]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up of delay_for_n_mem_clocks() part 4
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84         uint32_t substage)
85 {
86         /*
87          * Only set the global stage if there was not been any other
88          * failing group
89          */
90         if (gbl->error_stage == CAL_STAGE_NIL)  {
91                 gbl->error_substage = substage;
92                 gbl->error_stage = stage;
93                 gbl->error_group = group;
94         }
95 }
96
97 static void reg_file_set_group(u16 set_group)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101
102 static void reg_file_set_stage(u8 set_stage)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109         set_sub_stage &= 0xff;
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120         u32 ratio;
121
122         debug("%s:%d\n", __func__, __LINE__);
123         /* Calibration has control over path to memory */
124         /*
125          * In Hard PHY this is a 2-bit control:
126          * 0: AFI Mux Select
127          * 1: DDIO Mux Select
128          */
129         writel(0x3, &phy_mgr_cfg->mux_sel);
130
131         /* USER memory clock is not stable we begin initialization  */
132         writel(0, &phy_mgr_cfg->reset_mem_stbl);
133
134         /* USER calibration status all set to zero */
135         writel(0, &phy_mgr_cfg->cal_status);
136
137         writel(0, &phy_mgr_cfg->cal_debug_info);
138
139         /* Init params only if we do NOT skip calibration. */
140         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141                 return;
142
143         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145         param->read_correct_mask_vg = (1 << ratio) - 1;
146         param->write_correct_mask_vg = (1 << ratio) - 1;
147         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149         ratio = RW_MGR_MEM_DATA_WIDTH /
150                 RW_MGR_MEM_DATA_MASK_WIDTH;
151         param->dm_correct_mask = (1 << ratio) - 1;
152 }
153
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:       Rank mask
157  * @odt_mode:   ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163         u32 odt_mask_0 = 0;
164         u32 odt_mask_1 = 0;
165         u32 cs_and_odt_mask;
166
167         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168                 odt_mask_0 = 0x0;
169                 odt_mask_1 = 0x0;
170         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
171                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172                 case 1: /* 1 Rank */
173                         /* Read: ODT = 0 ; Write: ODT = 1 */
174                         odt_mask_0 = 0x0;
175                         odt_mask_1 = 0x1;
176                         break;
177                 case 2: /* 2 Ranks */
178                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179                                 /*
180                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
181                                  *   OR
182                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183                                  *
184                                  * Since MEM_NUMBER_OF_RANKS is 2, they
185                                  * are both single rank with 2 CS each
186                                  * (special for RDIMM).
187                                  *
188                                  * Read: Turn on ODT on the opposite rank
189                                  * Write: Turn on ODT on all ranks
190                                  */
191                                 odt_mask_0 = 0x3 & ~(1 << rank);
192                                 odt_mask_1 = 0x3;
193                         } else {
194                                 /*
195                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
196                                  *
197                                  * Read: Turn on ODT off on all ranks
198                                  * Write: Turn on ODT on active rank
199                                  */
200                                 odt_mask_0 = 0x0;
201                                 odt_mask_1 = 0x3 & (1 << rank);
202                         }
203                         break;
204                 case 4: /* 4 Ranks */
205                         /* Read:
206                          * ----------+-----------------------+
207                          *           |         ODT           |
208                          * Read From +-----------------------+
209                          *   Rank    |  3  |  2  |  1  |  0  |
210                          * ----------+-----+-----+-----+-----+
211                          *     0     |  0  |  1  |  0  |  0  |
212                          *     1     |  1  |  0  |  0  |  0  |
213                          *     2     |  0  |  0  |  0  |  1  |
214                          *     3     |  0  |  0  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *
217                          * Write:
218                          * ----------+-----------------------+
219                          *           |         ODT           |
220                          * Write To  +-----------------------+
221                          *   Rank    |  3  |  2  |  1  |  0  |
222                          * ----------+-----+-----+-----+-----+
223                          *     0     |  0  |  1  |  0  |  1  |
224                          *     1     |  1  |  0  |  1  |  0  |
225                          *     2     |  0  |  1  |  0  |  1  |
226                          *     3     |  1  |  0  |  1  |  0  |
227                          * ----------+-----+-----+-----+-----+
228                          */
229                         switch (rank) {
230                         case 0:
231                                 odt_mask_0 = 0x4;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 1:
235                                 odt_mask_0 = 0x8;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 odt_mask_1 = 0x5;
241                                 break;
242                         case 3:
243                                 odt_mask_0 = 0x2;
244                                 odt_mask_1 = 0xA;
245                                 break;
246                         }
247                         break;
248                 }
249         }
250
251         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252                           ((0xFF & odt_mask_0) << 8) |
253                           ((0xFF & odt_mask_1) << 16);
254         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:        Base offset in SCC Manager space
261  * @grp:        Read/Write group
262  * @val:        Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278         /*
279          * Clear register file for HPS. 16 (2^4) is the size of the
280          * full register file in the scc mgr:
281          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282          *                             MEM_IF_READ_DQS_WIDTH - 1);
283          */
284         int i;
285
286         for (i = 0; i < 16; i++) {
287                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288                            __func__, __LINE__, i);
289                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290         }
291 }
292
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316                     delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407                                                      uint32_t phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422                                                uint32_t delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434         writel(0, &sdr_scc_mgr->update);
435 }
436
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:        Write group
440  * @delay:              Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448         const int base = write_group * ratio;
449         int i;
450         /*
451          * Load the setting in the SCC manager
452          * Although OCT affects only write data, the OCT delay is controlled
453          * by the DQS logic block which is instantiated once per read group.
454          * For protocols where a write group consists of multiple read groups,
455          * the setting must be set multiple times.
456          */
457         for (i = 0; i < ratio; i++)
458                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468         /*
469          * Load the fixed setting in the SCC manager
470          * bits: 0:0 = 1'b1     - DQS bypass
471          * bits: 1:1 = 1'b1     - DQ bypass
472          * bits: 4:2 = 3'b001   - rfifo_mode
473          * bits: 6:5 = 2'b01    - rfifo clock_select
474          * bits: 7:7 = 1'b0     - separate gating from ungating setting
475          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
476          */
477         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478                           (1 << 2) | (1 << 1) | (1 << 0);
479         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480                          SCC_MGR_HHP_GLOBALS_OFFSET |
481                          SCC_MGR_HHP_EXTRAS_OFFSET;
482
483         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484                    __func__, __LINE__);
485         writel(value, addr);
486         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487                    __func__, __LINE__);
488 }
489
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497         int i, r;
498
499         /*
500          * USER Zero all DQS config settings, across all groups and all
501          * shadow registers
502          */
503         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504              r += NUM_RANKS_PER_SHADOW_REG) {
505                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506                         /*
507                          * The phases actually don't exist on a per-rank basis,
508                          * but there's no harm updating them several times, so
509                          * let's keep the code simple.
510                          */
511                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512                         scc_mgr_set_dqs_en_phase(i, 0);
513                         scc_mgr_set_dqs_en_delay(i, 0);
514                 }
515
516                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517                         scc_mgr_set_dqdqs_output_phase(i, 0);
518                         /* Arria V/Cyclone V don't have out2. */
519                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520                 }
521         }
522
523         /* Multicast to all DQS group enables. */
524         writel(0xff, &sdr_scc_mgr->dqs_ena);
525         writel(0, &sdr_scc_mgr->update);
526 }
527
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:        Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536         /* Multicast to all DQ enables. */
537         writel(0xff, &sdr_scc_mgr->dq_ena);
538         writel(0xff, &sdr_scc_mgr->dm_ena);
539
540         /* Update current DQS IO enable. */
541         writel(0, &sdr_scc_mgr->dqs_io_ena);
542
543         /* Update the DQS logic. */
544         writel(write_group, &sdr_scc_mgr->dqs_ena);
545
546         /* Hit update. */
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:        Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560         const int base = write_group * ratio;
561         int i;
562         /*
563          * Load the setting in the SCC manager
564          * Although OCT affects only write data, the OCT delay is controlled
565          * by the DQS logic block which is instantiated once per read group.
566          * For protocols where a write group consists of multiple read groups,
567          * the setting must be set multiple times.
568          */
569         for (i = 0; i < ratio; i++)
570                 writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580         int i, r;
581
582         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583              r += NUM_RANKS_PER_SHADOW_REG) {
584                 /* Zero all DQ config settings. */
585                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586                         scc_mgr_set_dq_out1_delay(i, 0);
587                         if (!out_only)
588                                 scc_mgr_set_dq_in_delay(i, 0);
589                 }
590
591                 /* Multicast to all DQ enables. */
592                 writel(0xff, &sdr_scc_mgr->dq_ena);
593
594                 /* Zero all DM config settings. */
595                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596                         scc_mgr_set_dm_out1_delay(i, 0);
597
598                 /* Multicast to all DM enables. */
599                 writel(0xff, &sdr_scc_mgr->dm_ena);
600
601                 /* Zero all DQS IO settings. */
602                 if (!out_only)
603                         scc_mgr_set_dqs_io_in_delay(0);
604
605                 /* Arria V/Cyclone V don't have out2. */
606                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608                 scc_mgr_load_dqs_for_write_group(write_group);
609
610                 /* Multicast to all DQS IO enables (only 1 in total). */
611                 writel(0, &sdr_scc_mgr->dqs_io_ena);
612
613                 /* Hit update to zero everything. */
614                 writel(0, &sdr_scc_mgr->update);
615         }
616 }
617
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:              Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640         int i;
641
642         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643                 scc_mgr_set_dq_out1_delay(i, delay);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651         uint32_t i;
652
653         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654                 scc_mgr_set_dm_out1_delay(i, delay1);
655                 scc_mgr_load_dm(i);
656         }
657 }
658
659
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662                                                     uint32_t delay)
663 {
664         scc_mgr_set_dqs_out1_delay(delay);
665         scc_mgr_load_dqs_io();
666
667         scc_mgr_set_oct_out1_delay(write_group, delay);
668         scc_mgr_load_dqs_for_write_group(write_group);
669 }
670
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:        Write group
674  * @delay:              Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679                                                   const u32 delay)
680 {
681         u32 i, new_delay;
682
683         /* DQ shift */
684         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685                 scc_mgr_load_dq(i);
686
687         /* DM shift */
688         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689                 scc_mgr_load_dm(i);
690
691         /* DQS shift */
692         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694                 debug_cond(DLEVEL == 1,
695                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696                            __func__, __LINE__, write_group, delay, new_delay,
697                            IO_IO_OUT2_DELAY_MAX,
698                            new_delay - IO_IO_OUT2_DELAY_MAX);
699                 new_delay -= IO_IO_OUT2_DELAY_MAX;
700                 scc_mgr_set_dqs_out1_delay(new_delay);
701         }
702
703         scc_mgr_load_dqs_io();
704
705         /* OCT shift */
706         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708                 debug_cond(DLEVEL == 1,
709                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710                            __func__, __LINE__, write_group, delay,
711                            new_delay, IO_IO_OUT2_DELAY_MAX,
712                            new_delay - IO_IO_OUT2_DELAY_MAX);
713                 new_delay -= IO_IO_OUT2_DELAY_MAX;
714                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
715         }
716
717         scc_mgr_load_dqs_for_write_group(write_group);
718 }
719
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:        Write group
723  * @delay:              Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729                                                 const u32 delay)
730 {
731         int r;
732
733         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734              r += NUM_RANKS_PER_SHADOW_REG) {
735                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736                 writel(0, &sdr_scc_mgr->update);
737         }
738 }
739
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748         /*
749          * To save space, we replace return with jump to special shared
750          * RETURN instruction so we set the counter to large value so that
751          * we always jump.
752          */
753         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const u32 clocks)
762 {
763         u32 afi_clocks;
764         u16 c_loop;
765         u8 inner;
766         u8 outer;
767
768         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769
770         /* Scale (rounding up) to get afi clocks. */
771         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
772         if (afi_clocks) /* Temporary underflow protection */
773                 afi_clocks--;
774
775         /*
776          * Note, we don't bother accounting for being off a little
777          * bit because of a few extra instructions in outer loops.
778          * Note, the loops have a test at the end, and do the test
779          * before the decrement, and so always perform the loop
780          * 1 time more than the counter value
781          */
782         c_loop = afi_clocks >> 16;
783         outer = c_loop ? 0xff : (afi_clocks >> 8);
784         inner = outer ? 0xff : afi_clocks;
785
786         /*
787          * rom instructions are structured as follows:
788          *
789          *    IDLE_LOOP2: jnz cntr0, TARGET_A
790          *    IDLE_LOOP1: jnz cntr1, TARGET_B
791          *                return
792          *
793          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
794          * TARGET_B is set to IDLE_LOOP2 as well
795          *
796          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
797          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
798          *
799          * a little confusing, but it helps save precious space in the inst_rom
800          * and sequencer rom and keeps the delays more accurate and reduces
801          * overhead
802          */
803         if (afi_clocks < 0x100) {
804                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
805                         &sdr_rw_load_mgr_regs->load_cntr1);
806
807                 writel(RW_MGR_IDLE_LOOP1,
808                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
809
810                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
811                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
812         } else {
813                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
814                         &sdr_rw_load_mgr_regs->load_cntr0);
815
816                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
817                         &sdr_rw_load_mgr_regs->load_cntr1);
818
819                 writel(RW_MGR_IDLE_LOOP2,
820                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
821
822                 writel(RW_MGR_IDLE_LOOP2,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 do {
826                         writel(RW_MGR_IDLE_LOOP2,
827                                 SDR_PHYGRP_RWMGRGRP_ADDRESS |
828                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
829                 } while (c_loop-- != 0);
830         }
831         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
832 }
833
834 /**
835  * rw_mgr_mem_init_load_regs() - Load instruction registers
836  * @cntr0:      Counter 0 value
837  * @cntr1:      Counter 1 value
838  * @cntr2:      Counter 2 value
839  * @jump:       Jump instruction value
840  *
841  * Load instruction registers.
842  */
843 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
844 {
845         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
846                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
847
848         /* Load counters */
849         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
850                &sdr_rw_load_mgr_regs->load_cntr0);
851         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
852                &sdr_rw_load_mgr_regs->load_cntr1);
853         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
854                &sdr_rw_load_mgr_regs->load_cntr2);
855
856         /* Load jump address */
857         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
858         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
859         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
860
861         /* Execute count instruction */
862         writel(jump, grpaddr);
863 }
864
865 /**
866  * rw_mgr_mem_load_user() - Load user calibration values
867  * @fin1:       Final instruction 1
868  * @fin2:       Final instruction 2
869  * @precharge:  If 1, precharge the banks at the end
870  *
871  * Load user calibration values and optionally precharge the banks.
872  */
873 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
874                                  const int precharge)
875 {
876         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
877                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
878         u32 r;
879
880         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
881                 if (param->skip_ranks[r]) {
882                         /* request to skip the rank */
883                         continue;
884                 }
885
886                 /* set rank */
887                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
888
889                 /* precharge all banks ... */
890                 if (precharge)
891                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
892
893                 /*
894                  * USER Use Mirror-ed commands for odd ranks if address
895                  * mirrorring is on
896                  */
897                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
898                         set_jump_as_return();
899                         writel(RW_MGR_MRS2_MIRR, grpaddr);
900                         delay_for_n_mem_clocks(4);
901                         set_jump_as_return();
902                         writel(RW_MGR_MRS3_MIRR, grpaddr);
903                         delay_for_n_mem_clocks(4);
904                         set_jump_as_return();
905                         writel(RW_MGR_MRS1_MIRR, grpaddr);
906                         delay_for_n_mem_clocks(4);
907                         set_jump_as_return();
908                         writel(fin1, grpaddr);
909                 } else {
910                         set_jump_as_return();
911                         writel(RW_MGR_MRS2, grpaddr);
912                         delay_for_n_mem_clocks(4);
913                         set_jump_as_return();
914                         writel(RW_MGR_MRS3, grpaddr);
915                         delay_for_n_mem_clocks(4);
916                         set_jump_as_return();
917                         writel(RW_MGR_MRS1, grpaddr);
918                         set_jump_as_return();
919                         writel(fin2, grpaddr);
920                 }
921
922                 if (precharge)
923                         continue;
924
925                 set_jump_as_return();
926                 writel(RW_MGR_ZQCL, grpaddr);
927
928                 /* tZQinit = tDLLK = 512 ck cycles */
929                 delay_for_n_mem_clocks(512);
930         }
931 }
932
933 /**
934  * rw_mgr_mem_initialize() - Initialize RW Manager
935  *
936  * Initialize RW Manager.
937  */
938 static void rw_mgr_mem_initialize(void)
939 {
940         debug("%s:%d\n", __func__, __LINE__);
941
942         /* The reset / cke part of initialization is broadcasted to all ranks */
943         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
944                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
945
946         /*
947          * Here's how you load register for a loop
948          * Counters are located @ 0x800
949          * Jump address are located @ 0xC00
950          * For both, registers 0 to 3 are selected using bits 3 and 2, like
951          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
952          * I know this ain't pretty, but Avalon bus throws away the 2 least
953          * significant bits
954          */
955
956         /* Start with memory RESET activated */
957
958         /* tINIT = 200us */
959
960         /*
961          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
962          * If a and b are the number of iteration in 2 nested loops
963          * it takes the following number of cycles to complete the operation:
964          * number_of_cycles = ((2 + n) * a + 2) * b
965          * where n is the number of instruction in the inner loop
966          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
967          * b = 6A
968          */
969         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
970                                   SEQ_TINIT_CNTR2_VAL,
971                                   RW_MGR_INIT_RESET_0_CKE_0);
972
973         /* Indicate that memory is stable. */
974         writel(1, &phy_mgr_cfg->reset_mem_stbl);
975
976         /*
977          * transition the RESET to high
978          * Wait for 500us
979          */
980
981         /*
982          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983          * If a and b are the number of iteration in 2 nested loops
984          * it takes the following number of cycles to complete the operation
985          * number_of_cycles = ((2 + n) * a + 2) * b
986          * where n is the number of instruction in the inner loop
987          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988          * b = FF
989          */
990         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
991                                   SEQ_TRESET_CNTR2_VAL,
992                                   RW_MGR_INIT_RESET_1_CKE_0);
993
994         /* Bring up clock enable. */
995
996         /* tXRP < 250 ck cycles */
997         delay_for_n_mem_clocks(250);
998
999         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1000                              0);
1001 }
1002
1003 /**
1004  * rw_mgr_mem_handoff() - Hand off the memory to user
1005  *
1006  * At the end of calibration we have to program the user settings in
1007  * and hand off the memory to the user.
1008  */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1012         /*
1013          * Need to wait tMOD (12CK or 15ns) time before issuing other
1014          * commands, but we will have plenty of NIOS cycles before actual
1015          * handoff so its okay.
1016          */
1017 }
1018
1019 /**
1020  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021  * @group:      Write Group
1022  * @use_dm:     Use DM
1023  *
1024  * Issue write test command. Two variants are provided, one that just tests
1025  * a write pattern and another that tests datamask functionality.
1026  */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028                                                   u32 test_dm)
1029 {
1030         const u32 quick_write_mode =
1031                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032                 ENABLE_SUPER_QUICK_CALIBRATION;
1033         u32 mcc_instruction;
1034         u32 rw_wl_nop_cycles;
1035
1036         /*
1037          * Set counter and jump addresses for the right
1038          * number of NOP cycles.
1039          * The number of supported NOP cycles can range from -1 to infinity
1040          * Three different cases are handled:
1041          *
1042          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043          *    mechanism will be used to insert the right number of NOPs
1044          *
1045          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046          *    issuing the write command will jump straight to the
1047          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048          *    data (for RLD), skipping
1049          *    the NOP micro-instruction all together
1050          *
1051          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052          *    turned on in the same micro-instruction that issues the write
1053          *    command. Then we need
1054          *    to directly jump to the micro-instruction that sends out the data
1055          *
1056          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057          *       (2 and 3). One jump-counter (0) is used to perform multiple
1058          *       write-read operations.
1059          *       one counter left to issue this command in "multiple-group" mode
1060          */
1061
1062         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063
1064         if (rw_wl_nop_cycles == -1) {
1065                 /*
1066                  * CNTR 2 - We want to execute the special write operation that
1067                  * turns on DQS right away and then skip directly to the
1068                  * instruction that sends out the data. We set the counter to a
1069                  * large number so that the jump is always taken.
1070                  */
1071                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072
1073                 /* CNTR 3 - Not used */
1074                 if (test_dm) {
1075                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1076                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1077                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1079                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080                 } else {
1081                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1082                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1083                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1085                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086                 }
1087         } else if (rw_wl_nop_cycles == 0) {
1088                 /*
1089                  * CNTR 2 - We want to skip the NOP operation and go straight
1090                  * to the DQS enable instruction. We set the counter to a large
1091                  * number so that the jump is always taken.
1092                  */
1093                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094
1095                 /* CNTR 3 - Not used */
1096                 if (test_dm) {
1097                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1098                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1099                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100                 } else {
1101                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1102                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1103                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104                 }
1105         } else {
1106                 /*
1107                  * CNTR 2 - In this case we want to execute the next instruction
1108                  * and NOT take the jump. So we set the counter to 0. The jump
1109                  * address doesn't count.
1110                  */
1111                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113
1114                 /*
1115                  * CNTR 3 - Set the nop counter to the number of cycles we
1116                  * need to loop for, minus 1.
1117                  */
1118                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119                 if (test_dm) {
1120                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1121                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1122                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123                 } else {
1124                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1125                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1126                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127                 }
1128         }
1129
1130         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132
1133         if (quick_write_mode)
1134                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135         else
1136                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137
1138         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139
1140         /*
1141          * CNTR 1 - This is used to ensure enough time elapses
1142          * for read data to come back.
1143          */
1144         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145
1146         if (test_dm) {
1147                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149         } else {
1150                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1151                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152         }
1153
1154         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156                                 (group << 2));
1157 }
1158
1159 /**
1160  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161  * @rank_bgn:           Rank number
1162  * @write_group:        Write Group
1163  * @use_dm:             Use DM
1164  * @all_correct:        All bits must be correct in the mask
1165  * @bit_chk:            Resulting bit mask after the test
1166  * @all_ranks:          Test all ranks
1167  *
1168  * Test writes, can check for a single bit pass or multiple bit pass.
1169  */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172                                 const u32 use_dm, const u32 all_correct,
1173                                 u32 *bit_chk, const u32 all_ranks)
1174 {
1175         const u32 rank_end = all_ranks ?
1176                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1177                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1179                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1180         const u32 correct_mask_vg = param->write_correct_mask_vg;
1181
1182         u32 tmp_bit_chk, base_rw_mgr;
1183         int vg, r;
1184
1185         *bit_chk = param->write_correct_mask;
1186
1187         for (r = rank_bgn; r < rank_end; r++) {
1188                 /* Request to skip the rank */
1189                 if (param->skip_ranks[r])
1190                         continue;
1191
1192                 /* Set rank */
1193                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1194
1195                 tmp_bit_chk = 0;
1196                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1197                      vg >= 0; vg--) {
1198                         /* Reset the FIFOs to get pointers to known state. */
1199                         writel(0, &phy_mgr_cmd->fifo_reset);
1200
1201                         rw_mgr_mem_calibrate_write_test_issue(
1202                                 write_group *
1203                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1204                                 use_dm);
1205
1206                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1207                         tmp_bit_chk <<= shift_ratio;
1208                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1209                 }
1210
1211                 *bit_chk &= tmp_bit_chk;
1212         }
1213
1214         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1215         if (all_correct) {
1216                 debug_cond(DLEVEL == 2,
1217                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1218                            write_group, use_dm, *bit_chk,
1219                            param->write_correct_mask,
1220                            *bit_chk == param->write_correct_mask);
1221                 return *bit_chk == param->write_correct_mask;
1222         } else {
1223                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1224                 debug_cond(DLEVEL == 2,
1225                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1226                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1227                 return *bit_chk != 0x00;
1228         }
1229 }
1230
1231 /**
1232  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1233  * @rank_bgn:   Rank number
1234  * @group:      Read/Write Group
1235  * @all_ranks:  Test all ranks
1236  *
1237  * Performs a guaranteed read on the patterns we are going to use during a
1238  * read test to ensure memory works.
1239  */
1240 static int
1241 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1242                                         const u32 all_ranks)
1243 {
1244         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1245                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246         const u32 addr_offset =
1247                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1248         const u32 rank_end = all_ranks ?
1249                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1250                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1251         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1252                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1253         const u32 correct_mask_vg = param->read_correct_mask_vg;
1254
1255         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1256         int vg, r;
1257         int ret = 0;
1258
1259         bit_chk = param->read_correct_mask;
1260
1261         for (r = rank_bgn; r < rank_end; r++) {
1262                 /* Request to skip the rank */
1263                 if (param->skip_ranks[r])
1264                         continue;
1265
1266                 /* Set rank */
1267                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1268
1269                 /* Load up a constant bursts of read commands */
1270                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1271                 writel(RW_MGR_GUARANTEED_READ,
1272                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1273
1274                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1275                 writel(RW_MGR_GUARANTEED_READ_CONT,
1276                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1277
1278                 tmp_bit_chk = 0;
1279                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1280                      vg >= 0; vg--) {
1281                         /* Reset the FIFOs to get pointers to known state. */
1282                         writel(0, &phy_mgr_cmd->fifo_reset);
1283                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1284                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1285                         writel(RW_MGR_GUARANTEED_READ,
1286                                addr + addr_offset + (vg << 2));
1287
1288                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1289                         tmp_bit_chk <<= shift_ratio;
1290                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1291                 }
1292
1293                 bit_chk &= tmp_bit_chk;
1294         }
1295
1296         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1297
1298         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1299
1300         if (bit_chk != param->read_correct_mask)
1301                 ret = -EIO;
1302
1303         debug_cond(DLEVEL == 1,
1304                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1305                    __func__, __LINE__, group, bit_chk,
1306                    param->read_correct_mask, ret);
1307
1308         return ret;
1309 }
1310
1311 /**
1312  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1313  * @rank_bgn:   Rank number
1314  * @all_ranks:  Test all ranks
1315  *
1316  * Load up the patterns we are going to use during a read test.
1317  */
1318 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1319                                                     const int all_ranks)
1320 {
1321         const u32 rank_end = all_ranks ?
1322                         RW_MGR_MEM_NUMBER_OF_RANKS :
1323                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1324         u32 r;
1325
1326         debug("%s:%d\n", __func__, __LINE__);
1327
1328         for (r = rank_bgn; r < rank_end; r++) {
1329                 if (param->skip_ranks[r])
1330                         /* request to skip the rank */
1331                         continue;
1332
1333                 /* set rank */
1334                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1335
1336                 /* Load up a constant bursts */
1337                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1338
1339                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1340                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1341
1342                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1343
1344                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1345                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1346
1347                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1348
1349                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1350                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1351
1352                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1353
1354                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1355                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1356
1357                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1358                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1359         }
1360
1361         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1362 }
1363
1364 /**
1365  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1366  * @rank_bgn:           Rank number
1367  * @group:              Read/Write group
1368  * @num_tries:          Number of retries of the test
1369  * @all_correct:        All bits must be correct in the mask
1370  * @bit_chk:            Resulting bit mask after the test
1371  * @all_groups:         Test all R/W groups
1372  * @all_ranks:          Test all ranks
1373  *
1374  * Try a read and see if it returns correct data back. Test has dummy reads
1375  * inserted into the mix used to align DQS enable. Test has more thorough
1376  * checks than the regular read test.
1377  */
1378 static int
1379 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1380                                const u32 num_tries, const u32 all_correct,
1381                                u32 *bit_chk,
1382                                const u32 all_groups, const u32 all_ranks)
1383 {
1384         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1385                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1386         const u32 quick_read_mode =
1387                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1388                  ENABLE_SUPER_QUICK_CALIBRATION);
1389         u32 correct_mask_vg = param->read_correct_mask_vg;
1390         u32 tmp_bit_chk;
1391         u32 base_rw_mgr;
1392         u32 addr;
1393
1394         int r, vg, ret;
1395
1396         *bit_chk = param->read_correct_mask;
1397
1398         for (r = rank_bgn; r < rank_end; r++) {
1399                 if (param->skip_ranks[r])
1400                         /* request to skip the rank */
1401                         continue;
1402
1403                 /* set rank */
1404                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1405
1406                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1407
1408                 writel(RW_MGR_READ_B2B_WAIT1,
1409                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1410
1411                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1412                 writel(RW_MGR_READ_B2B_WAIT2,
1413                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1414
1415                 if (quick_read_mode)
1416                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1417                         /* need at least two (1+1) reads to capture failures */
1418                 else if (all_groups)
1419                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1420                 else
1421                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1422
1423                 writel(RW_MGR_READ_B2B,
1424                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1425                 if (all_groups)
1426                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1427                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1428                                &sdr_rw_load_mgr_regs->load_cntr3);
1429                 else
1430                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1431
1432                 writel(RW_MGR_READ_B2B,
1433                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1434
1435                 tmp_bit_chk = 0;
1436                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1437                      vg--) {
1438                         /* Reset the FIFOs to get pointers to known state. */
1439                         writel(0, &phy_mgr_cmd->fifo_reset);
1440                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1441                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1442
1443                         if (all_groups) {
1444                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1445                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1446                         } else {
1447                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1448                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449                         }
1450
1451                         writel(RW_MGR_READ_B2B, addr +
1452                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1453                                vg) << 2));
1454
1455                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1456                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1457                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1458                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1459                 }
1460
1461                 *bit_chk &= tmp_bit_chk;
1462         }
1463
1464         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1465         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1466
1467         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1468
1469         if (all_correct) {
1470                 ret = (*bit_chk == param->read_correct_mask);
1471                 debug_cond(DLEVEL == 2,
1472                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1473                            __func__, __LINE__, group, all_groups, *bit_chk,
1474                            param->read_correct_mask, ret);
1475         } else  {
1476                 ret = (*bit_chk != 0x00);
1477                 debug_cond(DLEVEL == 2,
1478                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1479                            __func__, __LINE__, group, all_groups, *bit_chk,
1480                            0, ret);
1481         }
1482
1483         return ret;
1484 }
1485
1486 /**
1487  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1488  * @grp:                Read/Write group
1489  * @num_tries:          Number of retries of the test
1490  * @all_correct:        All bits must be correct in the mask
1491  * @all_groups:         Test all R/W groups
1492  *
1493  * Perform a READ test across all memory ranks.
1494  */
1495 static int
1496 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1497                                          const u32 all_correct,
1498                                          const u32 all_groups)
1499 {
1500         u32 bit_chk;
1501         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1502                                               &bit_chk, all_groups, 1);
1503 }
1504
1505 /**
1506  * rw_mgr_incr_vfifo() - Increase VFIFO value
1507  * @grp:        Read/Write group
1508  *
1509  * Increase VFIFO value.
1510  */
1511 static void rw_mgr_incr_vfifo(const u32 grp)
1512 {
1513         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1514 }
1515
1516 /**
1517  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1518  * @grp:        Read/Write group
1519  *
1520  * Decrease VFIFO value.
1521  */
1522 static void rw_mgr_decr_vfifo(const u32 grp)
1523 {
1524         u32 i;
1525
1526         for (i = 0; i < VFIFO_SIZE - 1; i++)
1527                 rw_mgr_incr_vfifo(grp);
1528 }
1529
1530 /**
1531  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1532  * @grp:        Read/Write group
1533  *
1534  * Push VFIFO until a failing read happens.
1535  */
1536 static int find_vfifo_failing_read(const u32 grp)
1537 {
1538         u32 v, ret, fail_cnt = 0;
1539
1540         for (v = 0; v < VFIFO_SIZE; v++) {
1541                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1542                            __func__, __LINE__, v);
1543                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1544                                                 PASS_ONE_BIT, 0);
1545                 if (!ret) {
1546                         fail_cnt++;
1547
1548                         if (fail_cnt == 2)
1549                                 return v;
1550                 }
1551
1552                 /* Fiddle with FIFO. */
1553                 rw_mgr_incr_vfifo(grp);
1554         }
1555
1556         /* No failing read found! Something must have gone wrong. */
1557         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1558         return 0;
1559 }
1560
1561 /**
1562  * sdr_find_phase_delay() - Find DQS enable phase or delay
1563  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1564  * @delay:      If 1, look for delay, if 0, look for phase
1565  * @grp:        Read/Write group
1566  * @work:       Working window position
1567  * @work_inc:   Working window increment
1568  * @pd:         DQS Phase/Delay Iterator
1569  *
1570  * Find working or non-working DQS enable phase setting.
1571  */
1572 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1573                                 u32 *work, const u32 work_inc, u32 *pd)
1574 {
1575         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1576         u32 ret;
1577
1578         for (; *pd <= max; (*pd)++) {
1579                 if (delay)
1580                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1581                 else
1582                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1583
1584                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1585                                         PASS_ONE_BIT, 0);
1586                 if (!working)
1587                         ret = !ret;
1588
1589                 if (ret)
1590                         return 0;
1591
1592                 if (work)
1593                         *work += work_inc;
1594         }
1595
1596         return -EINVAL;
1597 }
1598 /**
1599  * sdr_find_phase() - Find DQS enable phase
1600  * @working:    If 1, look for working phase, if 0, look for non-working phase
1601  * @grp:        Read/Write group
1602  * @work:       Working window position
1603  * @i:          Iterator
1604  * @p:          DQS Phase Iterator
1605  *
1606  * Find working or non-working DQS enable phase setting.
1607  */
1608 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1609                           u32 *i, u32 *p)
1610 {
1611         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1612         int ret;
1613
1614         for (; *i < end; (*i)++) {
1615                 if (working)
1616                         *p = 0;
1617
1618                 ret = sdr_find_phase_delay(working, 0, grp, work,
1619                                            IO_DELAY_PER_OPA_TAP, p);
1620                 if (!ret)
1621                         return 0;
1622
1623                 if (*p > IO_DQS_EN_PHASE_MAX) {
1624                         /* Fiddle with FIFO. */
1625                         rw_mgr_incr_vfifo(grp);
1626                         if (!working)
1627                                 *p = 0;
1628                 }
1629         }
1630
1631         return -EINVAL;
1632 }
1633
1634 /**
1635  * sdr_working_phase() - Find working DQS enable phase
1636  * @grp:        Read/Write group
1637  * @work_bgn:   Working window start position
1638  * @d:          dtaps output value
1639  * @p:          DQS Phase Iterator
1640  * @i:          Iterator
1641  *
1642  * Find working DQS enable phase setting.
1643  */
1644 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1645                              u32 *p, u32 *i)
1646 {
1647         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1648                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1649         int ret;
1650
1651         *work_bgn = 0;
1652
1653         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1654                 *i = 0;
1655                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1656                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1657                 if (!ret)
1658                         return 0;
1659                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1660         }
1661
1662         /* Cannot find working solution */
1663         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1664                    __func__, __LINE__);
1665         return -EINVAL;
1666 }
1667
1668 /**
1669  * sdr_backup_phase() - Find DQS enable backup phase
1670  * @grp:        Read/Write group
1671  * @work_bgn:   Working window start position
1672  * @p:          DQS Phase Iterator
1673  *
1674  * Find DQS enable backup phase setting.
1675  */
1676 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1677 {
1678         u32 tmp_delay, d;
1679         int ret;
1680
1681         /* Special case code for backing up a phase */
1682         if (*p == 0) {
1683                 *p = IO_DQS_EN_PHASE_MAX;
1684                 rw_mgr_decr_vfifo(grp);
1685         } else {
1686                 (*p)--;
1687         }
1688         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1689         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1690
1691         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1692                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1693
1694                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1695                                         PASS_ONE_BIT, 0);
1696                 if (ret) {
1697                         *work_bgn = tmp_delay;
1698                         break;
1699                 }
1700
1701                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1702         }
1703
1704         /* Restore VFIFO to old state before we decremented it (if needed). */
1705         (*p)++;
1706         if (*p > IO_DQS_EN_PHASE_MAX) {
1707                 *p = 0;
1708                 rw_mgr_incr_vfifo(grp);
1709         }
1710
1711         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1712 }
1713
1714 /**
1715  * sdr_nonworking_phase() - Find non-working DQS enable phase
1716  * @grp:        Read/Write group
1717  * @work_end:   Working window end position
1718  * @p:          DQS Phase Iterator
1719  * @i:          Iterator
1720  *
1721  * Find non-working DQS enable phase setting.
1722  */
1723 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1724 {
1725         int ret;
1726
1727         (*p)++;
1728         *work_end += IO_DELAY_PER_OPA_TAP;
1729         if (*p > IO_DQS_EN_PHASE_MAX) {
1730                 /* Fiddle with FIFO. */
1731                 *p = 0;
1732                 rw_mgr_incr_vfifo(grp);
1733         }
1734
1735         ret = sdr_find_phase(0, grp, work_end, i, p);
1736         if (ret) {
1737                 /* Cannot see edge of failing read. */
1738                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1739                            __func__, __LINE__);
1740         }
1741
1742         return ret;
1743 }
1744
1745 /**
1746  * sdr_find_window_center() - Find center of the working DQS window.
1747  * @grp:        Read/Write group
1748  * @work_bgn:   First working settings
1749  * @work_end:   Last working settings
1750  *
1751  * Find center of the working DQS enable window.
1752  */
1753 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1754                                   const u32 work_end)
1755 {
1756         u32 work_mid;
1757         int tmp_delay = 0;
1758         int i, p, d;
1759
1760         work_mid = (work_bgn + work_end) / 2;
1761
1762         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1763                    work_bgn, work_end, work_mid);
1764         /* Get the middle delay to be less than a VFIFO delay */
1765         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1766
1767         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1768         work_mid %= tmp_delay;
1769         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1770
1771         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1772         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1773                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1774         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1775
1776         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1777
1778         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1779         if (d > IO_DQS_EN_DELAY_MAX)
1780                 d = IO_DQS_EN_DELAY_MAX;
1781         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1782
1783         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1784
1785         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1786         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1787
1788         /*
1789          * push vfifo until we can successfully calibrate. We can do this
1790          * because the largest possible margin in 1 VFIFO cycle.
1791          */
1792         for (i = 0; i < VFIFO_SIZE; i++) {
1793                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1794                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1795                                                              PASS_ONE_BIT,
1796                                                              0)) {
1797                         debug_cond(DLEVEL == 2,
1798                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1799                                    __func__, __LINE__, p, d);
1800                         return 0;
1801                 }
1802
1803                 /* Fiddle with FIFO. */
1804                 rw_mgr_incr_vfifo(grp);
1805         }
1806
1807         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1808                    __func__, __LINE__);
1809         return -EINVAL;
1810 }
1811
1812 /**
1813  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1814  * @grp:        Read/Write Group
1815  *
1816  * Find a good DQS enable to use.
1817  */
1818 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1819 {
1820         u32 d, p, i;
1821         u32 dtaps_per_ptap;
1822         u32 work_bgn, work_end;
1823         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1824         int ret;
1825
1826         debug("%s:%d %u\n", __func__, __LINE__, grp);
1827
1828         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1829
1830         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1831         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1832
1833         /* Step 0: Determine number of delay taps for each phase tap. */
1834         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1835
1836         /* Step 1: First push vfifo until we get a failing read. */
1837         find_vfifo_failing_read(grp);
1838
1839         /* Step 2: Find first working phase, increment in ptaps. */
1840         work_bgn = 0;
1841         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1842         if (ret)
1843                 return ret;
1844
1845         work_end = work_bgn;
1846
1847         /*
1848          * If d is 0 then the working window covers a phase tap and we can
1849          * follow the old procedure. Otherwise, we've found the beginning
1850          * and we need to increment the dtaps until we find the end.
1851          */
1852         if (d == 0) {
1853                 /*
1854                  * Step 3a: If we have room, back off by one and
1855                  *          increment in dtaps.
1856                  */
1857                 sdr_backup_phase(grp, &work_bgn, &p);
1858
1859                 /*
1860                  * Step 4a: go forward from working phase to non working
1861                  * phase, increment in ptaps.
1862                  */
1863                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1864                 if (ret)
1865                         return ret;
1866
1867                 /* Step 5a: Back off one from last, increment in dtaps. */
1868
1869                 /* Special case code for backing up a phase */
1870                 if (p == 0) {
1871                         p = IO_DQS_EN_PHASE_MAX;
1872                         rw_mgr_decr_vfifo(grp);
1873                 } else {
1874                         p = p - 1;
1875                 }
1876
1877                 work_end -= IO_DELAY_PER_OPA_TAP;
1878                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1879
1880                 d = 0;
1881
1882                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1883                            __func__, __LINE__, p);
1884         }
1885
1886         /* The dtap increment to find the failing edge is done here. */
1887         sdr_find_phase_delay(0, 1, grp, &work_end,
1888                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1889
1890         /* Go back to working dtap */
1891         if (d != 0)
1892                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1893
1894         debug_cond(DLEVEL == 2,
1895                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1896                    __func__, __LINE__, p, d - 1, work_end);
1897
1898         if (work_end < work_bgn) {
1899                 /* nil range */
1900                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1901                            __func__, __LINE__);
1902                 return -EINVAL;
1903         }
1904
1905         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1906                    __func__, __LINE__, work_bgn, work_end);
1907
1908         /*
1909          * We need to calculate the number of dtaps that equal a ptap.
1910          * To do that we'll back up a ptap and re-find the edge of the
1911          * window using dtaps
1912          */
1913         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1914                    __func__, __LINE__);
1915
1916         /* Special case code for backing up a phase */
1917         if (p == 0) {
1918                 p = IO_DQS_EN_PHASE_MAX;
1919                 rw_mgr_decr_vfifo(grp);
1920                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1921                            __func__, __LINE__, p);
1922         } else {
1923                 p = p - 1;
1924                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1925                            __func__, __LINE__, p);
1926         }
1927
1928         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1929
1930         /*
1931          * Increase dtap until we first see a passing read (in case the
1932          * window is smaller than a ptap), and then a failing read to
1933          * mark the edge of the window again.
1934          */
1935
1936         /* Find a passing read. */
1937         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1938                    __func__, __LINE__);
1939
1940         initial_failing_dtap = d;
1941
1942         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1943         if (found_passing_read) {
1944                 /* Find a failing read. */
1945                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1946                            __func__, __LINE__);
1947                 d++;
1948                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1949                                                            &d);
1950         } else {
1951                 debug_cond(DLEVEL == 1,
1952                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1953                            __func__, __LINE__);
1954         }
1955
1956         /*
1957          * The dynamically calculated dtaps_per_ptap is only valid if we
1958          * found a passing/failing read. If we didn't, it means d hit the max
1959          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1960          * statically calculated value.
1961          */
1962         if (found_passing_read && found_failing_read)
1963                 dtaps_per_ptap = d - initial_failing_dtap;
1964
1965         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1966         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1967                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1968
1969         /* Step 6: Find the centre of the window. */
1970         ret = sdr_find_window_center(grp, work_bgn, work_end);
1971
1972         return ret;
1973 }
1974
1975 /**
1976  * search_stop_check() - Check if the detected edge is valid
1977  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1978  * @d:                  DQS delay
1979  * @rank_bgn:           Rank number
1980  * @write_group:        Write Group
1981  * @read_group:         Read Group
1982  * @bit_chk:            Resulting bit mask after the test
1983  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1984  * @use_read_test:      Perform read test
1985  *
1986  * Test if the found edge is valid.
1987  */
1988 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1989                              const u32 write_group, const u32 read_group,
1990                              u32 *bit_chk, u32 *sticky_bit_chk,
1991                              const u32 use_read_test)
1992 {
1993         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1994                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1995         const u32 correct_mask = write ? param->write_correct_mask :
1996                                          param->read_correct_mask;
1997         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1998                                     RW_MGR_MEM_DQ_PER_READ_DQS;
1999         u32 ret;
2000         /*
2001          * Stop searching when the read test doesn't pass AND when
2002          * we've seen a passing read on every bit.
2003          */
2004         if (write) {                    /* WRITE-ONLY */
2005                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2006                                                          0, PASS_ONE_BIT,
2007                                                          bit_chk, 0);
2008         } else if (use_read_test) {     /* READ-ONLY */
2009                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2010                                                         NUM_READ_PB_TESTS,
2011                                                         PASS_ONE_BIT, bit_chk,
2012                                                         0, 0);
2013         } else {                        /* READ-ONLY */
2014                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2015                                                 PASS_ONE_BIT, bit_chk, 0);
2016                 *bit_chk = *bit_chk >> (per_dqs *
2017                         (read_group - (write_group * ratio)));
2018                 ret = (*bit_chk == 0);
2019         }
2020         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2021         ret = ret && (*sticky_bit_chk == correct_mask);
2022         debug_cond(DLEVEL == 2,
2023                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2024                    __func__, __LINE__, d,
2025                    *sticky_bit_chk, correct_mask, ret);
2026         return ret;
2027 }
2028
2029 /**
2030  * search_left_edge() - Find left edge of DQ/DQS working phase
2031  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2032  * @rank_bgn:           Rank number
2033  * @write_group:        Write Group
2034  * @read_group:         Read Group
2035  * @test_bgn:           Rank number to begin the test
2036  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2037  * @left_edge:          Left edge of the DQ/DQS phase
2038  * @right_edge:         Right edge of the DQ/DQS phase
2039  * @use_read_test:      Perform read test
2040  *
2041  * Find left edge of DQ/DQS working phase.
2042  */
2043 static void search_left_edge(const int write, const int rank_bgn,
2044         const u32 write_group, const u32 read_group, const u32 test_bgn,
2045         u32 *sticky_bit_chk,
2046         int *left_edge, int *right_edge, const u32 use_read_test)
2047 {
2048         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2049         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2050         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2051                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2052         u32 stop, bit_chk;
2053         int i, d;
2054
2055         for (d = 0; d <= dqs_max; d++) {
2056                 if (write)
2057                         scc_mgr_apply_group_dq_out1_delay(d);
2058                 else
2059                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2060
2061                 writel(0, &sdr_scc_mgr->update);
2062
2063                 stop = search_stop_check(write, d, rank_bgn, write_group,
2064                                          read_group, &bit_chk, sticky_bit_chk,
2065                                          use_read_test);
2066                 if (stop == 1)
2067                         break;
2068
2069                 /* stop != 1 */
2070                 for (i = 0; i < per_dqs; i++) {
2071                         if (bit_chk & 1) {
2072                                 /*
2073                                  * Remember a passing test as
2074                                  * the left_edge.
2075                                  */
2076                                 left_edge[i] = d;
2077                         } else {
2078                                 /*
2079                                  * If a left edge has not been seen
2080                                  * yet, then a future passing test
2081                                  * will mark this edge as the right
2082                                  * edge.
2083                                  */
2084                                 if (left_edge[i] == delay_max + 1)
2085                                         right_edge[i] = -(d + 1);
2086                         }
2087                         bit_chk >>= 1;
2088                 }
2089         }
2090
2091         /* Reset DQ delay chains to 0 */
2092         if (write)
2093                 scc_mgr_apply_group_dq_out1_delay(0);
2094         else
2095                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2096
2097         *sticky_bit_chk = 0;
2098         for (i = per_dqs - 1; i >= 0; i--) {
2099                 debug_cond(DLEVEL == 2,
2100                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2101                            __func__, __LINE__, i, left_edge[i],
2102                            i, right_edge[i]);
2103
2104                 /*
2105                  * Check for cases where we haven't found the left edge,
2106                  * which makes our assignment of the the right edge invalid.
2107                  * Reset it to the illegal value.
2108                  */
2109                 if ((left_edge[i] == delay_max + 1) &&
2110                     (right_edge[i] != delay_max + 1)) {
2111                         right_edge[i] = delay_max + 1;
2112                         debug_cond(DLEVEL == 2,
2113                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2114                                    __func__, __LINE__, i, right_edge[i]);
2115                 }
2116
2117                 /*
2118                  * Reset sticky bit
2119                  * READ: except for bits where we have seen both
2120                  *       the left and right edge.
2121                  * WRITE: except for bits where we have seen the
2122                  *        left edge.
2123                  */
2124                 *sticky_bit_chk <<= 1;
2125                 if (write) {
2126                         if (left_edge[i] != delay_max + 1)
2127                                 *sticky_bit_chk |= 1;
2128                 } else {
2129                         if ((left_edge[i] != delay_max + 1) &&
2130                             (right_edge[i] != delay_max + 1))
2131                                 *sticky_bit_chk |= 1;
2132                 }
2133         }
2134
2135
2136 }
2137
2138 /**
2139  * search_right_edge() - Find right edge of DQ/DQS working phase
2140  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2141  * @rank_bgn:           Rank number
2142  * @write_group:        Write Group
2143  * @read_group:         Read Group
2144  * @start_dqs:          DQS start phase
2145  * @start_dqs_en:       DQS enable start phase
2146  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2147  * @left_edge:          Left edge of the DQ/DQS phase
2148  * @right_edge:         Right edge of the DQ/DQS phase
2149  * @use_read_test:      Perform read test
2150  *
2151  * Find right edge of DQ/DQS working phase.
2152  */
2153 static int search_right_edge(const int write, const int rank_bgn,
2154         const u32 write_group, const u32 read_group,
2155         const int start_dqs, const int start_dqs_en,
2156         u32 *sticky_bit_chk,
2157         int *left_edge, int *right_edge, const u32 use_read_test)
2158 {
2159         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2160         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2161         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2162                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2163         u32 stop, bit_chk;
2164         int i, d;
2165
2166         for (d = 0; d <= dqs_max - start_dqs; d++) {
2167                 if (write) {    /* WRITE-ONLY */
2168                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2169                                                                 d + start_dqs);
2170                 } else {        /* READ-ONLY */
2171                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2172                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2173                                 uint32_t delay = d + start_dqs_en;
2174                                 if (delay > IO_DQS_EN_DELAY_MAX)
2175                                         delay = IO_DQS_EN_DELAY_MAX;
2176                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2177                         }
2178                         scc_mgr_load_dqs(read_group);
2179                 }
2180
2181                 writel(0, &sdr_scc_mgr->update);
2182
2183                 stop = search_stop_check(write, d, rank_bgn, write_group,
2184                                          read_group, &bit_chk, sticky_bit_chk,
2185                                          use_read_test);
2186                 if (stop == 1) {
2187                         if (write && (d == 0)) {        /* WRITE-ONLY */
2188                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2189                                         /*
2190                                          * d = 0 failed, but it passed when
2191                                          * testing the left edge, so it must be
2192                                          * marginal, set it to -1
2193                                          */
2194                                         if (right_edge[i] == delay_max + 1 &&
2195                                             left_edge[i] != delay_max + 1)
2196                                                 right_edge[i] = -1;
2197                                 }
2198                         }
2199                         break;
2200                 }
2201
2202                 /* stop != 1 */
2203                 for (i = 0; i < per_dqs; i++) {
2204                         if (bit_chk & 1) {
2205                                 /*
2206                                  * Remember a passing test as
2207                                  * the right_edge.
2208                                  */
2209                                 right_edge[i] = d;
2210                         } else {
2211                                 if (d != 0) {
2212                                         /*
2213                                          * If a right edge has not
2214                                          * been seen yet, then a future
2215                                          * passing test will mark this
2216                                          * edge as the left edge.
2217                                          */
2218                                         if (right_edge[i] == delay_max + 1)
2219                                                 left_edge[i] = -(d + 1);
2220                                 } else {
2221                                         /*
2222                                          * d = 0 failed, but it passed
2223                                          * when testing the left edge,
2224                                          * so it must be marginal, set
2225                                          * it to -1
2226                                          */
2227                                         if (right_edge[i] == delay_max + 1 &&
2228                                             left_edge[i] != delay_max + 1)
2229                                                 right_edge[i] = -1;
2230                                         /*
2231                                          * If a right edge has not been
2232                                          * seen yet, then a future
2233                                          * passing test will mark this
2234                                          * edge as the left edge.
2235                                          */
2236                                         else if (right_edge[i] == delay_max + 1)
2237                                                 left_edge[i] = -(d + 1);
2238                                 }
2239                         }
2240
2241                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2242                                    __func__, __LINE__, d);
2243                         debug_cond(DLEVEL == 2,
2244                                    "bit_chk_test=%i left_edge[%u]: %d ",
2245                                    bit_chk & 1, i, left_edge[i]);
2246                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2247                                    right_edge[i]);
2248                         bit_chk >>= 1;
2249                 }
2250         }
2251
2252         /* Check that all bits have a window */
2253         for (i = 0; i < per_dqs; i++) {
2254                 debug_cond(DLEVEL == 2,
2255                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2256                            __func__, __LINE__, i, left_edge[i],
2257                            i, right_edge[i]);
2258                 if ((left_edge[i] == dqs_max + 1) ||
2259                     (right_edge[i] == dqs_max + 1))
2260                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2261         }
2262
2263         return 0;
2264 }
2265
2266 /**
2267  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2268  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2269  * @left_edge:          Left edge of the DQ/DQS phase
2270  * @right_edge:         Right edge of the DQ/DQS phase
2271  * @mid_min:            Best DQ/DQS phase middle setting
2272  *
2273  * Find index and value of the middle of the DQ/DQS working phase.
2274  */
2275 static int get_window_mid_index(const int write, int *left_edge,
2276                                 int *right_edge, int *mid_min)
2277 {
2278         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2279                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2280         int i, mid, min_index;
2281
2282         /* Find middle of window for each DQ bit */
2283         *mid_min = left_edge[0] - right_edge[0];
2284         min_index = 0;
2285         for (i = 1; i < per_dqs; i++) {
2286                 mid = left_edge[i] - right_edge[i];
2287                 if (mid < *mid_min) {
2288                         *mid_min = mid;
2289                         min_index = i;
2290                 }
2291         }
2292
2293         /*
2294          * -mid_min/2 represents the amount that we need to move DQS.
2295          * If mid_min is odd and positive we'll need to add one to make
2296          * sure the rounding in further calculations is correct (always
2297          * bias to the right), so just add 1 for all positive values.
2298          */
2299         if (*mid_min > 0)
2300                 (*mid_min)++;
2301         *mid_min = *mid_min / 2;
2302
2303         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2304                    __func__, __LINE__, *mid_min, min_index);
2305         return min_index;
2306 }
2307
2308 /**
2309  * center_dq_windows() - Center the DQ/DQS windows
2310  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2311  * @left_edge:          Left edge of the DQ/DQS phase
2312  * @right_edge:         Right edge of the DQ/DQS phase
2313  * @mid_min:            Adjusted DQ/DQS phase middle setting
2314  * @orig_mid_min:       Original DQ/DQS phase middle setting
2315  * @min_index:          DQ/DQS phase middle setting index
2316  * @test_bgn:           Rank number to begin the test
2317  * @dq_margin:          Amount of shift for the DQ
2318  * @dqs_margin:         Amount of shift for the DQS
2319  *
2320  * Align the DQ/DQS windows in each group.
2321  */
2322 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2323                               const int mid_min, const int orig_mid_min,
2324                               const int min_index, const int test_bgn,
2325                               int *dq_margin, int *dqs_margin)
2326 {
2327         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2328         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2329                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2330         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2331                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2332         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2333
2334         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2335         int shift_dq, i, p;
2336
2337         /* Initialize data for export structures */
2338         *dqs_margin = delay_max + 1;
2339         *dq_margin  = delay_max + 1;
2340
2341         /* add delay to bring centre of all DQ windows to the same "level" */
2342         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2343                 /* Use values before divide by 2 to reduce round off error */
2344                 shift_dq = (left_edge[i] - right_edge[i] -
2345                         (left_edge[min_index] - right_edge[min_index]))/2  +
2346                         (orig_mid_min - mid_min);
2347
2348                 debug_cond(DLEVEL == 2,
2349                            "vfifo_center: before: shift_dq[%u]=%d\n",
2350                            i, shift_dq);
2351
2352                 temp_dq_io_delay1 = readl(addr + (p << 2));
2353                 temp_dq_io_delay2 = readl(addr + (i << 2));
2354
2355                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2356                         shift_dq = delay_max - temp_dq_io_delay2;
2357                 else if (shift_dq + temp_dq_io_delay1 < 0)
2358                         shift_dq = -temp_dq_io_delay1;
2359
2360                 debug_cond(DLEVEL == 2,
2361                            "vfifo_center: after: shift_dq[%u]=%d\n",
2362                            i, shift_dq);
2363
2364                 if (write)
2365                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2366                 else
2367                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2368
2369                 scc_mgr_load_dq(p);
2370
2371                 debug_cond(DLEVEL == 2,
2372                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2373                            left_edge[i] - shift_dq + (-mid_min),
2374                            right_edge[i] + shift_dq - (-mid_min));
2375
2376                 /* To determine values for export structures */
2377                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2378                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2379
2380                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2381                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2382         }
2383
2384 }
2385
2386 /**
2387  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2388  * @rank_bgn:           Rank number
2389  * @rw_group:           Read/Write Group
2390  * @test_bgn:           Rank at which the test begins
2391  * @use_read_test:      Perform a read test
2392  * @update_fom:         Update FOM
2393  *
2394  * Per-bit deskew DQ and centering.
2395  */
2396 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2397                         const u32 rw_group, const u32 test_bgn,
2398                         const int use_read_test, const int update_fom)
2399 {
2400         const u32 addr =
2401                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2402                 (rw_group << 2);
2403         /*
2404          * Store these as signed since there are comparisons with
2405          * signed numbers.
2406          */
2407         uint32_t sticky_bit_chk;
2408         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2409         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2410         int32_t orig_mid_min, mid_min;
2411         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2412         int32_t dq_margin, dqs_margin;
2413         int i, min_index;
2414         int ret;
2415
2416         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2417
2418         start_dqs = readl(addr);
2419         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2420                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2421
2422         /* set the left and right edge of each bit to an illegal value */
2423         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2424         sticky_bit_chk = 0;
2425         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2426                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2427                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2428         }
2429
2430         /* Search for the left edge of the window for each bit */
2431         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2432                          &sticky_bit_chk,
2433                          left_edge, right_edge, use_read_test);
2434
2435
2436         /* Search for the right edge of the window for each bit */
2437         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2438                                 start_dqs, start_dqs_en,
2439                                 &sticky_bit_chk,
2440                                 left_edge, right_edge, use_read_test);
2441         if (ret) {
2442                 /*
2443                  * Restore delay chain settings before letting the loop
2444                  * in rw_mgr_mem_calibrate_vfifo to retry different
2445                  * dqs/ck relationships.
2446                  */
2447                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2448                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2449                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2450
2451                 scc_mgr_load_dqs(rw_group);
2452                 writel(0, &sdr_scc_mgr->update);
2453
2454                 debug_cond(DLEVEL == 1,
2455                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2456                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2457                 if (use_read_test) {
2458                         set_failing_group_stage(rw_group *
2459                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2460                                 CAL_STAGE_VFIFO,
2461                                 CAL_SUBSTAGE_VFIFO_CENTER);
2462                 } else {
2463                         set_failing_group_stage(rw_group *
2464                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2465                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2466                                 CAL_SUBSTAGE_VFIFO_CENTER);
2467                 }
2468                 return -EIO;
2469         }
2470
2471         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2472
2473         /* Determine the amount we can change DQS (which is -mid_min) */
2474         orig_mid_min = mid_min;
2475         new_dqs = start_dqs - mid_min;
2476         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2477                 new_dqs = IO_DQS_IN_DELAY_MAX;
2478         else if (new_dqs < 0)
2479                 new_dqs = 0;
2480
2481         mid_min = start_dqs - new_dqs;
2482         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2483                    mid_min, new_dqs);
2484
2485         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2486                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2487                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2488                 else if (start_dqs_en - mid_min < 0)
2489                         mid_min += start_dqs_en - mid_min;
2490         }
2491         new_dqs = start_dqs - mid_min;
2492
2493         debug_cond(DLEVEL == 1,
2494                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2495                    start_dqs,
2496                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2497                    new_dqs, mid_min);
2498
2499         /* Add delay to bring centre of all DQ windows to the same "level". */
2500         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2501                           min_index, test_bgn, &dq_margin, &dqs_margin);
2502
2503         /* Move DQS-en */
2504         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2505                 final_dqs_en = start_dqs_en - mid_min;
2506                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2507                 scc_mgr_load_dqs(rw_group);
2508         }
2509
2510         /* Move DQS */
2511         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2512         scc_mgr_load_dqs(rw_group);
2513         debug_cond(DLEVEL == 2,
2514                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2515                    __func__, __LINE__, dq_margin, dqs_margin);
2516
2517         /*
2518          * Do not remove this line as it makes sure all of our decisions
2519          * have been applied. Apply the update bit.
2520          */
2521         writel(0, &sdr_scc_mgr->update);
2522
2523         if ((dq_margin < 0) || (dqs_margin < 0))
2524                 return -EINVAL;
2525
2526         return 0;
2527 }
2528
2529 /**
2530  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2531  * @rw_group:   Read/Write Group
2532  * @phase:      DQ/DQS phase
2533  *
2534  * Because initially no communication ca be reliably performed with the memory
2535  * device, the sequencer uses a guaranteed write mechanism to write data into
2536  * the memory device.
2537  */
2538 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2539                                                  const u32 phase)
2540 {
2541         int ret;
2542
2543         /* Set a particular DQ/DQS phase. */
2544         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2545
2546         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2547                    __func__, __LINE__, rw_group, phase);
2548
2549         /*
2550          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2551          * Load up the patterns used by read calibration using the
2552          * current DQDQS phase.
2553          */
2554         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2555
2556         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2557                 return 0;
2558
2559         /*
2560          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2561          * Back-to-Back reads of the patterns used for calibration.
2562          */
2563         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2564         if (ret)
2565                 debug_cond(DLEVEL == 1,
2566                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2567                            __func__, __LINE__, rw_group, phase);
2568         return ret;
2569 }
2570
2571 /**
2572  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2573  * @rw_group:   Read/Write Group
2574  * @test_bgn:   Rank at which the test begins
2575  *
2576  * DQS enable calibration ensures reliable capture of the DQ signal without
2577  * glitches on the DQS line.
2578  */
2579 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2580                                                        const u32 test_bgn)
2581 {
2582         /*
2583          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2584          * DQS and DQS Eanble Signal Relationships.
2585          */
2586
2587         /* We start at zero, so have one less dq to devide among */
2588         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2589                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2590         int ret;
2591         u32 i, p, d, r;
2592
2593         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2594
2595         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2596         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2597              r += NUM_RANKS_PER_SHADOW_REG) {
2598                 for (i = 0, p = test_bgn, d = 0;
2599                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2600                      i++, p++, d += delay_step) {
2601                         debug_cond(DLEVEL == 1,
2602                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2603                                    __func__, __LINE__, rw_group, r, i, p, d);
2604
2605                         scc_mgr_set_dq_in_delay(p, d);
2606                         scc_mgr_load_dq(p);
2607                 }
2608
2609                 writel(0, &sdr_scc_mgr->update);
2610         }
2611
2612         /*
2613          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2614          * dq_in_delay values
2615          */
2616         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2617
2618         debug_cond(DLEVEL == 1,
2619                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2620                    __func__, __LINE__, rw_group, !ret);
2621
2622         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2623              r += NUM_RANKS_PER_SHADOW_REG) {
2624                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2625                 writel(0, &sdr_scc_mgr->update);
2626         }
2627
2628         return ret;
2629 }
2630
2631 /**
2632  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2633  * @rw_group:           Read/Write Group
2634  * @test_bgn:           Rank at which the test begins
2635  * @use_read_test:      Perform a read test
2636  * @update_fom:         Update FOM
2637  *
2638  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2639  * within a group.
2640  */
2641 static int
2642 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2643                                       const int use_read_test,
2644                                       const int update_fom)
2645
2646 {
2647         int ret, grp_calibrated;
2648         u32 rank_bgn, sr;
2649
2650         /*
2651          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2652          * Read per-bit deskew can be done on a per shadow register basis.
2653          */
2654         grp_calibrated = 1;
2655         for (rank_bgn = 0, sr = 0;
2656              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2657              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2658                 /* Check if this set of ranks should be skipped entirely. */
2659                 if (param->skip_shadow_regs[sr])
2660                         continue;
2661
2662                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2663                                                         test_bgn,
2664                                                         use_read_test,
2665                                                         update_fom);
2666                 if (!ret)
2667                         continue;
2668
2669                 grp_calibrated = 0;
2670         }
2671
2672         if (!grp_calibrated)
2673                 return -EIO;
2674
2675         return 0;
2676 }
2677
2678 /**
2679  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2680  * @rw_group:           Read/Write Group
2681  * @test_bgn:           Rank at which the test begins
2682  *
2683  * Stage 1: Calibrate the read valid prediction FIFO.
2684  *
2685  * This function implements UniPHY calibration Stage 1, as explained in
2686  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2687  *
2688  * - read valid prediction will consist of finding:
2689  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2690  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2691  *  - we also do a per-bit deskew on the DQ lines.
2692  */
2693 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2694 {
2695         uint32_t p, d;
2696         uint32_t dtaps_per_ptap;
2697         uint32_t failed_substage;
2698
2699         int ret;
2700
2701         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2702
2703         /* Update info for sims */
2704         reg_file_set_group(rw_group);
2705         reg_file_set_stage(CAL_STAGE_VFIFO);
2706         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2707
2708         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2709
2710         /* USER Determine number of delay taps for each phase tap. */
2711         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2712                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2713
2714         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2715                 /*
2716                  * In RLDRAMX we may be messing the delay of pins in
2717                  * the same write rw_group but outside of the current read
2718                  * the rw_group, but that's ok because we haven't calibrated
2719                  * output side yet.
2720                  */
2721                 if (d > 0) {
2722                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2723                                                                 rw_group, d);
2724                 }
2725
2726                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2727                         /* 1) Guaranteed Write */
2728                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2729                         if (ret)
2730                                 break;
2731
2732                         /* 2) DQS Enable Calibration */
2733                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2734                                                                           test_bgn);
2735                         if (ret) {
2736                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2737                                 continue;
2738                         }
2739
2740                         /* 3) Centering DQ/DQS */
2741                         /*
2742                          * If doing read after write calibration, do not update
2743                          * FOM now. Do it then.
2744                          */
2745                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2746                                                                 test_bgn, 1, 0);
2747                         if (ret) {
2748                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2749                                 continue;
2750                         }
2751
2752                         /* All done. */
2753                         goto cal_done_ok;
2754                 }
2755         }
2756
2757         /* Calibration Stage 1 failed. */
2758         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2759         return 0;
2760
2761         /* Calibration Stage 1 completed OK. */
2762 cal_done_ok:
2763         /*
2764          * Reset the delay chains back to zero if they have moved > 1
2765          * (check for > 1 because loop will increase d even when pass in
2766          * first case).
2767          */
2768         if (d > 2)
2769                 scc_mgr_zero_group(rw_group, 1);
2770
2771         return 1;
2772 }
2773
2774 /**
2775  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2776  * @rw_group:           Read/Write Group
2777  * @test_bgn:           Rank at which the test begins
2778  *
2779  * Stage 3: DQ/DQS Centering.
2780  *
2781  * This function implements UniPHY calibration Stage 3, as explained in
2782  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2783  */
2784 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2785                                           const u32 test_bgn)
2786 {
2787         int ret;
2788
2789         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2790
2791         /* Update info for sims. */
2792         reg_file_set_group(rw_group);
2793         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2794         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2795
2796         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2797         if (ret)
2798                 set_failing_group_stage(rw_group,
2799                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2800                                         CAL_SUBSTAGE_VFIFO_CENTER);
2801         return ret;
2802 }
2803
2804 /**
2805  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2806  *
2807  * Stage 4: Minimize latency.
2808  *
2809  * This function implements UniPHY calibration Stage 4, as explained in
2810  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2811  * Calibrate LFIFO to find smallest read latency.
2812  */
2813 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2814 {
2815         int found_one = 0;
2816
2817         debug("%s:%d\n", __func__, __LINE__);
2818
2819         /* Update info for sims. */
2820         reg_file_set_stage(CAL_STAGE_LFIFO);
2821         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2822
2823         /* Load up the patterns used by read calibration for all ranks */
2824         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2825
2826         do {
2827                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2828                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2829                            __func__, __LINE__, gbl->curr_read_lat);
2830
2831                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2832                                                               PASS_ALL_BITS, 1))
2833                         break;
2834
2835                 found_one = 1;
2836                 /*
2837                  * Reduce read latency and see if things are
2838                  * working correctly.
2839                  */
2840                 gbl->curr_read_lat--;
2841         } while (gbl->curr_read_lat > 0);
2842
2843         /* Reset the fifos to get pointers to known state. */
2844         writel(0, &phy_mgr_cmd->fifo_reset);
2845
2846         if (found_one) {
2847                 /* Add a fudge factor to the read latency that was determined */
2848                 gbl->curr_read_lat += 2;
2849                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2850                 debug_cond(DLEVEL == 2,
2851                            "%s:%d lfifo: success: using read_lat=%u\n",
2852                            __func__, __LINE__, gbl->curr_read_lat);
2853         } else {
2854                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2855                                         CAL_SUBSTAGE_READ_LATENCY);
2856
2857                 debug_cond(DLEVEL == 2,
2858                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2859                            __func__, __LINE__, gbl->curr_read_lat);
2860         }
2861
2862         return found_one;
2863 }
2864
2865 /**
2866  * search_window() - Search for the/part of the window with DM/DQS shift
2867  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2868  * @rank_bgn:           Rank number
2869  * @write_group:        Write Group
2870  * @bgn_curr:           Current window begin
2871  * @end_curr:           Current window end
2872  * @bgn_best:           Current best window begin
2873  * @end_best:           Current best window end
2874  * @win_best:           Size of the best window
2875  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2876  *
2877  * Search for the/part of the window with DM/DQS shift.
2878  */
2879 static void search_window(const int search_dm,
2880                           const u32 rank_bgn, const u32 write_group,
2881                           int *bgn_curr, int *end_curr, int *bgn_best,
2882                           int *end_best, int *win_best, int new_dqs)
2883 {
2884         u32 bit_chk;
2885         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2886         int d, di;
2887
2888         /* Search for the/part of the window with DM/DQS shift. */
2889         for (di = max; di >= 0; di -= DELTA_D) {
2890                 if (search_dm) {
2891                         d = di;
2892                         scc_mgr_apply_group_dm_out1_delay(d);
2893                 } else {
2894                         /* For DQS, we go from 0...max */
2895                         d = max - di;
2896                         /*
2897                          * Note: This only shifts DQS, so are we limiting ourselve to
2898                          * width of DQ unnecessarily.
2899                          */
2900                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2901                                                                 d + new_dqs);
2902                 }
2903
2904                 writel(0, &sdr_scc_mgr->update);
2905
2906                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2907                                                     PASS_ALL_BITS, &bit_chk,
2908                                                     0)) {
2909                         /* Set current end of the window. */
2910                         *end_curr = search_dm ? -d : d;
2911
2912                         /*
2913                          * If a starting edge of our window has not been seen
2914                          * this is our current start of the DM window.
2915                          */
2916                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2917                                 *bgn_curr = search_dm ? -d : d;
2918
2919                         /*
2920                          * If current window is bigger than best seen.
2921                          * Set best seen to be current window.
2922                          */
2923                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2924                                 *win_best = *end_curr - *bgn_curr + 1;
2925                                 *bgn_best = *bgn_curr;
2926                                 *end_best = *end_curr;
2927                         }
2928                 } else {
2929                         /* We just saw a failing test. Reset temp edge. */
2930                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2931                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2932
2933                         /* Early exit is only applicable to DQS. */
2934                         if (search_dm)
2935                                 continue;
2936
2937                         /*
2938                          * Early exit optimization: if the remaining delay
2939                          * chain space is less than already seen largest
2940                          * window we can exit.
2941                          */
2942                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2943                                 break;
2944                 }
2945         }
2946 }
2947
2948 /*
2949  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2950  * @rank_bgn:           Rank number
2951  * @write_group:        Write group
2952  * @test_bgn:           Rank at which the test begins
2953  *
2954  * Center all windows. Do per-bit-deskew to possibly increase size of
2955  * certain windows.
2956  */
2957 static int
2958 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2959                                    const u32 test_bgn)
2960 {
2961         int i;
2962         u32 sticky_bit_chk;
2963         u32 min_index;
2964         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2965         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2966         int mid;
2967         int mid_min, orig_mid_min;
2968         int new_dqs, start_dqs;
2969         int dq_margin, dqs_margin, dm_margin;
2970         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2971         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2972         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2973         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2974         int win_best = 0;
2975
2976         int ret;
2977
2978         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2979
2980         dm_margin = 0;
2981
2982         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2983                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2984                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2985
2986         /* Per-bit deskew. */
2987
2988         /*
2989          * Set the left and right edge of each bit to an illegal value.
2990          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2991          */
2992         sticky_bit_chk = 0;
2993         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2994                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2995                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2996         }
2997
2998         /* Search for the left edge of the window for each bit. */
2999         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3000                          &sticky_bit_chk,
3001                          left_edge, right_edge, 0);
3002
3003         /* Search for the right edge of the window for each bit. */
3004         ret = search_right_edge(1, rank_bgn, write_group, 0,
3005                                 start_dqs, 0,
3006                                 &sticky_bit_chk,
3007                                 left_edge, right_edge, 0);
3008         if (ret) {
3009                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3010                                         CAL_SUBSTAGE_WRITES_CENTER);
3011                 return -EINVAL;
3012         }
3013
3014         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3015
3016         /* Determine the amount we can change DQS (which is -mid_min). */
3017         orig_mid_min = mid_min;
3018         new_dqs = start_dqs;
3019         mid_min = 0;
3020         debug_cond(DLEVEL == 1,
3021                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3022                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3023
3024         /* Add delay to bring centre of all DQ windows to the same "level". */
3025         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3026                           min_index, 0, &dq_margin, &dqs_margin);
3027
3028         /* Move DQS */
3029         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3030         writel(0, &sdr_scc_mgr->update);
3031
3032         /* Centre DM */
3033         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3034
3035         /*
3036          * Set the left and right edge of each bit to an illegal value.
3037          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3038          */
3039         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3040         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3041
3042         /* Search for the/part of the window with DM shift. */
3043         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3044                       &bgn_best, &end_best, &win_best, 0);
3045
3046         /* Reset DM delay chains to 0. */
3047         scc_mgr_apply_group_dm_out1_delay(0);
3048
3049         /*
3050          * Check to see if the current window nudges up aganist 0 delay.
3051          * If so we need to continue the search by shifting DQS otherwise DQS
3052          * search begins as a new search.
3053          */
3054         if (end_curr != 0) {
3055                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3057         }
3058
3059         /* Search for the/part of the window with DQS shifts. */
3060         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3061                       &bgn_best, &end_best, &win_best, new_dqs);
3062
3063         /* Assign left and right edge for cal and reporting. */
3064         left_edge[0] = -1 * bgn_best;
3065         right_edge[0] = end_best;
3066
3067         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3068                    __func__, __LINE__, left_edge[0], right_edge[0]);
3069
3070         /* Move DQS (back to orig). */
3071         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3072
3073         /* Move DM */
3074
3075         /* Find middle of window for the DM bit. */
3076         mid = (left_edge[0] - right_edge[0]) / 2;
3077
3078         /* Only move right, since we are not moving DQS/DQ. */
3079         if (mid < 0)
3080                 mid = 0;
3081
3082         /* dm_marign should fail if we never find a window. */
3083         if (win_best == 0)
3084                 dm_margin = -1;
3085         else
3086                 dm_margin = left_edge[0] - mid;
3087
3088         scc_mgr_apply_group_dm_out1_delay(mid);
3089         writel(0, &sdr_scc_mgr->update);
3090
3091         debug_cond(DLEVEL == 2,
3092                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3093                    __func__, __LINE__, left_edge[0], right_edge[0],
3094                    mid, dm_margin);
3095         /* Export values. */
3096         gbl->fom_out += dq_margin + dqs_margin;
3097
3098         debug_cond(DLEVEL == 2,
3099                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3100                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3101
3102         /*
3103          * Do not remove this line as it makes sure all of our
3104          * decisions have been applied.
3105          */
3106         writel(0, &sdr_scc_mgr->update);
3107
3108         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3109                 return -EINVAL;
3110
3111         return 0;
3112 }
3113
3114 /**
3115  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3116  * @rank_bgn:           Rank number
3117  * @group:              Read/Write Group
3118  * @test_bgn:           Rank at which the test begins
3119  *
3120  * Stage 2: Write Calibration Part One.
3121  *
3122  * This function implements UniPHY calibration Stage 2, as explained in
3123  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3124  */
3125 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3126                                        const u32 test_bgn)
3127 {
3128         int ret;
3129
3130         /* Update info for sims */
3131         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3132
3133         reg_file_set_group(group);
3134         reg_file_set_stage(CAL_STAGE_WRITES);
3135         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3136
3137         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3138         if (ret)
3139                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3140                                         CAL_SUBSTAGE_WRITES_CENTER);
3141
3142         return ret;
3143 }
3144
3145 /**
3146  * mem_precharge_and_activate() - Precharge all banks and activate
3147  *
3148  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3149  */
3150 static void mem_precharge_and_activate(void)
3151 {
3152         int r;
3153
3154         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3155                 /* Test if the rank should be skipped. */
3156                 if (param->skip_ranks[r])
3157                         continue;
3158
3159                 /* Set rank. */
3160                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3161
3162                 /* Precharge all banks. */
3163                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3164                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3165
3166                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3167                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3168                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3169
3170                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3171                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3172                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3173
3174                 /* Activate rows. */
3175                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3176                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3177         }
3178 }
3179
3180 /**
3181  * mem_init_latency() - Configure memory RLAT and WLAT settings
3182  *
3183  * Configure memory RLAT and WLAT parameters.
3184  */
3185 static void mem_init_latency(void)
3186 {
3187         /*
3188          * For AV/CV, LFIFO is hardened and always runs at full rate
3189          * so max latency in AFI clocks, used here, is correspondingly
3190          * smaller.
3191          */
3192         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3193         u32 rlat, wlat;
3194
3195         debug("%s:%d\n", __func__, __LINE__);
3196
3197         /*
3198          * Read in write latency.
3199          * WL for Hard PHY does not include additive latency.
3200          */
3201         wlat = readl(&data_mgr->t_wl_add);
3202         wlat += readl(&data_mgr->mem_t_add);
3203
3204         gbl->rw_wl_nop_cycles = wlat - 1;
3205
3206         /* Read in readl latency. */
3207         rlat = readl(&data_mgr->t_rl_add);
3208
3209         /* Set a pretty high read latency initially. */
3210         gbl->curr_read_lat = rlat + 16;
3211         if (gbl->curr_read_lat > max_latency)
3212                 gbl->curr_read_lat = max_latency;
3213
3214         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3215
3216         /* Advertise write latency. */
3217         writel(wlat, &phy_mgr_cfg->afi_wlat);
3218 }
3219
3220 /**
3221  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3222  *
3223  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3224  */
3225 static void mem_skip_calibrate(void)
3226 {
3227         uint32_t vfifo_offset;
3228         uint32_t i, j, r;
3229
3230         debug("%s:%d\n", __func__, __LINE__);
3231         /* Need to update every shadow register set used by the interface */
3232         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3233              r += NUM_RANKS_PER_SHADOW_REG) {
3234                 /*
3235                  * Set output phase alignment settings appropriate for
3236                  * skip calibration.
3237                  */
3238                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3239                         scc_mgr_set_dqs_en_phase(i, 0);
3240 #if IO_DLL_CHAIN_LENGTH == 6
3241                         scc_mgr_set_dqdqs_output_phase(i, 6);
3242 #else
3243                         scc_mgr_set_dqdqs_output_phase(i, 7);
3244 #endif
3245                         /*
3246                          * Case:33398
3247                          *
3248                          * Write data arrives to the I/O two cycles before write
3249                          * latency is reached (720 deg).
3250                          *   -> due to bit-slip in a/c bus
3251                          *   -> to allow board skew where dqs is longer than ck
3252                          *      -> how often can this happen!?
3253                          *      -> can claim back some ptaps for high freq
3254                          *       support if we can relax this, but i digress...
3255                          *
3256                          * The write_clk leads mem_ck by 90 deg
3257                          * The minimum ptap of the OPA is 180 deg
3258                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3259                          * The write_clk is always delayed by 2 ptaps
3260                          *
3261                          * Hence, to make DQS aligned to CK, we need to delay
3262                          * DQS by:
3263                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3264                          *
3265                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3266                          * gives us the number of ptaps, which simplies to:
3267                          *
3268                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3269                          */
3270                         scc_mgr_set_dqdqs_output_phase(i,
3271                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3272                 }
3273                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3274                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3275
3276                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3277                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3278                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3279                 }
3280                 writel(0xff, &sdr_scc_mgr->dq_ena);
3281                 writel(0xff, &sdr_scc_mgr->dm_ena);
3282                 writel(0, &sdr_scc_mgr->update);
3283         }
3284
3285         /* Compensate for simulation model behaviour */
3286         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3288                 scc_mgr_load_dqs(i);
3289         }
3290         writel(0, &sdr_scc_mgr->update);
3291
3292         /*
3293          * ArriaV has hard FIFOs that can only be initialized by incrementing
3294          * in sequencer.
3295          */
3296         vfifo_offset = CALIB_VFIFO_OFFSET;
3297         for (j = 0; j < vfifo_offset; j++)
3298                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3299         writel(0, &phy_mgr_cmd->fifo_reset);
3300
3301         /*
3302          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3303          * setting from generation-time constant.
3304          */
3305         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3306         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3307 }
3308
3309 /**
3310  * mem_calibrate() - Memory calibration entry point.
3311  *
3312  * Perform memory calibration.
3313  */
3314 static uint32_t mem_calibrate(void)
3315 {
3316         uint32_t i;
3317         uint32_t rank_bgn, sr;
3318         uint32_t write_group, write_test_bgn;
3319         uint32_t read_group, read_test_bgn;
3320         uint32_t run_groups, current_run;
3321         uint32_t failing_groups = 0;
3322         uint32_t group_failed = 0;
3323
3324         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3325                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3326
3327         debug("%s:%d\n", __func__, __LINE__);
3328
3329         /* Initialize the data settings */
3330         gbl->error_substage = CAL_SUBSTAGE_NIL;
3331         gbl->error_stage = CAL_STAGE_NIL;
3332         gbl->error_group = 0xff;
3333         gbl->fom_in = 0;
3334         gbl->fom_out = 0;
3335
3336         /* Initialize WLAT and RLAT. */
3337         mem_init_latency();
3338
3339         /* Initialize bit slips. */
3340         mem_precharge_and_activate();
3341
3342         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3343                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3344                           SCC_MGR_GROUP_COUNTER_OFFSET);
3345                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3346                 if (i == 0)
3347                         scc_mgr_set_hhp_extras();
3348
3349                 scc_set_bypass_mode(i);
3350         }
3351
3352         /* Calibration is skipped. */
3353         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3354                 /*
3355                  * Set VFIFO and LFIFO to instant-on settings in skip
3356                  * calibration mode.
3357                  */
3358                 mem_skip_calibrate();
3359
3360                 /*
3361                  * Do not remove this line as it makes sure all of our
3362                  * decisions have been applied.
3363                  */
3364                 writel(0, &sdr_scc_mgr->update);
3365                 return 1;
3366         }
3367
3368         /* Calibration is not skipped. */
3369         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3370                 /*
3371                  * Zero all delay chain/phase settings for all
3372                  * groups and all shadow register sets.
3373                  */
3374                 scc_mgr_zero_all();
3375
3376                 run_groups = ~param->skip_groups;
3377
3378                 for (write_group = 0, write_test_bgn = 0; write_group
3379                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3380                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3381
3382                         /* Initialize the group failure */
3383                         group_failed = 0;
3384
3385                         current_run = run_groups & ((1 <<
3386                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3387                         run_groups = run_groups >>
3388                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3389
3390                         if (current_run == 0)
3391                                 continue;
3392
3393                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3394                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3395                         scc_mgr_zero_group(write_group, 0);
3396
3397                         for (read_group = write_group * rwdqs_ratio,
3398                              read_test_bgn = 0;
3399                              read_group < (write_group + 1) * rwdqs_ratio;
3400                              read_group++,
3401                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3402                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3403                                         continue;
3404
3405                                 /* Calibrate the VFIFO */
3406                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3407                                                                read_test_bgn))
3408                                         continue;
3409
3410                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3411                                         return 0;
3412
3413                                 /* The group failed, we're done. */
3414                                 goto grp_failed;
3415                         }
3416
3417                         /* Calibrate the output side */
3418                         for (rank_bgn = 0, sr = 0;
3419                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3420                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3421                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3422                                         continue;
3423
3424                                 /* Not needed in quick mode! */
3425                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3426                                         continue;
3427
3428                                 /*
3429                                  * Determine if this set of ranks
3430                                  * should be skipped entirely.
3431                                  */
3432                                 if (param->skip_shadow_regs[sr])
3433                                         continue;
3434
3435                                 /* Calibrate WRITEs */
3436                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3437                                                 write_group, write_test_bgn))
3438                                         continue;
3439
3440                                 group_failed = 1;
3441                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3442                                         return 0;
3443                         }
3444
3445                         /* Some group failed, we're done. */
3446                         if (group_failed)
3447                                 goto grp_failed;
3448
3449                         for (read_group = write_group * rwdqs_ratio,
3450                              read_test_bgn = 0;
3451                              read_group < (write_group + 1) * rwdqs_ratio;
3452                              read_group++,
3453                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3454                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3455                                         continue;
3456
3457                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3458                                                                 read_test_bgn))
3459                                         continue;
3460
3461                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3462                                         return 0;
3463
3464                                 /* The group failed, we're done. */
3465                                 goto grp_failed;
3466                         }
3467
3468                         /* No group failed, continue as usual. */
3469                         continue;
3470
3471 grp_failed:             /* A group failed, increment the counter. */
3472                         failing_groups++;
3473                 }
3474
3475                 /*
3476                  * USER If there are any failing groups then report
3477                  * the failure.
3478                  */
3479                 if (failing_groups != 0)
3480                         return 0;
3481
3482                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3483                         continue;
3484
3485                 /*
3486                  * If we're skipping groups as part of debug,
3487                  * don't calibrate LFIFO.
3488                  */
3489                 if (param->skip_groups != 0)
3490                         continue;
3491
3492                 /* Calibrate the LFIFO */
3493                 if (!rw_mgr_mem_calibrate_lfifo())
3494                         return 0;
3495         }
3496
3497         /*
3498          * Do not remove this line as it makes sure all of our decisions
3499          * have been applied.
3500          */
3501         writel(0, &sdr_scc_mgr->update);
3502         return 1;
3503 }
3504
3505 /**
3506  * run_mem_calibrate() - Perform memory calibration
3507  *
3508  * This function triggers the entire memory calibration procedure.
3509  */
3510 static int run_mem_calibrate(void)
3511 {
3512         int pass;
3513
3514         debug("%s:%d\n", __func__, __LINE__);
3515
3516         /* Reset pass/fail status shown on afi_cal_success/fail */
3517         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3518
3519         /* Stop tracking manager. */
3520         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3521
3522         phy_mgr_initialize();
3523         rw_mgr_mem_initialize();
3524
3525         /* Perform the actual memory calibration. */
3526         pass = mem_calibrate();
3527
3528         mem_precharge_and_activate();
3529         writel(0, &phy_mgr_cmd->fifo_reset);
3530
3531         /* Handoff. */
3532         rw_mgr_mem_handoff();
3533         /*
3534          * In Hard PHY this is a 2-bit control:
3535          * 0: AFI Mux Select
3536          * 1: DDIO Mux Select
3537          */
3538         writel(0x2, &phy_mgr_cfg->mux_sel);
3539
3540         /* Start tracking manager. */
3541         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3542
3543         return pass;
3544 }
3545
3546 /**
3547  * debug_mem_calibrate() - Report result of memory calibration
3548  * @pass:       Value indicating whether calibration passed or failed
3549  *
3550  * This function reports the results of the memory calibration
3551  * and writes debug information into the register file.
3552  */
3553 static void debug_mem_calibrate(int pass)
3554 {
3555         uint32_t debug_info;
3556
3557         if (pass) {
3558                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3559
3560                 gbl->fom_in /= 2;
3561                 gbl->fom_out /= 2;
3562
3563                 if (gbl->fom_in > 0xff)
3564                         gbl->fom_in = 0xff;
3565
3566                 if (gbl->fom_out > 0xff)
3567                         gbl->fom_out = 0xff;
3568
3569                 /* Update the FOM in the register file */
3570                 debug_info = gbl->fom_in;
3571                 debug_info |= gbl->fom_out << 8;
3572                 writel(debug_info, &sdr_reg_file->fom);
3573
3574                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3575                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3576         } else {
3577                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3578
3579                 debug_info = gbl->error_stage;
3580                 debug_info |= gbl->error_substage << 8;
3581                 debug_info |= gbl->error_group << 16;
3582
3583                 writel(debug_info, &sdr_reg_file->failing_stage);
3584                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3585                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3586
3587                 /* Update the failing group/stage in the register file */
3588                 debug_info = gbl->error_stage;
3589                 debug_info |= gbl->error_substage << 8;
3590                 debug_info |= gbl->error_group << 16;
3591                 writel(debug_info, &sdr_reg_file->failing_stage);
3592         }
3593
3594         printf("%s: Calibration complete\n", __FILE__);
3595 }
3596
3597 /**
3598  * hc_initialize_rom_data() - Initialize ROM data
3599  *
3600  * Initialize ROM data.
3601  */
3602 static void hc_initialize_rom_data(void)
3603 {
3604         u32 i, addr;
3605
3606         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3607         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3608                 writel(inst_rom_init[i], addr + (i << 2));
3609
3610         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3611         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3612                 writel(ac_rom_init[i], addr + (i << 2));
3613 }
3614
3615 /**
3616  * initialize_reg_file() - Initialize SDR register file
3617  *
3618  * Initialize SDR register file.
3619  */
3620 static void initialize_reg_file(void)
3621 {
3622         /* Initialize the register file with the correct data */
3623         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3624         writel(0, &sdr_reg_file->debug_data_addr);
3625         writel(0, &sdr_reg_file->cur_stage);
3626         writel(0, &sdr_reg_file->fom);
3627         writel(0, &sdr_reg_file->failing_stage);
3628         writel(0, &sdr_reg_file->debug1);
3629         writel(0, &sdr_reg_file->debug2);
3630 }
3631
3632 /**
3633  * initialize_hps_phy() - Initialize HPS PHY
3634  *
3635  * Initialize HPS PHY.
3636  */
3637 static void initialize_hps_phy(void)
3638 {
3639         uint32_t reg;
3640         /*
3641          * Tracking also gets configured here because it's in the
3642          * same register.
3643          */
3644         uint32_t trk_sample_count = 7500;
3645         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3646         /*
3647          * Format is number of outer loops in the 16 MSB, sample
3648          * count in 16 LSB.
3649          */
3650
3651         reg = 0;
3652         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3653         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3654         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3655         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3656         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3657         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3658         /*
3659          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3660          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3661          */
3662         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3663         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3664                 trk_sample_count);
3665         writel(reg, &sdr_ctrl->phy_ctrl0);
3666
3667         reg = 0;
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3669                 trk_sample_count >>
3670                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3672                 trk_long_idle_sample_count);
3673         writel(reg, &sdr_ctrl->phy_ctrl1);
3674
3675         reg = 0;
3676         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3677                 trk_long_idle_sample_count >>
3678                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3679         writel(reg, &sdr_ctrl->phy_ctrl2);
3680 }
3681
3682 /**
3683  * initialize_tracking() - Initialize tracking
3684  *
3685  * Initialize the register file with usable initial data.
3686  */
3687 static void initialize_tracking(void)
3688 {
3689         /*
3690          * Initialize the register file with the correct data.
3691          * Compute usable version of value in case we skip full
3692          * computation later.
3693          */
3694         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3695                &sdr_reg_file->dtaps_per_ptap);
3696
3697         /* trk_sample_count */
3698         writel(7500, &sdr_reg_file->trk_sample_count);
3699
3700         /* longidle outer loop [15:0] */
3701         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3702
3703         /*
3704          * longidle sample count [31:24]
3705          * trfc, worst case of 933Mhz 4Gb [23:16]
3706          * trcd, worst case [15:8]
3707          * vfifo wait [7:0]
3708          */
3709         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3710                &sdr_reg_file->delays);
3711
3712         /* mux delay */
3713         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3714                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3715                &sdr_reg_file->trk_rw_mgr_addr);
3716
3717         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3718                &sdr_reg_file->trk_read_dqs_width);
3719
3720         /* trefi [7:0] */
3721         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3722                &sdr_reg_file->trk_rfsh);
3723 }
3724
3725 int sdram_calibration_full(void)
3726 {
3727         struct param_type my_param;
3728         struct gbl_type my_gbl;
3729         uint32_t pass;
3730
3731         memset(&my_param, 0, sizeof(my_param));
3732         memset(&my_gbl, 0, sizeof(my_gbl));
3733
3734         param = &my_param;
3735         gbl = &my_gbl;
3736
3737         /* Set the calibration enabled by default */
3738         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3739         /*
3740          * Only sweep all groups (regardless of fail state) by default
3741          * Set enabled read test by default.
3742          */
3743 #if DISABLE_GUARANTEED_READ
3744         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3745 #endif
3746         /* Initialize the register file */
3747         initialize_reg_file();
3748
3749         /* Initialize any PHY CSR */
3750         initialize_hps_phy();
3751
3752         scc_mgr_initialize();
3753
3754         initialize_tracking();
3755
3756         printf("%s: Preparing to start memory calibration\n", __FILE__);
3757
3758         debug("%s:%d\n", __func__, __LINE__);
3759         debug_cond(DLEVEL == 1,
3760                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3761                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3762                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3763                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3764                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3765         debug_cond(DLEVEL == 1,
3766                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3767                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3768                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3769                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3770         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3771                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3772         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3773                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3774                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3775         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3776                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3777                    IO_IO_OUT2_DELAY_MAX);
3778         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3779                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3780
3781         hc_initialize_rom_data();
3782
3783         /* update info for sims */
3784         reg_file_set_stage(CAL_STAGE_NIL);
3785         reg_file_set_group(0);
3786
3787         /*
3788          * Load global needed for those actions that require
3789          * some dynamic calibration support.
3790          */
3791         dyn_calib_steps = STATIC_CALIB_STEPS;
3792         /*
3793          * Load global to allow dynamic selection of delay loop settings
3794          * based on calibration mode.
3795          */
3796         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3797                 skip_delay_mask = 0xff;
3798         else
3799                 skip_delay_mask = 0x0;
3800
3801         pass = run_mem_calibrate();
3802         debug_mem_calibrate(pass);
3803         return pass;
3804 }