]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Minor clean up of mem_skip_calibrate()
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123         u32 ratio;
124
125         debug("%s:%d\n", __func__, __LINE__);
126         /* Calibration has control over path to memory */
127         /*
128          * In Hard PHY this is a 2-bit control:
129          * 0: AFI Mux Select
130          * 1: DDIO Mux Select
131          */
132         writel(0x3, &phy_mgr_cfg->mux_sel);
133
134         /* USER memory clock is not stable we begin initialization  */
135         writel(0, &phy_mgr_cfg->reset_mem_stbl);
136
137         /* USER calibration status all set to zero */
138         writel(0, &phy_mgr_cfg->cal_status);
139
140         writel(0, &phy_mgr_cfg->cal_debug_info);
141
142         /* Init params only if we do NOT skip calibration. */
143         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144                 return;
145
146         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148         param->read_correct_mask_vg = (1 << ratio) - 1;
149         param->write_correct_mask_vg = (1 << ratio) - 1;
150         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152         ratio = RW_MGR_MEM_DATA_WIDTH /
153                 RW_MGR_MEM_DATA_MASK_WIDTH;
154         param->dm_correct_mask = (1 << ratio) - 1;
155 }
156
157 /**
158  * set_rank_and_odt_mask() - Set Rank and ODT mask
159  * @rank:       Rank mask
160  * @odt_mode:   ODT mode, OFF or READ_WRITE
161  *
162  * Set Rank and ODT mask (On-Die Termination).
163  */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166         u32 odt_mask_0 = 0;
167         u32 odt_mask_1 = 0;
168         u32 cs_and_odt_mask;
169
170         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171                 odt_mask_0 = 0x0;
172                 odt_mask_1 = 0x0;
173         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
174                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
175                 case 1: /* 1 Rank */
176                         /* Read: ODT = 0 ; Write: ODT = 1 */
177                         odt_mask_0 = 0x0;
178                         odt_mask_1 = 0x1;
179                         break;
180                 case 2: /* 2 Ranks */
181                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
182                                 /*
183                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
184                                  *   OR
185                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186                                  *
187                                  * Since MEM_NUMBER_OF_RANKS is 2, they
188                                  * are both single rank with 2 CS each
189                                  * (special for RDIMM).
190                                  *
191                                  * Read: Turn on ODT on the opposite rank
192                                  * Write: Turn on ODT on all ranks
193                                  */
194                                 odt_mask_0 = 0x3 & ~(1 << rank);
195                                 odt_mask_1 = 0x3;
196                         } else {
197                                 /*
198                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
199                                  *
200                                  * Read: Turn on ODT off on all ranks
201                                  * Write: Turn on ODT on active rank
202                                  */
203                                 odt_mask_0 = 0x0;
204                                 odt_mask_1 = 0x3 & (1 << rank);
205                         }
206                         break;
207                 case 4: /* 4 Ranks */
208                         /* Read:
209                          * ----------+-----------------------+
210                          *           |         ODT           |
211                          * Read From +-----------------------+
212                          *   Rank    |  3  |  2  |  1  |  0  |
213                          * ----------+-----+-----+-----+-----+
214                          *     0     |  0  |  1  |  0  |  0  |
215                          *     1     |  1  |  0  |  0  |  0  |
216                          *     2     |  0  |  0  |  0  |  1  |
217                          *     3     |  0  |  0  |  1  |  0  |
218                          * ----------+-----+-----+-----+-----+
219                          *
220                          * Write:
221                          * ----------+-----------------------+
222                          *           |         ODT           |
223                          * Write To  +-----------------------+
224                          *   Rank    |  3  |  2  |  1  |  0  |
225                          * ----------+-----+-----+-----+-----+
226                          *     0     |  0  |  1  |  0  |  1  |
227                          *     1     |  1  |  0  |  1  |  0  |
228                          *     2     |  0  |  1  |  0  |  1  |
229                          *     3     |  1  |  0  |  1  |  0  |
230                          * ----------+-----+-----+-----+-----+
231                          */
232                         switch (rank) {
233                         case 0:
234                                 odt_mask_0 = 0x4;
235                                 odt_mask_1 = 0x5;
236                                 break;
237                         case 1:
238                                 odt_mask_0 = 0x8;
239                                 odt_mask_1 = 0xA;
240                                 break;
241                         case 2:
242                                 odt_mask_0 = 0x1;
243                                 odt_mask_1 = 0x5;
244                                 break;
245                         case 3:
246                                 odt_mask_0 = 0x2;
247                                 odt_mask_1 = 0xA;
248                                 break;
249                         }
250                         break;
251                 }
252         }
253
254         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255                           ((0xFF & odt_mask_0) << 8) |
256                           ((0xFF & odt_mask_1) << 16);
257         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260
261 /**
262  * scc_mgr_set() - Set SCC Manager register
263  * @off:        Base offset in SCC Manager space
264  * @grp:        Read/Write group
265  * @val:        Value to be set
266  *
267  * This function sets the SCC Manager (Scan Chain Control Manager) register.
268  */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273
274 /**
275  * scc_mgr_initialize() - Initialize SCC Manager registers
276  *
277  * Initialize SCC Manager registers.
278  */
279 static void scc_mgr_initialize(void)
280 {
281         /*
282          * Clear register file for HPS. 16 (2^4) is the size of the
283          * full register file in the scc mgr:
284          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285          *                             MEM_IF_READ_DQS_WIDTH - 1);
286          */
287         int i;
288
289         for (i = 0; i < 16; i++) {
290                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291                            __func__, __LINE__, i);
292                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293         }
294 }
295
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
319                     delay);
320 }
321
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
335                     delay);
336 }
337
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
342                     delay);
343 }
344
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348         writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354         writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366         writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368
369 /**
370  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371  * @off:        Base offset in SCC Manager space
372  * @grp:        Read/Write group
373  * @val:        Value to be set
374  * @update:     If non-zero, trigger SCC Manager update for all ranks
375  *
376  * This function sets the SCC Manager (Scan Chain Control Manager) register
377  * and optionally triggers the SCC update for all ranks.
378  */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380                                   const int update)
381 {
382         u32 r;
383
384         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
385              r += NUM_RANKS_PER_SHADOW_REG) {
386                 scc_mgr_set(off, grp, val);
387
388                 if (update || (r == 0)) {
389                         writel(grp, &sdr_scc_mgr->dqs_ena);
390                         writel(0, &sdr_scc_mgr->update);
391                 }
392         }
393 }
394
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397         /*
398          * USER although the h/w doesn't support different phases per
399          * shadow register, for simplicity our scc manager modeling
400          * keeps different phase settings per shadow reg, and it's
401          * important for us to keep them in sync to match h/w.
402          * for efficiency, the scan chain update should occur only
403          * once to sr0.
404          */
405         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406                               read_group, phase, 0);
407 }
408
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410                                                      uint32_t phase)
411 {
412         /*
413          * USER although the h/w doesn't support different phases per
414          * shadow register, for simplicity our scc manager modeling
415          * keeps different phase settings per shadow reg, and it's
416          * important for us to keep them in sync to match h/w.
417          * for efficiency, the scan chain update should occur only
418          * once to sr0.
419          */
420         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421                               write_group, phase, 0);
422 }
423
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425                                                uint32_t delay)
426 {
427         /*
428          * In shadow register mode, the T11 settings are stored in
429          * registers in the core, which are updated by the DQS_ENA
430          * signals. Not issuing the SCC_MGR_UPD command allows us to
431          * save lots of rank switching overhead, by calling
432          * select_shadow_regs_for_update with update_scan_chains
433          * set to 0.
434          */
435         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436                               read_group, delay, 1);
437         writel(0, &sdr_scc_mgr->update);
438 }
439
440 /**
441  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442  * @write_group:        Write group
443  * @delay:              Delay value
444  *
445  * This function sets the OCT output delay in SCC manager.
446  */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
450                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
451         const int base = write_group * ratio;
452         int i;
453         /*
454          * Load the setting in the SCC manager
455          * Although OCT affects only write data, the OCT delay is controlled
456          * by the DQS logic block which is instantiated once per read group.
457          * For protocols where a write group consists of multiple read groups,
458          * the setting must be set multiple times.
459          */
460         for (i = 0; i < ratio; i++)
461                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463
464 /**
465  * scc_mgr_set_hhp_extras() - Set HHP extras.
466  *
467  * Load the fixed setting in the SCC manager HHP extras.
468  */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471         /*
472          * Load the fixed setting in the SCC manager
473          * bits: 0:0 = 1'b1     - DQS bypass
474          * bits: 1:1 = 1'b1     - DQ bypass
475          * bits: 4:2 = 3'b001   - rfifo_mode
476          * bits: 6:5 = 2'b01    - rfifo clock_select
477          * bits: 7:7 = 1'b0     - separate gating from ungating setting
478          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
479          */
480         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481                           (1 << 2) | (1 << 1) | (1 << 0);
482         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483                          SCC_MGR_HHP_GLOBALS_OFFSET |
484                          SCC_MGR_HHP_EXTRAS_OFFSET;
485
486         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487                    __func__, __LINE__);
488         writel(value, addr);
489         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490                    __func__, __LINE__);
491 }
492
493 /**
494  * scc_mgr_zero_all() - Zero all DQS config
495  *
496  * Zero all DQS config.
497  */
498 static void scc_mgr_zero_all(void)
499 {
500         int i, r;
501
502         /*
503          * USER Zero all DQS config settings, across all groups and all
504          * shadow registers
505          */
506         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
507              r += NUM_RANKS_PER_SHADOW_REG) {
508                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
509                         /*
510                          * The phases actually don't exist on a per-rank basis,
511                          * but there's no harm updating them several times, so
512                          * let's keep the code simple.
513                          */
514                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
515                         scc_mgr_set_dqs_en_phase(i, 0);
516                         scc_mgr_set_dqs_en_delay(i, 0);
517                 }
518
519                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
520                         scc_mgr_set_dqdqs_output_phase(i, 0);
521                         /* Arria V/Cyclone V don't have out2. */
522                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
523                 }
524         }
525
526         /* Multicast to all DQS group enables. */
527         writel(0xff, &sdr_scc_mgr->dqs_ena);
528         writel(0, &sdr_scc_mgr->update);
529 }
530
531 /**
532  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533  * @write_group:        Write group
534  *
535  * Set bypass mode and trigger SCC update.
536  */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539         /* Multicast to all DQ enables. */
540         writel(0xff, &sdr_scc_mgr->dq_ena);
541         writel(0xff, &sdr_scc_mgr->dm_ena);
542
543         /* Update current DQS IO enable. */
544         writel(0, &sdr_scc_mgr->dqs_io_ena);
545
546         /* Update the DQS logic. */
547         writel(write_group, &sdr_scc_mgr->dqs_ena);
548
549         /* Hit update. */
550         writel(0, &sdr_scc_mgr->update);
551 }
552
553 /**
554  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555  * @write_group:        Write group
556  *
557  * Load DQS settings for Write Group, do not trigger SCC update.
558  */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
562                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
563         const int base = write_group * ratio;
564         int i;
565         /*
566          * Load the setting in the SCC manager
567          * Although OCT affects only write data, the OCT delay is controlled
568          * by the DQS logic block which is instantiated once per read group.
569          * For protocols where a write group consists of multiple read groups,
570          * the setting must be set multiple times.
571          */
572         for (i = 0; i < ratio; i++)
573                 writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575
576 /**
577  * scc_mgr_zero_group() - Zero all configs for a group
578  *
579  * Zero DQ, DM, DQS and OCT configs for a group.
580  */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583         int i, r;
584
585         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
586              r += NUM_RANKS_PER_SHADOW_REG) {
587                 /* Zero all DQ config settings. */
588                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
589                         scc_mgr_set_dq_out1_delay(i, 0);
590                         if (!out_only)
591                                 scc_mgr_set_dq_in_delay(i, 0);
592                 }
593
594                 /* Multicast to all DQ enables. */
595                 writel(0xff, &sdr_scc_mgr->dq_ena);
596
597                 /* Zero all DM config settings. */
598                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599                         scc_mgr_set_dm_out1_delay(i, 0);
600
601                 /* Multicast to all DM enables. */
602                 writel(0xff, &sdr_scc_mgr->dm_ena);
603
604                 /* Zero all DQS IO settings. */
605                 if (!out_only)
606                         scc_mgr_set_dqs_io_in_delay(0);
607
608                 /* Arria V/Cyclone V don't have out2. */
609                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
610                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
611                 scc_mgr_load_dqs_for_write_group(write_group);
612
613                 /* Multicast to all DQS IO enables (only 1 in total). */
614                 writel(0, &sdr_scc_mgr->dqs_io_ena);
615
616                 /* Hit update to zero everything. */
617                 writel(0, &sdr_scc_mgr->update);
618         }
619 }
620
621 /*
622  * apply and load a particular input delay for the DQ pins in a group
623  * group_bgn is the index of the first dq pin (in the write group)
624  */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627         uint32_t i, p;
628
629         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
630                 scc_mgr_set_dq_in_delay(p, delay);
631                 scc_mgr_load_dq(p);
632         }
633 }
634
635 /**
636  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637  * @delay:              Delay value
638  *
639  * Apply and load a particular output delay for the DQ pins in a group.
640  */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643         int i;
644
645         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
646                 scc_mgr_set_dq_out1_delay(i, delay);
647                 scc_mgr_load_dq(i);
648         }
649 }
650
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654         uint32_t i;
655
656         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657                 scc_mgr_set_dm_out1_delay(i, delay1);
658                 scc_mgr_load_dm(i);
659         }
660 }
661
662
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665                                                     uint32_t delay)
666 {
667         scc_mgr_set_dqs_out1_delay(delay);
668         scc_mgr_load_dqs_io();
669
670         scc_mgr_set_oct_out1_delay(write_group, delay);
671         scc_mgr_load_dqs_for_write_group(write_group);
672 }
673
674 /**
675  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676  * @write_group:        Write group
677  * @delay:              Delay value
678  *
679  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680  */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682                                                   const u32 delay)
683 {
684         u32 i, new_delay;
685
686         /* DQ shift */
687         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
688                 scc_mgr_load_dq(i);
689
690         /* DM shift */
691         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692                 scc_mgr_load_dm(i);
693
694         /* DQS shift */
695         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
697                 debug_cond(DLEVEL == 1,
698                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699                            __func__, __LINE__, write_group, delay, new_delay,
700                            IO_IO_OUT2_DELAY_MAX,
701                            new_delay - IO_IO_OUT2_DELAY_MAX);
702                 new_delay -= IO_IO_OUT2_DELAY_MAX;
703                 scc_mgr_set_dqs_out1_delay(new_delay);
704         }
705
706         scc_mgr_load_dqs_io();
707
708         /* OCT shift */
709         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
711                 debug_cond(DLEVEL == 1,
712                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713                            __func__, __LINE__, write_group, delay,
714                            new_delay, IO_IO_OUT2_DELAY_MAX,
715                            new_delay - IO_IO_OUT2_DELAY_MAX);
716                 new_delay -= IO_IO_OUT2_DELAY_MAX;
717                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
718         }
719
720         scc_mgr_load_dqs_for_write_group(write_group);
721 }
722
723 /**
724  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725  * @write_group:        Write group
726  * @delay:              Delay value
727  *
728  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729  */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732                                                 const u32 delay)
733 {
734         int r;
735
736         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
737              r += NUM_RANKS_PER_SHADOW_REG) {
738                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739                 writel(0, &sdr_scc_mgr->update);
740         }
741 }
742
743 /**
744  * set_jump_as_return() - Return instruction optimization
745  *
746  * Optimization used to recover some slots in ddr3 inst_rom could be
747  * applied to other protocols if we wanted to
748  */
749 static void set_jump_as_return(void)
750 {
751         /*
752          * To save space, we replace return with jump to special shared
753          * RETURN instruction so we set the counter to large value so that
754          * we always jump.
755          */
756         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759
760 /*
761  * should always use constants as argument to ensure all computations are
762  * performed at compile time
763  */
764 static void delay_for_n_mem_clocks(const uint32_t clocks)
765 {
766         uint32_t afi_clocks;
767         uint8_t inner = 0;
768         uint8_t outer = 0;
769         uint16_t c_loop = 0;
770
771         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772
773
774         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
775         /* scale (rounding up) to get afi clocks */
776
777         /*
778          * Note, we don't bother accounting for being off a little bit
779          * because of a few extra instructions in outer loops
780          * Note, the loops have a test at the end, and do the test before
781          * the decrement, and so always perform the loop
782          * 1 time more than the counter value
783          */
784         if (afi_clocks == 0) {
785                 ;
786         } else if (afi_clocks <= 0x100) {
787                 inner = afi_clocks-1;
788                 outer = 0;
789                 c_loop = 0;
790         } else if (afi_clocks <= 0x10000) {
791                 inner = 0xff;
792                 outer = (afi_clocks-1) >> 8;
793                 c_loop = 0;
794         } else {
795                 inner = 0xff;
796                 outer = 0xff;
797                 c_loop = (afi_clocks-1) >> 16;
798         }
799
800         /*
801          * rom instructions are structured as follows:
802          *
803          *    IDLE_LOOP2: jnz cntr0, TARGET_A
804          *    IDLE_LOOP1: jnz cntr1, TARGET_B
805          *                return
806          *
807          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
808          * TARGET_B is set to IDLE_LOOP2 as well
809          *
810          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
811          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
812          *
813          * a little confusing, but it helps save precious space in the inst_rom
814          * and sequencer rom and keeps the delays more accurate and reduces
815          * overhead
816          */
817         if (afi_clocks <= 0x100) {
818                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819                         &sdr_rw_load_mgr_regs->load_cntr1);
820
821                 writel(RW_MGR_IDLE_LOOP1,
822                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
823
824                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
825                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
826         } else {
827                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
828                         &sdr_rw_load_mgr_regs->load_cntr0);
829
830                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
831                         &sdr_rw_load_mgr_regs->load_cntr1);
832
833                 writel(RW_MGR_IDLE_LOOP2,
834                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
835
836                 writel(RW_MGR_IDLE_LOOP2,
837                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
838
839                 /* hack to get around compiler not being smart enough */
840                 if (afi_clocks <= 0x10000) {
841                         /* only need to run once */
842                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
843                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
844                 } else {
845                         do {
846                                 writel(RW_MGR_IDLE_LOOP2,
847                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
848                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
849                         } while (c_loop-- != 0);
850                 }
851         }
852         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
853 }
854
855 /**
856  * rw_mgr_mem_init_load_regs() - Load instruction registers
857  * @cntr0:      Counter 0 value
858  * @cntr1:      Counter 1 value
859  * @cntr2:      Counter 2 value
860  * @jump:       Jump instruction value
861  *
862  * Load instruction registers.
863  */
864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
865 {
866         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
867                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
868
869         /* Load counters */
870         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
871                &sdr_rw_load_mgr_regs->load_cntr0);
872         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
873                &sdr_rw_load_mgr_regs->load_cntr1);
874         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
875                &sdr_rw_load_mgr_regs->load_cntr2);
876
877         /* Load jump address */
878         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
881
882         /* Execute count instruction */
883         writel(jump, grpaddr);
884 }
885
886 /**
887  * rw_mgr_mem_load_user() - Load user calibration values
888  * @fin1:       Final instruction 1
889  * @fin2:       Final instruction 2
890  * @precharge:  If 1, precharge the banks at the end
891  *
892  * Load user calibration values and optionally precharge the banks.
893  */
894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
895                                  const int precharge)
896 {
897         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
898                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
899         u32 r;
900
901         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
902                 if (param->skip_ranks[r]) {
903                         /* request to skip the rank */
904                         continue;
905                 }
906
907                 /* set rank */
908                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
909
910                 /* precharge all banks ... */
911                 if (precharge)
912                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
913
914                 /*
915                  * USER Use Mirror-ed commands for odd ranks if address
916                  * mirrorring is on
917                  */
918                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
919                         set_jump_as_return();
920                         writel(RW_MGR_MRS2_MIRR, grpaddr);
921                         delay_for_n_mem_clocks(4);
922                         set_jump_as_return();
923                         writel(RW_MGR_MRS3_MIRR, grpaddr);
924                         delay_for_n_mem_clocks(4);
925                         set_jump_as_return();
926                         writel(RW_MGR_MRS1_MIRR, grpaddr);
927                         delay_for_n_mem_clocks(4);
928                         set_jump_as_return();
929                         writel(fin1, grpaddr);
930                 } else {
931                         set_jump_as_return();
932                         writel(RW_MGR_MRS2, grpaddr);
933                         delay_for_n_mem_clocks(4);
934                         set_jump_as_return();
935                         writel(RW_MGR_MRS3, grpaddr);
936                         delay_for_n_mem_clocks(4);
937                         set_jump_as_return();
938                         writel(RW_MGR_MRS1, grpaddr);
939                         set_jump_as_return();
940                         writel(fin2, grpaddr);
941                 }
942
943                 if (precharge)
944                         continue;
945
946                 set_jump_as_return();
947                 writel(RW_MGR_ZQCL, grpaddr);
948
949                 /* tZQinit = tDLLK = 512 ck cycles */
950                 delay_for_n_mem_clocks(512);
951         }
952 }
953
954 static void rw_mgr_mem_initialize(void)
955 {
956         debug("%s:%d\n", __func__, __LINE__);
957
958         /* The reset / cke part of initialization is broadcasted to all ranks */
959         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
960                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
961
962         /*
963          * Here's how you load register for a loop
964          * Counters are located @ 0x800
965          * Jump address are located @ 0xC00
966          * For both, registers 0 to 3 are selected using bits 3 and 2, like
967          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
968          * I know this ain't pretty, but Avalon bus throws away the 2 least
969          * significant bits
970          */
971
972         /* start with memory RESET activated */
973
974         /* tINIT = 200us */
975
976         /*
977          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
978          * If a and b are the number of iteration in 2 nested loops
979          * it takes the following number of cycles to complete the operation:
980          * number_of_cycles = ((2 + n) * a + 2) * b
981          * where n is the number of instruction in the inner loop
982          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
983          * b = 6A
984          */
985         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
986                                   SEQ_TINIT_CNTR2_VAL,
987                                   RW_MGR_INIT_RESET_0_CKE_0);
988
989         /* indicate that memory is stable */
990         writel(1, &phy_mgr_cfg->reset_mem_stbl);
991
992         /*
993          * transition the RESET to high
994          * Wait for 500us
995          */
996
997         /*
998          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
999          * If a and b are the number of iteration in 2 nested loops
1000          * it takes the following number of cycles to complete the operation
1001          * number_of_cycles = ((2 + n) * a + 2) * b
1002          * where n is the number of instruction in the inner loop
1003          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1004          * b = FF
1005          */
1006         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1007                                   SEQ_TRESET_CNTR2_VAL,
1008                                   RW_MGR_INIT_RESET_1_CKE_0);
1009
1010         /* bring up clock enable */
1011
1012         /* tXRP < 250 ck cycles */
1013         delay_for_n_mem_clocks(250);
1014
1015         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1016                              0);
1017 }
1018
1019 /*
1020  * At the end of calibration we have to program the user settings in, and
1021  * USER  hand off the memory to the user.
1022  */
1023 static void rw_mgr_mem_handoff(void)
1024 {
1025         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1026         /*
1027          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1028          * other commands, but we will have plenty of NIOS cycles before
1029          * actual handoff so its okay.
1030          */
1031 }
1032
1033 /*
1034  * performs a guaranteed read on the patterns we are going to use during a
1035  * read test to ensure memory works
1036  */
1037 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1038         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1039         uint32_t all_ranks)
1040 {
1041         uint32_t r, vg;
1042         uint32_t correct_mask_vg;
1043         uint32_t tmp_bit_chk;
1044         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1045                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1046         uint32_t addr;
1047         uint32_t base_rw_mgr;
1048
1049         *bit_chk = param->read_correct_mask;
1050         correct_mask_vg = param->read_correct_mask_vg;
1051
1052         for (r = rank_bgn; r < rank_end; r++) {
1053                 if (param->skip_ranks[r])
1054                         /* request to skip the rank */
1055                         continue;
1056
1057                 /* set rank */
1058                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1059
1060                 /* Load up a constant bursts of read commands */
1061                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1062                 writel(RW_MGR_GUARANTEED_READ,
1063                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1064
1065                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1066                 writel(RW_MGR_GUARANTEED_READ_CONT,
1067                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1068
1069                 tmp_bit_chk = 0;
1070                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1071                         /* reset the fifos to get pointers to known state */
1072
1073                         writel(0, &phy_mgr_cmd->fifo_reset);
1074                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1075                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1076
1077                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1078                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1079
1080                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1081                         writel(RW_MGR_GUARANTEED_READ, addr +
1082                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1083                                 vg) << 2));
1084
1085                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1086                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1087
1088                         if (vg == 0)
1089                                 break;
1090                 }
1091                 *bit_chk &= tmp_bit_chk;
1092         }
1093
1094         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1095         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1096
1097         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1098         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1099                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1100                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1101         return *bit_chk == param->read_correct_mask;
1102 }
1103
1104 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1105         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1106 {
1107         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1108                 num_tries, bit_chk, 1);
1109 }
1110
1111 /* load up the patterns we are going to use during a read test */
1112 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1113         uint32_t all_ranks)
1114 {
1115         uint32_t r;
1116         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1117                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1118
1119         debug("%s:%d\n", __func__, __LINE__);
1120         for (r = rank_bgn; r < rank_end; r++) {
1121                 if (param->skip_ranks[r])
1122                         /* request to skip the rank */
1123                         continue;
1124
1125                 /* set rank */
1126                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1127
1128                 /* Load up a constant bursts */
1129                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1130
1131                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1132                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1133
1134                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1135
1136                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1137                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1138
1139                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1140
1141                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1142                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1143
1144                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1145
1146                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1147                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1148
1149                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1150                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1151         }
1152
1153         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1154 }
1155
1156 /*
1157  * try a read and see if it returns correct data back. has dummy reads
1158  * inserted into the mix used to align dqs enable. has more thorough checks
1159  * than the regular read test.
1160  */
1161 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1162         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1163         uint32_t all_groups, uint32_t all_ranks)
1164 {
1165         uint32_t r, vg;
1166         uint32_t correct_mask_vg;
1167         uint32_t tmp_bit_chk;
1168         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1169                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1170         uint32_t addr;
1171         uint32_t base_rw_mgr;
1172
1173         *bit_chk = param->read_correct_mask;
1174         correct_mask_vg = param->read_correct_mask_vg;
1175
1176         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1177                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1178
1179         for (r = rank_bgn; r < rank_end; r++) {
1180                 if (param->skip_ranks[r])
1181                         /* request to skip the rank */
1182                         continue;
1183
1184                 /* set rank */
1185                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1186
1187                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1188
1189                 writel(RW_MGR_READ_B2B_WAIT1,
1190                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1191
1192                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1193                 writel(RW_MGR_READ_B2B_WAIT2,
1194                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1195
1196                 if (quick_read_mode)
1197                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1198                         /* need at least two (1+1) reads to capture failures */
1199                 else if (all_groups)
1200                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1201                 else
1202                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1203
1204                 writel(RW_MGR_READ_B2B,
1205                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1206                 if (all_groups)
1207                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1208                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1209                                &sdr_rw_load_mgr_regs->load_cntr3);
1210                 else
1211                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1212
1213                 writel(RW_MGR_READ_B2B,
1214                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1215
1216                 tmp_bit_chk = 0;
1217                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1218                         /* reset the fifos to get pointers to known state */
1219                         writel(0, &phy_mgr_cmd->fifo_reset);
1220                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1221                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1222
1223                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1224                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1225
1226                         if (all_groups)
1227                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1228                         else
1229                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1230
1231                         writel(RW_MGR_READ_B2B, addr +
1232                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1233                                vg) << 2));
1234
1235                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1236                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1237
1238                         if (vg == 0)
1239                                 break;
1240                 }
1241                 *bit_chk &= tmp_bit_chk;
1242         }
1243
1244         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1245         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1246
1247         if (all_correct) {
1248                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1249                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1250                            (%u == %u) => %lu", __func__, __LINE__, group,
1251                            all_groups, *bit_chk, param->read_correct_mask,
1252                            (long unsigned int)(*bit_chk ==
1253                            param->read_correct_mask));
1254                 return *bit_chk == param->read_correct_mask;
1255         } else  {
1256                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1257                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1258                            (%u != %lu) => %lu\n", __func__, __LINE__,
1259                            group, all_groups, *bit_chk, (long unsigned int)0,
1260                            (long unsigned int)(*bit_chk != 0x00));
1261                 return *bit_chk != 0x00;
1262         }
1263 }
1264
1265 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1266         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1267         uint32_t all_groups)
1268 {
1269         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1270                                               bit_chk, all_groups, 1);
1271 }
1272
1273 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1274 {
1275         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1276         (*v)++;
1277 }
1278
1279 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1280 {
1281         uint32_t i;
1282
1283         for (i = 0; i < VFIFO_SIZE-1; i++)
1284                 rw_mgr_incr_vfifo(grp, v);
1285 }
1286
1287 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1288 {
1289         uint32_t  v;
1290         uint32_t fail_cnt = 0;
1291         uint32_t test_status;
1292
1293         for (v = 0; v < VFIFO_SIZE; ) {
1294                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1295                            __func__, __LINE__, v);
1296                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1297                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1298                 if (!test_status) {
1299                         fail_cnt++;
1300
1301                         if (fail_cnt == 2)
1302                                 break;
1303                 }
1304
1305                 /* fiddle with FIFO */
1306                 rw_mgr_incr_vfifo(grp, &v);
1307         }
1308
1309         if (v >= VFIFO_SIZE) {
1310                 /* no failing read found!! Something must have gone wrong */
1311                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1312                            __func__, __LINE__);
1313                 return 0;
1314         } else {
1315                 return v;
1316         }
1317 }
1318
1319 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1320                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1321                               uint32_t *v, uint32_t *d, uint32_t *p,
1322                               uint32_t *i, uint32_t *max_working_cnt)
1323 {
1324         uint32_t found_begin = 0;
1325         uint32_t tmp_delay = 0;
1326         uint32_t test_status;
1327
1328         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1329                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1330                 *work_bgn = tmp_delay;
1331                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1332
1333                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1334                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1335                                 IO_DELAY_PER_OPA_TAP) {
1336                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1337
1338                                 test_status =
1339                                 rw_mgr_mem_calibrate_read_test_all_ranks
1340                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1341
1342                                 if (test_status) {
1343                                         *max_working_cnt = 1;
1344                                         found_begin = 1;
1345                                         break;
1346                                 }
1347                         }
1348
1349                         if (found_begin)
1350                                 break;
1351
1352                         if (*p > IO_DQS_EN_PHASE_MAX)
1353                                 /* fiddle with FIFO */
1354                                 rw_mgr_incr_vfifo(*grp, v);
1355                 }
1356
1357                 if (found_begin)
1358                         break;
1359         }
1360
1361         if (*i >= VFIFO_SIZE) {
1362                 /* cannot find working solution */
1363                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1364                            ptap/dtap\n", __func__, __LINE__);
1365                 return 0;
1366         } else {
1367                 return 1;
1368         }
1369 }
1370
1371 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1372                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1373                              uint32_t *p, uint32_t *max_working_cnt)
1374 {
1375         uint32_t found_begin = 0;
1376         uint32_t tmp_delay;
1377
1378         /* Special case code for backing up a phase */
1379         if (*p == 0) {
1380                 *p = IO_DQS_EN_PHASE_MAX;
1381                 rw_mgr_decr_vfifo(*grp, v);
1382         } else {
1383                 (*p)--;
1384         }
1385         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1386         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1387
1388         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1389                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1390                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1391
1392                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1393                                                              PASS_ONE_BIT,
1394                                                              bit_chk, 0)) {
1395                         found_begin = 1;
1396                         *work_bgn = tmp_delay;
1397                         break;
1398                 }
1399         }
1400
1401         /* We have found a working dtap before the ptap found above */
1402         if (found_begin == 1)
1403                 (*max_working_cnt)++;
1404
1405         /*
1406          * Restore VFIFO to old state before we decremented it
1407          * (if needed).
1408          */
1409         (*p)++;
1410         if (*p > IO_DQS_EN_PHASE_MAX) {
1411                 *p = 0;
1412                 rw_mgr_incr_vfifo(*grp, v);
1413         }
1414
1415         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1416 }
1417
1418 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1419                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1420                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1421                              uint32_t *work_end)
1422 {
1423         uint32_t found_end = 0;
1424
1425         (*p)++;
1426         *work_end += IO_DELAY_PER_OPA_TAP;
1427         if (*p > IO_DQS_EN_PHASE_MAX) {
1428                 /* fiddle with FIFO */
1429                 *p = 0;
1430                 rw_mgr_incr_vfifo(*grp, v);
1431         }
1432
1433         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1434                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1435                         += IO_DELAY_PER_OPA_TAP) {
1436                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1437
1438                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1439                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1440                                 found_end = 1;
1441                                 break;
1442                         } else {
1443                                 (*max_working_cnt)++;
1444                         }
1445                 }
1446
1447                 if (found_end)
1448                         break;
1449
1450                 if (*p > IO_DQS_EN_PHASE_MAX) {
1451                         /* fiddle with FIFO */
1452                         rw_mgr_incr_vfifo(*grp, v);
1453                         *p = 0;
1454                 }
1455         }
1456
1457         if (*i >= VFIFO_SIZE + 1) {
1458                 /* cannot see edge of failing read */
1459                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1460                            failed\n", __func__, __LINE__);
1461                 return 0;
1462         } else {
1463                 return 1;
1464         }
1465 }
1466
1467 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1468                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1469                                   uint32_t *p, uint32_t *work_mid,
1470                                   uint32_t *work_end)
1471 {
1472         int i;
1473         int tmp_delay = 0;
1474
1475         *work_mid = (*work_bgn + *work_end) / 2;
1476
1477         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1478                    *work_bgn, *work_end, *work_mid);
1479         /* Get the middle delay to be less than a VFIFO delay */
1480         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1481                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1482                 ;
1483         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1484         while (*work_mid > tmp_delay)
1485                 *work_mid -= tmp_delay;
1486         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1487
1488         tmp_delay = 0;
1489         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1490                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1491                 ;
1492         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1493         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1494         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1495                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1496                 ;
1497         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1498
1499         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1500         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1501
1502         /*
1503          * push vfifo until we can successfully calibrate. We can do this
1504          * because the largest possible margin in 1 VFIFO cycle.
1505          */
1506         for (i = 0; i < VFIFO_SIZE; i++) {
1507                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1508                            *v);
1509                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1510                                                              PASS_ONE_BIT,
1511                                                              bit_chk, 0)) {
1512                         break;
1513                 }
1514
1515                 /* fiddle with FIFO */
1516                 rw_mgr_incr_vfifo(*grp, v);
1517         }
1518
1519         if (i >= VFIFO_SIZE) {
1520                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1521                            failed\n", __func__, __LINE__);
1522                 return 0;
1523         } else {
1524                 return 1;
1525         }
1526 }
1527
1528 /* find a good dqs enable to use */
1529 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1530 {
1531         uint32_t v, d, p, i;
1532         uint32_t max_working_cnt;
1533         uint32_t bit_chk;
1534         uint32_t dtaps_per_ptap;
1535         uint32_t work_bgn, work_mid, work_end;
1536         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1537
1538         debug("%s:%d %u\n", __func__, __LINE__, grp);
1539
1540         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1541
1542         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1543         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1544
1545         /* ************************************************************** */
1546         /* * Step 0 : Determine number of delay taps for each phase tap * */
1547         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1548
1549         /* ********************************************************* */
1550         /* * Step 1 : First push vfifo until we get a failing read * */
1551         v = find_vfifo_read(grp, &bit_chk);
1552
1553         max_working_cnt = 0;
1554
1555         /* ******************************************************** */
1556         /* * step 2: find first working phase, increment in ptaps * */
1557         work_bgn = 0;
1558         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1559                                 &p, &i, &max_working_cnt) == 0)
1560                 return 0;
1561
1562         work_end = work_bgn;
1563
1564         /*
1565          * If d is 0 then the working window covers a phase tap and
1566          * we can follow the old procedure otherwise, we've found the beginning,
1567          * and we need to increment the dtaps until we find the end.
1568          */
1569         if (d == 0) {
1570                 /* ********************************************************* */
1571                 /* * step 3a: if we have room, back off by one and
1572                 increment in dtaps * */
1573
1574                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1575                                  &max_working_cnt);
1576
1577                 /* ********************************************************* */
1578                 /* * step 4a: go forward from working phase to non working
1579                 phase, increment in ptaps * */
1580                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1581                                          &i, &max_working_cnt, &work_end) == 0)
1582                         return 0;
1583
1584                 /* ********************************************************* */
1585                 /* * step 5a:  back off one from last, increment in dtaps  * */
1586
1587                 /* Special case code for backing up a phase */
1588                 if (p == 0) {
1589                         p = IO_DQS_EN_PHASE_MAX;
1590                         rw_mgr_decr_vfifo(grp, &v);
1591                 } else {
1592                         p = p - 1;
1593                 }
1594
1595                 work_end -= IO_DELAY_PER_OPA_TAP;
1596                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1597
1598                 /* * The actual increment of dtaps is done outside of
1599                 the if/else loop to share code */
1600                 d = 0;
1601
1602                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1603                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1604                            v, p);
1605         } else {
1606                 /* ******************************************************* */
1607                 /* * step 3-5b:  Find the right edge of the window using
1608                 delay taps   * */
1609                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1610                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1611                            v, p, d, work_bgn);
1612
1613                 work_end = work_bgn;
1614
1615                 /* * The actual increment of dtaps is done outside of the
1616                 if/else loop to share code */
1617
1618                 /* Only here to counterbalance a subtract later on which is
1619                 not needed if this branch of the algorithm is taken */
1620                 max_working_cnt++;
1621         }
1622
1623         /* The dtap increment to find the failing edge is done here */
1624         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1625                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1626                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1627                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1628                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1629
1630                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1631                                                                       PASS_ONE_BIT,
1632                                                                       &bit_chk, 0)) {
1633                                 break;
1634                         }
1635         }
1636
1637         /* Go back to working dtap */
1638         if (d != 0)
1639                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1640
1641         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1642                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1643                    v, p, d-1, work_end);
1644
1645         if (work_end < work_bgn) {
1646                 /* nil range */
1647                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1648                            failed\n", __func__, __LINE__);
1649                 return 0;
1650         }
1651
1652         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1653                    __func__, __LINE__, work_bgn, work_end);
1654
1655         /* *************************************************************** */
1656         /*
1657          * * We need to calculate the number of dtaps that equal a ptap
1658          * * To do that we'll back up a ptap and re-find the edge of the
1659          * * window using dtaps
1660          */
1661
1662         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1663                    for tracking\n", __func__, __LINE__);
1664
1665         /* Special case code for backing up a phase */
1666         if (p == 0) {
1667                 p = IO_DQS_EN_PHASE_MAX;
1668                 rw_mgr_decr_vfifo(grp, &v);
1669                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1670                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1671                            v, p);
1672         } else {
1673                 p = p - 1;
1674                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1675                            phase only: v=%u p=%u", __func__, __LINE__,
1676                            v, p);
1677         }
1678
1679         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1680
1681         /*
1682          * Increase dtap until we first see a passing read (in case the
1683          * window is smaller than a ptap),
1684          * and then a failing read to mark the edge of the window again
1685          */
1686
1687         /* Find a passing read */
1688         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1689                    __func__, __LINE__);
1690         found_passing_read = 0;
1691         found_failing_read = 0;
1692         initial_failing_dtap = d;
1693         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1694                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1695                            read d=%u\n", __func__, __LINE__, d);
1696                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1697
1698                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1699                                                              PASS_ONE_BIT,
1700                                                              &bit_chk, 0)) {
1701                         found_passing_read = 1;
1702                         break;
1703                 }
1704         }
1705
1706         if (found_passing_read) {
1707                 /* Find a failing read */
1708                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1709                            read\n", __func__, __LINE__);
1710                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1711                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1712                                    testing read d=%u\n", __func__, __LINE__, d);
1713                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1714
1715                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1716                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1717                                 found_failing_read = 1;
1718                                 break;
1719                         }
1720                 }
1721         } else {
1722                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1723                            calculate dtaps", __func__, __LINE__);
1724                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1725         }
1726
1727         /*
1728          * The dynamically calculated dtaps_per_ptap is only valid if we
1729          * found a passing/failing read. If we didn't, it means d hit the max
1730          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1731          * statically calculated value.
1732          */
1733         if (found_passing_read && found_failing_read)
1734                 dtaps_per_ptap = d - initial_failing_dtap;
1735
1736         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1737         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1738                    - %u = %u",  __func__, __LINE__, d,
1739                    initial_failing_dtap, dtaps_per_ptap);
1740
1741         /* ******************************************** */
1742         /* * step 6:  Find the centre of the window   * */
1743         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1744                                    &work_mid, &work_end) == 0)
1745                 return 0;
1746
1747         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1748                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1749                    v, p-1, d);
1750         return 1;
1751 }
1752
1753 /*
1754  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1755  * dq_in_delay values
1756  */
1757 static uint32_t
1758 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1759 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1760 {
1761         uint32_t found;
1762         uint32_t i;
1763         uint32_t p;
1764         uint32_t d;
1765         uint32_t r;
1766
1767         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1768                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1769                 /* we start at zero, so have one less dq to devide among */
1770
1771         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1772               test_bgn);
1773
1774         /* try different dq_in_delays since the dq path is shorter than dqs */
1775
1776         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1777              r += NUM_RANKS_PER_SHADOW_REG) {
1778                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1779                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1780                                    vfifo_find_dqs_", __func__, __LINE__);
1781                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1782                                write_group, read_group);
1783                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1784                         scc_mgr_set_dq_in_delay(p, d);
1785                         scc_mgr_load_dq(p);
1786                 }
1787                 writel(0, &sdr_scc_mgr->update);
1788         }
1789
1790         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1791
1792         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1793                    en_phase_sweep_dq", __func__, __LINE__);
1794         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1795                    chain to zero\n", write_group, read_group, found);
1796
1797         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1798              r += NUM_RANKS_PER_SHADOW_REG) {
1799                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1800                         i++, p++) {
1801                         scc_mgr_set_dq_in_delay(p, 0);
1802                         scc_mgr_load_dq(p);
1803                 }
1804                 writel(0, &sdr_scc_mgr->update);
1805         }
1806
1807         return found;
1808 }
1809
1810 /* per-bit deskew DQ and center */
1811 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1812         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1813         uint32_t use_read_test, uint32_t update_fom)
1814 {
1815         uint32_t i, p, d, min_index;
1816         /*
1817          * Store these as signed since there are comparisons with
1818          * signed numbers.
1819          */
1820         uint32_t bit_chk;
1821         uint32_t sticky_bit_chk;
1822         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1823         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1824         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1825         int32_t mid;
1826         int32_t orig_mid_min, mid_min;
1827         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1828                 final_dqs_en;
1829         int32_t dq_margin, dqs_margin;
1830         uint32_t stop;
1831         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1832         uint32_t addr;
1833
1834         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1835
1836         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1837         start_dqs = readl(addr + (read_group << 2));
1838         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1839                 start_dqs_en = readl(addr + ((read_group << 2)
1840                                      - IO_DQS_EN_DELAY_OFFSET));
1841
1842         /* set the left and right edge of each bit to an illegal value */
1843         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1844         sticky_bit_chk = 0;
1845         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1846                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1847                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1848         }
1849
1850         /* Search for the left edge of the window for each bit */
1851         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1852                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1853
1854                 writel(0, &sdr_scc_mgr->update);
1855
1856                 /*
1857                  * Stop searching when the read test doesn't pass AND when
1858                  * we've seen a passing read on every bit.
1859                  */
1860                 if (use_read_test) {
1861                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1862                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1863                                 &bit_chk, 0, 0);
1864                 } else {
1865                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1866                                                         0, PASS_ONE_BIT,
1867                                                         &bit_chk, 0);
1868                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1869                                 (read_group - (write_group *
1870                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1871                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1872                         stop = (bit_chk == 0);
1873                 }
1874                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1875                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1876                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1877                            && %u", __func__, __LINE__, d,
1878                            sticky_bit_chk,
1879                         param->read_correct_mask, stop);
1880
1881                 if (stop == 1) {
1882                         break;
1883                 } else {
1884                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1885                                 if (bit_chk & 1) {
1886                                         /* Remember a passing test as the
1887                                         left_edge */
1888                                         left_edge[i] = d;
1889                                 } else {
1890                                         /* If a left edge has not been seen yet,
1891                                         then a future passing test will mark
1892                                         this edge as the right edge */
1893                                         if (left_edge[i] ==
1894                                                 IO_IO_IN_DELAY_MAX + 1) {
1895                                                 right_edge[i] = -(d + 1);
1896                                         }
1897                                 }
1898                                 bit_chk = bit_chk >> 1;
1899                         }
1900                 }
1901         }
1902
1903         /* Reset DQ delay chains to 0 */
1904         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1905         sticky_bit_chk = 0;
1906         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1907                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1908                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1909                            i, left_edge[i], i, right_edge[i]);
1910
1911                 /*
1912                  * Check for cases where we haven't found the left edge,
1913                  * which makes our assignment of the the right edge invalid.
1914                  * Reset it to the illegal value.
1915                  */
1916                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1917                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1918                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1919                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1920                                    right_edge[%u]: %d\n", __func__, __LINE__,
1921                                    i, right_edge[i]);
1922                 }
1923
1924                 /*
1925                  * Reset sticky bit (except for bits where we have seen
1926                  * both the left and right edge).
1927                  */
1928                 sticky_bit_chk = sticky_bit_chk << 1;
1929                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1930                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1931                         sticky_bit_chk = sticky_bit_chk | 1;
1932                 }
1933
1934                 if (i == 0)
1935                         break;
1936         }
1937
1938         /* Search for the right edge of the window for each bit */
1939         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1940                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1941                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1942                         uint32_t delay = d + start_dqs_en;
1943                         if (delay > IO_DQS_EN_DELAY_MAX)
1944                                 delay = IO_DQS_EN_DELAY_MAX;
1945                         scc_mgr_set_dqs_en_delay(read_group, delay);
1946                 }
1947                 scc_mgr_load_dqs(read_group);
1948
1949                 writel(0, &sdr_scc_mgr->update);
1950
1951                 /*
1952                  * Stop searching when the read test doesn't pass AND when
1953                  * we've seen a passing read on every bit.
1954                  */
1955                 if (use_read_test) {
1956                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1957                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1958                                 &bit_chk, 0, 0);
1959                 } else {
1960                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1961                                                         0, PASS_ONE_BIT,
1962                                                         &bit_chk, 0);
1963                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1964                                 (read_group - (write_group *
1965                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1966                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1967                         stop = (bit_chk == 0);
1968                 }
1969                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1970                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1971
1972                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1973                            %u && %u", __func__, __LINE__, d,
1974                            sticky_bit_chk, param->read_correct_mask, stop);
1975
1976                 if (stop == 1) {
1977                         break;
1978                 } else {
1979                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1980                                 if (bit_chk & 1) {
1981                                         /* Remember a passing test as
1982                                         the right_edge */
1983                                         right_edge[i] = d;
1984                                 } else {
1985                                         if (d != 0) {
1986                                                 /* If a right edge has not been
1987                                                 seen yet, then a future passing
1988                                                 test will mark this edge as the
1989                                                 left edge */
1990                                                 if (right_edge[i] ==
1991                                                 IO_IO_IN_DELAY_MAX + 1) {
1992                                                         left_edge[i] = -(d + 1);
1993                                                 }
1994                                         } else {
1995                                                 /* d = 0 failed, but it passed
1996                                                 when testing the left edge,
1997                                                 so it must be marginal,
1998                                                 set it to -1 */
1999                                                 if (right_edge[i] ==
2000                                                         IO_IO_IN_DELAY_MAX + 1 &&
2001                                                         left_edge[i] !=
2002                                                         IO_IO_IN_DELAY_MAX
2003                                                         + 1) {
2004                                                         right_edge[i] = -1;
2005                                                 }
2006                                                 /* If a right edge has not been
2007                                                 seen yet, then a future passing
2008                                                 test will mark this edge as the
2009                                                 left edge */
2010                                                 else if (right_edge[i] ==
2011                                                         IO_IO_IN_DELAY_MAX +
2012                                                         1) {
2013                                                         left_edge[i] = -(d + 1);
2014                                                 }
2015                                         }
2016                                 }
2017
2018                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2019                                            d=%u]: ", __func__, __LINE__, d);
2020                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2021                                            (int)(bit_chk & 1), i, left_edge[i]);
2022                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2023                                            right_edge[i]);
2024                                 bit_chk = bit_chk >> 1;
2025                         }
2026                 }
2027         }
2028
2029         /* Check that all bits have a window */
2030         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2031                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2032                            %d right_edge[%u]: %d", __func__, __LINE__,
2033                            i, left_edge[i], i, right_edge[i]);
2034                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2035                         == IO_IO_IN_DELAY_MAX + 1)) {
2036                         /*
2037                          * Restore delay chain settings before letting the loop
2038                          * in rw_mgr_mem_calibrate_vfifo to retry different
2039                          * dqs/ck relationships.
2040                          */
2041                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2042                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2043                                 scc_mgr_set_dqs_en_delay(read_group,
2044                                                          start_dqs_en);
2045                         }
2046                         scc_mgr_load_dqs(read_group);
2047                         writel(0, &sdr_scc_mgr->update);
2048
2049                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2050                                    find edge [%u]: %d %d", __func__, __LINE__,
2051                                    i, left_edge[i], right_edge[i]);
2052                         if (use_read_test) {
2053                                 set_failing_group_stage(read_group *
2054                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2055                                         CAL_STAGE_VFIFO,
2056                                         CAL_SUBSTAGE_VFIFO_CENTER);
2057                         } else {
2058                                 set_failing_group_stage(read_group *
2059                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2060                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2061                                         CAL_SUBSTAGE_VFIFO_CENTER);
2062                         }
2063                         return 0;
2064                 }
2065         }
2066
2067         /* Find middle of window for each DQ bit */
2068         mid_min = left_edge[0] - right_edge[0];
2069         min_index = 0;
2070         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2071                 mid = left_edge[i] - right_edge[i];
2072                 if (mid < mid_min) {
2073                         mid_min = mid;
2074                         min_index = i;
2075                 }
2076         }
2077
2078         /*
2079          * -mid_min/2 represents the amount that we need to move DQS.
2080          * If mid_min is odd and positive we'll need to add one to
2081          * make sure the rounding in further calculations is correct
2082          * (always bias to the right), so just add 1 for all positive values.
2083          */
2084         if (mid_min > 0)
2085                 mid_min++;
2086
2087         mid_min = mid_min / 2;
2088
2089         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2090                    __func__, __LINE__, mid_min, min_index);
2091
2092         /* Determine the amount we can change DQS (which is -mid_min) */
2093         orig_mid_min = mid_min;
2094         new_dqs = start_dqs - mid_min;
2095         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2096                 new_dqs = IO_DQS_IN_DELAY_MAX;
2097         else if (new_dqs < 0)
2098                 new_dqs = 0;
2099
2100         mid_min = start_dqs - new_dqs;
2101         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2102                    mid_min, new_dqs);
2103
2104         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2105                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2106                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2107                 else if (start_dqs_en - mid_min < 0)
2108                         mid_min += start_dqs_en - mid_min;
2109         }
2110         new_dqs = start_dqs - mid_min;
2111
2112         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2113                    new_dqs=%d mid_min=%d\n", start_dqs,
2114                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2115                    new_dqs, mid_min);
2116
2117         /* Initialize data for export structures */
2118         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2119         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2120
2121         /* add delay to bring centre of all DQ windows to the same "level" */
2122         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2123                 /* Use values before divide by 2 to reduce round off error */
2124                 shift_dq = (left_edge[i] - right_edge[i] -
2125                         (left_edge[min_index] - right_edge[min_index]))/2  +
2126                         (orig_mid_min - mid_min);
2127
2128                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2129                            shift_dq[%u]=%d\n", i, shift_dq);
2130
2131                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2132                 temp_dq_in_delay1 = readl(addr + (p << 2));
2133                 temp_dq_in_delay2 = readl(addr + (i << 2));
2134
2135                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2136                         (int32_t)IO_IO_IN_DELAY_MAX) {
2137                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2138                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2139                         shift_dq = -(int32_t)temp_dq_in_delay1;
2140                 }
2141                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2142                            shift_dq[%u]=%d\n", i, shift_dq);
2143                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2144                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2145                 scc_mgr_load_dq(p);
2146
2147                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2148                            left_edge[i] - shift_dq + (-mid_min),
2149                            right_edge[i] + shift_dq - (-mid_min));
2150                 /* To determine values for export structures */
2151                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2152                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2153
2154                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2155                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2156         }
2157
2158         final_dqs = new_dqs;
2159         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2160                 final_dqs_en = start_dqs_en - mid_min;
2161
2162         /* Move DQS-en */
2163         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2164                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2165                 scc_mgr_load_dqs(read_group);
2166         }
2167
2168         /* Move DQS */
2169         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2170         scc_mgr_load_dqs(read_group);
2171         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2172                    dqs_margin=%d", __func__, __LINE__,
2173                    dq_margin, dqs_margin);
2174
2175         /*
2176          * Do not remove this line as it makes sure all of our decisions
2177          * have been applied. Apply the update bit.
2178          */
2179         writel(0, &sdr_scc_mgr->update);
2180
2181         return (dq_margin >= 0) && (dqs_margin >= 0);
2182 }
2183
2184 /*
2185  * calibrate the read valid prediction FIFO.
2186  *
2187  *  - read valid prediction will consist of finding a good DQS enable phase,
2188  * DQS enable delay, DQS input phase, and DQS input delay.
2189  *  - we also do a per-bit deskew on the DQ lines.
2190  */
2191 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2192                                            uint32_t test_bgn)
2193 {
2194         uint32_t p, d, rank_bgn, sr;
2195         uint32_t dtaps_per_ptap;
2196         uint32_t bit_chk;
2197         uint32_t grp_calibrated;
2198         uint32_t write_group, write_test_bgn;
2199         uint32_t failed_substage;
2200
2201         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2202
2203         /* update info for sims */
2204         reg_file_set_stage(CAL_STAGE_VFIFO);
2205
2206         write_group = read_group;
2207         write_test_bgn = test_bgn;
2208
2209         /* USER Determine number of delay taps for each phase tap */
2210         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2211                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2212
2213         /* update info for sims */
2214         reg_file_set_group(read_group);
2215
2216         grp_calibrated = 0;
2217
2218         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2219         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2220
2221         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2222                 /*
2223                  * In RLDRAMX we may be messing the delay of pins in
2224                  * the same write group but outside of the current read
2225                  * the group, but that's ok because we haven't
2226                  * calibrated output side yet.
2227                  */
2228                 if (d > 0) {
2229                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2230                                                                 write_group, d);
2231                 }
2232
2233                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2234                         p++) {
2235                         /* set a particular dqdqs phase */
2236                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2237
2238                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2239                                    p=%u d=%u\n", __func__, __LINE__,
2240                                    read_group, p, d);
2241
2242                         /*
2243                          * Load up the patterns used by read calibration
2244                          * using current DQDQS phase.
2245                          */
2246                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2247                         if (!(gbl->phy_debug_mode_flags &
2248                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2249                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2250                                     (read_group, 1, &bit_chk)) {
2251                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2252                                                    __func__, __LINE__);
2253                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2254                                                    read_group, p, d);
2255                                         break;
2256                                 }
2257                         }
2258
2259 /* case:56390 */
2260                         grp_calibrated = 1;
2261                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2262                     (write_group, read_group, test_bgn)) {
2263                                 /*
2264                                  * USER Read per-bit deskew can be done on a
2265                                  * per shadow register basis.
2266                                  */
2267                                 for (rank_bgn = 0, sr = 0;
2268                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2269                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2270                                         ++sr) {
2271                                         /*
2272                                          * Determine if this set of ranks
2273                                          * should be skipped entirely.
2274                                          */
2275                                         if (!param->skip_shadow_regs[sr]) {
2276                                                 /*
2277                                                  * If doing read after write
2278                                                  * calibration, do not update
2279                                                  * FOM, now - do it then.
2280                                                  */
2281                                         if (!rw_mgr_mem_calibrate_vfifo_center
2282                                                 (rank_bgn, write_group,
2283                                                 read_group, test_bgn, 1, 0)) {
2284                                                         grp_calibrated = 0;
2285                                                         failed_substage =
2286                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2287                                                 }
2288                                         }
2289                                 }
2290                         } else {
2291                                 grp_calibrated = 0;
2292                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2293                         }
2294                 }
2295         }
2296
2297         if (grp_calibrated == 0) {
2298                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2299                                         failed_substage);
2300                 return 0;
2301         }
2302
2303         /*
2304          * Reset the delay chains back to zero if they have moved > 1
2305          * (check for > 1 because loop will increase d even when pass in
2306          * first case).
2307          */
2308         if (d > 2)
2309                 scc_mgr_zero_group(write_group, 1);
2310
2311         return 1;
2312 }
2313
2314 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2315 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2316                                                uint32_t test_bgn)
2317 {
2318         uint32_t rank_bgn, sr;
2319         uint32_t grp_calibrated;
2320         uint32_t write_group;
2321
2322         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2323
2324         /* update info for sims */
2325
2326         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2327         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2328
2329         write_group = read_group;
2330
2331         /* update info for sims */
2332         reg_file_set_group(read_group);
2333
2334         grp_calibrated = 1;
2335         /* Read per-bit deskew can be done on a per shadow register basis */
2336         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2337                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2338                 /* Determine if this set of ranks should be skipped entirely */
2339                 if (!param->skip_shadow_regs[sr]) {
2340                 /* This is the last calibration round, update FOM here */
2341                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2342                                                                 write_group,
2343                                                                 read_group,
2344                                                                 test_bgn, 0,
2345                                                                 1)) {
2346                                 grp_calibrated = 0;
2347                         }
2348                 }
2349         }
2350
2351
2352         if (grp_calibrated == 0) {
2353                 set_failing_group_stage(write_group,
2354                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2355                                         CAL_SUBSTAGE_VFIFO_CENTER);
2356                 return 0;
2357         }
2358
2359         return 1;
2360 }
2361
2362 /* Calibrate LFIFO to find smallest read latency */
2363 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2364 {
2365         uint32_t found_one;
2366         uint32_t bit_chk;
2367
2368         debug("%s:%d\n", __func__, __LINE__);
2369
2370         /* update info for sims */
2371         reg_file_set_stage(CAL_STAGE_LFIFO);
2372         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2373
2374         /* Load up the patterns used by read calibration for all ranks */
2375         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2376         found_one = 0;
2377
2378         do {
2379                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2380                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2381                            __func__, __LINE__, gbl->curr_read_lat);
2382
2383                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2384                                                               NUM_READ_TESTS,
2385                                                               PASS_ALL_BITS,
2386                                                               &bit_chk, 1)) {
2387                         break;
2388                 }
2389
2390                 found_one = 1;
2391                 /* reduce read latency and see if things are working */
2392                 /* correctly */
2393                 gbl->curr_read_lat--;
2394         } while (gbl->curr_read_lat > 0);
2395
2396         /* reset the fifos to get pointers to known state */
2397
2398         writel(0, &phy_mgr_cmd->fifo_reset);
2399
2400         if (found_one) {
2401                 /* add a fudge factor to the read latency that was determined */
2402                 gbl->curr_read_lat += 2;
2403                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2404                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2405                            read_lat=%u\n", __func__, __LINE__,
2406                            gbl->curr_read_lat);
2407                 return 1;
2408         } else {
2409                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2410                                         CAL_SUBSTAGE_READ_LATENCY);
2411
2412                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2413                            read_lat=%u\n", __func__, __LINE__,
2414                            gbl->curr_read_lat);
2415                 return 0;
2416         }
2417 }
2418
2419 /*
2420  * issue write test command.
2421  * two variants are provided. one that just tests a write pattern and
2422  * another that tests datamask functionality.
2423  */
2424 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2425                                                   uint32_t test_dm)
2426 {
2427         uint32_t mcc_instruction;
2428         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2429                 ENABLE_SUPER_QUICK_CALIBRATION);
2430         uint32_t rw_wl_nop_cycles;
2431         uint32_t addr;
2432
2433         /*
2434          * Set counter and jump addresses for the right
2435          * number of NOP cycles.
2436          * The number of supported NOP cycles can range from -1 to infinity
2437          * Three different cases are handled:
2438          *
2439          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2440          *    mechanism will be used to insert the right number of NOPs
2441          *
2442          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2443          *    issuing the write command will jump straight to the
2444          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2445          *    data (for RLD), skipping
2446          *    the NOP micro-instruction all together
2447          *
2448          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2449          *    turned on in the same micro-instruction that issues the write
2450          *    command. Then we need
2451          *    to directly jump to the micro-instruction that sends out the data
2452          *
2453          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2454          *       (2 and 3). One jump-counter (0) is used to perform multiple
2455          *       write-read operations.
2456          *       one counter left to issue this command in "multiple-group" mode
2457          */
2458
2459         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2460
2461         if (rw_wl_nop_cycles == -1) {
2462                 /*
2463                  * CNTR 2 - We want to execute the special write operation that
2464                  * turns on DQS right away and then skip directly to the
2465                  * instruction that sends out the data. We set the counter to a
2466                  * large number so that the jump is always taken.
2467                  */
2468                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2469
2470                 /* CNTR 3 - Not used */
2471                 if (test_dm) {
2472                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2473                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2474                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2475                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2476                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2477                 } else {
2478                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2479                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2480                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2481                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2482                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2483                 }
2484         } else if (rw_wl_nop_cycles == 0) {
2485                 /*
2486                  * CNTR 2 - We want to skip the NOP operation and go straight
2487                  * to the DQS enable instruction. We set the counter to a large
2488                  * number so that the jump is always taken.
2489                  */
2490                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2491
2492                 /* CNTR 3 - Not used */
2493                 if (test_dm) {
2494                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2495                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2496                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2497                 } else {
2498                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2499                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2500                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2501                 }
2502         } else {
2503                 /*
2504                  * CNTR 2 - In this case we want to execute the next instruction
2505                  * and NOT take the jump. So we set the counter to 0. The jump
2506                  * address doesn't count.
2507                  */
2508                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2509                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2510
2511                 /*
2512                  * CNTR 3 - Set the nop counter to the number of cycles we
2513                  * need to loop for, minus 1.
2514                  */
2515                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2516                 if (test_dm) {
2517                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2518                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2519                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2520                 } else {
2521                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2522                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2523                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2524                 }
2525         }
2526
2527         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2528                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2529
2530         if (quick_write_mode)
2531                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2532         else
2533                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2534
2535         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2536
2537         /*
2538          * CNTR 1 - This is used to ensure enough time elapses
2539          * for read data to come back.
2540          */
2541         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2542
2543         if (test_dm) {
2544                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2545                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2546         } else {
2547                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2548                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2549         }
2550
2551         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2552         writel(mcc_instruction, addr + (group << 2));
2553 }
2554
2555 /* Test writes, can check for a single bit pass or multiple bit pass */
2556 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2557         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2558         uint32_t *bit_chk, uint32_t all_ranks)
2559 {
2560         uint32_t r;
2561         uint32_t correct_mask_vg;
2562         uint32_t tmp_bit_chk;
2563         uint32_t vg;
2564         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2565                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2566         uint32_t addr_rw_mgr;
2567         uint32_t base_rw_mgr;
2568
2569         *bit_chk = param->write_correct_mask;
2570         correct_mask_vg = param->write_correct_mask_vg;
2571
2572         for (r = rank_bgn; r < rank_end; r++) {
2573                 if (param->skip_ranks[r]) {
2574                         /* request to skip the rank */
2575                         continue;
2576                 }
2577
2578                 /* set rank */
2579                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2580
2581                 tmp_bit_chk = 0;
2582                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2583                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2584                         /* reset the fifos to get pointers to known state */
2585                         writel(0, &phy_mgr_cmd->fifo_reset);
2586
2587                         tmp_bit_chk = tmp_bit_chk <<
2588                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2589                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2590                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2591                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2592                                 use_dm);
2593
2594                         base_rw_mgr = readl(addr_rw_mgr);
2595                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2596                         if (vg == 0)
2597                                 break;
2598                 }
2599                 *bit_chk &= tmp_bit_chk;
2600         }
2601
2602         if (all_correct) {
2603                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2604                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2605                            %u => %lu", write_group, use_dm,
2606                            *bit_chk, param->write_correct_mask,
2607                            (long unsigned int)(*bit_chk ==
2608                            param->write_correct_mask));
2609                 return *bit_chk == param->write_correct_mask;
2610         } else {
2611                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2612                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2613                        write_group, use_dm, *bit_chk);
2614                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2615                         (long unsigned int)(*bit_chk != 0));
2616                 return *bit_chk != 0x00;
2617         }
2618 }
2619
2620 /*
2621  * center all windows. do per-bit-deskew to possibly increase size of
2622  * certain windows.
2623  */
2624 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2625         uint32_t write_group, uint32_t test_bgn)
2626 {
2627         uint32_t i, p, min_index;
2628         int32_t d;
2629         /*
2630          * Store these as signed since there are comparisons with
2631          * signed numbers.
2632          */
2633         uint32_t bit_chk;
2634         uint32_t sticky_bit_chk;
2635         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2636         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2637         int32_t mid;
2638         int32_t mid_min, orig_mid_min;
2639         int32_t new_dqs, start_dqs, shift_dq;
2640         int32_t dq_margin, dqs_margin, dm_margin;
2641         uint32_t stop;
2642         uint32_t temp_dq_out1_delay;
2643         uint32_t addr;
2644
2645         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2646
2647         dm_margin = 0;
2648
2649         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2650         start_dqs = readl(addr +
2651                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2652
2653         /* per-bit deskew */
2654
2655         /*
2656          * set the left and right edge of each bit to an illegal value
2657          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2658          */
2659         sticky_bit_chk = 0;
2660         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2661                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2662                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2663         }
2664
2665         /* Search for the left edge of the window for each bit */
2666         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2667                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2668
2669                 writel(0, &sdr_scc_mgr->update);
2670
2671                 /*
2672                  * Stop searching when the read test doesn't pass AND when
2673                  * we've seen a passing read on every bit.
2674                  */
2675                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2676                         0, PASS_ONE_BIT, &bit_chk, 0);
2677                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2678                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2679                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2680                            == %u && %u [bit_chk= %u ]\n",
2681                         d, sticky_bit_chk, param->write_correct_mask,
2682                         stop, bit_chk);
2683
2684                 if (stop == 1) {
2685                         break;
2686                 } else {
2687                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2688                                 if (bit_chk & 1) {
2689                                         /*
2690                                          * Remember a passing test as the
2691                                          * left_edge.
2692                                          */
2693                                         left_edge[i] = d;
2694                                 } else {
2695                                         /*
2696                                          * If a left edge has not been seen
2697                                          * yet, then a future passing test will
2698                                          * mark this edge as the right edge.
2699                                          */
2700                                         if (left_edge[i] ==
2701                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2702                                                 right_edge[i] = -(d + 1);
2703                                         }
2704                                 }
2705                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2706                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2707                                            (int)(bit_chk & 1), i, left_edge[i]);
2708                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2709                                        right_edge[i]);
2710                                 bit_chk = bit_chk >> 1;
2711                         }
2712                 }
2713         }
2714
2715         /* Reset DQ delay chains to 0 */
2716         scc_mgr_apply_group_dq_out1_delay(0);
2717         sticky_bit_chk = 0;
2718         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2719                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2720                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2721                            i, left_edge[i], i, right_edge[i]);
2722
2723                 /*
2724                  * Check for cases where we haven't found the left edge,
2725                  * which makes our assignment of the the right edge invalid.
2726                  * Reset it to the illegal value.
2727                  */
2728                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2729                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2730                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2731                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2732                                    right_edge[%u]: %d\n", __func__, __LINE__,
2733                                    i, right_edge[i]);
2734                 }
2735
2736                 /*
2737                  * Reset sticky bit (except for bits where we have
2738                  * seen the left edge).
2739                  */
2740                 sticky_bit_chk = sticky_bit_chk << 1;
2741                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2742                         sticky_bit_chk = sticky_bit_chk | 1;
2743
2744                 if (i == 0)
2745                         break;
2746         }
2747
2748         /* Search for the right edge of the window for each bit */
2749         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2750                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2751                                                         d + start_dqs);
2752
2753                 writel(0, &sdr_scc_mgr->update);
2754
2755                 /*
2756                  * Stop searching when the read test doesn't pass AND when
2757                  * we've seen a passing read on every bit.
2758                  */
2759                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2760                         0, PASS_ONE_BIT, &bit_chk, 0);
2761
2762                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2763                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2764
2765                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2766                            %u && %u\n", d, sticky_bit_chk,
2767                            param->write_correct_mask, stop);
2768
2769                 if (stop == 1) {
2770                         if (d == 0) {
2771                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2772                                         i++) {
2773                                         /* d = 0 failed, but it passed when
2774                                         testing the left edge, so it must be
2775                                         marginal, set it to -1 */
2776                                         if (right_edge[i] ==
2777                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2778                                                 left_edge[i] !=
2779                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2780                                                 right_edge[i] = -1;
2781                                         }
2782                                 }
2783                         }
2784                         break;
2785                 } else {
2786                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2787                                 if (bit_chk & 1) {
2788                                         /*
2789                                          * Remember a passing test as
2790                                          * the right_edge.
2791                                          */
2792                                         right_edge[i] = d;
2793                                 } else {
2794                                         if (d != 0) {
2795                                                 /*
2796                                                  * If a right edge has not
2797                                                  * been seen yet, then a future
2798                                                  * passing test will mark this
2799                                                  * edge as the left edge.
2800                                                  */
2801                                                 if (right_edge[i] ==
2802                                                     IO_IO_OUT1_DELAY_MAX + 1)
2803                                                         left_edge[i] = -(d + 1);
2804                                         } else {
2805                                                 /*
2806                                                  * d = 0 failed, but it passed
2807                                                  * when testing the left edge,
2808                                                  * so it must be marginal, set
2809                                                  * it to -1.
2810                                                  */
2811                                                 if (right_edge[i] ==
2812                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2813                                                     left_edge[i] !=
2814                                                     IO_IO_OUT1_DELAY_MAX + 1)
2815                                                         right_edge[i] = -1;
2816                                                 /*
2817                                                  * If a right edge has not been
2818                                                  * seen yet, then a future
2819                                                  * passing test will mark this
2820                                                  * edge as the left edge.
2821                                                  */
2822                                                 else if (right_edge[i] ==
2823                                                         IO_IO_OUT1_DELAY_MAX +
2824                                                         1)
2825                                                         left_edge[i] = -(d + 1);
2826                                         }
2827                                 }
2828                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2829                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2830                                            (int)(bit_chk & 1), i, left_edge[i]);
2831                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2832                                            right_edge[i]);
2833                                 bit_chk = bit_chk >> 1;
2834                         }
2835                 }
2836         }
2837
2838         /* Check that all bits have a window */
2839         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2840                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2841                            %d right_edge[%u]: %d", __func__, __LINE__,
2842                            i, left_edge[i], i, right_edge[i]);
2843                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2844                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2845                         set_failing_group_stage(test_bgn + i,
2846                                                 CAL_STAGE_WRITES,
2847                                                 CAL_SUBSTAGE_WRITES_CENTER);
2848                         return 0;
2849                 }
2850         }
2851
2852         /* Find middle of window for each DQ bit */
2853         mid_min = left_edge[0] - right_edge[0];
2854         min_index = 0;
2855         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2856                 mid = left_edge[i] - right_edge[i];
2857                 if (mid < mid_min) {
2858                         mid_min = mid;
2859                         min_index = i;
2860                 }
2861         }
2862
2863         /*
2864          * -mid_min/2 represents the amount that we need to move DQS.
2865          * If mid_min is odd and positive we'll need to add one to
2866          * make sure the rounding in further calculations is correct
2867          * (always bias to the right), so just add 1 for all positive values.
2868          */
2869         if (mid_min > 0)
2870                 mid_min++;
2871         mid_min = mid_min / 2;
2872         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2873                    __LINE__, mid_min);
2874
2875         /* Determine the amount we can change DQS (which is -mid_min) */
2876         orig_mid_min = mid_min;
2877         new_dqs = start_dqs;
2878         mid_min = 0;
2879         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2880                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2881         /* Initialize data for export structures */
2882         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2883         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2884
2885         /* add delay to bring centre of all DQ windows to the same "level" */
2886         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2887                 /* Use values before divide by 2 to reduce round off error */
2888                 shift_dq = (left_edge[i] - right_edge[i] -
2889                         (left_edge[min_index] - right_edge[min_index]))/2  +
2890                 (orig_mid_min - mid_min);
2891
2892                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2893                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2894
2895                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2896                 temp_dq_out1_delay = readl(addr + (i << 2));
2897                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2898                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2899                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2900                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2901                         shift_dq = -(int32_t)temp_dq_out1_delay;
2902                 }
2903                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2904                            i, shift_dq);
2905                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2906                 scc_mgr_load_dq(i);
2907
2908                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2909                            left_edge[i] - shift_dq + (-mid_min),
2910                            right_edge[i] + shift_dq - (-mid_min));
2911                 /* To determine values for export structures */
2912                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2913                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2914
2915                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2916                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2917         }
2918
2919         /* Move DQS */
2920         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2921         writel(0, &sdr_scc_mgr->update);
2922
2923         /* Centre DM */
2924         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2925
2926         /*
2927          * set the left and right edge of each bit to an illegal value,
2928          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2929          */
2930         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2931         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2932         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2933         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2934         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2935         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2936         int32_t win_best = 0;
2937
2938         /* Search for the/part of the window with DM shift */
2939         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2940                 scc_mgr_apply_group_dm_out1_delay(d);
2941                 writel(0, &sdr_scc_mgr->update);
2942
2943                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2944                                                     PASS_ALL_BITS, &bit_chk,
2945                                                     0)) {
2946                         /* USE Set current end of the window */
2947                         end_curr = -d;
2948                         /*
2949                          * If a starting edge of our window has not been seen
2950                          * this is our current start of the DM window.
2951                          */
2952                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2953                                 bgn_curr = -d;
2954
2955                         /*
2956                          * If current window is bigger than best seen.
2957                          * Set best seen to be current window.
2958                          */
2959                         if ((end_curr-bgn_curr+1) > win_best) {
2960                                 win_best = end_curr-bgn_curr+1;
2961                                 bgn_best = bgn_curr;
2962                                 end_best = end_curr;
2963                         }
2964                 } else {
2965                         /* We just saw a failing test. Reset temp edge */
2966                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2967                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2968                         }
2969                 }
2970
2971
2972         /* Reset DM delay chains to 0 */
2973         scc_mgr_apply_group_dm_out1_delay(0);
2974
2975         /*
2976          * Check to see if the current window nudges up aganist 0 delay.
2977          * If so we need to continue the search by shifting DQS otherwise DQS
2978          * search begins as a new search. */
2979         if (end_curr != 0) {
2980                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2981                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2982         }
2983
2984         /* Search for the/part of the window with DQS shifts */
2985         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2986                 /*
2987                  * Note: This only shifts DQS, so are we limiting ourselve to
2988                  * width of DQ unnecessarily.
2989                  */
2990                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2991                                                         d + new_dqs);
2992
2993                 writel(0, &sdr_scc_mgr->update);
2994                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2995                                                     PASS_ALL_BITS, &bit_chk,
2996                                                     0)) {
2997                         /* USE Set current end of the window */
2998                         end_curr = d;
2999                         /*
3000                          * If a beginning edge of our window has not been seen
3001                          * this is our current begin of the DM window.
3002                          */
3003                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3004                                 bgn_curr = d;
3005
3006                         /*
3007                          * If current window is bigger than best seen. Set best
3008                          * seen to be current window.
3009                          */
3010                         if ((end_curr-bgn_curr+1) > win_best) {
3011                                 win_best = end_curr-bgn_curr+1;
3012                                 bgn_best = bgn_curr;
3013                                 end_best = end_curr;
3014                         }
3015                 } else {
3016                         /* We just saw a failing test. Reset temp edge */
3017                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3018                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3019
3020                         /* Early exit optimization: if ther remaining delay
3021                         chain space is less than already seen largest window
3022                         we can exit */
3023                         if ((win_best-1) >
3024                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3025                                         break;
3026                                 }
3027                         }
3028                 }
3029
3030         /* assign left and right edge for cal and reporting; */
3031         left_edge[0] = -1*bgn_best;
3032         right_edge[0] = end_best;
3033
3034         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3035                    __LINE__, left_edge[0], right_edge[0]);
3036
3037         /* Move DQS (back to orig) */
3038         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3039
3040         /* Move DM */
3041
3042         /* Find middle of window for the DM bit */
3043         mid = (left_edge[0] - right_edge[0]) / 2;
3044
3045         /* only move right, since we are not moving DQS/DQ */
3046         if (mid < 0)
3047                 mid = 0;
3048
3049         /* dm_marign should fail if we never find a window */
3050         if (win_best == 0)
3051                 dm_margin = -1;
3052         else
3053                 dm_margin = left_edge[0] - mid;
3054
3055         scc_mgr_apply_group_dm_out1_delay(mid);
3056         writel(0, &sdr_scc_mgr->update);
3057
3058         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3059                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3060                    right_edge[0], mid, dm_margin);
3061         /* Export values */
3062         gbl->fom_out += dq_margin + dqs_margin;
3063
3064         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3065                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3066                    dq_margin, dqs_margin, dm_margin);
3067
3068         /*
3069          * Do not remove this line as it makes sure all of our
3070          * decisions have been applied.
3071          */
3072         writel(0, &sdr_scc_mgr->update);
3073         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3074 }
3075
3076 /* calibrate the write operations */
3077 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3078         uint32_t test_bgn)
3079 {
3080         /* update info for sims */
3081         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3082
3083         reg_file_set_stage(CAL_STAGE_WRITES);
3084         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3085
3086         reg_file_set_group(g);
3087
3088         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3089                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3090                                         CAL_SUBSTAGE_WRITES_CENTER);
3091                 return 0;
3092         }
3093
3094         return 1;
3095 }
3096
3097 /**
3098  * mem_precharge_and_activate() - Precharge all banks and activate
3099  *
3100  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3101  */
3102 static void mem_precharge_and_activate(void)
3103 {
3104         int r;
3105
3106         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3107                 /* Test if the rank should be skipped. */
3108                 if (param->skip_ranks[r])
3109                         continue;
3110
3111                 /* Set rank. */
3112                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3113
3114                 /* Precharge all banks. */
3115                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3116                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3117
3118                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3119                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3120                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3121
3122                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3123                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3124                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3125
3126                 /* Activate rows. */
3127                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3128                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3129         }
3130 }
3131
3132 /**
3133  * mem_init_latency() - Configure memory RLAT and WLAT settings
3134  *
3135  * Configure memory RLAT and WLAT parameters.
3136  */
3137 static void mem_init_latency(void)
3138 {
3139         /*
3140          * For AV/CV, LFIFO is hardened and always runs at full rate
3141          * so max latency in AFI clocks, used here, is correspondingly
3142          * smaller.
3143          */
3144         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3145         u32 rlat, wlat;
3146
3147         debug("%s:%d\n", __func__, __LINE__);
3148
3149         /*
3150          * Read in write latency.
3151          * WL for Hard PHY does not include additive latency.
3152          */
3153         wlat = readl(&data_mgr->t_wl_add);
3154         wlat += readl(&data_mgr->mem_t_add);
3155
3156         gbl->rw_wl_nop_cycles = wlat - 1;
3157
3158         /* Read in readl latency. */
3159         rlat = readl(&data_mgr->t_rl_add);
3160
3161         /* Set a pretty high read latency initially. */
3162         gbl->curr_read_lat = rlat + 16;
3163         if (gbl->curr_read_lat > max_latency)
3164                 gbl->curr_read_lat = max_latency;
3165
3166         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3167
3168         /* Advertise write latency. */
3169         writel(wlat, &phy_mgr_cfg->afi_wlat);
3170 }
3171
3172 /**
3173  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3174  *
3175  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3176  */
3177 static void mem_skip_calibrate(void)
3178 {
3179         uint32_t vfifo_offset;
3180         uint32_t i, j, r;
3181
3182         debug("%s:%d\n", __func__, __LINE__);
3183         /* Need to update every shadow register set used by the interface */
3184         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3185              r += NUM_RANKS_PER_SHADOW_REG) {
3186                 /*
3187                  * Set output phase alignment settings appropriate for
3188                  * skip calibration.
3189                  */
3190                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3191                         scc_mgr_set_dqs_en_phase(i, 0);
3192 #if IO_DLL_CHAIN_LENGTH == 6
3193                         scc_mgr_set_dqdqs_output_phase(i, 6);
3194 #else
3195                         scc_mgr_set_dqdqs_output_phase(i, 7);
3196 #endif
3197                         /*
3198                          * Case:33398
3199                          *
3200                          * Write data arrives to the I/O two cycles before write
3201                          * latency is reached (720 deg).
3202                          *   -> due to bit-slip in a/c bus
3203                          *   -> to allow board skew where dqs is longer than ck
3204                          *      -> how often can this happen!?
3205                          *      -> can claim back some ptaps for high freq
3206                          *       support if we can relax this, but i digress...
3207                          *
3208                          * The write_clk leads mem_ck by 90 deg
3209                          * The minimum ptap of the OPA is 180 deg
3210                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3211                          * The write_clk is always delayed by 2 ptaps
3212                          *
3213                          * Hence, to make DQS aligned to CK, we need to delay
3214                          * DQS by:
3215                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3216                          *
3217                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3218                          * gives us the number of ptaps, which simplies to:
3219                          *
3220                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3221                          */
3222                         scc_mgr_set_dqdqs_output_phase(i,
3223                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3224                 }
3225                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3226                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3227
3228                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3229                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3230                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3231                 }
3232                 writel(0xff, &sdr_scc_mgr->dq_ena);
3233                 writel(0xff, &sdr_scc_mgr->dm_ena);
3234                 writel(0, &sdr_scc_mgr->update);
3235         }
3236
3237         /* Compensate for simulation model behaviour */
3238         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3239                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3240                 scc_mgr_load_dqs(i);
3241         }
3242         writel(0, &sdr_scc_mgr->update);
3243
3244         /*
3245          * ArriaV has hard FIFOs that can only be initialized by incrementing
3246          * in sequencer.
3247          */
3248         vfifo_offset = CALIB_VFIFO_OFFSET;
3249         for (j = 0; j < vfifo_offset; j++)
3250                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3251         writel(0, &phy_mgr_cmd->fifo_reset);
3252
3253         /*
3254          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3255          * setting from generation-time constant.
3256          */
3257         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3258         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3259 }
3260
3261 /* Memory calibration entry point */
3262 static uint32_t mem_calibrate(void)
3263 {
3264         uint32_t i;
3265         uint32_t rank_bgn, sr;
3266         uint32_t write_group, write_test_bgn;
3267         uint32_t read_group, read_test_bgn;
3268         uint32_t run_groups, current_run;
3269         uint32_t failing_groups = 0;
3270         uint32_t group_failed = 0;
3271         uint32_t sr_failed = 0;
3272
3273         debug("%s:%d\n", __func__, __LINE__);
3274
3275         /* Initialize the data settings */
3276         gbl->error_substage = CAL_SUBSTAGE_NIL;
3277         gbl->error_stage = CAL_STAGE_NIL;
3278         gbl->error_group = 0xff;
3279         gbl->fom_in = 0;
3280         gbl->fom_out = 0;
3281
3282         /* Initialize WLAT and RLAT. */
3283         mem_init_latency();
3284
3285         /* Initialize bit slips. */
3286         mem_precharge_and_activate();
3287
3288         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3289                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3290                           SCC_MGR_GROUP_COUNTER_OFFSET);
3291                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3292                 if (i == 0)
3293                         scc_mgr_set_hhp_extras();
3294
3295                 scc_set_bypass_mode(i);
3296         }
3297
3298         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3299                 /*
3300                  * Set VFIFO and LFIFO to instant-on settings in skip
3301                  * calibration mode.
3302                  */
3303                 mem_skip_calibrate();
3304         } else {
3305                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3306                         /*
3307                          * Zero all delay chain/phase settings for all
3308                          * groups and all shadow register sets.
3309                          */
3310                         scc_mgr_zero_all();
3311
3312                         run_groups = ~param->skip_groups;
3313
3314                         for (write_group = 0, write_test_bgn = 0; write_group
3315                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3316                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3317                                 /* Initialized the group failure */
3318                                 group_failed = 0;
3319
3320                                 current_run = run_groups & ((1 <<
3321                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3322                                 run_groups = run_groups >>
3323                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3324
3325                                 if (current_run == 0)
3326                                         continue;
3327
3328                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3329                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3330                                 scc_mgr_zero_group(write_group, 0);
3331
3332                                 for (read_group = write_group *
3333                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3334                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3335                                         read_test_bgn = 0;
3336                                         read_group < (write_group + 1) *
3337                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3338                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3339                                         group_failed == 0;
3340                                         read_group++, read_test_bgn +=
3341                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3342                                         /* Calibrate the VFIFO */
3343                                         if (!((STATIC_CALIB_STEPS) &
3344                                                 CALIB_SKIP_VFIFO)) {
3345                                                 if (!rw_mgr_mem_calibrate_vfifo
3346                                                         (read_group,
3347                                                         read_test_bgn)) {
3348                                                         group_failed = 1;
3349
3350                                                         if (!(gbl->
3351                                                         phy_debug_mode_flags &
3352                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3353                                                                 return 0;
3354                                                         }
3355                                                 }
3356                                         }
3357                                 }
3358
3359                                 /* Calibrate the output side */
3360                                 if (group_failed == 0)  {
3361                                         for (rank_bgn = 0, sr = 0; rank_bgn
3362                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3363                                                 rank_bgn +=
3364                                                 NUM_RANKS_PER_SHADOW_REG,
3365                                                 ++sr) {
3366                                                 sr_failed = 0;
3367                                                 if (!((STATIC_CALIB_STEPS) &
3368                                                 CALIB_SKIP_WRITES)) {
3369                                                         if ((STATIC_CALIB_STEPS)
3370                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3371                                                 /* not needed in quick mode! */
3372                                                         } else {
3373                                                 /*
3374                                                  * Determine if this set of
3375                                                  * ranks should be skipped
3376                                                  * entirely.
3377                                                  */
3378                                         if (!param->skip_shadow_regs[sr]) {
3379                                                 if (!rw_mgr_mem_calibrate_writes
3380                                                 (rank_bgn, write_group,
3381                                                 write_test_bgn)) {
3382                                                         sr_failed = 1;
3383                                                         if (!(gbl->
3384                                                         phy_debug_mode_flags &
3385                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3386                                                                 return 0;
3387                                                                         }
3388                                                                         }
3389                                                                 }
3390                                                         }
3391                                                 }
3392                                                 if (sr_failed != 0)
3393                                                         group_failed = 1;
3394                                         }
3395                                 }
3396
3397                                 if (group_failed == 0) {
3398                                         for (read_group = write_group *
3399                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3400                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3401                                         read_test_bgn = 0;
3402                                                 read_group < (write_group + 1)
3403                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3404                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3405                                                 group_failed == 0;
3406                                                 read_group++, read_test_bgn +=
3407                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3408                                                 if (!((STATIC_CALIB_STEPS) &
3409                                                         CALIB_SKIP_WRITES)) {
3410                                         if (!rw_mgr_mem_calibrate_vfifo_end
3411                                                 (read_group, read_test_bgn)) {
3412                                                         group_failed = 1;
3413
3414                                                 if (!(gbl->phy_debug_mode_flags
3415                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3416                                                                 return 0;
3417                                                                 }
3418                                                         }
3419                                                 }
3420                                         }
3421                                 }
3422
3423                                 if (group_failed != 0)
3424                                         failing_groups++;
3425                         }
3426
3427                         /*
3428                          * USER If there are any failing groups then report
3429                          * the failure.
3430                          */
3431                         if (failing_groups != 0)
3432                                 return 0;
3433
3434                         /* Calibrate the LFIFO */
3435                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3436                                 /*
3437                                  * If we're skipping groups as part of debug,
3438                                  * don't calibrate LFIFO.
3439                                  */
3440                                 if (param->skip_groups == 0) {
3441                                         if (!rw_mgr_mem_calibrate_lfifo())
3442                                                 return 0;
3443                                 }
3444                         }
3445                 }
3446         }
3447
3448         /*
3449          * Do not remove this line as it makes sure all of our decisions
3450          * have been applied.
3451          */
3452         writel(0, &sdr_scc_mgr->update);
3453         return 1;
3454 }
3455
3456 /**
3457  * run_mem_calibrate() - Perform memory calibration
3458  *
3459  * This function triggers the entire memory calibration procedure.
3460  */
3461 static int run_mem_calibrate(void)
3462 {
3463         int pass;
3464
3465         debug("%s:%d\n", __func__, __LINE__);
3466
3467         /* Reset pass/fail status shown on afi_cal_success/fail */
3468         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3469
3470         /* Stop tracking manager. */
3471         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3472
3473         phy_mgr_initialize();
3474         rw_mgr_mem_initialize();
3475
3476         /* Perform the actual memory calibration. */
3477         pass = mem_calibrate();
3478
3479         mem_precharge_and_activate();
3480         writel(0, &phy_mgr_cmd->fifo_reset);
3481
3482         /* Handoff. */
3483         rw_mgr_mem_handoff();
3484         /*
3485          * In Hard PHY this is a 2-bit control:
3486          * 0: AFI Mux Select
3487          * 1: DDIO Mux Select
3488          */
3489         writel(0x2, &phy_mgr_cfg->mux_sel);
3490
3491         /* Start tracking manager. */
3492         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3493
3494         return pass;
3495 }
3496
3497 /**
3498  * debug_mem_calibrate() - Report result of memory calibration
3499  * @pass:       Value indicating whether calibration passed or failed
3500  *
3501  * This function reports the results of the memory calibration
3502  * and writes debug information into the register file.
3503  */
3504 static void debug_mem_calibrate(int pass)
3505 {
3506         uint32_t debug_info;
3507
3508         if (pass) {
3509                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3510
3511                 gbl->fom_in /= 2;
3512                 gbl->fom_out /= 2;
3513
3514                 if (gbl->fom_in > 0xff)
3515                         gbl->fom_in = 0xff;
3516
3517                 if (gbl->fom_out > 0xff)
3518                         gbl->fom_out = 0xff;
3519
3520                 /* Update the FOM in the register file */
3521                 debug_info = gbl->fom_in;
3522                 debug_info |= gbl->fom_out << 8;
3523                 writel(debug_info, &sdr_reg_file->fom);
3524
3525                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3526                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3527         } else {
3528                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3529
3530                 debug_info = gbl->error_stage;
3531                 debug_info |= gbl->error_substage << 8;
3532                 debug_info |= gbl->error_group << 16;
3533
3534                 writel(debug_info, &sdr_reg_file->failing_stage);
3535                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3536                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3537
3538                 /* Update the failing group/stage in the register file */
3539                 debug_info = gbl->error_stage;
3540                 debug_info |= gbl->error_substage << 8;
3541                 debug_info |= gbl->error_group << 16;
3542                 writel(debug_info, &sdr_reg_file->failing_stage);
3543         }
3544
3545         printf("%s: Calibration complete\n", __FILE__);
3546 }
3547
3548 /**
3549  * hc_initialize_rom_data() - Initialize ROM data
3550  *
3551  * Initialize ROM data.
3552  */
3553 static void hc_initialize_rom_data(void)
3554 {
3555         u32 i, addr;
3556
3557         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3558         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3559                 writel(inst_rom_init[i], addr + (i << 2));
3560
3561         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3562         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3563                 writel(ac_rom_init[i], addr + (i << 2));
3564 }
3565
3566 /**
3567  * initialize_reg_file() - Initialize SDR register file
3568  *
3569  * Initialize SDR register file.
3570  */
3571 static void initialize_reg_file(void)
3572 {
3573         /* Initialize the register file with the correct data */
3574         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3575         writel(0, &sdr_reg_file->debug_data_addr);
3576         writel(0, &sdr_reg_file->cur_stage);
3577         writel(0, &sdr_reg_file->fom);
3578         writel(0, &sdr_reg_file->failing_stage);
3579         writel(0, &sdr_reg_file->debug1);
3580         writel(0, &sdr_reg_file->debug2);
3581 }
3582
3583 /**
3584  * initialize_hps_phy() - Initialize HPS PHY
3585  *
3586  * Initialize HPS PHY.
3587  */
3588 static void initialize_hps_phy(void)
3589 {
3590         uint32_t reg;
3591         /*
3592          * Tracking also gets configured here because it's in the
3593          * same register.
3594          */
3595         uint32_t trk_sample_count = 7500;
3596         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3597         /*
3598          * Format is number of outer loops in the 16 MSB, sample
3599          * count in 16 LSB.
3600          */
3601
3602         reg = 0;
3603         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3604         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3605         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3606         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3607         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3608         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3609         /*
3610          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3611          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3612          */
3613         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3614         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3615                 trk_sample_count);
3616         writel(reg, &sdr_ctrl->phy_ctrl0);
3617
3618         reg = 0;
3619         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3620                 trk_sample_count >>
3621                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3622         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3623                 trk_long_idle_sample_count);
3624         writel(reg, &sdr_ctrl->phy_ctrl1);
3625
3626         reg = 0;
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3628                 trk_long_idle_sample_count >>
3629                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3630         writel(reg, &sdr_ctrl->phy_ctrl2);
3631 }
3632
3633 /**
3634  * initialize_tracking() - Initialize tracking
3635  *
3636  * Initialize the register file with usable initial data.
3637  */
3638 static void initialize_tracking(void)
3639 {
3640         /*
3641          * Initialize the register file with the correct data.
3642          * Compute usable version of value in case we skip full
3643          * computation later.
3644          */
3645         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3646                &sdr_reg_file->dtaps_per_ptap);
3647
3648         /* trk_sample_count */
3649         writel(7500, &sdr_reg_file->trk_sample_count);
3650
3651         /* longidle outer loop [15:0] */
3652         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3653
3654         /*
3655          * longidle sample count [31:24]
3656          * trfc, worst case of 933Mhz 4Gb [23:16]
3657          * trcd, worst case [15:8]
3658          * vfifo wait [7:0]
3659          */
3660         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3661                &sdr_reg_file->delays);
3662
3663         /* mux delay */
3664         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3665                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3666                &sdr_reg_file->trk_rw_mgr_addr);
3667
3668         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3669                &sdr_reg_file->trk_read_dqs_width);
3670
3671         /* trefi [7:0] */
3672         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3673                &sdr_reg_file->trk_rfsh);
3674 }
3675
3676 int sdram_calibration_full(void)
3677 {
3678         struct param_type my_param;
3679         struct gbl_type my_gbl;
3680         uint32_t pass;
3681
3682         memset(&my_param, 0, sizeof(my_param));
3683         memset(&my_gbl, 0, sizeof(my_gbl));
3684
3685         param = &my_param;
3686         gbl = &my_gbl;
3687
3688         /* Set the calibration enabled by default */
3689         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3690         /*
3691          * Only sweep all groups (regardless of fail state) by default
3692          * Set enabled read test by default.
3693          */
3694 #if DISABLE_GUARANTEED_READ
3695         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3696 #endif
3697         /* Initialize the register file */
3698         initialize_reg_file();
3699
3700         /* Initialize any PHY CSR */
3701         initialize_hps_phy();
3702
3703         scc_mgr_initialize();
3704
3705         initialize_tracking();
3706
3707         printf("%s: Preparing to start memory calibration\n", __FILE__);
3708
3709         debug("%s:%d\n", __func__, __LINE__);
3710         debug_cond(DLEVEL == 1,
3711                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3712                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3713                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3714                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3715                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3716         debug_cond(DLEVEL == 1,
3717                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3718                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3719                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3720                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3721         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3722                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3723         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3724                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3725                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3726         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3727                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3728                    IO_IO_OUT2_DELAY_MAX);
3729         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3730                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3731
3732         hc_initialize_rom_data();
3733
3734         /* update info for sims */
3735         reg_file_set_stage(CAL_STAGE_NIL);
3736         reg_file_set_group(0);
3737
3738         /*
3739          * Load global needed for those actions that require
3740          * some dynamic calibration support.
3741          */
3742         dyn_calib_steps = STATIC_CALIB_STEPS;
3743         /*
3744          * Load global to allow dynamic selection of delay loop settings
3745          * based on calibration mode.
3746          */
3747         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3748                 skip_delay_mask = 0xff;
3749         else
3750                 skip_delay_mask = 0x0;
3751
3752         pass = run_mem_calibrate();
3753         debug_mem_calibrate(pass);
3754         return pass;
3755 }