bits where we have
2803                  * seen the left edge).
2804                  */
2805                 sticky_bit_chk = sticky_bit_chk << 1;
2806                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2807                         sticky_bit_chk = sticky_bit_chk | 1;
2808
2809                 if (i == 0)
2810                         break;
2811         }
2812
2813         /* Search for the right edge of the window for each bit */
2814         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2815                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2816                                                         d + start_dqs);
2817
2818                 writel(0, &sdr_scc_mgr->update);
2819
2820                 /*
2821                  * Stop searching when the read test doesn't pass AND when
2822                  * we've seen a passing read on every bit.
2823                  */
2824                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2825                         0, PASS_ONE_BIT, &bit_chk, 0);
2826
2827                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2828                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2829
2830                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2831                            %u && %u\n", d, sticky_bit_chk,
2832                            param->write_correct_mask, stop);
2833
2834                 if (stop == 1) {
2835                         if (d == 0) {
2836                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2837                                         i++) {
2838                                         /* d = 0 failed, but it passed when
2839                                         testing the left edge, so it must be
2840                                         marginal, set it to -1 */
2841                                         if (right_edge[i] ==
2842                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2843                                                 left_edge[i] !=
2844                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2845                                                 right_edge[i] = -1;
2846                                         }
2847                                 }
2848                         }
2849                         break;
2850                 } else {
2851                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2852                                 if (bit_chk & 1) {
2853                                         /*
2854                                          * Remember a passing test as
2855                                          * the right_edge.
2856                                          */
2857                                         right_edge[i] = d;
2858                                 } else {
2859                                         if (d != 0) {
2860                                                 /*
2861                                                  * If a right edge has not
2862                                                  * been seen yet, then a future
2863                                                  * passing test will mark this
2864                                                  * edge as the left edge.
2865                                                  */
2866                                                 if (right_edge[i] ==
2867                                                     IO_IO_OUT1_DELAY_MAX + 1)
2868                                                         left_edge[i] = -(d + 1);
2869                                         } else {
2870                                                 /*
2871                                                  * d = 0 failed, but it passed
2872                                                  * when testing the left edge,
2873                                                  * so it must be marginal, set
2874                                                  * it to -1.
2875                                                  */
2876                                                 if (right_edge[i] ==
2877                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2878                                                     left_edge[i] !=
2879                                                     IO_IO_OUT1_DELAY_MAX + 1)
2880                                                         right_edge[i] = -1;
2881                                                 /*
2882                                                  * If a right edge has not been
2883                                                  * seen yet, then a future
2884                                                  * passing test will mark this
2885                                                  * edge as the left edge.
2886                                                  */
2887                                                 else if (right_edge[i] ==
2888                                                         IO_IO_OUT1_DELAY_MAX +
2889                                                         1)
2890                                                         left_edge[i] = -(d + 1);
2891                                         }
2892                                 }
2893                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2894                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2895                                            (int)(bit_chk & 1), i, left_edge[i]);
2896                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2897                                            right_edge[i]);
2898                                 bit_chk = bit_chk >> 1;
2899                         }
2900                 }
2901         }
2902
2903         /* Check that all bits have a window */
2904         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2905                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2906                            %d right_edge[%u]: %d", __func__, __LINE__,
2907                            i, left_edge[i], i, right_edge[i]);
2908                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2909                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2910                         set_failing_group_stage(test_bgn + i,
2911                                                 CAL_STAGE_WRITES,
2912                                                 CAL_SUBSTAGE_WRITES_CENTER);
2913                         return 0;
2914                 }
2915         }
2916
2917         /* Find middle of window for each DQ bit */
2918         mid_min = left_edge[0] - right_edge[0];
2919         min_index = 0;
2920         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2921                 mid = left_edge[i] - right_edge[i];
2922                 if (mid < mid_min) {
2923                         mid_min = mid;
2924                         min_index = i;
2925                 }
2926         }
2927
2928         /*
2929          * -mid_min/2 represents the amount that we need to move DQS.
2930          * If mid_min is odd and positive we'll need to add one to
2931          * make sure the rounding in further calculations is correct
2932          * (always bias to the right), so just add 1 for all positive values.
2933          */
2934         if (mid_min > 0)
2935                 mid_min++;
2936         mid_min = mid_min / 2;
2937         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2938                    __LINE__, mid_min);
2939
2940         /* Determine the amount we can change DQS (which is -mid_min) */
2941         orig_mid_min = mid_min;
2942         new_dqs = start_dqs;
2943         mid_min = 0;
2944         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2945                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2946         /* Initialize data for export structures */
2947         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2948         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2949
2950         /* add delay to bring centre of all DQ windows to the same "level" */
2951         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2952                 /* Use values before divide by 2 to reduce round off error */
2953                 shift_dq = (left_edge[i] - right_edge[i] -
2954                         (left_edge[min_index] - right_edge[min_index]))/2  +
2955                 (orig_mid_min - mid_min);
2956
2957                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2958                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2959
2960                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2961                 temp_dq_out1_delay = readl(addr + (i << 2));
2962                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2963                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2964                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2965                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2966                         shift_dq = -(int32_t)temp_dq_out1_delay;
2967                 }
2968                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2969                            i, shift_dq);
2970                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2971                 scc_mgr_load_dq(i);
2972
2973                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2974                            left_edge[i] - shift_dq + (-mid_min),
2975                            right_edge[i] + shift_dq - (-mid_min));
2976                 /* To determine values for export structures */
2977                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2978                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2979
2980                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2981                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2982         }
2983
2984         /* Move DQS */
2985         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2986         writel(0, &sdr_scc_mgr->update);
2987
2988         /* Centre DM */
2989         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2990
2991         /*
2992          * set the left and right edge of each bit to an illegal value,
2993          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2994          */
2995         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2996         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2997         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2998         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2999         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3000         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3001         int32_t win_best = 0;
3002
3003         /* Search for the/part of the window with DM shift */
3004         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3005                 scc_mgr_apply_group_dm_out1_delay(d);
3006                 writel(0, &sdr_scc_mgr->update);
3007
3008                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3009                                                     PASS_ALL_BITS, &bit_chk,
3010                                                     0)) {
3011                         /* USE Set current end of the window */
3012                         end_curr = -d;
3013                         /*
3014                          * If a starting edge of our window has not been seen
3015                          * this is our current start of the DM window.
3016                          */
3017                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3018                                 bgn_curr = -d;
3019
3020                         /*
3021                          * If current window is bigger than best seen.
3022                          * Set best seen to be current window.
3023                          */
3024                         if ((end_curr-bgn_curr+1) > win_best) {
3025                                 win_best = end_curr-bgn_curr+1;
3026                                 bgn_best = bgn_curr;
3027                                 end_best = end_curr;
3028                         }
3029                 } else {
3030                         /* We just saw a failing test. Reset temp edge */
3031                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3033                         }
3034                 }
3035
3036
3037         /* Reset DM delay chains to 0 */
3038         scc_mgr_apply_group_dm_out1_delay(0);
3039
3040         /*
3041          * Check to see if the current window nudges up aganist 0 delay.
3042          * If so we need to continue the search by shifting DQS otherwise DQS
3043          * search begins as a new search. */
3044         if (end_curr != 0) {
3045                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3047         }
3048
3049         /* Search for the/part of the window with DQS shifts */
3050         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3051                 /*
3052                  * Note: This only shifts DQS, so are we limiting ourselve to
3053                  * width of DQ unnecessarily.
3054                  */
3055                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3056                                                         d + new_dqs);
3057
3058                 writel(0, &sdr_scc_mgr->update);
3059                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3060                                                     PASS_ALL_BITS, &bit_chk,
3061                                                     0)) {
3062                         /* USE Set current end of the window */
3063                         end_curr = d;
3064                         /*
3065                          * If a beginning edge of our window has not been seen
3066                          * this is our current begin of the DM window.
3067                          */
3068                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3069                                 bgn_curr = d;
3070
3071                         /*
3072                          * If current window is bigger than best seen. Set best
3073                          * seen to be current window.
3074                          */
3075                         if ((end_curr-bgn_curr+1) > win_best) {
3076                                 win_best = end_curr-bgn_curr+1;
3077                                 bgn_best = bgn_curr;
3078                                 end_best = end_curr;
3079                         }
3080                 } else {
3081                         /* We just saw a failing test. Reset temp edge */
3082                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3083                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3084
3085                         /* Early exit optimization: if ther remaining delay
3086                         chain space is less than already seen largest window
3087                         we can exit */
3088                         if ((win_best-1) >
3089                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3090                                         break;
3091                                 }
3092                         }
3093                 }
3094
3095         /* assign left and right edge for cal and reporting; */
3096         left_edge[0] = -1*bgn_best;
3097         right_edge[0] = end_best;
3098
3099         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3100                    __LINE__, left_edge[0], right_edge[0]);
3101
3102         /* Move DQS (back to orig) */
3103         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3104
3105         /* Move DM */
3106
3107         /* Find middle of window for the DM bit */
3108         mid = (left_edge[0] - right_edge[0]) / 2;
3109
3110         /* only move right, since we are not moving DQS/DQ */
3111         if (mid < 0)
3112                 mid = 0;
3113
3114         /* dm_marign should fail if we never find a window */
3115         if (win_best == 0)
3116                 dm_margin = -1;
3117         else
3118                 dm_margin = left_edge[0] - mid;
3119
3120         scc_mgr_apply_group_dm_out1_delay(mid);
3121         writel(0, &sdr_scc_mgr->update);
3122
3123         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3124                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3125                    right_edge[0], mid, dm_margin);
3126         /* Export values */
3127         gbl->fom_out += dq_margin + dqs_margin;
3128
3129         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3130                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3131                    dq_margin, dqs_margin, dm_margin);
3132
3133         /*
3134          * Do not remove this line as it makes sure all of our
3135          * decisions have been applied.
3136          */
3137         writel(0, &sdr_scc_mgr->update);
3138         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3139 }
3140
3141 /* calibrate the write operations */
3142 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3143         uint32_t test_bgn)
3144 {
3145         /* update info for sims */
3146         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3147
3148         reg_file_set_stage(CAL_STAGE_WRITES);
3149         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3150
3151         reg_file_set_group(g);
3152
3153         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3154                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3155                                         CAL_SUBSTAGE_WRITES_CENTER);
3156                 return 0;
3157         }
3158
3159         return 1;
3160 }
3161
3162 /**
3163  * mem_precharge_and_activate() - Precharge all banks and activate
3164  *
3165  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3166  */
3167 static void mem_precharge_and_activate(void)
3168 {
3169         int r;
3170
3171         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3172                 /* Test if the rank should be skipped. */
3173                 if (param->skip_ranks[r])
3174                         continue;
3175
3176                 /* Set rank. */
3177                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3178
3179                 /* Precharge all banks. */
3180                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3181                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3182
3183                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3184                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3185                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3186
3187                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3188                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3189                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3190
3191                 /* Activate rows. */
3192                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3193                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3194         }
3195 }
3196
3197 /**
3198  * mem_init_latency() - Configure memory RLAT and WLAT settings
3199  *
3200  * Configure memory RLAT and WLAT parameters.
3201  */
3202 static void mem_init_latency(void)
3203 {
3204         /*
3205          * For AV/CV, LFIFO is hardened and always runs at full rate
3206          * so max latency in AFI clocks, used here, is correspondingly
3207          * smaller.
3208          */
3209         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3210         u32 rlat, wlat;
3211
3212         debug("%s:%d\n", __func__, __LINE__);
3213
3214         /*
3215          * Read in write latency.
3216          * WL for Hard PHY does not include additive latency.
3217          */
3218         wlat = readl(&data_mgr->t_wl_add);
3219         wlat += readl(&data_mgr->mem_t_add);
3220
3221         gbl->rw_wl_nop_cycles = wlat - 1;
3222
3223         /* Read in readl latency. */
3224         rlat = readl(&data_mgr->t_rl_add);
3225
3226         /* Set a pretty high read latency initially. */
3227         gbl->curr_read_lat = rlat + 16;
3228         if (gbl->curr_read_lat > max_latency)
3229                 gbl->curr_read_lat = max_latency;
3230
3231         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3232
3233         /* Advertise write latency. */
3234         writel(wlat, &phy_mgr_cfg->afi_wlat);
3235 }
3236
3237 /**
3238  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3239  *
3240  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3241  */
3242 static void mem_skip_calibrate(void)
3243 {
3244         uint32_t vfifo_offset;
3245         uint32_t i, j, r;
3246
3247         debug("%s:%d\n", __func__, __LINE__);
3248         /* Need to update every shadow register set used by the interface */
3249         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3250              r += NUM_RANKS_PER_SHADOW_REG) {
3251                 /*
3252                  * Set output phase alignment settings appropriate for
3253                  * skip calibration.
3254                  */
3255                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3256                         scc_mgr_set_dqs_en_phase(i, 0);
3257 #if IO_DLL_CHAIN_LENGTH == 6
3258                         scc_mgr_set_dqdqs_output_phase(i, 6);
3259 #else
3260                         scc_mgr_set_dqdqs_output_phase(i, 7);
3261 #endif
3262                         /*
3263                          * Case:33398
3264                          *
3265                          * Write data arrives to the I/O two cycles before write
3266                          * latency is reached (720 deg).
3267                          *   -> due to bit-slip in a/c bus
3268                          *   -> to allow board skew where dqs is longer than ck
3269                          *      -> how often can this happen!?
3270                          *      -> can claim back some ptaps for high freq
3271                          *       support if we can relax this, but i digress...
3272                          *
3273                          * The write_clk leads mem_ck by 90 deg
3274                          * The minimum ptap of the OPA is 180 deg
3275                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3276                          * The write_clk is always delayed by 2 ptaps
3277                          *
3278                          * Hence, to make DQS aligned to CK, we need to delay
3279                          * DQS by:
3280                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3281                          *
3282                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3283                          * gives us the number of ptaps, which simplies to:
3284                          *
3285                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3286                          */
3287                         scc_mgr_set_dqdqs_output_phase(i,
3288                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3289                 }
3290                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3291                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3292
3293                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3294                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3295                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3296                 }
3297                 writel(0xff, &sdr_scc_mgr->dq_ena);
3298                 writel(0xff, &sdr_scc_mgr->dm_ena);
3299                 writel(0, &sdr_scc_mgr->update);
3300         }
3301
3302         /* Compensate for simulation model behaviour */
3303         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3304                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3305                 scc_mgr_load_dqs(i);
3306         }
3307         writel(0, &sdr_scc_mgr->update);
3308
3309         /*
3310          * ArriaV has hard FIFOs that can only be initialized by incrementing
3311          * in sequencer.
3312          */
3313         vfifo_offset = CALIB_VFIFO_OFFSET;
3314         for (j = 0; j < vfifo_offset; j++)
3315                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3316         writel(0, &phy_mgr_cmd->fifo_reset);
3317
3318         /*
3319          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3320          * setting from generation-time constant.
3321          */
3322         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3323         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3324 }
3325
3326 /**
3327  * mem_calibrate() - Memory calibration entry point.
3328  *
3329  * Perform memory calibration.
3330  */
3331 static uint32_t mem_calibrate(void)
3332 {
3333         uint32_t i;
3334         uint32_t rank_bgn, sr;
3335         uint32_t write_group, write_test_bgn;
3336         uint32_t read_group, read_test_bgn;
3337         uint32_t run_groups, current_run;
3338         uint32_t failing_groups = 0;
3339         uint32_t group_failed = 0;
3340
3341         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3342                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3343
3344         debug("%s:%d\n", __func__, __LINE__);
3345
3346         /* Initialize the data settings */
3347         gbl->error_substage = CAL_SUBSTAGE_NIL;
3348         gbl->error_stage = CAL_STAGE_NIL;
3349         gbl->error_group = 0xff;
3350         gbl->fom_in = 0;
3351         gbl->fom_out = 0;
3352
3353         /* Initialize WLAT and RLAT. */
3354         mem_init_latency();
3355
3356         /* Initialize bit slips. */
3357         mem_precharge_and_activate();
3358
3359         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3360                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3361                           SCC_MGR_GROUP_COUNTER_OFFSET);
3362                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3363                 if (i == 0)
3364                         scc_mgr_set_hhp_extras();
3365
3366                 scc_set_bypass_mode(i);
3367         }
3368
3369         /* Calibration is skipped. */
3370         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3371                 /*
3372                  * Set VFIFO and LFIFO to instant-on settings in skip
3373                  * calibration mode.
3374                  */
3375                 mem_skip_calibrate();
3376
3377                 /*
3378                  * Do not remove this line as it makes sure all of our
3379                  * decisions have been applied.
3380                  */
3381                 writel(0, &sdr_scc_mgr->update);
3382                 return 1;
3383         }
3384
3385         /* Calibration is not skipped. */
3386         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3387                 /*
3388                  * Zero all delay chain/phase settings for all
3389                  * groups and all shadow register sets.
3390                  */
3391                 scc_mgr_zero_all();
3392
3393                 run_groups = ~param->skip_groups;
3394
3395                 for (write_group = 0, write_test_bgn = 0; write_group
3396                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3397                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3398
3399                         /* Initialize the group failure */
3400                         group_failed = 0;
3401
3402                         current_run = run_groups & ((1 <<
3403                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3404                         run_groups = run_groups >>
3405                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3406
3407                         if (current_run == 0)
3408                                 continue;
3409
3410                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3411                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3412                         scc_mgr_zero_group(write_group, 0);
3413
3414                         for (read_group = write_group * rwdqs_ratio,
3415                              read_test_bgn = 0;
3416                              read_group < (write_group + 1) * rwdqs_ratio;
3417                              read_group++,
3418                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3419                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3420                                         continue;
3421
3422                                 /* Calibrate the VFIFO */
3423                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3424                                                                read_test_bgn))
3425                                         continue;
3426
3427                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3428                                         return 0;
3429
3430                                 /* The group failed, we're done. */
3431                                 goto grp_failed;
3432                         }
3433
3434                         /* Calibrate the output side */
3435                         for (rank_bgn = 0, sr = 0;
3436                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3437                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3438                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3439                                         continue;
3440
3441                                 /* Not needed in quick mode! */
3442                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3443                                         continue;
3444
3445                                 /*
3446                                  * Determine if this set of ranks
3447                                  * should be skipped entirely.
3448                                  */
3449                                 if (param->skip_shadow_regs[sr])
3450                                         continue;
3451
3452                                 /* Calibrate WRITEs */
3453                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3454                                                 write_group, write_test_bgn))
3455                                         continue;
3456
3457                                 group_failed = 1;
3458                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459                                         return 0;
3460                         }
3461
3462                         /* Some group failed, we're done. */
3463                         if (group_failed)
3464                                 goto grp_failed;
3465
3466                         for (read_group = write_group * rwdqs_ratio,
3467                              read_test_bgn = 0;
3468                              read_group < (write_group + 1) * rwdqs_ratio;
3469                              read_group++,
3470                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3471                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3472                                         continue;
3473
3474                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3475                                                                 read_test_bgn))
3476                                         continue;
3477
3478                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3479                                         return 0;
3480
3481                                 /* The group failed, we're done. */
3482                                 goto grp_failed;
3483                         }
3484
3485                         /* No group failed, continue as usual. */
3486                         continue;
3487
3488 grp_failed:             /* A group failed, increment the counter. */
3489                         failing_groups++;
3490                 }
3491
3492                 /*
3493                  * USER If there are any failing groups then report
3494                  * the failure.
3495                  */
3496                 if (failing_groups != 0)
3497                         return 0;
3498
3499                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3500                         continue;
3501
3502                 /*
3503                  * If we're skipping groups as part of debug,
3504                  * don't calibrate LFIFO.
3505                  */
3506                 if (param->skip_groups != 0)
3507                         continue;
3508
3509                 /* Calibrate the LFIFO */
3510                 if (!rw_mgr_mem_calibrate_lfifo())
3511                         return 0;
3512         }
3513
3514         /*
3515          * Do not remove this line as it makes sure all of our decisions
3516          * have been applied.
3517          */
3518         writel(0, &sdr_scc_mgr->update);
3519         return 1;
3520 }
3521
3522 /**
3523  * run_mem_calibrate() - Perform memory calibration
3524  *
3525  * This function triggers the entire memory calibration procedure.
3526  */
3527 static int run_mem_calibrate(void)
3528 {
3529         int pass;
3530
3531         debug("%s:%d\n", __func__, __LINE__);
3532
3533         /* Reset pass/fail status shown on afi_cal_success/fail */
3534         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3535
3536         /* Stop tracking manager. */
3537         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3538
3539         phy_mgr_initialize();
3540         rw_mgr_mem_initialize();
3541
3542         /* Perform the actual memory calibration. */
3543         pass = mem_calibrate();
3544
3545         mem_precharge_and_activate();
3546         writel(0, &phy_mgr_cmd->fifo_reset);
3547
3548         /* Handoff. */
3549         rw_mgr_mem_handoff();
3550         /*
3551          * In Hard PHY this is a 2-bit control:
3552          * 0: AFI Mux Select
3553          * 1: DDIO Mux Select
3554          */
3555         writel(0x2, &phy_mgr_cfg->mux_sel);
3556
3557         /* Start tracking manager. */
3558         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3559
3560         return pass;
3561 }
3562
3563 /**
3564  * debug_mem_calibrate() - Report result of memory calibration
3565  * @pass:       Value indicating whether calibration passed or failed
3566  *
3567  * This function reports the results of the memory calibration
3568  * and writes debug information into the register file.
3569  */
3570 static void debug_mem_calibrate(int pass)
3571 {
3572         uint32_t debug_info;
3573
3574         if (pass) {
3575                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3576
3577                 gbl->fom_in /= 2;
3578                 gbl->fom_out /= 2;
3579
3580                 if (gbl->fom_in > 0xff)
3581                         gbl->fom_in = 0xff;
3582
3583                 if (gbl->fom_out > 0xff)
3584                         gbl->fom_out = 0xff;
3585
3586                 /* Update the FOM in the register file */
3587                 debug_info = gbl->fom_in;
3588                 debug_info |= gbl->fom_out << 8;
3589                 writel(debug_info, &sdr_reg_file->fom);
3590
3591                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3593         } else {
3594                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3595
3596                 debug_info = gbl->error_stage;
3597                 debug_info |= gbl->error_substage << 8;
3598                 debug_info |= gbl->error_group << 16;
3599
3600                 writel(debug_info, &sdr_reg_file->failing_stage);
3601                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3602                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3603
3604                 /* Update the failing group/stage in the register file */
3605                 debug_info = gbl->error_stage;
3606                 debug_info |= gbl->error_substage << 8;
3607                 debug_info |= gbl->error_group << 16;
3608                 writel(debug_info, &sdr_reg_file->failing_stage);
3609         }
3610
3611         printf("%s: Calibration complete\n", __FILE__);
3612 }
3613
3614 /**
3615  * hc_initialize_rom_data() - Initialize ROM data
3616  *
3617  * Initialize ROM data.
3618  */
3619 static void hc_initialize_rom_data(void)
3620 {
3621         u32 i, addr;
3622
3623         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3624         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3625                 writel(inst_rom_init[i], addr + (i << 2));
3626
3627         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3628         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3629                 writel(ac_rom_init[i], addr + (i << 2));
3630 }
3631
3632 /**
3633  * initialize_reg_file() - Initialize SDR register file
3634  *
3635  * Initialize SDR register file.
3636  */
3637 static void initialize_reg_file(void)
3638 {
3639         /* Initialize the register file with the correct data */
3640         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3641         writel(0, &sdr_reg_file->debug_data_addr);
3642         writel(0, &sdr_reg_file->cur_stage);
3643         writel(0, &sdr_reg_file->fom);
3644         writel(0, &sdr_reg_file->failing_stage);
3645         writel(0, &sdr_reg_file->debug1);
3646         writel(0, &sdr_reg_file->debug2);
3647 }
3648
3649 /**
3650  * initialize_hps_phy() - Initialize HPS PHY
3651  *
3652  * Initialize HPS PHY.
3653  */
3654 static void initialize_hps_phy(void)
3655 {
3656         uint32_t reg;
3657         /*
3658          * Tracking also gets configured here because it's in the
3659          * same register.
3660          */
3661         uint32_t trk_sample_count = 7500;
3662         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3663         /*
3664          * Format is number of outer loops in the 16 MSB, sample
3665          * count in 16 LSB.
3666          */
3667
3668         reg = 0;
3669         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3670         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3672         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3674         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3675         /*
3676          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3677          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3678          */
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3680         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3681                 trk_sample_count);
3682         writel(reg, &sdr_ctrl->phy_ctrl0);
3683
3684         reg = 0;
3685         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3686                 trk_sample_count >>
3687                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3688         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3689                 trk_long_idle_sample_count);
3690         writel(reg, &sdr_ctrl->phy_ctrl1);
3691
3692         reg = 0;
3693         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3694                 trk_long_idle_sample_count >>
3695                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3696         writel(reg, &sdr_ctrl->phy_ctrl2);
3697 }
3698
3699 /**
3700  * initialize_tracking() - Initialize tracking
3701  *
3702  * Initialize the register file with usable initial data.
3703  */
3704 static void initialize_tracking(void)
3705 {
3706         /*
3707          * Initialize the register file with the correct data.
3708          * Compute usable version of value in case we skip full
3709          * computation later.
3710          */
3711         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3712                &sdr_reg_file->dtaps_per_ptap);
3713
3714         /* trk_sample_count */
3715         writel(7500, &sdr_reg_file->trk_sample_count);
3716
3717         /* longidle outer loop [15:0] */
3718         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3719
3720         /*
3721          * longidle sample count [31:24]
3722          * trfc, worst case of 933Mhz 4Gb [23:16]
3723          * trcd, worst case [15:8]
3724          * vfifo wait [7:0]
3725          */
3726         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3727                &sdr_reg_file->delays);
3728
3729         /* mux delay */
3730         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3731                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3732                &sdr_reg_file->trk_rw_mgr_addr);
3733
3734         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3735                &sdr_reg_file->trk_read_dqs_width);
3736
3737         /* trefi [7:0] */
3738         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3739                &sdr_reg_file->trk_rfsh);
3740 }
3741
3742 int sdram_calibration_full(void)
3743 {
3744         struct param_type my_param;
3745         struct gbl_type my_gbl;
3746         uint32_t pass;
3747
3748         memset(&my_param, 0, sizeof(my_param));
3749         memset(&my_gbl, 0, sizeof(my_gbl));
3750
3751         param = &my_param;
3752         gbl = &my_gbl;
3753
3754         /* Set the calibration enabled by default */
3755         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3756         /*
3757          * Only sweep all groups (regardless of fail state) by default
3758          * Set enabled read test by default.
3759          */
3760 #if DISABLE_GUARANTEED_READ
3761         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3762 #endif
3763         /* Initialize the register file */
3764         initialize_reg_file();
3765
3766         /* Initialize any PHY CSR */
3767         initialize_hps_phy();
3768
3769         scc_mgr_initialize();
3770
3771         initialize_tracking();
3772
3773         printf("%s: Preparing to start memory calibration\n", __FILE__);
3774
3775         debug("%s:%d\n", __func__, __LINE__);
3776         debug_cond(DLEVEL == 1,
3777                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3778                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3779                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3780                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3781                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3782         debug_cond(DLEVEL == 1,
3783                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3784                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3785                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3786                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3787         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3788                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3789         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3790                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3791                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3792         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3793                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3794                    IO_IO_OUT2_DELAY_MAX);
3795         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3796                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3797
3798         hc_initialize_rom_data();
3799
3800         /* update info for sims */
3801         reg_file_set_stage(CAL_STAGE_NIL);
3802         reg_file_set_group(0);
3803
3804         /*
3805          * Load global needed for those actions that require
3806          * some dynamic calibration support.
3807          */
3808         dyn_calib_steps = STATIC_CALIB_STEPS;
3809         /*
3810          * Load global to allow dynamic selection of delay loop settings
3811          * based on calibration mode.
3812          */
3813         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3814                 skip_delay_mask = 0xff;
3815         else
3816                 skip_delay_mask = 0x0;
3817
3818         pass = run_mem_calibrate();
3819         debug_mem_calibrate(pass);
3820         return pass;
3821 }