]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_write_test() part 2
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84         uint32_t substage)
85 {
86         /*
87          * Only set the global stage if there was not been any other
88          * failing group
89          */
90         if (gbl->error_stage == CAL_STAGE_NIL)  {
91                 gbl->error_substage = substage;
92                 gbl->error_stage = stage;
93                 gbl->error_group = group;
94         }
95 }
96
97 static void reg_file_set_group(u16 set_group)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101
102 static void reg_file_set_stage(u8 set_stage)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109         set_sub_stage &= 0xff;
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120         u32 ratio;
121
122         debug("%s:%d\n", __func__, __LINE__);
123         /* Calibration has control over path to memory */
124         /*
125          * In Hard PHY this is a 2-bit control:
126          * 0: AFI Mux Select
127          * 1: DDIO Mux Select
128          */
129         writel(0x3, &phy_mgr_cfg->mux_sel);
130
131         /* USER memory clock is not stable we begin initialization  */
132         writel(0, &phy_mgr_cfg->reset_mem_stbl);
133
134         /* USER calibration status all set to zero */
135         writel(0, &phy_mgr_cfg->cal_status);
136
137         writel(0, &phy_mgr_cfg->cal_debug_info);
138
139         /* Init params only if we do NOT skip calibration. */
140         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141                 return;
142
143         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145         param->read_correct_mask_vg = (1 << ratio) - 1;
146         param->write_correct_mask_vg = (1 << ratio) - 1;
147         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149         ratio = RW_MGR_MEM_DATA_WIDTH /
150                 RW_MGR_MEM_DATA_MASK_WIDTH;
151         param->dm_correct_mask = (1 << ratio) - 1;
152 }
153
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:       Rank mask
157  * @odt_mode:   ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163         u32 odt_mask_0 = 0;
164         u32 odt_mask_1 = 0;
165         u32 cs_and_odt_mask;
166
167         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168                 odt_mask_0 = 0x0;
169                 odt_mask_1 = 0x0;
170         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
171                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172                 case 1: /* 1 Rank */
173                         /* Read: ODT = 0 ; Write: ODT = 1 */
174                         odt_mask_0 = 0x0;
175                         odt_mask_1 = 0x1;
176                         break;
177                 case 2: /* 2 Ranks */
178                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179                                 /*
180                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
181                                  *   OR
182                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183                                  *
184                                  * Since MEM_NUMBER_OF_RANKS is 2, they
185                                  * are both single rank with 2 CS each
186                                  * (special for RDIMM).
187                                  *
188                                  * Read: Turn on ODT on the opposite rank
189                                  * Write: Turn on ODT on all ranks
190                                  */
191                                 odt_mask_0 = 0x3 & ~(1 << rank);
192                                 odt_mask_1 = 0x3;
193                         } else {
194                                 /*
195                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
196                                  *
197                                  * Read: Turn on ODT off on all ranks
198                                  * Write: Turn on ODT on active rank
199                                  */
200                                 odt_mask_0 = 0x0;
201                                 odt_mask_1 = 0x3 & (1 << rank);
202                         }
203                         break;
204                 case 4: /* 4 Ranks */
205                         /* Read:
206                          * ----------+-----------------------+
207                          *           |         ODT           |
208                          * Read From +-----------------------+
209                          *   Rank    |  3  |  2  |  1  |  0  |
210                          * ----------+-----+-----+-----+-----+
211                          *     0     |  0  |  1  |  0  |  0  |
212                          *     1     |  1  |  0  |  0  |  0  |
213                          *     2     |  0  |  0  |  0  |  1  |
214                          *     3     |  0  |  0  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *
217                          * Write:
218                          * ----------+-----------------------+
219                          *           |         ODT           |
220                          * Write To  +-----------------------+
221                          *   Rank    |  3  |  2  |  1  |  0  |
222                          * ----------+-----+-----+-----+-----+
223                          *     0     |  0  |  1  |  0  |  1  |
224                          *     1     |  1  |  0  |  1  |  0  |
225                          *     2     |  0  |  1  |  0  |  1  |
226                          *     3     |  1  |  0  |  1  |  0  |
227                          * ----------+-----+-----+-----+-----+
228                          */
229                         switch (rank) {
230                         case 0:
231                                 odt_mask_0 = 0x4;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 1:
235                                 odt_mask_0 = 0x8;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 odt_mask_1 = 0x5;
241                                 break;
242                         case 3:
243                                 odt_mask_0 = 0x2;
244                                 odt_mask_1 = 0xA;
245                                 break;
246                         }
247                         break;
248                 }
249         }
250
251         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252                           ((0xFF & odt_mask_0) << 8) |
253                           ((0xFF & odt_mask_1) << 16);
254         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:        Base offset in SCC Manager space
261  * @grp:        Read/Write group
262  * @val:        Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278         /*
279          * Clear register file for HPS. 16 (2^4) is the size of the
280          * full register file in the scc mgr:
281          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282          *                             MEM_IF_READ_DQS_WIDTH - 1);
283          */
284         int i;
285
286         for (i = 0; i < 16; i++) {
287                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288                            __func__, __LINE__, i);
289                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290         }
291 }
292
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316                     delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407                                                      uint32_t phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422                                                uint32_t delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434         writel(0, &sdr_scc_mgr->update);
435 }
436
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:        Write group
440  * @delay:              Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448         const int base = write_group * ratio;
449         int i;
450         /*
451          * Load the setting in the SCC manager
452          * Although OCT affects only write data, the OCT delay is controlled
453          * by the DQS logic block which is instantiated once per read group.
454          * For protocols where a write group consists of multiple read groups,
455          * the setting must be set multiple times.
456          */
457         for (i = 0; i < ratio; i++)
458                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468         /*
469          * Load the fixed setting in the SCC manager
470          * bits: 0:0 = 1'b1     - DQS bypass
471          * bits: 1:1 = 1'b1     - DQ bypass
472          * bits: 4:2 = 3'b001   - rfifo_mode
473          * bits: 6:5 = 2'b01    - rfifo clock_select
474          * bits: 7:7 = 1'b0     - separate gating from ungating setting
475          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
476          */
477         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478                           (1 << 2) | (1 << 1) | (1 << 0);
479         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480                          SCC_MGR_HHP_GLOBALS_OFFSET |
481                          SCC_MGR_HHP_EXTRAS_OFFSET;
482
483         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484                    __func__, __LINE__);
485         writel(value, addr);
486         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487                    __func__, __LINE__);
488 }
489
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497         int i, r;
498
499         /*
500          * USER Zero all DQS config settings, across all groups and all
501          * shadow registers
502          */
503         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504              r += NUM_RANKS_PER_SHADOW_REG) {
505                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506                         /*
507                          * The phases actually don't exist on a per-rank basis,
508                          * but there's no harm updating them several times, so
509                          * let's keep the code simple.
510                          */
511                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512                         scc_mgr_set_dqs_en_phase(i, 0);
513                         scc_mgr_set_dqs_en_delay(i, 0);
514                 }
515
516                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517                         scc_mgr_set_dqdqs_output_phase(i, 0);
518                         /* Arria V/Cyclone V don't have out2. */
519                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520                 }
521         }
522
523         /* Multicast to all DQS group enables. */
524         writel(0xff, &sdr_scc_mgr->dqs_ena);
525         writel(0, &sdr_scc_mgr->update);
526 }
527
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:        Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536         /* Multicast to all DQ enables. */
537         writel(0xff, &sdr_scc_mgr->dq_ena);
538         writel(0xff, &sdr_scc_mgr->dm_ena);
539
540         /* Update current DQS IO enable. */
541         writel(0, &sdr_scc_mgr->dqs_io_ena);
542
543         /* Update the DQS logic. */
544         writel(write_group, &sdr_scc_mgr->dqs_ena);
545
546         /* Hit update. */
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:        Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560         const int base = write_group * ratio;
561         int i;
562         /*
563          * Load the setting in the SCC manager
564          * Although OCT affects only write data, the OCT delay is controlled
565          * by the DQS logic block which is instantiated once per read group.
566          * For protocols where a write group consists of multiple read groups,
567          * the setting must be set multiple times.
568          */
569         for (i = 0; i < ratio; i++)
570                 writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580         int i, r;
581
582         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583              r += NUM_RANKS_PER_SHADOW_REG) {
584                 /* Zero all DQ config settings. */
585                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586                         scc_mgr_set_dq_out1_delay(i, 0);
587                         if (!out_only)
588                                 scc_mgr_set_dq_in_delay(i, 0);
589                 }
590
591                 /* Multicast to all DQ enables. */
592                 writel(0xff, &sdr_scc_mgr->dq_ena);
593
594                 /* Zero all DM config settings. */
595                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596                         scc_mgr_set_dm_out1_delay(i, 0);
597
598                 /* Multicast to all DM enables. */
599                 writel(0xff, &sdr_scc_mgr->dm_ena);
600
601                 /* Zero all DQS IO settings. */
602                 if (!out_only)
603                         scc_mgr_set_dqs_io_in_delay(0);
604
605                 /* Arria V/Cyclone V don't have out2. */
606                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608                 scc_mgr_load_dqs_for_write_group(write_group);
609
610                 /* Multicast to all DQS IO enables (only 1 in total). */
611                 writel(0, &sdr_scc_mgr->dqs_io_ena);
612
613                 /* Hit update to zero everything. */
614                 writel(0, &sdr_scc_mgr->update);
615         }
616 }
617
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:              Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640         int i;
641
642         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643                 scc_mgr_set_dq_out1_delay(i, delay);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651         uint32_t i;
652
653         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654                 scc_mgr_set_dm_out1_delay(i, delay1);
655                 scc_mgr_load_dm(i);
656         }
657 }
658
659
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662                                                     uint32_t delay)
663 {
664         scc_mgr_set_dqs_out1_delay(delay);
665         scc_mgr_load_dqs_io();
666
667         scc_mgr_set_oct_out1_delay(write_group, delay);
668         scc_mgr_load_dqs_for_write_group(write_group);
669 }
670
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:        Write group
674  * @delay:              Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679                                                   const u32 delay)
680 {
681         u32 i, new_delay;
682
683         /* DQ shift */
684         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685                 scc_mgr_load_dq(i);
686
687         /* DM shift */
688         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689                 scc_mgr_load_dm(i);
690
691         /* DQS shift */
692         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694                 debug_cond(DLEVEL == 1,
695                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696                            __func__, __LINE__, write_group, delay, new_delay,
697                            IO_IO_OUT2_DELAY_MAX,
698                            new_delay - IO_IO_OUT2_DELAY_MAX);
699                 new_delay -= IO_IO_OUT2_DELAY_MAX;
700                 scc_mgr_set_dqs_out1_delay(new_delay);
701         }
702
703         scc_mgr_load_dqs_io();
704
705         /* OCT shift */
706         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708                 debug_cond(DLEVEL == 1,
709                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710                            __func__, __LINE__, write_group, delay,
711                            new_delay, IO_IO_OUT2_DELAY_MAX,
712                            new_delay - IO_IO_OUT2_DELAY_MAX);
713                 new_delay -= IO_IO_OUT2_DELAY_MAX;
714                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
715         }
716
717         scc_mgr_load_dqs_for_write_group(write_group);
718 }
719
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:        Write group
723  * @delay:              Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729                                                 const u32 delay)
730 {
731         int r;
732
733         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734              r += NUM_RANKS_PER_SHADOW_REG) {
735                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736                 writel(0, &sdr_scc_mgr->update);
737         }
738 }
739
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748         /*
749          * To save space, we replace return with jump to special shared
750          * RETURN instruction so we set the counter to large value so that
751          * we always jump.
752          */
753         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763         uint32_t afi_clocks;
764         uint8_t inner = 0;
765         uint8_t outer = 0;
766         uint16_t c_loop = 0;
767
768         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769
770
771         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772         /* scale (rounding up) to get afi clocks */
773
774         /*
775          * Note, we don't bother accounting for being off a little bit
776          * because of a few extra instructions in outer loops
777          * Note, the loops have a test at the end, and do the test before
778          * the decrement, and so always perform the loop
779          * 1 time more than the counter value
780          */
781         if (afi_clocks == 0) {
782                 ;
783         } else if (afi_clocks <= 0x100) {
784                 inner = afi_clocks-1;
785                 outer = 0;
786                 c_loop = 0;
787         } else if (afi_clocks <= 0x10000) {
788                 inner = 0xff;
789                 outer = (afi_clocks-1) >> 8;
790                 c_loop = 0;
791         } else {
792                 inner = 0xff;
793                 outer = 0xff;
794                 c_loop = (afi_clocks-1) >> 16;
795         }
796
797         /*
798          * rom instructions are structured as follows:
799          *
800          *    IDLE_LOOP2: jnz cntr0, TARGET_A
801          *    IDLE_LOOP1: jnz cntr1, TARGET_B
802          *                return
803          *
804          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805          * TARGET_B is set to IDLE_LOOP2 as well
806          *
807          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809          *
810          * a little confusing, but it helps save precious space in the inst_rom
811          * and sequencer rom and keeps the delays more accurate and reduces
812          * overhead
813          */
814         if (afi_clocks <= 0x100) {
815                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816                         &sdr_rw_load_mgr_regs->load_cntr1);
817
818                 writel(RW_MGR_IDLE_LOOP1,
819                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
820
821                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823         } else {
824                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825                         &sdr_rw_load_mgr_regs->load_cntr0);
826
827                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828                         &sdr_rw_load_mgr_regs->load_cntr1);
829
830                 writel(RW_MGR_IDLE_LOOP2,
831                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
832
833                 writel(RW_MGR_IDLE_LOOP2,
834                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
835
836                 /* hack to get around compiler not being smart enough */
837                 if (afi_clocks <= 0x10000) {
838                         /* only need to run once */
839                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841                 } else {
842                         do {
843                                 writel(RW_MGR_IDLE_LOOP2,
844                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
845                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846                         } while (c_loop-- != 0);
847                 }
848         }
849         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:      Counter 0 value
855  * @cntr1:      Counter 1 value
856  * @cntr2:      Counter 2 value
857  * @jump:       Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865
866         /* Load counters */
867         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868                &sdr_rw_load_mgr_regs->load_cntr0);
869         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870                &sdr_rw_load_mgr_regs->load_cntr1);
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872                &sdr_rw_load_mgr_regs->load_cntr2);
873
874         /* Load jump address */
875         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878
879         /* Execute count instruction */
880         writel(jump, grpaddr);
881 }
882
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:       Final instruction 1
886  * @fin2:       Final instruction 2
887  * @precharge:  If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892                                  const int precharge)
893 {
894         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896         u32 r;
897
898         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899                 if (param->skip_ranks[r]) {
900                         /* request to skip the rank */
901                         continue;
902                 }
903
904                 /* set rank */
905                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906
907                 /* precharge all banks ... */
908                 if (precharge)
909                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910
911                 /*
912                  * USER Use Mirror-ed commands for odd ranks if address
913                  * mirrorring is on
914                  */
915                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916                         set_jump_as_return();
917                         writel(RW_MGR_MRS2_MIRR, grpaddr);
918                         delay_for_n_mem_clocks(4);
919                         set_jump_as_return();
920                         writel(RW_MGR_MRS3_MIRR, grpaddr);
921                         delay_for_n_mem_clocks(4);
922                         set_jump_as_return();
923                         writel(RW_MGR_MRS1_MIRR, grpaddr);
924                         delay_for_n_mem_clocks(4);
925                         set_jump_as_return();
926                         writel(fin1, grpaddr);
927                 } else {
928                         set_jump_as_return();
929                         writel(RW_MGR_MRS2, grpaddr);
930                         delay_for_n_mem_clocks(4);
931                         set_jump_as_return();
932                         writel(RW_MGR_MRS3, grpaddr);
933                         delay_for_n_mem_clocks(4);
934                         set_jump_as_return();
935                         writel(RW_MGR_MRS1, grpaddr);
936                         set_jump_as_return();
937                         writel(fin2, grpaddr);
938                 }
939
940                 if (precharge)
941                         continue;
942
943                 set_jump_as_return();
944                 writel(RW_MGR_ZQCL, grpaddr);
945
946                 /* tZQinit = tDLLK = 512 ck cycles */
947                 delay_for_n_mem_clocks(512);
948         }
949 }
950
951 /**
952  * rw_mgr_mem_initialize() - Initialize RW Manager
953  *
954  * Initialize RW Manager.
955  */
956 static void rw_mgr_mem_initialize(void)
957 {
958         debug("%s:%d\n", __func__, __LINE__);
959
960         /* The reset / cke part of initialization is broadcasted to all ranks */
961         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
962                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
963
964         /*
965          * Here's how you load register for a loop
966          * Counters are located @ 0x800
967          * Jump address are located @ 0xC00
968          * For both, registers 0 to 3 are selected using bits 3 and 2, like
969          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
970          * I know this ain't pretty, but Avalon bus throws away the 2 least
971          * significant bits
972          */
973
974         /* Start with memory RESET activated */
975
976         /* tINIT = 200us */
977
978         /*
979          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
980          * If a and b are the number of iteration in 2 nested loops
981          * it takes the following number of cycles to complete the operation:
982          * number_of_cycles = ((2 + n) * a + 2) * b
983          * where n is the number of instruction in the inner loop
984          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
985          * b = 6A
986          */
987         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
988                                   SEQ_TINIT_CNTR2_VAL,
989                                   RW_MGR_INIT_RESET_0_CKE_0);
990
991         /* Indicate that memory is stable. */
992         writel(1, &phy_mgr_cfg->reset_mem_stbl);
993
994         /*
995          * transition the RESET to high
996          * Wait for 500us
997          */
998
999         /*
1000          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1001          * If a and b are the number of iteration in 2 nested loops
1002          * it takes the following number of cycles to complete the operation
1003          * number_of_cycles = ((2 + n) * a + 2) * b
1004          * where n is the number of instruction in the inner loop
1005          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1006          * b = FF
1007          */
1008         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1009                                   SEQ_TRESET_CNTR2_VAL,
1010                                   RW_MGR_INIT_RESET_1_CKE_0);
1011
1012         /* Bring up clock enable. */
1013
1014         /* tXRP < 250 ck cycles */
1015         delay_for_n_mem_clocks(250);
1016
1017         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1018                              0);
1019 }
1020
1021 /*
1022  * At the end of calibration we have to program the user settings in, and
1023  * USER  hand off the memory to the user.
1024  */
1025 static void rw_mgr_mem_handoff(void)
1026 {
1027         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1028         /*
1029          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1030          * other commands, but we will have plenty of NIOS cycles before
1031          * actual handoff so its okay.
1032          */
1033 }
1034
1035 /*
1036  * issue write test command.
1037  * two variants are provided. one that just tests a write pattern and
1038  * another that tests datamask functionality.
1039  */
1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
1041                                                   uint32_t test_dm)
1042 {
1043         uint32_t mcc_instruction;
1044         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
1045                 ENABLE_SUPER_QUICK_CALIBRATION);
1046         uint32_t rw_wl_nop_cycles;
1047         uint32_t addr;
1048
1049         /*
1050          * Set counter and jump addresses for the right
1051          * number of NOP cycles.
1052          * The number of supported NOP cycles can range from -1 to infinity
1053          * Three different cases are handled:
1054          *
1055          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1056          *    mechanism will be used to insert the right number of NOPs
1057          *
1058          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1059          *    issuing the write command will jump straight to the
1060          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1061          *    data (for RLD), skipping
1062          *    the NOP micro-instruction all together
1063          *
1064          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1065          *    turned on in the same micro-instruction that issues the write
1066          *    command. Then we need
1067          *    to directly jump to the micro-instruction that sends out the data
1068          *
1069          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1070          *       (2 and 3). One jump-counter (0) is used to perform multiple
1071          *       write-read operations.
1072          *       one counter left to issue this command in "multiple-group" mode
1073          */
1074
1075         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1076
1077         if (rw_wl_nop_cycles == -1) {
1078                 /*
1079                  * CNTR 2 - We want to execute the special write operation that
1080                  * turns on DQS right away and then skip directly to the
1081                  * instruction that sends out the data. We set the counter to a
1082                  * large number so that the jump is always taken.
1083                  */
1084                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1085
1086                 /* CNTR 3 - Not used */
1087                 if (test_dm) {
1088                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1089                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1090                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1092                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1093                 } else {
1094                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1095                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1096                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1097                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1098                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1099                 }
1100         } else if (rw_wl_nop_cycles == 0) {
1101                 /*
1102                  * CNTR 2 - We want to skip the NOP operation and go straight
1103                  * to the DQS enable instruction. We set the counter to a large
1104                  * number so that the jump is always taken.
1105                  */
1106                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1107
1108                 /* CNTR 3 - Not used */
1109                 if (test_dm) {
1110                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1111                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1112                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113                 } else {
1114                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1115                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1116                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1117                 }
1118         } else {
1119                 /*
1120                  * CNTR 2 - In this case we want to execute the next instruction
1121                  * and NOT take the jump. So we set the counter to 0. The jump
1122                  * address doesn't count.
1123                  */
1124                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1125                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1126
1127                 /*
1128                  * CNTR 3 - Set the nop counter to the number of cycles we
1129                  * need to loop for, minus 1.
1130                  */
1131                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1132                 if (test_dm) {
1133                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1134                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1135                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1136                 } else {
1137                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1138                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1139                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1140                 }
1141         }
1142
1143         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1144                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1145
1146         if (quick_write_mode)
1147                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1148         else
1149                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1150
1151         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1152
1153         /*
1154          * CNTR 1 - This is used to ensure enough time elapses
1155          * for read data to come back.
1156          */
1157         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1158
1159         if (test_dm) {
1160                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1161                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1162         } else {
1163                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1164                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1165         }
1166
1167         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1168         writel(mcc_instruction, addr + (group << 2));
1169 }
1170
1171 /* Test writes, can check for a single bit pass or multiple bit pass */
1172 static int
1173 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1174                                 const u32 use_dm, const u32 all_correct,
1175                                 u32 *bit_chk, const u32 all_ranks)
1176 {
1177         const u32 rank_end = all_ranks ?
1178                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1179                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1180         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1181                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1182         const u32 correct_mask_vg = param->write_correct_mask_vg;
1183
1184         u32 tmp_bit_chk, base_rw_mgr;
1185         int vg, r;
1186
1187         *bit_chk = param->write_correct_mask;
1188
1189         for (r = rank_bgn; r < rank_end; r++) {
1190                 /* Request to skip the rank */
1191                 if (param->skip_ranks[r])
1192                         continue;
1193
1194                 /* Set rank */
1195                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1196
1197                 tmp_bit_chk = 0;
1198                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1199                      vg >= 0; vg--) {
1200                         /* Reset the FIFOs to get pointers to known state. */
1201                         writel(0, &phy_mgr_cmd->fifo_reset);
1202
1203                         rw_mgr_mem_calibrate_write_test_issue(
1204                                 write_group *
1205                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1206                                 use_dm);
1207
1208                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1209                         tmp_bit_chk <<= shift_ratio;
1210                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1211                 }
1212
1213                 *bit_chk &= tmp_bit_chk;
1214         }
1215
1216         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1217         if (all_correct) {
1218                 debug_cond(DLEVEL == 2,
1219                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1220                            write_group, use_dm, *bit_chk,
1221                            param->write_correct_mask,
1222                            *bit_chk == param->write_correct_mask);
1223                 return *bit_chk == param->write_correct_mask;
1224         } else {
1225                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1226                 debug_cond(DLEVEL == 2,
1227                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1228                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1229                 return *bit_chk != 0x00;
1230         }
1231 }
1232
1233 /**
1234  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1235  * @rank_bgn:   Rank number
1236  * @group:      Read/Write Group
1237  * @all_ranks:  Test all ranks
1238  *
1239  * Performs a guaranteed read on the patterns we are going to use during a
1240  * read test to ensure memory works.
1241  */
1242 static int
1243 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1244                                         const u32 all_ranks)
1245 {
1246         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1247                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1248         const u32 addr_offset =
1249                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1250         const u32 rank_end = all_ranks ?
1251                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1252                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1253         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1254                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1255         const u32 correct_mask_vg = param->read_correct_mask_vg;
1256
1257         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1258         int vg, r;
1259         int ret = 0;
1260
1261         bit_chk = param->read_correct_mask;
1262
1263         for (r = rank_bgn; r < rank_end; r++) {
1264                 /* Request to skip the rank */
1265                 if (param->skip_ranks[r])
1266                         continue;
1267
1268                 /* Set rank */
1269                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1270
1271                 /* Load up a constant bursts of read commands */
1272                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1273                 writel(RW_MGR_GUARANTEED_READ,
1274                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1275
1276                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1277                 writel(RW_MGR_GUARANTEED_READ_CONT,
1278                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1279
1280                 tmp_bit_chk = 0;
1281                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1282                      vg >= 0; vg--) {
1283                         /* Reset the FIFOs to get pointers to known state. */
1284                         writel(0, &phy_mgr_cmd->fifo_reset);
1285                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1286                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1287                         writel(RW_MGR_GUARANTEED_READ,
1288                                addr + addr_offset + (vg << 2));
1289
1290                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1291                         tmp_bit_chk <<= shift_ratio;
1292                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1293                 }
1294
1295                 bit_chk &= tmp_bit_chk;
1296         }
1297
1298         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1299
1300         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1301
1302         if (bit_chk != param->read_correct_mask)
1303                 ret = -EIO;
1304
1305         debug_cond(DLEVEL == 1,
1306                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1307                    __func__, __LINE__, group, bit_chk,
1308                    param->read_correct_mask, ret);
1309
1310         return ret;
1311 }
1312
1313 /**
1314  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1315  * @rank_bgn:   Rank number
1316  * @all_ranks:  Test all ranks
1317  *
1318  * Load up the patterns we are going to use during a read test.
1319  */
1320 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1321                                                     const int all_ranks)
1322 {
1323         const u32 rank_end = all_ranks ?
1324                         RW_MGR_MEM_NUMBER_OF_RANKS :
1325                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1326         u32 r;
1327
1328         debug("%s:%d\n", __func__, __LINE__);
1329
1330         for (r = rank_bgn; r < rank_end; r++) {
1331                 if (param->skip_ranks[r])
1332                         /* request to skip the rank */
1333                         continue;
1334
1335                 /* set rank */
1336                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1337
1338                 /* Load up a constant bursts */
1339                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1340
1341                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1342                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1343
1344                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1345
1346                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1347                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1348
1349                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1350
1351                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1352                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1353
1354                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1355
1356                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1357                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1358
1359                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1360                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1361         }
1362
1363         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1364 }
1365
1366 /**
1367  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1368  * @rank_bgn:           Rank number
1369  * @group:              Read/Write group
1370  * @num_tries:          Number of retries of the test
1371  * @all_correct:        All bits must be correct in the mask
1372  * @bit_chk:            Resulting bit mask after the test
1373  * @all_groups:         Test all R/W groups
1374  * @all_ranks:          Test all ranks
1375  *
1376  * Try a read and see if it returns correct data back. Test has dummy reads
1377  * inserted into the mix used to align DQS enable. Test has more thorough
1378  * checks than the regular read test.
1379  */
1380 static int
1381 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1382                                const u32 num_tries, const u32 all_correct,
1383                                u32 *bit_chk,
1384                                const u32 all_groups, const u32 all_ranks)
1385 {
1386         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1387                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1388         const u32 quick_read_mode =
1389                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1390                  ENABLE_SUPER_QUICK_CALIBRATION);
1391         u32 correct_mask_vg = param->read_correct_mask_vg;
1392         u32 tmp_bit_chk;
1393         u32 base_rw_mgr;
1394         u32 addr;
1395
1396         int r, vg, ret;
1397
1398         *bit_chk = param->read_correct_mask;
1399
1400         for (r = rank_bgn; r < rank_end; r++) {
1401                 if (param->skip_ranks[r])
1402                         /* request to skip the rank */
1403                         continue;
1404
1405                 /* set rank */
1406                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1407
1408                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1409
1410                 writel(RW_MGR_READ_B2B_WAIT1,
1411                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1412
1413                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1414                 writel(RW_MGR_READ_B2B_WAIT2,
1415                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1416
1417                 if (quick_read_mode)
1418                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1419                         /* need at least two (1+1) reads to capture failures */
1420                 else if (all_groups)
1421                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1422                 else
1423                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1424
1425                 writel(RW_MGR_READ_B2B,
1426                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1427                 if (all_groups)
1428                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1429                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1430                                &sdr_rw_load_mgr_regs->load_cntr3);
1431                 else
1432                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1433
1434                 writel(RW_MGR_READ_B2B,
1435                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1436
1437                 tmp_bit_chk = 0;
1438                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1439                      vg--) {
1440                         /* Reset the FIFOs to get pointers to known state. */
1441                         writel(0, &phy_mgr_cmd->fifo_reset);
1442                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1443                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1444
1445                         if (all_groups) {
1446                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1447                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1448                         } else {
1449                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1450                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1451                         }
1452
1453                         writel(RW_MGR_READ_B2B, addr +
1454                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1455                                vg) << 2));
1456
1457                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1458                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1459                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1460                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1461                 }
1462
1463                 *bit_chk &= tmp_bit_chk;
1464         }
1465
1466         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1467         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1468
1469         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1470
1471         if (all_correct) {
1472                 ret = (*bit_chk == param->read_correct_mask);
1473                 debug_cond(DLEVEL == 2,
1474                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1475                            __func__, __LINE__, group, all_groups, *bit_chk,
1476                            param->read_correct_mask, ret);
1477         } else  {
1478                 ret = (*bit_chk != 0x00);
1479                 debug_cond(DLEVEL == 2,
1480                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1481                            __func__, __LINE__, group, all_groups, *bit_chk,
1482                            0, ret);
1483         }
1484
1485         return ret;
1486 }
1487
1488 /**
1489  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1490  * @grp:                Read/Write group
1491  * @num_tries:          Number of retries of the test
1492  * @all_correct:        All bits must be correct in the mask
1493  * @all_groups:         Test all R/W groups
1494  *
1495  * Perform a READ test across all memory ranks.
1496  */
1497 static int
1498 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1499                                          const u32 all_correct,
1500                                          const u32 all_groups)
1501 {
1502         u32 bit_chk;
1503         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1504                                               &bit_chk, all_groups, 1);
1505 }
1506
1507 /**
1508  * rw_mgr_incr_vfifo() - Increase VFIFO value
1509  * @grp:        Read/Write group
1510  *
1511  * Increase VFIFO value.
1512  */
1513 static void rw_mgr_incr_vfifo(const u32 grp)
1514 {
1515         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1516 }
1517
1518 /**
1519  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1520  * @grp:        Read/Write group
1521  *
1522  * Decrease VFIFO value.
1523  */
1524 static void rw_mgr_decr_vfifo(const u32 grp)
1525 {
1526         u32 i;
1527
1528         for (i = 0; i < VFIFO_SIZE - 1; i++)
1529                 rw_mgr_incr_vfifo(grp);
1530 }
1531
1532 /**
1533  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1534  * @grp:        Read/Write group
1535  *
1536  * Push VFIFO until a failing read happens.
1537  */
1538 static int find_vfifo_failing_read(const u32 grp)
1539 {
1540         u32 v, ret, fail_cnt = 0;
1541
1542         for (v = 0; v < VFIFO_SIZE; v++) {
1543                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1544                            __func__, __LINE__, v);
1545                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1546                                                 PASS_ONE_BIT, 0);
1547                 if (!ret) {
1548                         fail_cnt++;
1549
1550                         if (fail_cnt == 2)
1551                                 return v;
1552                 }
1553
1554                 /* Fiddle with FIFO. */
1555                 rw_mgr_incr_vfifo(grp);
1556         }
1557
1558         /* No failing read found! Something must have gone wrong. */
1559         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1560         return 0;
1561 }
1562
1563 /**
1564  * sdr_find_phase_delay() - Find DQS enable phase or delay
1565  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1566  * @delay:      If 1, look for delay, if 0, look for phase
1567  * @grp:        Read/Write group
1568  * @work:       Working window position
1569  * @work_inc:   Working window increment
1570  * @pd:         DQS Phase/Delay Iterator
1571  *
1572  * Find working or non-working DQS enable phase setting.
1573  */
1574 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1575                                 u32 *work, const u32 work_inc, u32 *pd)
1576 {
1577         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1578         u32 ret;
1579
1580         for (; *pd <= max; (*pd)++) {
1581                 if (delay)
1582                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1583                 else
1584                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1585
1586                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1587                                         PASS_ONE_BIT, 0);
1588                 if (!working)
1589                         ret = !ret;
1590
1591                 if (ret)
1592                         return 0;
1593
1594                 if (work)
1595                         *work += work_inc;
1596         }
1597
1598         return -EINVAL;
1599 }
1600 /**
1601  * sdr_find_phase() - Find DQS enable phase
1602  * @working:    If 1, look for working phase, if 0, look for non-working phase
1603  * @grp:        Read/Write group
1604  * @work:       Working window position
1605  * @i:          Iterator
1606  * @p:          DQS Phase Iterator
1607  *
1608  * Find working or non-working DQS enable phase setting.
1609  */
1610 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1611                           u32 *i, u32 *p)
1612 {
1613         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1614         int ret;
1615
1616         for (; *i < end; (*i)++) {
1617                 if (working)
1618                         *p = 0;
1619
1620                 ret = sdr_find_phase_delay(working, 0, grp, work,
1621                                            IO_DELAY_PER_OPA_TAP, p);
1622                 if (!ret)
1623                         return 0;
1624
1625                 if (*p > IO_DQS_EN_PHASE_MAX) {
1626                         /* Fiddle with FIFO. */
1627                         rw_mgr_incr_vfifo(grp);
1628                         if (!working)
1629                                 *p = 0;
1630                 }
1631         }
1632
1633         return -EINVAL;
1634 }
1635
1636 /**
1637  * sdr_working_phase() - Find working DQS enable phase
1638  * @grp:        Read/Write group
1639  * @work_bgn:   Working window start position
1640  * @d:          dtaps output value
1641  * @p:          DQS Phase Iterator
1642  * @i:          Iterator
1643  *
1644  * Find working DQS enable phase setting.
1645  */
1646 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1647                              u32 *p, u32 *i)
1648 {
1649         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1650                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1651         int ret;
1652
1653         *work_bgn = 0;
1654
1655         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1656                 *i = 0;
1657                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1658                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1659                 if (!ret)
1660                         return 0;
1661                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1662         }
1663
1664         /* Cannot find working solution */
1665         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1666                    __func__, __LINE__);
1667         return -EINVAL;
1668 }
1669
1670 /**
1671  * sdr_backup_phase() - Find DQS enable backup phase
1672  * @grp:        Read/Write group
1673  * @work_bgn:   Working window start position
1674  * @p:          DQS Phase Iterator
1675  *
1676  * Find DQS enable backup phase setting.
1677  */
1678 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1679 {
1680         u32 tmp_delay, d;
1681         int ret;
1682
1683         /* Special case code for backing up a phase */
1684         if (*p == 0) {
1685                 *p = IO_DQS_EN_PHASE_MAX;
1686                 rw_mgr_decr_vfifo(grp);
1687         } else {
1688                 (*p)--;
1689         }
1690         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1691         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1692
1693         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1694                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1695
1696                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1697                                         PASS_ONE_BIT, 0);
1698                 if (ret) {
1699                         *work_bgn = tmp_delay;
1700                         break;
1701                 }
1702
1703                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1704         }
1705
1706         /* Restore VFIFO to old state before we decremented it (if needed). */
1707         (*p)++;
1708         if (*p > IO_DQS_EN_PHASE_MAX) {
1709                 *p = 0;
1710                 rw_mgr_incr_vfifo(grp);
1711         }
1712
1713         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1714 }
1715
1716 /**
1717  * sdr_nonworking_phase() - Find non-working DQS enable phase
1718  * @grp:        Read/Write group
1719  * @work_end:   Working window end position
1720  * @p:          DQS Phase Iterator
1721  * @i:          Iterator
1722  *
1723  * Find non-working DQS enable phase setting.
1724  */
1725 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1726 {
1727         int ret;
1728
1729         (*p)++;
1730         *work_end += IO_DELAY_PER_OPA_TAP;
1731         if (*p > IO_DQS_EN_PHASE_MAX) {
1732                 /* Fiddle with FIFO. */
1733                 *p = 0;
1734                 rw_mgr_incr_vfifo(grp);
1735         }
1736
1737         ret = sdr_find_phase(0, grp, work_end, i, p);
1738         if (ret) {
1739                 /* Cannot see edge of failing read. */
1740                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1741                            __func__, __LINE__);
1742         }
1743
1744         return ret;
1745 }
1746
1747 /**
1748  * sdr_find_window_center() - Find center of the working DQS window.
1749  * @grp:        Read/Write group
1750  * @work_bgn:   First working settings
1751  * @work_end:   Last working settings
1752  *
1753  * Find center of the working DQS enable window.
1754  */
1755 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1756                                   const u32 work_end)
1757 {
1758         u32 work_mid;
1759         int tmp_delay = 0;
1760         int i, p, d;
1761
1762         work_mid = (work_bgn + work_end) / 2;
1763
1764         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1765                    work_bgn, work_end, work_mid);
1766         /* Get the middle delay to be less than a VFIFO delay */
1767         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1768
1769         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1770         work_mid %= tmp_delay;
1771         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1772
1773         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1774         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1775                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1776         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1777
1778         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1779
1780         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1781         if (d > IO_DQS_EN_DELAY_MAX)
1782                 d = IO_DQS_EN_DELAY_MAX;
1783         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1784
1785         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1786
1787         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1788         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1789
1790         /*
1791          * push vfifo until we can successfully calibrate. We can do this
1792          * because the largest possible margin in 1 VFIFO cycle.
1793          */
1794         for (i = 0; i < VFIFO_SIZE; i++) {
1795                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1796                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1797                                                              PASS_ONE_BIT,
1798                                                              0)) {
1799                         debug_cond(DLEVEL == 2,
1800                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1801                                    __func__, __LINE__, p, d);
1802                         return 0;
1803                 }
1804
1805                 /* Fiddle with FIFO. */
1806                 rw_mgr_incr_vfifo(grp);
1807         }
1808
1809         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1810                    __func__, __LINE__);
1811         return -EINVAL;
1812 }
1813
1814 /**
1815  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1816  * @grp:        Read/Write Group
1817  *
1818  * Find a good DQS enable to use.
1819  */
1820 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1821 {
1822         u32 d, p, i;
1823         u32 dtaps_per_ptap;
1824         u32 work_bgn, work_end;
1825         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1826         int ret;
1827
1828         debug("%s:%d %u\n", __func__, __LINE__, grp);
1829
1830         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1831
1832         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1833         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1834
1835         /* Step 0: Determine number of delay taps for each phase tap. */
1836         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1837
1838         /* Step 1: First push vfifo until we get a failing read. */
1839         find_vfifo_failing_read(grp);
1840
1841         /* Step 2: Find first working phase, increment in ptaps. */
1842         work_bgn = 0;
1843         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1844         if (ret)
1845                 return ret;
1846
1847         work_end = work_bgn;
1848
1849         /*
1850          * If d is 0 then the working window covers a phase tap and we can
1851          * follow the old procedure. Otherwise, we've found the beginning
1852          * and we need to increment the dtaps until we find the end.
1853          */
1854         if (d == 0) {
1855                 /*
1856                  * Step 3a: If we have room, back off by one and
1857                  *          increment in dtaps.
1858                  */
1859                 sdr_backup_phase(grp, &work_bgn, &p);
1860
1861                 /*
1862                  * Step 4a: go forward from working phase to non working
1863                  * phase, increment in ptaps.
1864                  */
1865                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1866                 if (ret)
1867                         return ret;
1868
1869                 /* Step 5a: Back off one from last, increment in dtaps. */
1870
1871                 /* Special case code for backing up a phase */
1872                 if (p == 0) {
1873                         p = IO_DQS_EN_PHASE_MAX;
1874                         rw_mgr_decr_vfifo(grp);
1875                 } else {
1876                         p = p - 1;
1877                 }
1878
1879                 work_end -= IO_DELAY_PER_OPA_TAP;
1880                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1881
1882                 d = 0;
1883
1884                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1885                            __func__, __LINE__, p);
1886         }
1887
1888         /* The dtap increment to find the failing edge is done here. */
1889         sdr_find_phase_delay(0, 1, grp, &work_end,
1890                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1891
1892         /* Go back to working dtap */
1893         if (d != 0)
1894                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1895
1896         debug_cond(DLEVEL == 2,
1897                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1898                    __func__, __LINE__, p, d - 1, work_end);
1899
1900         if (work_end < work_bgn) {
1901                 /* nil range */
1902                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1903                            __func__, __LINE__);
1904                 return -EINVAL;
1905         }
1906
1907         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1908                    __func__, __LINE__, work_bgn, work_end);
1909
1910         /*
1911          * We need to calculate the number of dtaps that equal a ptap.
1912          * To do that we'll back up a ptap and re-find the edge of the
1913          * window using dtaps
1914          */
1915         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1916                    __func__, __LINE__);
1917
1918         /* Special case code for backing up a phase */
1919         if (p == 0) {
1920                 p = IO_DQS_EN_PHASE_MAX;
1921                 rw_mgr_decr_vfifo(grp);
1922                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1923                            __func__, __LINE__, p);
1924         } else {
1925                 p = p - 1;
1926                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1927                            __func__, __LINE__, p);
1928         }
1929
1930         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1931
1932         /*
1933          * Increase dtap until we first see a passing read (in case the
1934          * window is smaller than a ptap), and then a failing read to
1935          * mark the edge of the window again.
1936          */
1937
1938         /* Find a passing read. */
1939         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1940                    __func__, __LINE__);
1941
1942         initial_failing_dtap = d;
1943
1944         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1945         if (found_passing_read) {
1946                 /* Find a failing read. */
1947                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1948                            __func__, __LINE__);
1949                 d++;
1950                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1951                                                            &d);
1952         } else {
1953                 debug_cond(DLEVEL == 1,
1954                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1955                            __func__, __LINE__);
1956         }
1957
1958         /*
1959          * The dynamically calculated dtaps_per_ptap is only valid if we
1960          * found a passing/failing read. If we didn't, it means d hit the max
1961          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1962          * statically calculated value.
1963          */
1964         if (found_passing_read && found_failing_read)
1965                 dtaps_per_ptap = d - initial_failing_dtap;
1966
1967         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1968         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1969                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1970
1971         /* Step 6: Find the centre of the window. */
1972         ret = sdr_find_window_center(grp, work_bgn, work_end);
1973
1974         return ret;
1975 }
1976
1977 /**
1978  * search_stop_check() - Check if the detected edge is valid
1979  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1980  * @d:                  DQS delay
1981  * @rank_bgn:           Rank number
1982  * @write_group:        Write Group
1983  * @read_group:         Read Group
1984  * @bit_chk:            Resulting bit mask after the test
1985  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1986  * @use_read_test:      Perform read test
1987  *
1988  * Test if the found edge is valid.
1989  */
1990 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1991                              const u32 write_group, const u32 read_group,
1992                              u32 *bit_chk, u32 *sticky_bit_chk,
1993                              const u32 use_read_test)
1994 {
1995         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1996                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1997         const u32 correct_mask = write ? param->write_correct_mask :
1998                                          param->read_correct_mask;
1999         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2000                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2001         u32 ret;
2002         /*
2003          * Stop searching when the read test doesn't pass AND when
2004          * we've seen a passing read on every bit.
2005          */
2006         if (write) {                    /* WRITE-ONLY */
2007                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2008                                                          0, PASS_ONE_BIT,
2009                                                          bit_chk, 0);
2010         } else if (use_read_test) {     /* READ-ONLY */
2011                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2012                                                         NUM_READ_PB_TESTS,
2013                                                         PASS_ONE_BIT, bit_chk,
2014                                                         0, 0);
2015         } else {                        /* READ-ONLY */
2016                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2017                                                 PASS_ONE_BIT, bit_chk, 0);
2018                 *bit_chk = *bit_chk >> (per_dqs *
2019                         (read_group - (write_group * ratio)));
2020                 ret = (*bit_chk == 0);
2021         }
2022         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2023         ret = ret && (*sticky_bit_chk == correct_mask);
2024         debug_cond(DLEVEL == 2,
2025                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2026                    __func__, __LINE__, d,
2027                    *sticky_bit_chk, correct_mask, ret);
2028         return ret;
2029 }
2030
2031 /**
2032  * search_left_edge() - Find left edge of DQ/DQS working phase
2033  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2034  * @rank_bgn:           Rank number
2035  * @write_group:        Write Group
2036  * @read_group:         Read Group
2037  * @test_bgn:           Rank number to begin the test
2038  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2039  * @left_edge:          Left edge of the DQ/DQS phase
2040  * @right_edge:         Right edge of the DQ/DQS phase
2041  * @use_read_test:      Perform read test
2042  *
2043  * Find left edge of DQ/DQS working phase.
2044  */
2045 static void search_left_edge(const int write, const int rank_bgn,
2046         const u32 write_group, const u32 read_group, const u32 test_bgn,
2047         u32 *sticky_bit_chk,
2048         int *left_edge, int *right_edge, const u32 use_read_test)
2049 {
2050         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2051         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2052         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2053                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2054         u32 stop, bit_chk;
2055         int i, d;
2056
2057         for (d = 0; d <= dqs_max; d++) {
2058                 if (write)
2059                         scc_mgr_apply_group_dq_out1_delay(d);
2060                 else
2061                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2062
2063                 writel(0, &sdr_scc_mgr->update);
2064
2065                 stop = search_stop_check(write, d, rank_bgn, write_group,
2066                                          read_group, &bit_chk, sticky_bit_chk,
2067                                          use_read_test);
2068                 if (stop == 1)
2069                         break;
2070
2071                 /* stop != 1 */
2072                 for (i = 0; i < per_dqs; i++) {
2073                         if (bit_chk & 1) {
2074                                 /*
2075                                  * Remember a passing test as
2076                                  * the left_edge.
2077                                  */
2078                                 left_edge[i] = d;
2079                         } else {
2080                                 /*
2081                                  * If a left edge has not been seen
2082                                  * yet, then a future passing test
2083                                  * will mark this edge as the right
2084                                  * edge.
2085                                  */
2086                                 if (left_edge[i] == delay_max + 1)
2087                                         right_edge[i] = -(d + 1);
2088                         }
2089                         bit_chk >>= 1;
2090                 }
2091         }
2092
2093         /* Reset DQ delay chains to 0 */
2094         if (write)
2095                 scc_mgr_apply_group_dq_out1_delay(0);
2096         else
2097                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2098
2099         *sticky_bit_chk = 0;
2100         for (i = per_dqs - 1; i >= 0; i--) {
2101                 debug_cond(DLEVEL == 2,
2102                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2103                            __func__, __LINE__, i, left_edge[i],
2104                            i, right_edge[i]);
2105
2106                 /*
2107                  * Check for cases where we haven't found the left edge,
2108                  * which makes our assignment of the the right edge invalid.
2109                  * Reset it to the illegal value.
2110                  */
2111                 if ((left_edge[i] == delay_max + 1) &&
2112                     (right_edge[i] != delay_max + 1)) {
2113                         right_edge[i] = delay_max + 1;
2114                         debug_cond(DLEVEL == 2,
2115                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2116                                    __func__, __LINE__, i, right_edge[i]);
2117                 }
2118
2119                 /*
2120                  * Reset sticky bit
2121                  * READ: except for bits where we have seen both
2122                  *       the left and right edge.
2123                  * WRITE: except for bits where we have seen the
2124                  *        left edge.
2125                  */
2126                 *sticky_bit_chk <<= 1;
2127                 if (write) {
2128                         if (left_edge[i] != delay_max + 1)
2129                                 *sticky_bit_chk |= 1;
2130                 } else {
2131                         if ((left_edge[i] != delay_max + 1) &&
2132                             (right_edge[i] != delay_max + 1))
2133                                 *sticky_bit_chk |= 1;
2134                 }
2135         }
2136
2137
2138 }
2139
2140 /**
2141  * search_right_edge() - Find right edge of DQ/DQS working phase
2142  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2143  * @rank_bgn:           Rank number
2144  * @write_group:        Write Group
2145  * @read_group:         Read Group
2146  * @start_dqs:          DQS start phase
2147  * @start_dqs_en:       DQS enable start phase
2148  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2149  * @left_edge:          Left edge of the DQ/DQS phase
2150  * @right_edge:         Right edge of the DQ/DQS phase
2151  * @use_read_test:      Perform read test
2152  *
2153  * Find right edge of DQ/DQS working phase.
2154  */
2155 static int search_right_edge(const int write, const int rank_bgn,
2156         const u32 write_group, const u32 read_group,
2157         const int start_dqs, const int start_dqs_en,
2158         u32 *sticky_bit_chk,
2159         int *left_edge, int *right_edge, const u32 use_read_test)
2160 {
2161         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2162         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2163         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2164                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2165         u32 stop, bit_chk;
2166         int i, d;
2167
2168         for (d = 0; d <= dqs_max - start_dqs; d++) {
2169                 if (write) {    /* WRITE-ONLY */
2170                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2171                                                                 d + start_dqs);
2172                 } else {        /* READ-ONLY */
2173                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2174                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2175                                 uint32_t delay = d + start_dqs_en;
2176                                 if (delay > IO_DQS_EN_DELAY_MAX)
2177                                         delay = IO_DQS_EN_DELAY_MAX;
2178                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2179                         }
2180                         scc_mgr_load_dqs(read_group);
2181                 }
2182
2183                 writel(0, &sdr_scc_mgr->update);
2184
2185                 stop = search_stop_check(write, d, rank_bgn, write_group,
2186                                          read_group, &bit_chk, sticky_bit_chk,
2187                                          use_read_test);
2188                 if (stop == 1) {
2189                         if (write && (d == 0)) {        /* WRITE-ONLY */
2190                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2191                                         /*
2192                                          * d = 0 failed, but it passed when
2193                                          * testing the left edge, so it must be
2194                                          * marginal, set it to -1
2195                                          */
2196                                         if (right_edge[i] == delay_max + 1 &&
2197                                             left_edge[i] != delay_max + 1)
2198                                                 right_edge[i] = -1;
2199                                 }
2200                         }
2201                         break;
2202                 }
2203
2204                 /* stop != 1 */
2205                 for (i = 0; i < per_dqs; i++) {
2206                         if (bit_chk & 1) {
2207                                 /*
2208                                  * Remember a passing test as
2209                                  * the right_edge.
2210                                  */
2211                                 right_edge[i] = d;
2212                         } else {
2213                                 if (d != 0) {
2214                                         /*
2215                                          * If a right edge has not
2216                                          * been seen yet, then a future
2217                                          * passing test will mark this
2218                                          * edge as the left edge.
2219                                          */
2220                                         if (right_edge[i] == delay_max + 1)
2221                                                 left_edge[i] = -(d + 1);
2222                                 } else {
2223                                         /*
2224                                          * d = 0 failed, but it passed
2225                                          * when testing the left edge,
2226                                          * so it must be marginal, set
2227                                          * it to -1
2228                                          */
2229                                         if (right_edge[i] == delay_max + 1 &&
2230                                             left_edge[i] != delay_max + 1)
2231                                                 right_edge[i] = -1;
2232                                         /*
2233                                          * If a right edge has not been
2234                                          * seen yet, then a future
2235                                          * passing test will mark this
2236                                          * edge as the left edge.
2237                                          */
2238                                         else if (right_edge[i] == delay_max + 1)
2239                                                 left_edge[i] = -(d + 1);
2240                                 }
2241                         }
2242
2243                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2244                                    __func__, __LINE__, d);
2245                         debug_cond(DLEVEL == 2,
2246                                    "bit_chk_test=%i left_edge[%u]: %d ",
2247                                    bit_chk & 1, i, left_edge[i]);
2248                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2249                                    right_edge[i]);
2250                         bit_chk >>= 1;
2251                 }
2252         }
2253
2254         /* Check that all bits have a window */
2255         for (i = 0; i < per_dqs; i++) {
2256                 debug_cond(DLEVEL == 2,
2257                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2258                            __func__, __LINE__, i, left_edge[i],
2259                            i, right_edge[i]);
2260                 if ((left_edge[i] == dqs_max + 1) ||
2261                     (right_edge[i] == dqs_max + 1))
2262                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2263         }
2264
2265         return 0;
2266 }
2267
2268 /**
2269  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2270  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2271  * @left_edge:          Left edge of the DQ/DQS phase
2272  * @right_edge:         Right edge of the DQ/DQS phase
2273  * @mid_min:            Best DQ/DQS phase middle setting
2274  *
2275  * Find index and value of the middle of the DQ/DQS working phase.
2276  */
2277 static int get_window_mid_index(const int write, int *left_edge,
2278                                 int *right_edge, int *mid_min)
2279 {
2280         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2281                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2282         int i, mid, min_index;
2283
2284         /* Find middle of window for each DQ bit */
2285         *mid_min = left_edge[0] - right_edge[0];
2286         min_index = 0;
2287         for (i = 1; i < per_dqs; i++) {
2288                 mid = left_edge[i] - right_edge[i];
2289                 if (mid < *mid_min) {
2290                         *mid_min = mid;
2291                         min_index = i;
2292                 }
2293         }
2294
2295         /*
2296          * -mid_min/2 represents the amount that we need to move DQS.
2297          * If mid_min is odd and positive we'll need to add one to make
2298          * sure the rounding in further calculations is correct (always
2299          * bias to the right), so just add 1 for all positive values.
2300          */
2301         if (*mid_min > 0)
2302                 (*mid_min)++;
2303         *mid_min = *mid_min / 2;
2304
2305         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2306                    __func__, __LINE__, *mid_min, min_index);
2307         return min_index;
2308 }
2309
2310 /**
2311  * center_dq_windows() - Center the DQ/DQS windows
2312  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2313  * @left_edge:          Left edge of the DQ/DQS phase
2314  * @right_edge:         Right edge of the DQ/DQS phase
2315  * @mid_min:            Adjusted DQ/DQS phase middle setting
2316  * @orig_mid_min:       Original DQ/DQS phase middle setting
2317  * @min_index:          DQ/DQS phase middle setting index
2318  * @test_bgn:           Rank number to begin the test
2319  * @dq_margin:          Amount of shift for the DQ
2320  * @dqs_margin:         Amount of shift for the DQS
2321  *
2322  * Align the DQ/DQS windows in each group.
2323  */
2324 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2325                               const int mid_min, const int orig_mid_min,
2326                               const int min_index, const int test_bgn,
2327                               int *dq_margin, int *dqs_margin)
2328 {
2329         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2330         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2331                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2332         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2333                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2334         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2335
2336         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2337         int shift_dq, i, p;
2338
2339         /* Initialize data for export structures */
2340         *dqs_margin = delay_max + 1;
2341         *dq_margin  = delay_max + 1;
2342
2343         /* add delay to bring centre of all DQ windows to the same "level" */
2344         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2345                 /* Use values before divide by 2 to reduce round off error */
2346                 shift_dq = (left_edge[i] - right_edge[i] -
2347                         (left_edge[min_index] - right_edge[min_index]))/2  +
2348                         (orig_mid_min - mid_min);
2349
2350                 debug_cond(DLEVEL == 2,
2351                            "vfifo_center: before: shift_dq[%u]=%d\n",
2352                            i, shift_dq);
2353
2354                 temp_dq_io_delay1 = readl(addr + (p << 2));
2355                 temp_dq_io_delay2 = readl(addr + (i << 2));
2356
2357                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2358                         shift_dq = delay_max - temp_dq_io_delay2;
2359                 else if (shift_dq + temp_dq_io_delay1 < 0)
2360                         shift_dq = -temp_dq_io_delay1;
2361
2362                 debug_cond(DLEVEL == 2,
2363                            "vfifo_center: after: shift_dq[%u]=%d\n",
2364                            i, shift_dq);
2365
2366                 if (write)
2367                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2368                 else
2369                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2370
2371                 scc_mgr_load_dq(p);
2372
2373                 debug_cond(DLEVEL == 2,
2374                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2375                            left_edge[i] - shift_dq + (-mid_min),
2376                            right_edge[i] + shift_dq - (-mid_min));
2377
2378                 /* To determine values for export structures */
2379                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2380                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2381
2382                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2383                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2384         }
2385
2386 }
2387
2388 /**
2389  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2390  * @rank_bgn:           Rank number
2391  * @rw_group:           Read/Write Group
2392  * @test_bgn:           Rank at which the test begins
2393  * @use_read_test:      Perform a read test
2394  * @update_fom:         Update FOM
2395  *
2396  * Per-bit deskew DQ and centering.
2397  */
2398 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2399                         const u32 rw_group, const u32 test_bgn,
2400                         const int use_read_test, const int update_fom)
2401 {
2402         const u32 addr =
2403                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2404                 (rw_group << 2);
2405         /*
2406          * Store these as signed since there are comparisons with
2407          * signed numbers.
2408          */
2409         uint32_t sticky_bit_chk;
2410         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2411         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2412         int32_t orig_mid_min, mid_min;
2413         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2414         int32_t dq_margin, dqs_margin;
2415         int i, min_index;
2416         int ret;
2417
2418         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2419
2420         start_dqs = readl(addr);
2421         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2422                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2423
2424         /* set the left and right edge of each bit to an illegal value */
2425         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2426         sticky_bit_chk = 0;
2427         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2428                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2429                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2430         }
2431
2432         /* Search for the left edge of the window for each bit */
2433         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2434                          &sticky_bit_chk,
2435                          left_edge, right_edge, use_read_test);
2436
2437
2438         /* Search for the right edge of the window for each bit */
2439         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2440                                 start_dqs, start_dqs_en,
2441                                 &sticky_bit_chk,
2442                                 left_edge, right_edge, use_read_test);
2443         if (ret) {
2444                 /*
2445                  * Restore delay chain settings before letting the loop
2446                  * in rw_mgr_mem_calibrate_vfifo to retry different
2447                  * dqs/ck relationships.
2448                  */
2449                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2450                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2451                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2452
2453                 scc_mgr_load_dqs(rw_group);
2454                 writel(0, &sdr_scc_mgr->update);
2455
2456                 debug_cond(DLEVEL == 1,
2457                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2458                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2459                 if (use_read_test) {
2460                         set_failing_group_stage(rw_group *
2461                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2462                                 CAL_STAGE_VFIFO,
2463                                 CAL_SUBSTAGE_VFIFO_CENTER);
2464                 } else {
2465                         set_failing_group_stage(rw_group *
2466                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2467                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2468                                 CAL_SUBSTAGE_VFIFO_CENTER);
2469                 }
2470                 return -EIO;
2471         }
2472
2473         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2474
2475         /* Determine the amount we can change DQS (which is -mid_min) */
2476         orig_mid_min = mid_min;
2477         new_dqs = start_dqs - mid_min;
2478         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2479                 new_dqs = IO_DQS_IN_DELAY_MAX;
2480         else if (new_dqs < 0)
2481                 new_dqs = 0;
2482
2483         mid_min = start_dqs - new_dqs;
2484         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2485                    mid_min, new_dqs);
2486
2487         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2488                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2489                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2490                 else if (start_dqs_en - mid_min < 0)
2491                         mid_min += start_dqs_en - mid_min;
2492         }
2493         new_dqs = start_dqs - mid_min;
2494
2495         debug_cond(DLEVEL == 1,
2496                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2497                    start_dqs,
2498                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2499                    new_dqs, mid_min);
2500
2501         /* Add delay to bring centre of all DQ windows to the same "level". */
2502         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2503                           min_index, test_bgn, &dq_margin, &dqs_margin);
2504
2505         /* Move DQS-en */
2506         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2507                 final_dqs_en = start_dqs_en - mid_min;
2508                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2509                 scc_mgr_load_dqs(rw_group);
2510         }
2511
2512         /* Move DQS */
2513         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2514         scc_mgr_load_dqs(rw_group);
2515         debug_cond(DLEVEL == 2,
2516                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2517                    __func__, __LINE__, dq_margin, dqs_margin);
2518
2519         /*
2520          * Do not remove this line as it makes sure all of our decisions
2521          * have been applied. Apply the update bit.
2522          */
2523         writel(0, &sdr_scc_mgr->update);
2524
2525         if ((dq_margin < 0) || (dqs_margin < 0))
2526                 return -EINVAL;
2527
2528         return 0;
2529 }
2530
2531 /**
2532  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2533  * @rw_group:   Read/Write Group
2534  * @phase:      DQ/DQS phase
2535  *
2536  * Because initially no communication ca be reliably performed with the memory
2537  * device, the sequencer uses a guaranteed write mechanism to write data into
2538  * the memory device.
2539  */
2540 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2541                                                  const u32 phase)
2542 {
2543         int ret;
2544
2545         /* Set a particular DQ/DQS phase. */
2546         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2547
2548         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2549                    __func__, __LINE__, rw_group, phase);
2550
2551         /*
2552          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2553          * Load up the patterns used by read calibration using the
2554          * current DQDQS phase.
2555          */
2556         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2557
2558         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2559                 return 0;
2560
2561         /*
2562          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2563          * Back-to-Back reads of the patterns used for calibration.
2564          */
2565         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2566         if (ret)
2567                 debug_cond(DLEVEL == 1,
2568                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2569                            __func__, __LINE__, rw_group, phase);
2570         return ret;
2571 }
2572
2573 /**
2574  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2575  * @rw_group:   Read/Write Group
2576  * @test_bgn:   Rank at which the test begins
2577  *
2578  * DQS enable calibration ensures reliable capture of the DQ signal without
2579  * glitches on the DQS line.
2580  */
2581 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2582                                                        const u32 test_bgn)
2583 {
2584         /*
2585          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2586          * DQS and DQS Eanble Signal Relationships.
2587          */
2588
2589         /* We start at zero, so have one less dq to devide among */
2590         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2591                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2592         int ret;
2593         u32 i, p, d, r;
2594
2595         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2596
2597         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2598         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2599              r += NUM_RANKS_PER_SHADOW_REG) {
2600                 for (i = 0, p = test_bgn, d = 0;
2601                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2602                      i++, p++, d += delay_step) {
2603                         debug_cond(DLEVEL == 1,
2604                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2605                                    __func__, __LINE__, rw_group, r, i, p, d);
2606
2607                         scc_mgr_set_dq_in_delay(p, d);
2608                         scc_mgr_load_dq(p);
2609                 }
2610
2611                 writel(0, &sdr_scc_mgr->update);
2612         }
2613
2614         /*
2615          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2616          * dq_in_delay values
2617          */
2618         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2619
2620         debug_cond(DLEVEL == 1,
2621                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2622                    __func__, __LINE__, rw_group, !ret);
2623
2624         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2625              r += NUM_RANKS_PER_SHADOW_REG) {
2626                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2627                 writel(0, &sdr_scc_mgr->update);
2628         }
2629
2630         return ret;
2631 }
2632
2633 /**
2634  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2635  * @rw_group:           Read/Write Group
2636  * @test_bgn:           Rank at which the test begins
2637  * @use_read_test:      Perform a read test
2638  * @update_fom:         Update FOM
2639  *
2640  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2641  * within a group.
2642  */
2643 static int
2644 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2645                                       const int use_read_test,
2646                                       const int update_fom)
2647
2648 {
2649         int ret, grp_calibrated;
2650         u32 rank_bgn, sr;
2651
2652         /*
2653          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2654          * Read per-bit deskew can be done on a per shadow register basis.
2655          */
2656         grp_calibrated = 1;
2657         for (rank_bgn = 0, sr = 0;
2658              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2659              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2660                 /* Check if this set of ranks should be skipped entirely. */
2661                 if (param->skip_shadow_regs[sr])
2662                         continue;
2663
2664                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2665                                                         test_bgn,
2666                                                         use_read_test,
2667                                                         update_fom);
2668                 if (!ret)
2669                         continue;
2670
2671                 grp_calibrated = 0;
2672         }
2673
2674         if (!grp_calibrated)
2675                 return -EIO;
2676
2677         return 0;
2678 }
2679
2680 /**
2681  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2682  * @rw_group:           Read/Write Group
2683  * @test_bgn:           Rank at which the test begins
2684  *
2685  * Stage 1: Calibrate the read valid prediction FIFO.
2686  *
2687  * This function implements UniPHY calibration Stage 1, as explained in
2688  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2689  *
2690  * - read valid prediction will consist of finding:
2691  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2692  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2693  *  - we also do a per-bit deskew on the DQ lines.
2694  */
2695 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2696 {
2697         uint32_t p, d;
2698         uint32_t dtaps_per_ptap;
2699         uint32_t failed_substage;
2700
2701         int ret;
2702
2703         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2704
2705         /* Update info for sims */
2706         reg_file_set_group(rw_group);
2707         reg_file_set_stage(CAL_STAGE_VFIFO);
2708         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2709
2710         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2711
2712         /* USER Determine number of delay taps for each phase tap. */
2713         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2714                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2715
2716         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2717                 /*
2718                  * In RLDRAMX we may be messing the delay of pins in
2719                  * the same write rw_group but outside of the current read
2720                  * the rw_group, but that's ok because we haven't calibrated
2721                  * output side yet.
2722                  */
2723                 if (d > 0) {
2724                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2725                                                                 rw_group, d);
2726                 }
2727
2728                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2729                         /* 1) Guaranteed Write */
2730                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2731                         if (ret)
2732                                 break;
2733
2734                         /* 2) DQS Enable Calibration */
2735                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2736                                                                           test_bgn);
2737                         if (ret) {
2738                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2739                                 continue;
2740                         }
2741
2742                         /* 3) Centering DQ/DQS */
2743                         /*
2744                          * If doing read after write calibration, do not update
2745                          * FOM now. Do it then.
2746                          */
2747                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2748                                                                 test_bgn, 1, 0);
2749                         if (ret) {
2750                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2751                                 continue;
2752                         }
2753
2754                         /* All done. */
2755                         goto cal_done_ok;
2756                 }
2757         }
2758
2759         /* Calibration Stage 1 failed. */
2760         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2761         return 0;
2762
2763         /* Calibration Stage 1 completed OK. */
2764 cal_done_ok:
2765         /*
2766          * Reset the delay chains back to zero if they have moved > 1
2767          * (check for > 1 because loop will increase d even when pass in
2768          * first case).
2769          */
2770         if (d > 2)
2771                 scc_mgr_zero_group(rw_group, 1);
2772
2773         return 1;
2774 }
2775
2776 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2777 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2778                                                uint32_t test_bgn)
2779 {
2780         uint32_t rank_bgn, sr;
2781         uint32_t grp_calibrated;
2782         uint32_t write_group;
2783
2784         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2785
2786         /* update info for sims */
2787
2788         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2789         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2790
2791         write_group = read_group;
2792
2793         /* update info for sims */
2794         reg_file_set_group(read_group);
2795
2796         grp_calibrated = 1;
2797         /* Read per-bit deskew can be done on a per shadow register basis */
2798         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2799                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2800                 /* Determine if this set of ranks should be skipped entirely */
2801                 if (!param->skip_shadow_regs[sr]) {
2802                 /* This is the last calibration round, update FOM here */
2803                         if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2804                                                                 read_group,
2805                                                                 test_bgn, 0,
2806                                                                 1)) {
2807                                 grp_calibrated = 0;
2808                         }
2809                 }
2810         }
2811
2812
2813         if (grp_calibrated == 0) {
2814                 set_failing_group_stage(write_group,
2815                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2816                                         CAL_SUBSTAGE_VFIFO_CENTER);
2817                 return 0;
2818         }
2819
2820         return 1;
2821 }
2822
2823 /* Calibrate LFIFO to find smallest read latency */
2824 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2825 {
2826         uint32_t found_one;
2827
2828         debug("%s:%d\n", __func__, __LINE__);
2829
2830         /* update info for sims */
2831         reg_file_set_stage(CAL_STAGE_LFIFO);
2832         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2833
2834         /* Load up the patterns used by read calibration for all ranks */
2835         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2836         found_one = 0;
2837
2838         do {
2839                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2840                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2841                            __func__, __LINE__, gbl->curr_read_lat);
2842
2843                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2844                                                               NUM_READ_TESTS,
2845                                                               PASS_ALL_BITS,
2846                                                               1)) {
2847                         break;
2848                 }
2849
2850                 found_one = 1;
2851                 /* reduce read latency and see if things are working */
2852                 /* correctly */
2853                 gbl->curr_read_lat--;
2854         } while (gbl->curr_read_lat > 0);
2855
2856         /* reset the fifos to get pointers to known state */
2857
2858         writel(0, &phy_mgr_cmd->fifo_reset);
2859
2860         if (found_one) {
2861                 /* add a fudge factor to the read latency that was determined */
2862                 gbl->curr_read_lat += 2;
2863                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2864                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2865                            read_lat=%u\n", __func__, __LINE__,
2866                            gbl->curr_read_lat);
2867                 return 1;
2868         } else {
2869                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2870                                         CAL_SUBSTAGE_READ_LATENCY);
2871
2872                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2873                            read_lat=%u\n", __func__, __LINE__,
2874                            gbl->curr_read_lat);
2875                 return 0;
2876         }
2877 }
2878
2879 /**
2880  * search_window() - Search for the/part of the window with DM/DQS shift
2881  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2882  * @rank_bgn:           Rank number
2883  * @write_group:        Write Group
2884  * @bgn_curr:           Current window begin
2885  * @end_curr:           Current window end
2886  * @bgn_best:           Current best window begin
2887  * @end_best:           Current best window end
2888  * @win_best:           Size of the best window
2889  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2890  *
2891  * Search for the/part of the window with DM/DQS shift.
2892  */
2893 static void search_window(const int search_dm,
2894                           const u32 rank_bgn, const u32 write_group,
2895                           int *bgn_curr, int *end_curr, int *bgn_best,
2896                           int *end_best, int *win_best, int new_dqs)
2897 {
2898         u32 bit_chk;
2899         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2900         int d, di;
2901
2902         /* Search for the/part of the window with DM/DQS shift. */
2903         for (di = max; di >= 0; di -= DELTA_D) {
2904                 if (search_dm) {
2905                         d = di;
2906                         scc_mgr_apply_group_dm_out1_delay(d);
2907                 } else {
2908                         /* For DQS, we go from 0...max */
2909                         d = max - di;
2910                         /*
2911                          * Note: This only shifts DQS, so are we limiting ourselve to
2912                          * width of DQ unnecessarily.
2913                          */
2914                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2915                                                                 d + new_dqs);
2916                 }
2917
2918                 writel(0, &sdr_scc_mgr->update);
2919
2920                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2921                                                     PASS_ALL_BITS, &bit_chk,
2922                                                     0)) {
2923                         /* Set current end of the window. */
2924                         *end_curr = search_dm ? -d : d;
2925
2926                         /*
2927                          * If a starting edge of our window has not been seen
2928                          * this is our current start of the DM window.
2929                          */
2930                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2931                                 *bgn_curr = search_dm ? -d : d;
2932
2933                         /*
2934                          * If current window is bigger than best seen.
2935                          * Set best seen to be current window.
2936                          */
2937                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2938                                 *win_best = *end_curr - *bgn_curr + 1;
2939                                 *bgn_best = *bgn_curr;
2940                                 *end_best = *end_curr;
2941                         }
2942                 } else {
2943                         /* We just saw a failing test. Reset temp edge. */
2944                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2945                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2946
2947                         /* Early exit is only applicable to DQS. */
2948                         if (search_dm)
2949                                 continue;
2950
2951                         /*
2952                          * Early exit optimization: if the remaining delay
2953                          * chain space is less than already seen largest
2954                          * window we can exit.
2955                          */
2956                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2957                                 break;
2958                 }
2959         }
2960 }
2961
2962 /*
2963  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2964  * @rank_bgn:           Rank number
2965  * @write_group:        Write group
2966  * @test_bgn:           Rank at which the test begins
2967  *
2968  * Center all windows. Do per-bit-deskew to possibly increase size of
2969  * certain windows.
2970  */
2971 static int
2972 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2973                                    const u32 test_bgn)
2974 {
2975         int i;
2976         u32 sticky_bit_chk;
2977         u32 min_index;
2978         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2979         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2980         int mid;
2981         int mid_min, orig_mid_min;
2982         int new_dqs, start_dqs;
2983         int dq_margin, dqs_margin, dm_margin;
2984         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2985         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2986         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2987         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2988         int win_best = 0;
2989
2990         int ret;
2991
2992         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2993
2994         dm_margin = 0;
2995
2996         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2997                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2998                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2999
3000         /* Per-bit deskew. */
3001
3002         /*
3003          * Set the left and right edge of each bit to an illegal value.
3004          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3005          */
3006         sticky_bit_chk = 0;
3007         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3008                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3009                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3010         }
3011
3012         /* Search for the left edge of the window for each bit. */
3013         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3014                          &sticky_bit_chk,
3015                          left_edge, right_edge, 0);
3016
3017         /* Search for the right edge of the window for each bit. */
3018         ret = search_right_edge(1, rank_bgn, write_group, 0,
3019                                 start_dqs, 0,
3020                                 &sticky_bit_chk,
3021                                 left_edge, right_edge, 0);
3022         if (ret) {
3023                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3024                                         CAL_SUBSTAGE_WRITES_CENTER);
3025                 return -EINVAL;
3026         }
3027
3028         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3029
3030         /* Determine the amount we can change DQS (which is -mid_min). */
3031         orig_mid_min = mid_min;
3032         new_dqs = start_dqs;
3033         mid_min = 0;
3034         debug_cond(DLEVEL == 1,
3035                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3036                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3037
3038         /* Add delay to bring centre of all DQ windows to the same "level". */
3039         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3040                           min_index, 0, &dq_margin, &dqs_margin);
3041
3042         /* Move DQS */
3043         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3044         writel(0, &sdr_scc_mgr->update);
3045
3046         /* Centre DM */
3047         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3048
3049         /*
3050          * Set the left and right edge of each bit to an illegal value.
3051          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3052          */
3053         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3054         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3055
3056         /* Search for the/part of the window with DM shift. */
3057         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3058                       &bgn_best, &end_best, &win_best, 0);
3059
3060         /* Reset DM delay chains to 0. */
3061         scc_mgr_apply_group_dm_out1_delay(0);
3062
3063         /*
3064          * Check to see if the current window nudges up aganist 0 delay.
3065          * If so we need to continue the search by shifting DQS otherwise DQS
3066          * search begins as a new search.
3067          */
3068         if (end_curr != 0) {
3069                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3070                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3071         }
3072
3073         /* Search for the/part of the window with DQS shifts. */
3074         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3075                       &bgn_best, &end_best, &win_best, new_dqs);
3076
3077         /* Assign left and right edge for cal and reporting. */
3078         left_edge[0] = -1 * bgn_best;
3079         right_edge[0] = end_best;
3080
3081         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3082                    __func__, __LINE__, left_edge[0], right_edge[0]);
3083
3084         /* Move DQS (back to orig). */
3085         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3086
3087         /* Move DM */
3088
3089         /* Find middle of window for the DM bit. */
3090         mid = (left_edge[0] - right_edge[0]) / 2;
3091
3092         /* Only move right, since we are not moving DQS/DQ. */
3093         if (mid < 0)
3094                 mid = 0;
3095
3096         /* dm_marign should fail if we never find a window. */
3097         if (win_best == 0)
3098                 dm_margin = -1;
3099         else
3100                 dm_margin = left_edge[0] - mid;
3101
3102         scc_mgr_apply_group_dm_out1_delay(mid);
3103         writel(0, &sdr_scc_mgr->update);
3104
3105         debug_cond(DLEVEL == 2,
3106                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3107                    __func__, __LINE__, left_edge[0], right_edge[0],
3108                    mid, dm_margin);
3109         /* Export values. */
3110         gbl->fom_out += dq_margin + dqs_margin;
3111
3112         debug_cond(DLEVEL == 2,
3113                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3114                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3115
3116         /*
3117          * Do not remove this line as it makes sure all of our
3118          * decisions have been applied.
3119          */
3120         writel(0, &sdr_scc_mgr->update);
3121
3122         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3123                 return -EINVAL;
3124
3125         return 0;
3126 }
3127
3128 /**
3129  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3130  * @rank_bgn:           Rank number
3131  * @group:              Read/Write Group
3132  * @test_bgn:           Rank at which the test begins
3133  *
3134  * Stage 2: Write Calibration Part One.
3135  *
3136  * This function implements UniPHY calibration Stage 2, as explained in
3137  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3138  */
3139 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3140                                        const u32 test_bgn)
3141 {
3142         int ret;
3143
3144         /* Update info for sims */
3145         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3146
3147         reg_file_set_group(group);
3148         reg_file_set_stage(CAL_STAGE_WRITES);
3149         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3150
3151         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3152         if (ret)
3153                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3154                                         CAL_SUBSTAGE_WRITES_CENTER);
3155
3156         return ret;
3157 }
3158
3159 /**
3160  * mem_precharge_and_activate() - Precharge all banks and activate
3161  *
3162  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3163  */
3164 static void mem_precharge_and_activate(void)
3165 {
3166         int r;
3167
3168         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3169                 /* Test if the rank should be skipped. */
3170                 if (param->skip_ranks[r])
3171                         continue;
3172
3173                 /* Set rank. */
3174                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3175
3176                 /* Precharge all banks. */
3177                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3178                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3179
3180                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3181                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3182                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3183
3184                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3185                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3186                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3187
3188                 /* Activate rows. */
3189                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3190                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3191         }
3192 }
3193
3194 /**
3195  * mem_init_latency() - Configure memory RLAT and WLAT settings
3196  *
3197  * Configure memory RLAT and WLAT parameters.
3198  */
3199 static void mem_init_latency(void)
3200 {
3201         /*
3202          * For AV/CV, LFIFO is hardened and always runs at full rate
3203          * so max latency in AFI clocks, used here, is correspondingly
3204          * smaller.
3205          */
3206         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3207         u32 rlat, wlat;
3208
3209         debug("%s:%d\n", __func__, __LINE__);
3210
3211         /*
3212          * Read in write latency.
3213          * WL for Hard PHY does not include additive latency.
3214          */
3215         wlat = readl(&data_mgr->t_wl_add);
3216         wlat += readl(&data_mgr->mem_t_add);
3217
3218         gbl->rw_wl_nop_cycles = wlat - 1;
3219
3220         /* Read in readl latency. */
3221         rlat = readl(&data_mgr->t_rl_add);
3222
3223         /* Set a pretty high read latency initially. */
3224         gbl->curr_read_lat = rlat + 16;
3225         if (gbl->curr_read_lat > max_latency)
3226                 gbl->curr_read_lat = max_latency;
3227
3228         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3229
3230         /* Advertise write latency. */
3231         writel(wlat, &phy_mgr_cfg->afi_wlat);
3232 }
3233
3234 /**
3235  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3236  *
3237  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3238  */
3239 static void mem_skip_calibrate(void)
3240 {
3241         uint32_t vfifo_offset;
3242         uint32_t i, j, r;
3243
3244         debug("%s:%d\n", __func__, __LINE__);
3245         /* Need to update every shadow register set used by the interface */
3246         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3247              r += NUM_RANKS_PER_SHADOW_REG) {
3248                 /*
3249                  * Set output phase alignment settings appropriate for
3250                  * skip calibration.
3251                  */
3252                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3253                         scc_mgr_set_dqs_en_phase(i, 0);
3254 #if IO_DLL_CHAIN_LENGTH == 6
3255                         scc_mgr_set_dqdqs_output_phase(i, 6);
3256 #else
3257                         scc_mgr_set_dqdqs_output_phase(i, 7);
3258 #endif
3259                         /*
3260                          * Case:33398
3261                          *
3262                          * Write data arrives to the I/O two cycles before write
3263                          * latency is reached (720 deg).
3264                          *   -> due to bit-slip in a/c bus
3265                          *   -> to allow board skew where dqs is longer than ck
3266                          *      -> how often can this happen!?
3267                          *      -> can claim back some ptaps for high freq
3268                          *       support if we can relax this, but i digress...
3269                          *
3270                          * The write_clk leads mem_ck by 90 deg
3271                          * The minimum ptap of the OPA is 180 deg
3272                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3273                          * The write_clk is always delayed by 2 ptaps
3274                          *
3275                          * Hence, to make DQS aligned to CK, we need to delay
3276                          * DQS by:
3277                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3278                          *
3279                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3280                          * gives us the number of ptaps, which simplies to:
3281                          *
3282                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3283                          */
3284                         scc_mgr_set_dqdqs_output_phase(i,
3285                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3286                 }
3287                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3288                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3289
3290                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3291                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3292                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3293                 }
3294                 writel(0xff, &sdr_scc_mgr->dq_ena);
3295                 writel(0xff, &sdr_scc_mgr->dm_ena);
3296                 writel(0, &sdr_scc_mgr->update);
3297         }
3298
3299         /* Compensate for simulation model behaviour */
3300         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3301                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3302                 scc_mgr_load_dqs(i);
3303         }
3304         writel(0, &sdr_scc_mgr->update);
3305
3306         /*
3307          * ArriaV has hard FIFOs that can only be initialized by incrementing
3308          * in sequencer.
3309          */
3310         vfifo_offset = CALIB_VFIFO_OFFSET;
3311         for (j = 0; j < vfifo_offset; j++)
3312                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3313         writel(0, &phy_mgr_cmd->fifo_reset);
3314
3315         /*
3316          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3317          * setting from generation-time constant.
3318          */
3319         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3320         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3321 }
3322
3323 /**
3324  * mem_calibrate() - Memory calibration entry point.
3325  *
3326  * Perform memory calibration.
3327  */
3328 static uint32_t mem_calibrate(void)
3329 {
3330         uint32_t i;
3331         uint32_t rank_bgn, sr;
3332         uint32_t write_group, write_test_bgn;
3333         uint32_t read_group, read_test_bgn;
3334         uint32_t run_groups, current_run;
3335         uint32_t failing_groups = 0;
3336         uint32_t group_failed = 0;
3337
3338         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3339                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3340
3341         debug("%s:%d\n", __func__, __LINE__);
3342
3343         /* Initialize the data settings */
3344         gbl->error_substage = CAL_SUBSTAGE_NIL;
3345         gbl->error_stage = CAL_STAGE_NIL;
3346         gbl->error_group = 0xff;
3347         gbl->fom_in = 0;
3348         gbl->fom_out = 0;
3349
3350         /* Initialize WLAT and RLAT. */
3351         mem_init_latency();
3352
3353         /* Initialize bit slips. */
3354         mem_precharge_and_activate();
3355
3356         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3357                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3358                           SCC_MGR_GROUP_COUNTER_OFFSET);
3359                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3360                 if (i == 0)
3361                         scc_mgr_set_hhp_extras();
3362
3363                 scc_set_bypass_mode(i);
3364         }
3365
3366         /* Calibration is skipped. */
3367         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3368                 /*
3369                  * Set VFIFO and LFIFO to instant-on settings in skip
3370                  * calibration mode.
3371                  */
3372                 mem_skip_calibrate();
3373
3374                 /*
3375                  * Do not remove this line as it makes sure all of our
3376                  * decisions have been applied.
3377                  */
3378                 writel(0, &sdr_scc_mgr->update);
3379                 return 1;
3380         }
3381
3382         /* Calibration is not skipped. */
3383         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3384                 /*
3385                  * Zero all delay chain/phase settings for all
3386                  * groups and all shadow register sets.
3387                  */
3388                 scc_mgr_zero_all();
3389
3390                 run_groups = ~param->skip_groups;
3391
3392                 for (write_group = 0, write_test_bgn = 0; write_group
3393                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3394                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3395
3396                         /* Initialize the group failure */
3397                         group_failed = 0;
3398
3399                         current_run = run_groups & ((1 <<
3400                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3401                         run_groups = run_groups >>
3402                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3403
3404                         if (current_run == 0)
3405                                 continue;
3406
3407                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3408                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3409                         scc_mgr_zero_group(write_group, 0);
3410
3411                         for (read_group = write_group * rwdqs_ratio,
3412                              read_test_bgn = 0;
3413                              read_group < (write_group + 1) * rwdqs_ratio;
3414                              read_group++,
3415                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3416                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3417                                         continue;
3418
3419                                 /* Calibrate the VFIFO */
3420                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3421                                                                read_test_bgn))
3422                                         continue;
3423
3424                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3425                                         return 0;
3426
3427                                 /* The group failed, we're done. */
3428                                 goto grp_failed;
3429                         }
3430
3431                         /* Calibrate the output side */
3432                         for (rank_bgn = 0, sr = 0;
3433                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3434                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3435                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3436                                         continue;
3437
3438                                 /* Not needed in quick mode! */
3439                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3440                                         continue;
3441
3442                                 /*
3443                                  * Determine if this set of ranks
3444                                  * should be skipped entirely.
3445                                  */
3446                                 if (param->skip_shadow_regs[sr])
3447                                         continue;
3448
3449                                 /* Calibrate WRITEs */
3450                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3451                                                 write_group, write_test_bgn))
3452                                         continue;
3453
3454                                 group_failed = 1;
3455                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3456                                         return 0;
3457                         }
3458
3459                         /* Some group failed, we're done. */
3460                         if (group_failed)
3461                                 goto grp_failed;
3462
3463                         for (read_group = write_group * rwdqs_ratio,
3464                              read_test_bgn = 0;
3465                              read_group < (write_group + 1) * rwdqs_ratio;
3466                              read_group++,
3467                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3468                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3469                                         continue;
3470
3471                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3472                                                                 read_test_bgn))
3473                                         continue;
3474
3475                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3476                                         return 0;
3477
3478                                 /* The group failed, we're done. */
3479                                 goto grp_failed;
3480                         }
3481
3482                         /* No group failed, continue as usual. */
3483                         continue;
3484
3485 grp_failed:             /* A group failed, increment the counter. */
3486                         failing_groups++;
3487                 }
3488
3489                 /*
3490                  * USER If there are any failing groups then report
3491                  * the failure.
3492                  */
3493                 if (failing_groups != 0)
3494                         return 0;
3495
3496                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3497                         continue;
3498
3499                 /*
3500                  * If we're skipping groups as part of debug,
3501                  * don't calibrate LFIFO.
3502                  */
3503                 if (param->skip_groups != 0)
3504                         continue;
3505
3506                 /* Calibrate the LFIFO */
3507                 if (!rw_mgr_mem_calibrate_lfifo())
3508                         return 0;
3509         }
3510
3511         /*
3512          * Do not remove this line as it makes sure all of our decisions
3513          * have been applied.
3514          */
3515         writel(0, &sdr_scc_mgr->update);
3516         return 1;
3517 }
3518
3519 /**
3520  * run_mem_calibrate() - Perform memory calibration
3521  *
3522  * This function triggers the entire memory calibration procedure.
3523  */
3524 static int run_mem_calibrate(void)
3525 {
3526         int pass;
3527
3528         debug("%s:%d\n", __func__, __LINE__);
3529
3530         /* Reset pass/fail status shown on afi_cal_success/fail */
3531         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3532
3533         /* Stop tracking manager. */
3534         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3535
3536         phy_mgr_initialize();
3537         rw_mgr_mem_initialize();
3538
3539         /* Perform the actual memory calibration. */
3540         pass = mem_calibrate();
3541
3542         mem_precharge_and_activate();
3543         writel(0, &phy_mgr_cmd->fifo_reset);
3544
3545         /* Handoff. */
3546         rw_mgr_mem_handoff();
3547         /*
3548          * In Hard PHY this is a 2-bit control:
3549          * 0: AFI Mux Select
3550          * 1: DDIO Mux Select
3551          */
3552         writel(0x2, &phy_mgr_cfg->mux_sel);
3553
3554         /* Start tracking manager. */
3555         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3556
3557         return pass;
3558 }
3559
3560 /**
3561  * debug_mem_calibrate() - Report result of memory calibration
3562  * @pass:       Value indicating whether calibration passed or failed
3563  *
3564  * This function reports the results of the memory calibration
3565  * and writes debug information into the register file.
3566  */
3567 static void debug_mem_calibrate(int pass)
3568 {
3569         uint32_t debug_info;
3570
3571         if (pass) {
3572                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3573
3574                 gbl->fom_in /= 2;
3575                 gbl->fom_out /= 2;
3576
3577                 if (gbl->fom_in > 0xff)
3578                         gbl->fom_in = 0xff;
3579
3580                 if (gbl->fom_out > 0xff)
3581                         gbl->fom_out = 0xff;
3582
3583                 /* Update the FOM in the register file */
3584                 debug_info = gbl->fom_in;
3585                 debug_info |= gbl->fom_out << 8;
3586                 writel(debug_info, &sdr_reg_file->fom);
3587
3588                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3589                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3590         } else {
3591                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3592
3593                 debug_info = gbl->error_stage;
3594                 debug_info |= gbl->error_substage << 8;
3595                 debug_info |= gbl->error_group << 16;
3596
3597                 writel(debug_info, &sdr_reg_file->failing_stage);
3598                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3599                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3600
3601                 /* Update the failing group/stage in the register file */
3602                 debug_info = gbl->error_stage;
3603                 debug_info |= gbl->error_substage << 8;
3604                 debug_info |= gbl->error_group << 16;
3605                 writel(debug_info, &sdr_reg_file->failing_stage);
3606         }
3607
3608         printf("%s: Calibration complete\n", __FILE__);
3609 }
3610
3611 /**
3612  * hc_initialize_rom_data() - Initialize ROM data
3613  *
3614  * Initialize ROM data.
3615  */
3616 static void hc_initialize_rom_data(void)
3617 {
3618         u32 i, addr;
3619
3620         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3621         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3622                 writel(inst_rom_init[i], addr + (i << 2));
3623
3624         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3625         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3626                 writel(ac_rom_init[i], addr + (i << 2));
3627 }
3628
3629 /**
3630  * initialize_reg_file() - Initialize SDR register file
3631  *
3632  * Initialize SDR register file.
3633  */
3634 static void initialize_reg_file(void)
3635 {
3636         /* Initialize the register file with the correct data */
3637         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3638         writel(0, &sdr_reg_file->debug_data_addr);
3639         writel(0, &sdr_reg_file->cur_stage);
3640         writel(0, &sdr_reg_file->fom);
3641         writel(0, &sdr_reg_file->failing_stage);
3642         writel(0, &sdr_reg_file->debug1);
3643         writel(0, &sdr_reg_file->debug2);
3644 }
3645
3646 /**
3647  * initialize_hps_phy() - Initialize HPS PHY
3648  *
3649  * Initialize HPS PHY.
3650  */
3651 static void initialize_hps_phy(void)
3652 {
3653         uint32_t reg;
3654         /*
3655          * Tracking also gets configured here because it's in the
3656          * same register.
3657          */
3658         uint32_t trk_sample_count = 7500;
3659         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3660         /*
3661          * Format is number of outer loops in the 16 MSB, sample
3662          * count in 16 LSB.
3663          */
3664
3665         reg = 0;
3666         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3667         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3669         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3670         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3672         /*
3673          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3674          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3675          */
3676         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3677         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3678                 trk_sample_count);
3679         writel(reg, &sdr_ctrl->phy_ctrl0);
3680
3681         reg = 0;
3682         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3683                 trk_sample_count >>
3684                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3685         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3686                 trk_long_idle_sample_count);
3687         writel(reg, &sdr_ctrl->phy_ctrl1);
3688
3689         reg = 0;
3690         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3691                 trk_long_idle_sample_count >>
3692                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3693         writel(reg, &sdr_ctrl->phy_ctrl2);
3694 }
3695
3696 /**
3697  * initialize_tracking() - Initialize tracking
3698  *
3699  * Initialize the register file with usable initial data.
3700  */
3701 static void initialize_tracking(void)
3702 {
3703         /*
3704          * Initialize the register file with the correct data.
3705          * Compute usable version of value in case we skip full
3706          * computation later.
3707          */
3708         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3709                &sdr_reg_file->dtaps_per_ptap);
3710
3711         /* trk_sample_count */
3712         writel(7500, &sdr_reg_file->trk_sample_count);
3713
3714         /* longidle outer loop [15:0] */
3715         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3716
3717         /*
3718          * longidle sample count [31:24]
3719          * trfc, worst case of 933Mhz 4Gb [23:16]
3720          * trcd, worst case [15:8]
3721          * vfifo wait [7:0]
3722          */
3723         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3724                &sdr_reg_file->delays);
3725
3726         /* mux delay */
3727         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3728                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3729                &sdr_reg_file->trk_rw_mgr_addr);
3730
3731         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3732                &sdr_reg_file->trk_read_dqs_width);
3733
3734         /* trefi [7:0] */
3735         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3736                &sdr_reg_file->trk_rfsh);
3737 }
3738
3739 int sdram_calibration_full(void)
3740 {
3741         struct param_type my_param;
3742         struct gbl_type my_gbl;
3743         uint32_t pass;
3744
3745         memset(&my_param, 0, sizeof(my_param));
3746         memset(&my_gbl, 0, sizeof(my_gbl));
3747
3748         param = &my_param;
3749         gbl = &my_gbl;
3750
3751         /* Set the calibration enabled by default */
3752         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3753         /*
3754          * Only sweep all groups (regardless of fail state) by default
3755          * Set enabled read test by default.
3756          */
3757 #if DISABLE_GUARANTEED_READ
3758         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3759 #endif
3760         /* Initialize the register file */
3761         initialize_reg_file();
3762
3763         /* Initialize any PHY CSR */
3764         initialize_hps_phy();
3765
3766         scc_mgr_initialize();
3767
3768         initialize_tracking();
3769
3770         printf("%s: Preparing to start memory calibration\n", __FILE__);
3771
3772         debug("%s:%d\n", __func__, __LINE__);
3773         debug_cond(DLEVEL == 1,
3774                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3775                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3776                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3777                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3778                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3779         debug_cond(DLEVEL == 1,
3780                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3781                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3782                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3783                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3784         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3785                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3786         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3787                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3788                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3789         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3790                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3791                    IO_IO_OUT2_DELAY_MAX);
3792         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3793                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3794
3795         hc_initialize_rom_data();
3796
3797         /* update info for sims */
3798         reg_file_set_stage(CAL_STAGE_NIL);
3799         reg_file_set_group(0);
3800
3801         /*
3802          * Load global needed for those actions that require
3803          * some dynamic calibration support.
3804          */
3805         dyn_calib_steps = STATIC_CALIB_STEPS;
3806         /*
3807          * Load global to allow dynamic selection of delay loop settings
3808          * based on calibration mode.
3809          */
3810         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3811                 skip_delay_mask = 0xff;
3812         else
3813                 skip_delay_mask = 0x0;
3814
3815         pass = run_mem_calibrate();
3816         debug_mem_calibrate(pass);
3817         return pass;
3818 }