]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay...
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292         (*v)++;
1293 }
1294
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297         uint32_t i;
1298
1299         for (i = 0; i < VFIFO_SIZE-1; i++)
1300                 rw_mgr_incr_vfifo(grp, v);
1301 }
1302
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305         uint32_t  v;
1306         uint32_t fail_cnt = 0;
1307         uint32_t test_status;
1308
1309         for (v = 0; v < VFIFO_SIZE; ) {
1310                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311                            __func__, __LINE__, v);
1312                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314                 if (!test_status) {
1315                         fail_cnt++;
1316
1317                         if (fail_cnt == 2)
1318                                 break;
1319                 }
1320
1321                 /* fiddle with FIFO */
1322                 rw_mgr_incr_vfifo(grp, &v);
1323         }
1324
1325         if (v >= VFIFO_SIZE) {
1326                 /* no failing read found!! Something must have gone wrong */
1327                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328                            __func__, __LINE__);
1329                 return 0;
1330         } else {
1331                 return v;
1332         }
1333 }
1334
1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1336                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337                               uint32_t *v, uint32_t *d, uint32_t *p,
1338                               uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340         uint32_t found_begin = 0;
1341         uint32_t tmp_delay = 0;
1342         uint32_t test_status;
1343
1344         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346                 *work_bgn = tmp_delay;
1347                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1348
1349                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351                                 IO_DELAY_PER_OPA_TAP) {
1352                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1353
1354                                 test_status =
1355                                 rw_mgr_mem_calibrate_read_test_all_ranks
1356                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357
1358                                 if (test_status) {
1359                                         *max_working_cnt = 1;
1360                                         found_begin = 1;
1361                                         break;
1362                                 }
1363                         }
1364
1365                         if (found_begin)
1366                                 break;
1367
1368                         if (*p > IO_DQS_EN_PHASE_MAX)
1369                                 /* fiddle with FIFO */
1370                                 rw_mgr_incr_vfifo(*grp, v);
1371                 }
1372
1373                 if (found_begin)
1374                         break;
1375         }
1376
1377         if (*i >= VFIFO_SIZE) {
1378                 /* cannot find working solution */
1379                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380                            ptap/dtap\n", __func__, __LINE__);
1381                 return 0;
1382         } else {
1383                 return 1;
1384         }
1385 }
1386
1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1388                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389                              uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391         uint32_t found_begin = 0;
1392         uint32_t tmp_delay;
1393
1394         /* Special case code for backing up a phase */
1395         if (*p == 0) {
1396                 *p = IO_DQS_EN_PHASE_MAX;
1397                 rw_mgr_decr_vfifo(*grp, v);
1398         } else {
1399                 (*p)--;
1400         }
1401         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1403
1404         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1407
1408                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1409                                                              PASS_ONE_BIT,
1410                                                              bit_chk, 0)) {
1411                         found_begin = 1;
1412                         *work_bgn = tmp_delay;
1413                         break;
1414                 }
1415         }
1416
1417         /* We have found a working dtap before the ptap found above */
1418         if (found_begin == 1)
1419                 (*max_working_cnt)++;
1420
1421         /*
1422          * Restore VFIFO to old state before we decremented it
1423          * (if needed).
1424          */
1425         (*p)++;
1426         if (*p > IO_DQS_EN_PHASE_MAX) {
1427                 *p = 0;
1428                 rw_mgr_incr_vfifo(*grp, v);
1429         }
1430
1431         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1432 }
1433
1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1435                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437                              uint32_t *work_end)
1438 {
1439         uint32_t found_end = 0;
1440
1441         (*p)++;
1442         *work_end += IO_DELAY_PER_OPA_TAP;
1443         if (*p > IO_DQS_EN_PHASE_MAX) {
1444                 /* fiddle with FIFO */
1445                 *p = 0;
1446                 rw_mgr_incr_vfifo(*grp, v);
1447         }
1448
1449         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451                         += IO_DELAY_PER_OPA_TAP) {
1452                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1453
1454                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456                                 found_end = 1;
1457                                 break;
1458                         } else {
1459                                 (*max_working_cnt)++;
1460                         }
1461                 }
1462
1463                 if (found_end)
1464                         break;
1465
1466                 if (*p > IO_DQS_EN_PHASE_MAX) {
1467                         /* fiddle with FIFO */
1468                         rw_mgr_incr_vfifo(*grp, v);
1469                         *p = 0;
1470                 }
1471         }
1472
1473         if (*i >= VFIFO_SIZE + 1) {
1474                 /* cannot see edge of failing read */
1475                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476                            failed\n", __func__, __LINE__);
1477                 return 0;
1478         } else {
1479                 return 1;
1480         }
1481 }
1482
1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1484                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1485                                   uint32_t *p, uint32_t *work_mid,
1486                                   uint32_t *work_end)
1487 {
1488         int i;
1489         int tmp_delay = 0;
1490
1491         *work_mid = (*work_bgn + *work_end) / 2;
1492
1493         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1494                    *work_bgn, *work_end, *work_mid);
1495         /* Get the middle delay to be less than a VFIFO delay */
1496         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1497                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1498                 ;
1499         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1500         while (*work_mid > tmp_delay)
1501                 *work_mid -= tmp_delay;
1502         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1503
1504         tmp_delay = 0;
1505         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1506                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1507                 ;
1508         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1509         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1510         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1511                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1512                 ;
1513         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1514
1515         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1516         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1517
1518         /*
1519          * push vfifo until we can successfully calibrate. We can do this
1520          * because the largest possible margin in 1 VFIFO cycle.
1521          */
1522         for (i = 0; i < VFIFO_SIZE; i++) {
1523                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1524                            *v);
1525                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1526                                                              PASS_ONE_BIT,
1527                                                              bit_chk, 0)) {
1528                         break;
1529                 }
1530
1531                 /* fiddle with FIFO */
1532                 rw_mgr_incr_vfifo(*grp, v);
1533         }
1534
1535         if (i >= VFIFO_SIZE) {
1536                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1537                            failed\n", __func__, __LINE__);
1538                 return 0;
1539         } else {
1540                 return 1;
1541         }
1542 }
1543
1544 /* find a good dqs enable to use */
1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1546 {
1547         uint32_t v, d, p, i;
1548         uint32_t max_working_cnt;
1549         uint32_t bit_chk;
1550         uint32_t dtaps_per_ptap;
1551         uint32_t work_bgn, work_mid, work_end;
1552         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1553
1554         debug("%s:%d %u\n", __func__, __LINE__, grp);
1555
1556         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1557
1558         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1559         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1560
1561         /* ************************************************************** */
1562         /* * Step 0 : Determine number of delay taps for each phase tap * */
1563         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1564
1565         /* ********************************************************* */
1566         /* * Step 1 : First push vfifo until we get a failing read * */
1567         v = find_vfifo_read(grp, &bit_chk);
1568
1569         max_working_cnt = 0;
1570
1571         /* ******************************************************** */
1572         /* * step 2: find first working phase, increment in ptaps * */
1573         work_bgn = 0;
1574         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1575                                 &p, &i, &max_working_cnt) == 0)
1576                 return 0;
1577
1578         work_end = work_bgn;
1579
1580         /*
1581          * If d is 0 then the working window covers a phase tap and
1582          * we can follow the old procedure otherwise, we've found the beginning,
1583          * and we need to increment the dtaps until we find the end.
1584          */
1585         if (d == 0) {
1586                 /* ********************************************************* */
1587                 /* * step 3a: if we have room, back off by one and
1588                 increment in dtaps * */
1589
1590                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1591                                  &max_working_cnt);
1592
1593                 /* ********************************************************* */
1594                 /* * step 4a: go forward from working phase to non working
1595                 phase, increment in ptaps * */
1596                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1597                                          &i, &max_working_cnt, &work_end) == 0)
1598                         return 0;
1599
1600                 /* ********************************************************* */
1601                 /* * step 5a:  back off one from last, increment in dtaps  * */
1602
1603                 /* Special case code for backing up a phase */
1604                 if (p == 0) {
1605                         p = IO_DQS_EN_PHASE_MAX;
1606                         rw_mgr_decr_vfifo(grp, &v);
1607                 } else {
1608                         p = p - 1;
1609                 }
1610
1611                 work_end -= IO_DELAY_PER_OPA_TAP;
1612                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1613
1614                 /* * The actual increment of dtaps is done outside of
1615                 the if/else loop to share code */
1616                 d = 0;
1617
1618                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1619                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1620                            v, p);
1621         } else {
1622                 /* ******************************************************* */
1623                 /* * step 3-5b:  Find the right edge of the window using
1624                 delay taps   * */
1625                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1626                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1627                            v, p, d, work_bgn);
1628
1629                 work_end = work_bgn;
1630
1631                 /* * The actual increment of dtaps is done outside of the
1632                 if/else loop to share code */
1633
1634                 /* Only here to counterbalance a subtract later on which is
1635                 not needed if this branch of the algorithm is taken */
1636                 max_working_cnt++;
1637         }
1638
1639         /* The dtap increment to find the failing edge is done here */
1640         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1641                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1642                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1643                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1644                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1645
1646                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1647                                                                       PASS_ONE_BIT,
1648                                                                       &bit_chk, 0)) {
1649                                 break;
1650                         }
1651         }
1652
1653         /* Go back to working dtap */
1654         if (d != 0)
1655                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656
1657         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1658                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1659                    v, p, d-1, work_end);
1660
1661         if (work_end < work_bgn) {
1662                 /* nil range */
1663                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1664                            failed\n", __func__, __LINE__);
1665                 return 0;
1666         }
1667
1668         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1669                    __func__, __LINE__, work_bgn, work_end);
1670
1671         /* *************************************************************** */
1672         /*
1673          * * We need to calculate the number of dtaps that equal a ptap
1674          * * To do that we'll back up a ptap and re-find the edge of the
1675          * * window using dtaps
1676          */
1677
1678         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1679                    for tracking\n", __func__, __LINE__);
1680
1681         /* Special case code for backing up a phase */
1682         if (p == 0) {
1683                 p = IO_DQS_EN_PHASE_MAX;
1684                 rw_mgr_decr_vfifo(grp, &v);
1685                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1686                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1687                            v, p);
1688         } else {
1689                 p = p - 1;
1690                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1691                            phase only: v=%u p=%u", __func__, __LINE__,
1692                            v, p);
1693         }
1694
1695         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1696
1697         /*
1698          * Increase dtap until we first see a passing read (in case the
1699          * window is smaller than a ptap),
1700          * and then a failing read to mark the edge of the window again
1701          */
1702
1703         /* Find a passing read */
1704         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1705                    __func__, __LINE__);
1706         found_passing_read = 0;
1707         found_failing_read = 0;
1708         initial_failing_dtap = d;
1709         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1710                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1711                            read d=%u\n", __func__, __LINE__, d);
1712                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1713
1714                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1715                                                              PASS_ONE_BIT,
1716                                                              &bit_chk, 0)) {
1717                         found_passing_read = 1;
1718                         break;
1719                 }
1720         }
1721
1722         if (found_passing_read) {
1723                 /* Find a failing read */
1724                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1725                            read\n", __func__, __LINE__);
1726                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1727                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1728                                    testing read d=%u\n", __func__, __LINE__, d);
1729                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1730
1731                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1732                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1733                                 found_failing_read = 1;
1734                                 break;
1735                         }
1736                 }
1737         } else {
1738                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1739                            calculate dtaps", __func__, __LINE__);
1740                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1741         }
1742
1743         /*
1744          * The dynamically calculated dtaps_per_ptap is only valid if we
1745          * found a passing/failing read. If we didn't, it means d hit the max
1746          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1747          * statically calculated value.
1748          */
1749         if (found_passing_read && found_failing_read)
1750                 dtaps_per_ptap = d - initial_failing_dtap;
1751
1752         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1753         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1754                    - %u = %u",  __func__, __LINE__, d,
1755                    initial_failing_dtap, dtaps_per_ptap);
1756
1757         /* ******************************************** */
1758         /* * step 6:  Find the centre of the window   * */
1759         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1760                                    &work_mid, &work_end) == 0)
1761                 return 0;
1762
1763         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1764                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1765                    v, p-1, d);
1766         return 1;
1767 }
1768
1769 /*
1770  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1771  * dq_in_delay values
1772  */
1773 static int
1774 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1775 (const u32 rw_group, const u32 test_bgn)
1776 {
1777         /* We start at zero, so have one less dq to devide among */
1778         const u32 delay_step = IO_IO_IN_DELAY_MAX /
1779                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
1780         int found;
1781         u32 i, p, d, r;
1782
1783         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
1784
1785         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
1786         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1787              r += NUM_RANKS_PER_SHADOW_REG) {
1788                 for (i = 0, p = test_bgn, d = 0;
1789                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
1790                      i++, p++, d += delay_step) {
1791                         debug_cond(DLEVEL == 1,
1792                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
1793                                    __func__, __LINE__, rw_group, r, i, p, d);
1794
1795                         scc_mgr_set_dq_in_delay(p, d);
1796                         scc_mgr_load_dq(p);
1797                 }
1798
1799                 writel(0, &sdr_scc_mgr->update);
1800         }
1801
1802         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
1803
1804         debug_cond(DLEVEL == 1,
1805                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
1806                    __func__, __LINE__, rw_group, found);
1807
1808         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1809              r += NUM_RANKS_PER_SHADOW_REG) {
1810                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1811                 writel(0, &sdr_scc_mgr->update);
1812         }
1813
1814         if (!found)
1815                 return -EINVAL;
1816
1817         return 0;
1818 }
1819
1820 /* per-bit deskew DQ and center */
1821 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1822         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1823         uint32_t use_read_test, uint32_t update_fom)
1824 {
1825         uint32_t i, p, d, min_index;
1826         /*
1827          * Store these as signed since there are comparisons with
1828          * signed numbers.
1829          */
1830         uint32_t bit_chk;
1831         uint32_t sticky_bit_chk;
1832         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1833         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1834         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1835         int32_t mid;
1836         int32_t orig_mid_min, mid_min;
1837         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1838                 final_dqs_en;
1839         int32_t dq_margin, dqs_margin;
1840         uint32_t stop;
1841         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1842         uint32_t addr;
1843
1844         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1845
1846         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1847         start_dqs = readl(addr + (read_group << 2));
1848         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1849                 start_dqs_en = readl(addr + ((read_group << 2)
1850                                      - IO_DQS_EN_DELAY_OFFSET));
1851
1852         /* set the left and right edge of each bit to an illegal value */
1853         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1854         sticky_bit_chk = 0;
1855         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1856                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1857                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1858         }
1859
1860         /* Search for the left edge of the window for each bit */
1861         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1862                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1863
1864                 writel(0, &sdr_scc_mgr->update);
1865
1866                 /*
1867                  * Stop searching when the read test doesn't pass AND when
1868                  * we've seen a passing read on every bit.
1869                  */
1870                 if (use_read_test) {
1871                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1872                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1873                                 &bit_chk, 0, 0);
1874                 } else {
1875                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1876                                                         0, PASS_ONE_BIT,
1877                                                         &bit_chk, 0);
1878                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1879                                 (read_group - (write_group *
1880                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1881                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1882                         stop = (bit_chk == 0);
1883                 }
1884                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1885                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1886                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1887                            && %u", __func__, __LINE__, d,
1888                            sticky_bit_chk,
1889                         param->read_correct_mask, stop);
1890
1891                 if (stop == 1) {
1892                         break;
1893                 } else {
1894                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1895                                 if (bit_chk & 1) {
1896                                         /* Remember a passing test as the
1897                                         left_edge */
1898                                         left_edge[i] = d;
1899                                 } else {
1900                                         /* If a left edge has not been seen yet,
1901                                         then a future passing test will mark
1902                                         this edge as the right edge */
1903                                         if (left_edge[i] ==
1904                                                 IO_IO_IN_DELAY_MAX + 1) {
1905                                                 right_edge[i] = -(d + 1);
1906                                         }
1907                                 }
1908                                 bit_chk = bit_chk >> 1;
1909                         }
1910                 }
1911         }
1912
1913         /* Reset DQ delay chains to 0 */
1914         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1915         sticky_bit_chk = 0;
1916         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1917                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1918                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1919                            i, left_edge[i], i, right_edge[i]);
1920
1921                 /*
1922                  * Check for cases where we haven't found the left edge,
1923                  * which makes our assignment of the the right edge invalid.
1924                  * Reset it to the illegal value.
1925                  */
1926                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1927                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1928                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1929                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1930                                    right_edge[%u]: %d\n", __func__, __LINE__,
1931                                    i, right_edge[i]);
1932                 }
1933
1934                 /*
1935                  * Reset sticky bit (except for bits where we have seen
1936                  * both the left and right edge).
1937                  */
1938                 sticky_bit_chk = sticky_bit_chk << 1;
1939                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1940                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1941                         sticky_bit_chk = sticky_bit_chk | 1;
1942                 }
1943
1944                 if (i == 0)
1945                         break;
1946         }
1947
1948         /* Search for the right edge of the window for each bit */
1949         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1950                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1951                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1952                         uint32_t delay = d + start_dqs_en;
1953                         if (delay > IO_DQS_EN_DELAY_MAX)
1954                                 delay = IO_DQS_EN_DELAY_MAX;
1955                         scc_mgr_set_dqs_en_delay(read_group, delay);
1956                 }
1957                 scc_mgr_load_dqs(read_group);
1958
1959                 writel(0, &sdr_scc_mgr->update);
1960
1961                 /*
1962                  * Stop searching when the read test doesn't pass AND when
1963                  * we've seen a passing read on every bit.
1964                  */
1965                 if (use_read_test) {
1966                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1967                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1968                                 &bit_chk, 0, 0);
1969                 } else {
1970                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1971                                                         0, PASS_ONE_BIT,
1972                                                         &bit_chk, 0);
1973                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1974                                 (read_group - (write_group *
1975                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1976                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1977                         stop = (bit_chk == 0);
1978                 }
1979                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1980                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1981
1982                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1983                            %u && %u", __func__, __LINE__, d,
1984                            sticky_bit_chk, param->read_correct_mask, stop);
1985
1986                 if (stop == 1) {
1987                         break;
1988                 } else {
1989                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1990                                 if (bit_chk & 1) {
1991                                         /* Remember a passing test as
1992                                         the right_edge */
1993                                         right_edge[i] = d;
1994                                 } else {
1995                                         if (d != 0) {
1996                                                 /* If a right edge has not been
1997                                                 seen yet, then a future passing
1998                                                 test will mark this edge as the
1999                                                 left edge */
2000                                                 if (right_edge[i] ==
2001                                                 IO_IO_IN_DELAY_MAX + 1) {
2002                                                         left_edge[i] = -(d + 1);
2003                                                 }
2004                                         } else {
2005                                                 /* d = 0 failed, but it passed
2006                                                 when testing the left edge,
2007                                                 so it must be marginal,
2008                                                 set it to -1 */
2009                                                 if (right_edge[i] ==
2010                                                         IO_IO_IN_DELAY_MAX + 1 &&
2011                                                         left_edge[i] !=
2012                                                         IO_IO_IN_DELAY_MAX
2013                                                         + 1) {
2014                                                         right_edge[i] = -1;
2015                                                 }
2016                                                 /* If a right edge has not been
2017                                                 seen yet, then a future passing
2018                                                 test will mark this edge as the
2019                                                 left edge */
2020                                                 else if (right_edge[i] ==
2021                                                         IO_IO_IN_DELAY_MAX +
2022                                                         1) {
2023                                                         left_edge[i] = -(d + 1);
2024                                                 }
2025                                         }
2026                                 }
2027
2028                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2029                                            d=%u]: ", __func__, __LINE__, d);
2030                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2031                                            (int)(bit_chk & 1), i, left_edge[i]);
2032                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2033                                            right_edge[i]);
2034                                 bit_chk = bit_chk >> 1;
2035                         }
2036                 }
2037         }
2038
2039         /* Check that all bits have a window */
2040         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2041                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2042                            %d right_edge[%u]: %d", __func__, __LINE__,
2043                            i, left_edge[i], i, right_edge[i]);
2044                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2045                         == IO_IO_IN_DELAY_MAX + 1)) {
2046                         /*
2047                          * Restore delay chain settings before letting the loop
2048                          * in rw_mgr_mem_calibrate_vfifo to retry different
2049                          * dqs/ck relationships.
2050                          */
2051                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2052                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2053                                 scc_mgr_set_dqs_en_delay(read_group,
2054                                                          start_dqs_en);
2055                         }
2056                         scc_mgr_load_dqs(read_group);
2057                         writel(0, &sdr_scc_mgr->update);
2058
2059                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2060                                    find edge [%u]: %d %d", __func__, __LINE__,
2061                                    i, left_edge[i], right_edge[i]);
2062                         if (use_read_test) {
2063                                 set_failing_group_stage(read_group *
2064                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2065                                         CAL_STAGE_VFIFO,
2066                                         CAL_SUBSTAGE_VFIFO_CENTER);
2067                         } else {
2068                                 set_failing_group_stage(read_group *
2069                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2070                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2071                                         CAL_SUBSTAGE_VFIFO_CENTER);
2072                         }
2073                         return 0;
2074                 }
2075         }
2076
2077         /* Find middle of window for each DQ bit */
2078         mid_min = left_edge[0] - right_edge[0];
2079         min_index = 0;
2080         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2081                 mid = left_edge[i] - right_edge[i];
2082                 if (mid < mid_min) {
2083                         mid_min = mid;
2084                         min_index = i;
2085                 }
2086         }
2087
2088         /*
2089          * -mid_min/2 represents the amount that we need to move DQS.
2090          * If mid_min is odd and positive we'll need to add one to
2091          * make sure the rounding in further calculations is correct
2092          * (always bias to the right), so just add 1 for all positive values.
2093          */
2094         if (mid_min > 0)
2095                 mid_min++;
2096
2097         mid_min = mid_min / 2;
2098
2099         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2100                    __func__, __LINE__, mid_min, min_index);
2101
2102         /* Determine the amount we can change DQS (which is -mid_min) */
2103         orig_mid_min = mid_min;
2104         new_dqs = start_dqs - mid_min;
2105         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2106                 new_dqs = IO_DQS_IN_DELAY_MAX;
2107         else if (new_dqs < 0)
2108                 new_dqs = 0;
2109
2110         mid_min = start_dqs - new_dqs;
2111         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2112                    mid_min, new_dqs);
2113
2114         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2115                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2116                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2117                 else if (start_dqs_en - mid_min < 0)
2118                         mid_min += start_dqs_en - mid_min;
2119         }
2120         new_dqs = start_dqs - mid_min;
2121
2122         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2123                    new_dqs=%d mid_min=%d\n", start_dqs,
2124                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2125                    new_dqs, mid_min);
2126
2127         /* Initialize data for export structures */
2128         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2129         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2130
2131         /* add delay to bring centre of all DQ windows to the same "level" */
2132         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2133                 /* Use values before divide by 2 to reduce round off error */
2134                 shift_dq = (left_edge[i] - right_edge[i] -
2135                         (left_edge[min_index] - right_edge[min_index]))/2  +
2136                         (orig_mid_min - mid_min);
2137
2138                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2139                            shift_dq[%u]=%d\n", i, shift_dq);
2140
2141                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2142                 temp_dq_in_delay1 = readl(addr + (p << 2));
2143                 temp_dq_in_delay2 = readl(addr + (i << 2));
2144
2145                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2146                         (int32_t)IO_IO_IN_DELAY_MAX) {
2147                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2148                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2149                         shift_dq = -(int32_t)temp_dq_in_delay1;
2150                 }
2151                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2152                            shift_dq[%u]=%d\n", i, shift_dq);
2153                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2154                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2155                 scc_mgr_load_dq(p);
2156
2157                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2158                            left_edge[i] - shift_dq + (-mid_min),
2159                            right_edge[i] + shift_dq - (-mid_min));
2160                 /* To determine values for export structures */
2161                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2162                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2163
2164                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2165                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2166         }
2167
2168         final_dqs = new_dqs;
2169         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2170                 final_dqs_en = start_dqs_en - mid_min;
2171
2172         /* Move DQS-en */
2173         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2174                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2175                 scc_mgr_load_dqs(read_group);
2176         }
2177
2178         /* Move DQS */
2179         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2180         scc_mgr_load_dqs(read_group);
2181         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2182                    dqs_margin=%d", __func__, __LINE__,
2183                    dq_margin, dqs_margin);
2184
2185         /*
2186          * Do not remove this line as it makes sure all of our decisions
2187          * have been applied. Apply the update bit.
2188          */
2189         writel(0, &sdr_scc_mgr->update);
2190
2191         return (dq_margin >= 0) && (dqs_margin >= 0);
2192 }
2193
2194 /**
2195  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2196  * @rw_group:   Read/Write Group
2197  * @phase:      DQ/DQS phase
2198  *
2199  * Because initially no communication ca be reliably performed with the memory
2200  * device, the sequencer uses a guaranteed write mechanism to write data into
2201  * the memory device.
2202  */
2203 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2204                                                  const u32 phase)
2205 {
2206         int ret;
2207
2208         /* Set a particular DQ/DQS phase. */
2209         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2210
2211         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2212                    __func__, __LINE__, rw_group, phase);
2213
2214         /*
2215          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2216          * Load up the patterns used by read calibration using the
2217          * current DQDQS phase.
2218          */
2219         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2220
2221         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2222                 return 0;
2223
2224         /*
2225          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2226          * Back-to-Back reads of the patterns used for calibration.
2227          */
2228         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2229         if (ret)
2230                 debug_cond(DLEVEL == 1,
2231                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2232                            __func__, __LINE__, rw_group, phase);
2233         return ret;
2234 }
2235
2236 /**
2237  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2238  * @rw_group:   Read/Write Group
2239  * @test_bgn:   Rank at which the test begins
2240  *
2241  * DQS enable calibration ensures reliable capture of the DQ signal without
2242  * glitches on the DQS line.
2243  */
2244 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2245                                                        const u32 test_bgn)
2246 {
2247         int ret;
2248
2249         /*
2250          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2251          * DQS and DQS Eanble Signal Relationships.
2252          */
2253         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
2254                                                 rw_group, test_bgn);
2255         return ret;
2256 }
2257
2258 /**
2259  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2260  * @rw_group:           Read/Write Group
2261  * @test_bgn:           Rank at which the test begins
2262  * @use_read_test:      Perform a read test
2263  * @update_fom:         Update FOM
2264  *
2265  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2266  * within a group.
2267  */
2268 static int
2269 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2270                                       const int use_read_test,
2271                                       const int update_fom)
2272
2273 {
2274         int ret, grp_calibrated;
2275         u32 rank_bgn, sr;
2276
2277         /*
2278          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2279          * Read per-bit deskew can be done on a per shadow register basis.
2280          */
2281         grp_calibrated = 1;
2282         for (rank_bgn = 0, sr = 0;
2283              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2284              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2285                 /* Check if this set of ranks should be skipped entirely. */
2286                 if (param->skip_shadow_regs[sr])
2287                         continue;
2288
2289                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2290                                                         rw_group, test_bgn,
2291                                                         use_read_test,
2292                                                         update_fom);
2293                 if (ret)
2294                         continue;
2295
2296                 grp_calibrated = 0;
2297         }
2298
2299         if (!grp_calibrated)
2300                 return -EIO;
2301
2302         return 0;
2303 }
2304
2305 /**
2306  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2307  * @rw_group:           Read/Write Group
2308  * @test_bgn:           Rank at which the test begins
2309  *
2310  * Stage 1: Calibrate the read valid prediction FIFO.
2311  *
2312  * This function implements UniPHY calibration Stage 1, as explained in
2313  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2314  *
2315  * - read valid prediction will consist of finding:
2316  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2317  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2318  *  - we also do a per-bit deskew on the DQ lines.
2319  */
2320 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2321 {
2322         uint32_t p, d;
2323         uint32_t dtaps_per_ptap;
2324         uint32_t failed_substage;
2325
2326         int ret;
2327
2328         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2329
2330         /* Update info for sims */
2331         reg_file_set_group(rw_group);
2332         reg_file_set_stage(CAL_STAGE_VFIFO);
2333         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2334
2335         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2336
2337         /* USER Determine number of delay taps for each phase tap. */
2338         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2339                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2340
2341         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2342                 /*
2343                  * In RLDRAMX we may be messing the delay of pins in
2344                  * the same write rw_group but outside of the current read
2345                  * the rw_group, but that's ok because we haven't calibrated
2346                  * output side yet.
2347                  */
2348                 if (d > 0) {
2349                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2350                                                                 rw_group, d);
2351                 }
2352
2353                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2354                         /* 1) Guaranteed Write */
2355                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2356                         if (ret)
2357                                 break;
2358
2359                         /* 2) DQS Enable Calibration */
2360                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2361                                                                           test_bgn);
2362                         if (ret) {
2363                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2364                                 continue;
2365                         }
2366
2367                         /* 3) Centering DQ/DQS */
2368                         /*
2369                          * If doing read after write calibration, do not update
2370                          * FOM now. Do it then.
2371                          */
2372                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2373                                                                 test_bgn, 1, 0);
2374                         if (ret) {
2375                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2376                                 continue;
2377                         }
2378
2379                         /* All done. */
2380                         goto cal_done_ok;
2381                 }
2382         }
2383
2384         /* Calibration Stage 1 failed. */
2385         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2386         return 0;
2387
2388         /* Calibration Stage 1 completed OK. */
2389 cal_done_ok:
2390         /*
2391          * Reset the delay chains back to zero if they have moved > 1
2392          * (check for > 1 because loop will increase d even when pass in
2393          * first case).
2394          */
2395         if (d > 2)
2396                 scc_mgr_zero_group(rw_group, 1);
2397
2398         return 1;
2399 }
2400
2401 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2402 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2403                                                uint32_t test_bgn)
2404 {
2405         uint32_t rank_bgn, sr;
2406         uint32_t grp_calibrated;
2407         uint32_t write_group;
2408
2409         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2410
2411         /* update info for sims */
2412
2413         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2414         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2415
2416         write_group = read_group;
2417
2418         /* update info for sims */
2419         reg_file_set_group(read_group);
2420
2421         grp_calibrated = 1;
2422         /* Read per-bit deskew can be done on a per shadow register basis */
2423         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2424                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2425                 /* Determine if this set of ranks should be skipped entirely */
2426                 if (!param->skip_shadow_regs[sr]) {
2427                 /* This is the last calibration round, update FOM here */
2428                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2429                                                                 write_group,
2430                                                                 read_group,
2431                                                                 test_bgn, 0,
2432                                                                 1)) {
2433                                 grp_calibrated = 0;
2434                         }
2435                 }
2436         }
2437
2438
2439         if (grp_calibrated == 0) {
2440                 set_failing_group_stage(write_group,
2441                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2442                                         CAL_SUBSTAGE_VFIFO_CENTER);
2443                 return 0;
2444         }
2445
2446         return 1;
2447 }
2448
2449 /* Calibrate LFIFO to find smallest read latency */
2450 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2451 {
2452         uint32_t found_one;
2453         uint32_t bit_chk;
2454
2455         debug("%s:%d\n", __func__, __LINE__);
2456
2457         /* update info for sims */
2458         reg_file_set_stage(CAL_STAGE_LFIFO);
2459         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2460
2461         /* Load up the patterns used by read calibration for all ranks */
2462         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2463         found_one = 0;
2464
2465         do {
2466                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2467                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2468                            __func__, __LINE__, gbl->curr_read_lat);
2469
2470                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2471                                                               NUM_READ_TESTS,
2472                                                               PASS_ALL_BITS,
2473                                                               &bit_chk, 1)) {
2474                         break;
2475                 }
2476
2477                 found_one = 1;
2478                 /* reduce read latency and see if things are working */
2479                 /* correctly */
2480                 gbl->curr_read_lat--;
2481         } while (gbl->curr_read_lat > 0);
2482
2483         /* reset the fifos to get pointers to known state */
2484
2485         writel(0, &phy_mgr_cmd->fifo_reset);
2486
2487         if (found_one) {
2488                 /* add a fudge factor to the read latency that was determined */
2489                 gbl->curr_read_lat += 2;
2490                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2491                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2492                            read_lat=%u\n", __func__, __LINE__,
2493                            gbl->curr_read_lat);
2494                 return 1;
2495         } else {
2496                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2497                                         CAL_SUBSTAGE_READ_LATENCY);
2498
2499                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2500                            read_lat=%u\n", __func__, __LINE__,
2501                            gbl->curr_read_lat);
2502                 return 0;
2503         }
2504 }
2505
2506 /*
2507  * issue write test command.
2508  * two variants are provided. one that just tests a write pattern and
2509  * another that tests datamask functionality.
2510  */
2511 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2512                                                   uint32_t test_dm)
2513 {
2514         uint32_t mcc_instruction;
2515         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2516                 ENABLE_SUPER_QUICK_CALIBRATION);
2517         uint32_t rw_wl_nop_cycles;
2518         uint32_t addr;
2519
2520         /*
2521          * Set counter and jump addresses for the right
2522          * number of NOP cycles.
2523          * The number of supported NOP cycles can range from -1 to infinity
2524          * Three different cases are handled:
2525          *
2526          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2527          *    mechanism will be used to insert the right number of NOPs
2528          *
2529          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2530          *    issuing the write command will jump straight to the
2531          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2532          *    data (for RLD), skipping
2533          *    the NOP micro-instruction all together
2534          *
2535          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2536          *    turned on in the same micro-instruction that issues the write
2537          *    command. Then we need
2538          *    to directly jump to the micro-instruction that sends out the data
2539          *
2540          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2541          *       (2 and 3). One jump-counter (0) is used to perform multiple
2542          *       write-read operations.
2543          *       one counter left to issue this command in "multiple-group" mode
2544          */
2545
2546         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2547
2548         if (rw_wl_nop_cycles == -1) {
2549                 /*
2550                  * CNTR 2 - We want to execute the special write operation that
2551                  * turns on DQS right away and then skip directly to the
2552                  * instruction that sends out the data. We set the counter to a
2553                  * large number so that the jump is always taken.
2554                  */
2555                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2556
2557                 /* CNTR 3 - Not used */
2558                 if (test_dm) {
2559                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2560                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2561                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2562                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2563                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2564                 } else {
2565                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2566                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2567                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2568                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2569                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2570                 }
2571         } else if (rw_wl_nop_cycles == 0) {
2572                 /*
2573                  * CNTR 2 - We want to skip the NOP operation and go straight
2574                  * to the DQS enable instruction. We set the counter to a large
2575                  * number so that the jump is always taken.
2576                  */
2577                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2578
2579                 /* CNTR 3 - Not used */
2580                 if (test_dm) {
2581                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2582                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2583                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2584                 } else {
2585                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2586                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2587                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588                 }
2589         } else {
2590                 /*
2591                  * CNTR 2 - In this case we want to execute the next instruction
2592                  * and NOT take the jump. So we set the counter to 0. The jump
2593                  * address doesn't count.
2594                  */
2595                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2596                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2597
2598                 /*
2599                  * CNTR 3 - Set the nop counter to the number of cycles we
2600                  * need to loop for, minus 1.
2601                  */
2602                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2603                 if (test_dm) {
2604                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2605                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2606                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2607                 } else {
2608                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2609                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2610                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2611                 }
2612         }
2613
2614         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2615                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2616
2617         if (quick_write_mode)
2618                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2619         else
2620                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2621
2622         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2623
2624         /*
2625          * CNTR 1 - This is used to ensure enough time elapses
2626          * for read data to come back.
2627          */
2628         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2629
2630         if (test_dm) {
2631                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2632                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2633         } else {
2634                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2635                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2636         }
2637
2638         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2639         writel(mcc_instruction, addr + (group << 2));
2640 }
2641
2642 /* Test writes, can check for a single bit pass or multiple bit pass */
2643 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2644         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2645         uint32_t *bit_chk, uint32_t all_ranks)
2646 {
2647         uint32_t r;
2648         uint32_t correct_mask_vg;
2649         uint32_t tmp_bit_chk;
2650         uint32_t vg;
2651         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2652                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2653         uint32_t addr_rw_mgr;
2654         uint32_t base_rw_mgr;
2655
2656         *bit_chk = param->write_correct_mask;
2657         correct_mask_vg = param->write_correct_mask_vg;
2658
2659         for (r = rank_bgn; r < rank_end; r++) {
2660                 if (param->skip_ranks[r]) {
2661                         /* request to skip the rank */
2662                         continue;
2663                 }
2664
2665                 /* set rank */
2666                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2667
2668                 tmp_bit_chk = 0;
2669                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2670                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2671                         /* reset the fifos to get pointers to known state */
2672                         writel(0, &phy_mgr_cmd->fifo_reset);
2673
2674                         tmp_bit_chk = tmp_bit_chk <<
2675                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2676                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2677                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2678                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2679                                 use_dm);
2680
2681                         base_rw_mgr = readl(addr_rw_mgr);
2682                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2683                         if (vg == 0)
2684                                 break;
2685                 }
2686                 *bit_chk &= tmp_bit_chk;
2687         }
2688
2689         if (all_correct) {
2690                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2691                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2692                            %u => %lu", write_group, use_dm,
2693                            *bit_chk, param->write_correct_mask,
2694                            (long unsigned int)(*bit_chk ==
2695                            param->write_correct_mask));
2696                 return *bit_chk == param->write_correct_mask;
2697         } else {
2698                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2699                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2700                        write_group, use_dm, *bit_chk);
2701                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2702                         (long unsigned int)(*bit_chk != 0));
2703                 return *bit_chk != 0x00;
2704         }
2705 }
2706
2707 /*
2708  * center all windows. do per-bit-deskew to possibly increase size of
2709  * certain windows.
2710  */
2711 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2712         uint32_t write_group, uint32_t test_bgn)
2713 {
2714         uint32_t i, p, min_index;
2715         int32_t d;
2716         /*
2717          * Store these as signed since there are comparisons with
2718          * signed numbers.
2719          */
2720         uint32_t bit_chk;
2721         uint32_t sticky_bit_chk;
2722         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2723         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2724         int32_t mid;
2725         int32_t mid_min, orig_mid_min;
2726         int32_t new_dqs, start_dqs, shift_dq;
2727         int32_t dq_margin, dqs_margin, dm_margin;
2728         uint32_t stop;
2729         uint32_t temp_dq_out1_delay;
2730         uint32_t addr;
2731
2732         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2733
2734         dm_margin = 0;
2735
2736         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2737         start_dqs = readl(addr +
2738                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2739
2740         /* per-bit deskew */
2741
2742         /*
2743          * set the left and right edge of each bit to an illegal value
2744          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2745          */
2746         sticky_bit_chk = 0;
2747         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2748                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2749                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2750         }
2751
2752         /* Search for the left edge of the window for each bit */
2753         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2754                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2755
2756                 writel(0, &sdr_scc_mgr->update);
2757
2758                 /*
2759                  * Stop searching when the read test doesn't pass AND when
2760                  * we've seen a passing read on every bit.
2761                  */
2762                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2763                         0, PASS_ONE_BIT, &bit_chk, 0);
2764                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2765                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2766                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2767                            == %u && %u [bit_chk= %u ]\n",
2768                         d, sticky_bit_chk, param->write_correct_mask,
2769                         stop, bit_chk);
2770
2771                 if (stop == 1) {
2772                         break;
2773                 } else {
2774                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2775                                 if (bit_chk & 1) {
2776                                         /*
2777                                          * Remember a passing test as the
2778                                          * left_edge.
2779                                          */
2780                                         left_edge[i] = d;
2781                                 } else {
2782                                         /*
2783                                          * If a left edge has not been seen
2784                                          * yet, then a future passing test will
2785                                          * mark this edge as the right edge.
2786                                          */
2787                                         if (left_edge[i] ==
2788                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2789                                                 right_edge[i] = -(d + 1);
2790                                         }
2791                                 }
2792                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2793                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2794                                            (int)(bit_chk & 1), i, left_edge[i]);
2795                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2796                                        right_edge[i]);
2797                                 bit_chk = bit_chk >> 1;
2798                         }
2799                 }
2800         }
2801
2802         /* Reset DQ delay chains to 0 */
2803         scc_mgr_apply_group_dq_out1_delay(0);
2804         sticky_bit_chk = 0;
2805         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2806                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2807                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2808                            i, left_edge[i], i, right_edge[i]);
2809
2810                 /*
2811                  * Check for cases where we haven't found the left edge,
2812                  * which makes our assignment of the the right edge invalid.
2813                  * Reset it to the illegal value.
2814                  */
2815                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2816                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2817                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2818                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2819                                    right_edge[%u]: %d\n", __func__, __LINE__,
2820                                    i, right_edge[i]);
2821                 }
2822
2823                 /*
2824                  * Reset sticky bit (except for bits where we have
2825                  * seen the left edge).
2826                  */
2827                 sticky_bit_chk = sticky_bit_chk << 1;
2828                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2829                         sticky_bit_chk = sticky_bit_chk | 1;
2830
2831                 if (i == 0)
2832                         break;
2833         }
2834
2835         /* Search for the right edge of the window for each bit */
2836         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2837                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2838                                                         d + start_dqs);
2839
2840                 writel(0, &sdr_scc_mgr->update);
2841
2842                 /*
2843                  * Stop searching when the read test doesn't pass AND when
2844                  * we've seen a passing read on every bit.
2845                  */
2846                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2847                         0, PASS_ONE_BIT, &bit_chk, 0);
2848
2849                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2850                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2851
2852                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2853                            %u && %u\n", d, sticky_bit_chk,
2854                            param->write_correct_mask, stop);
2855
2856                 if (stop == 1) {
2857                         if (d == 0) {
2858                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2859                                         i++) {
2860                                         /* d = 0 failed, but it passed when
2861                                         testing the left edge, so it must be
2862                                         marginal, set it to -1 */
2863                                         if (right_edge[i] ==
2864                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2865                                                 left_edge[i] !=
2866                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2867                                                 right_edge[i] = -1;
2868                                         }
2869                                 }
2870                         }
2871                         break;
2872                 } else {
2873                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2874                                 if (bit_chk & 1) {
2875                                         /*
2876                                          * Remember a passing test as
2877                                          * the right_edge.
2878                                          */
2879                                         right_edge[i] = d;
2880                                 } else {
2881                                         if (d != 0) {
2882                                                 /*
2883                                                  * If a right edge has not
2884                                                  * been seen yet, then a future
2885                                                  * passing test will mark this
2886                                                  * edge as the left edge.
2887                                                  */
2888                                                 if (right_edge[i] ==
2889                                                     IO_IO_OUT1_DELAY_MAX + 1)
2890                                                         left_edge[i] = -(d + 1);
2891                                         } else {
2892                                                 /*
2893                                                  * d = 0 failed, but it passed
2894                                                  * when testing the left edge,
2895                                                  * so it must be marginal, set
2896                                                  * it to -1.
2897                                                  */
2898                                                 if (right_edge[i] ==
2899                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2900                                                     left_edge[i] !=
2901                                                     IO_IO_OUT1_DELAY_MAX + 1)
2902                                                         right_edge[i] = -1;
2903                                                 /*
2904                                                  * If a right edge has not been
2905                                                  * seen yet, then a future
2906                                                  * passing test will mark this
2907                                                  * edge as the left edge.
2908                                                  */
2909                                                 else if (right_edge[i] ==
2910                                                         IO_IO_OUT1_DELAY_MAX +
2911                                                         1)
2912                                                         left_edge[i] = -(d + 1);
2913                                         }
2914                                 }
2915                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2916                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2917                                            (int)(bit_chk & 1), i, left_edge[i]);
2918                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2919                                            right_edge[i]);
2920                                 bit_chk = bit_chk >> 1;
2921                         }
2922                 }
2923         }
2924
2925         /* Check that all bits have a window */
2926         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2927                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2928                            %d right_edge[%u]: %d", __func__, __LINE__,
2929                            i, left_edge[i], i, right_edge[i]);
2930                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2931                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2932                         set_failing_group_stage(test_bgn + i,
2933                                                 CAL_STAGE_WRITES,
2934                                                 CAL_SUBSTAGE_WRITES_CENTER);
2935                         return 0;
2936                 }
2937         }
2938
2939         /* Find middle of window for each DQ bit */
2940         mid_min = left_edge[0] - right_edge[0];
2941         min_index = 0;
2942         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2943                 mid = left_edge[i] - right_edge[i];
2944                 if (mid < mid_min) {
2945                         mid_min = mid;
2946                         min_index = i;
2947                 }
2948         }
2949
2950         /*
2951          * -mid_min/2 represents the amount that we need to move DQS.
2952          * If mid_min is odd and positive we'll need to add one to
2953          * make sure the rounding in further calculations is correct
2954          * (always bias to the right), so just add 1 for all positive values.
2955          */
2956         if (mid_min > 0)
2957                 mid_min++;
2958         mid_min = mid_min / 2;
2959         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2960                    __LINE__, mid_min);
2961
2962         /* Determine the amount we can change DQS (which is -mid_min) */
2963         orig_mid_min = mid_min;
2964         new_dqs = start_dqs;
2965         mid_min = 0;
2966         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2967                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2968         /* Initialize data for export structures */
2969         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2970         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2971
2972         /* add delay to bring centre of all DQ windows to the same "level" */
2973         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2974                 /* Use values before divide by 2 to reduce round off error */
2975                 shift_dq = (left_edge[i] - right_edge[i] -
2976                         (left_edge[min_index] - right_edge[min_index]))/2  +
2977                 (orig_mid_min - mid_min);
2978
2979                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2980                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2981
2982                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2983                 temp_dq_out1_delay = readl(addr + (i << 2));
2984                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2985                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2986                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2987                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2988                         shift_dq = -(int32_t)temp_dq_out1_delay;
2989                 }
2990                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2991                            i, shift_dq);
2992                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2993                 scc_mgr_load_dq(i);
2994
2995                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2996                            left_edge[i] - shift_dq + (-mid_min),
2997                            right_edge[i] + shift_dq - (-mid_min));
2998                 /* To determine values for export structures */
2999                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3000                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
3001
3002                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3003                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3004         }
3005
3006         /* Move DQS */
3007         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3008         writel(0, &sdr_scc_mgr->update);
3009
3010         /* Centre DM */
3011         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3012
3013         /*
3014          * set the left and right edge of each bit to an illegal value,
3015          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3016          */
3017         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3018         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3019         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3020         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3021         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3022         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3023         int32_t win_best = 0;
3024
3025         /* Search for the/part of the window with DM shift */
3026         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3027                 scc_mgr_apply_group_dm_out1_delay(d);
3028                 writel(0, &sdr_scc_mgr->update);
3029
3030                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3031                                                     PASS_ALL_BITS, &bit_chk,
3032                                                     0)) {
3033                         /* USE Set current end of the window */
3034                         end_curr = -d;
3035                         /*
3036                          * If a starting edge of our window has not been seen
3037                          * this is our current start of the DM window.
3038                          */
3039                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3040                                 bgn_curr = -d;
3041
3042                         /*
3043                          * If current window is bigger than best seen.
3044                          * Set best seen to be current window.
3045                          */
3046                         if ((end_curr-bgn_curr+1) > win_best) {
3047                                 win_best = end_curr-bgn_curr+1;
3048                                 bgn_best = bgn_curr;
3049                                 end_best = end_curr;
3050                         }
3051                 } else {
3052                         /* We just saw a failing test. Reset temp edge */
3053                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3054                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3055                         }
3056                 }
3057
3058
3059         /* Reset DM delay chains to 0 */
3060         scc_mgr_apply_group_dm_out1_delay(0);
3061
3062         /*
3063          * Check to see if the current window nudges up aganist 0 delay.
3064          * If so we need to continue the search by shifting DQS otherwise DQS
3065          * search begins as a new search. */
3066         if (end_curr != 0) {
3067                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3068                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3069         }
3070
3071         /* Search for the/part of the window with DQS shifts */
3072         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3073                 /*
3074                  * Note: This only shifts DQS, so are we limiting ourselve to
3075                  * width of DQ unnecessarily.
3076                  */
3077                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3078                                                         d + new_dqs);
3079
3080                 writel(0, &sdr_scc_mgr->update);
3081                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3082                                                     PASS_ALL_BITS, &bit_chk,
3083                                                     0)) {
3084                         /* USE Set current end of the window */
3085                         end_curr = d;
3086                         /*
3087                          * If a beginning edge of our window has not been seen
3088                          * this is our current begin of the DM window.
3089                          */
3090                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3091                                 bgn_curr = d;
3092
3093                         /*
3094                          * If current window is bigger than best seen. Set best
3095                          * seen to be current window.
3096                          */
3097                         if ((end_curr-bgn_curr+1) > win_best) {
3098                                 win_best = end_curr-bgn_curr+1;
3099                                 bgn_best = bgn_curr;
3100                                 end_best = end_curr;
3101                         }
3102                 } else {
3103                         /* We just saw a failing test. Reset temp edge */
3104                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3105                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3106
3107                         /* Early exit optimization: if ther remaining delay
3108                         chain space is less than already seen largest window
3109                         we can exit */
3110                         if ((win_best-1) >
3111                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3112                                         break;
3113                                 }
3114                         }
3115                 }
3116
3117         /* assign left and right edge for cal and reporting; */
3118         left_edge[0] = -1*bgn_best;
3119         right_edge[0] = end_best;
3120
3121         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3122                    __LINE__, left_edge[0], right_edge[0]);
3123
3124         /* Move DQS (back to orig) */
3125         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3126
3127         /* Move DM */
3128
3129         /* Find middle of window for the DM bit */
3130         mid = (left_edge[0] - right_edge[0]) / 2;
3131
3132         /* only move right, since we are not moving DQS/DQ */
3133         if (mid < 0)
3134                 mid = 0;
3135
3136         /* dm_marign should fail if we never find a window */
3137         if (win_best == 0)
3138                 dm_margin = -1;
3139         else
3140                 dm_margin = left_edge[0] - mid;
3141
3142         scc_mgr_apply_group_dm_out1_delay(mid);
3143         writel(0, &sdr_scc_mgr->update);
3144
3145         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3146                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3147                    right_edge[0], mid, dm_margin);
3148         /* Export values */
3149         gbl->fom_out += dq_margin + dqs_margin;
3150
3151         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3152                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3153                    dq_margin, dqs_margin, dm_margin);
3154
3155         /*
3156          * Do not remove this line as it makes sure all of our
3157          * decisions have been applied.
3158          */
3159         writel(0, &sdr_scc_mgr->update);
3160         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3161 }
3162
3163 /* calibrate the write operations */
3164 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3165         uint32_t test_bgn)
3166 {
3167         /* update info for sims */
3168         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3169
3170         reg_file_set_stage(CAL_STAGE_WRITES);
3171         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3172
3173         reg_file_set_group(g);
3174
3175         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3176                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3177                                         CAL_SUBSTAGE_WRITES_CENTER);
3178                 return 0;
3179         }
3180
3181         return 1;
3182 }
3183
3184 /**
3185  * mem_precharge_and_activate() - Precharge all banks and activate
3186  *
3187  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3188  */
3189 static void mem_precharge_and_activate(void)
3190 {
3191         int r;
3192
3193         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3194                 /* Test if the rank should be skipped. */
3195                 if (param->skip_ranks[r])
3196                         continue;
3197
3198                 /* Set rank. */
3199                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3200
3201                 /* Precharge all banks. */
3202                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3203                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3204
3205                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3206                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3207                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3208
3209                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3210                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3211                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3212
3213                 /* Activate rows. */
3214                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3215                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3216         }
3217 }
3218
3219 /**
3220  * mem_init_latency() - Configure memory RLAT and WLAT settings
3221  *
3222  * Configure memory RLAT and WLAT parameters.
3223  */
3224 static void mem_init_latency(void)
3225 {
3226         /*
3227          * For AV/CV, LFIFO is hardened and always runs at full rate
3228          * so max latency in AFI clocks, used here, is correspondingly
3229          * smaller.
3230          */
3231         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3232         u32 rlat, wlat;
3233
3234         debug("%s:%d\n", __func__, __LINE__);
3235
3236         /*
3237          * Read in write latency.
3238          * WL for Hard PHY does not include additive latency.
3239          */
3240         wlat = readl(&data_mgr->t_wl_add);
3241         wlat += readl(&data_mgr->mem_t_add);
3242
3243         gbl->rw_wl_nop_cycles = wlat - 1;
3244
3245         /* Read in readl latency. */
3246         rlat = readl(&data_mgr->t_rl_add);
3247
3248         /* Set a pretty high read latency initially. */
3249         gbl->curr_read_lat = rlat + 16;
3250         if (gbl->curr_read_lat > max_latency)
3251                 gbl->curr_read_lat = max_latency;
3252
3253         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3254
3255         /* Advertise write latency. */
3256         writel(wlat, &phy_mgr_cfg->afi_wlat);
3257 }
3258
3259 /**
3260  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3261  *
3262  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3263  */
3264 static void mem_skip_calibrate(void)
3265 {
3266         uint32_t vfifo_offset;
3267         uint32_t i, j, r;
3268
3269         debug("%s:%d\n", __func__, __LINE__);
3270         /* Need to update every shadow register set used by the interface */
3271         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3272              r += NUM_RANKS_PER_SHADOW_REG) {
3273                 /*
3274                  * Set output phase alignment settings appropriate for
3275                  * skip calibration.
3276                  */
3277                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3278                         scc_mgr_set_dqs_en_phase(i, 0);
3279 #if IO_DLL_CHAIN_LENGTH == 6
3280                         scc_mgr_set_dqdqs_output_phase(i, 6);
3281 #else
3282                         scc_mgr_set_dqdqs_output_phase(i, 7);
3283 #endif
3284                         /*
3285                          * Case:33398
3286                          *
3287                          * Write data arrives to the I/O two cycles before write
3288                          * latency is reached (720 deg).
3289                          *   -> due to bit-slip in a/c bus
3290                          *   -> to allow board skew where dqs is longer than ck
3291                          *      -> how often can this happen!?
3292                          *      -> can claim back some ptaps for high freq
3293                          *       support if we can relax this, but i digress...
3294                          *
3295                          * The write_clk leads mem_ck by 90 deg
3296                          * The minimum ptap of the OPA is 180 deg
3297                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3298                          * The write_clk is always delayed by 2 ptaps
3299                          *
3300                          * Hence, to make DQS aligned to CK, we need to delay
3301                          * DQS by:
3302                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3303                          *
3304                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3305                          * gives us the number of ptaps, which simplies to:
3306                          *
3307                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3308                          */
3309                         scc_mgr_set_dqdqs_output_phase(i,
3310                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3311                 }
3312                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3313                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3314
3315                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3316                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3317                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3318                 }
3319                 writel(0xff, &sdr_scc_mgr->dq_ena);
3320                 writel(0xff, &sdr_scc_mgr->dm_ena);
3321                 writel(0, &sdr_scc_mgr->update);
3322         }
3323
3324         /* Compensate for simulation model behaviour */
3325         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3326                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3327                 scc_mgr_load_dqs(i);
3328         }
3329         writel(0, &sdr_scc_mgr->update);
3330
3331         /*
3332          * ArriaV has hard FIFOs that can only be initialized by incrementing
3333          * in sequencer.
3334          */
3335         vfifo_offset = CALIB_VFIFO_OFFSET;
3336         for (j = 0; j < vfifo_offset; j++)
3337                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3338         writel(0, &phy_mgr_cmd->fifo_reset);
3339
3340         /*
3341          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3342          * setting from generation-time constant.
3343          */
3344         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3345         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3346 }
3347
3348 /**
3349  * mem_calibrate() - Memory calibration entry point.
3350  *
3351  * Perform memory calibration.
3352  */
3353 static uint32_t mem_calibrate(void)
3354 {
3355         uint32_t i;
3356         uint32_t rank_bgn, sr;
3357         uint32_t write_group, write_test_bgn;
3358         uint32_t read_group, read_test_bgn;
3359         uint32_t run_groups, current_run;
3360         uint32_t failing_groups = 0;
3361         uint32_t group_failed = 0;
3362
3363         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3364                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3365
3366         debug("%s:%d\n", __func__, __LINE__);
3367
3368         /* Initialize the data settings */
3369         gbl->error_substage = CAL_SUBSTAGE_NIL;
3370         gbl->error_stage = CAL_STAGE_NIL;
3371         gbl->error_group = 0xff;
3372         gbl->fom_in = 0;
3373         gbl->fom_out = 0;
3374
3375         /* Initialize WLAT and RLAT. */
3376         mem_init_latency();
3377
3378         /* Initialize bit slips. */
3379         mem_precharge_and_activate();
3380
3381         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3382                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3383                           SCC_MGR_GROUP_COUNTER_OFFSET);
3384                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3385                 if (i == 0)
3386                         scc_mgr_set_hhp_extras();
3387
3388                 scc_set_bypass_mode(i);
3389         }
3390
3391         /* Calibration is skipped. */
3392         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3393                 /*
3394                  * Set VFIFO and LFIFO to instant-on settings in skip
3395                  * calibration mode.
3396                  */
3397                 mem_skip_calibrate();
3398
3399                 /*
3400                  * Do not remove this line as it makes sure all of our
3401                  * decisions have been applied.
3402                  */
3403                 writel(0, &sdr_scc_mgr->update);
3404                 return 1;
3405         }
3406
3407         /* Calibration is not skipped. */
3408         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3409                 /*
3410                  * Zero all delay chain/phase settings for all
3411                  * groups and all shadow register sets.
3412                  */
3413                 scc_mgr_zero_all();
3414
3415                 run_groups = ~param->skip_groups;
3416
3417                 for (write_group = 0, write_test_bgn = 0; write_group
3418                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3419                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3420
3421                         /* Initialize the group failure */
3422                         group_failed = 0;
3423
3424                         current_run = run_groups & ((1 <<
3425                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3426                         run_groups = run_groups >>
3427                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3428
3429                         if (current_run == 0)
3430                                 continue;
3431
3432                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3433                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3434                         scc_mgr_zero_group(write_group, 0);
3435
3436                         for (read_group = write_group * rwdqs_ratio,
3437                              read_test_bgn = 0;
3438                              read_group < (write_group + 1) * rwdqs_ratio;
3439                              read_group++,
3440                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3441                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3442                                         continue;
3443
3444                                 /* Calibrate the VFIFO */
3445                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3446                                                                read_test_bgn))
3447                                         continue;
3448
3449                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3450                                         return 0;
3451
3452                                 /* The group failed, we're done. */
3453                                 goto grp_failed;
3454                         }
3455
3456                         /* Calibrate the output side */
3457                         for (rank_bgn = 0, sr = 0;
3458                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3459                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3460                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3461                                         continue;
3462
3463                                 /* Not needed in quick mode! */
3464                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3465                                         continue;
3466
3467                                 /*
3468                                  * Determine if this set of ranks
3469                                  * should be skipped entirely.
3470                                  */
3471                                 if (param->skip_shadow_regs[sr])
3472                                         continue;
3473
3474                                 /* Calibrate WRITEs */
3475                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3476                                                 write_group, write_test_bgn))
3477                                         continue;
3478
3479                                 group_failed = 1;
3480                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3481                                         return 0;
3482                         }
3483
3484                         /* Some group failed, we're done. */
3485                         if (group_failed)
3486                                 goto grp_failed;
3487
3488                         for (read_group = write_group * rwdqs_ratio,
3489                              read_test_bgn = 0;
3490                              read_group < (write_group + 1) * rwdqs_ratio;
3491                              read_group++,
3492                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3493                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3494                                         continue;
3495
3496                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3497                                                                 read_test_bgn))
3498                                         continue;
3499
3500                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3501                                         return 0;
3502
3503                                 /* The group failed, we're done. */
3504                                 goto grp_failed;
3505                         }
3506
3507                         /* No group failed, continue as usual. */
3508                         continue;
3509
3510 grp_failed:             /* A group failed, increment the counter. */
3511                         failing_groups++;
3512                 }
3513
3514                 /*
3515                  * USER If there are any failing groups then report
3516                  * the failure.
3517                  */
3518                 if (failing_groups != 0)
3519                         return 0;
3520
3521                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3522                         continue;
3523
3524                 /*
3525                  * If we're skipping groups as part of debug,
3526                  * don't calibrate LFIFO.
3527                  */
3528                 if (param->skip_groups != 0)
3529                         continue;
3530
3531                 /* Calibrate the LFIFO */
3532                 if (!rw_mgr_mem_calibrate_lfifo())
3533                         return 0;
3534         }
3535
3536         /*
3537          * Do not remove this line as it makes sure all of our decisions
3538          * have been applied.
3539          */
3540         writel(0, &sdr_scc_mgr->update);
3541         return 1;
3542 }
3543
3544 /**
3545  * run_mem_calibrate() - Perform memory calibration
3546  *
3547  * This function triggers the entire memory calibration procedure.
3548  */
3549 static int run_mem_calibrate(void)
3550 {
3551         int pass;
3552
3553         debug("%s:%d\n", __func__, __LINE__);
3554
3555         /* Reset pass/fail status shown on afi_cal_success/fail */
3556         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3557
3558         /* Stop tracking manager. */
3559         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3560
3561         phy_mgr_initialize();
3562         rw_mgr_mem_initialize();
3563
3564         /* Perform the actual memory calibration. */
3565         pass = mem_calibrate();
3566
3567         mem_precharge_and_activate();
3568         writel(0, &phy_mgr_cmd->fifo_reset);
3569
3570         /* Handoff. */
3571         rw_mgr_mem_handoff();
3572         /*
3573          * In Hard PHY this is a 2-bit control:
3574          * 0: AFI Mux Select
3575          * 1: DDIO Mux Select
3576          */
3577         writel(0x2, &phy_mgr_cfg->mux_sel);
3578
3579         /* Start tracking manager. */
3580         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3581
3582         return pass;
3583 }
3584
3585 /**
3586  * debug_mem_calibrate() - Report result of memory calibration
3587  * @pass:       Value indicating whether calibration passed or failed
3588  *
3589  * This function reports the results of the memory calibration
3590  * and writes debug information into the register file.
3591  */
3592 static void debug_mem_calibrate(int pass)
3593 {
3594         uint32_t debug_info;
3595
3596         if (pass) {
3597                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3598
3599                 gbl->fom_in /= 2;
3600                 gbl->fom_out /= 2;
3601
3602                 if (gbl->fom_in > 0xff)
3603                         gbl->fom_in = 0xff;
3604
3605                 if (gbl->fom_out > 0xff)
3606                         gbl->fom_out = 0xff;
3607
3608                 /* Update the FOM in the register file */
3609                 debug_info = gbl->fom_in;
3610                 debug_info |= gbl->fom_out << 8;
3611                 writel(debug_info, &sdr_reg_file->fom);
3612
3613                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3614                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3615         } else {
3616                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3617
3618                 debug_info = gbl->error_stage;
3619                 debug_info |= gbl->error_substage << 8;
3620                 debug_info |= gbl->error_group << 16;
3621
3622                 writel(debug_info, &sdr_reg_file->failing_stage);
3623                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3624                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3625
3626                 /* Update the failing group/stage in the register file */
3627                 debug_info = gbl->error_stage;
3628                 debug_info |= gbl->error_substage << 8;
3629                 debug_info |= gbl->error_group << 16;
3630                 writel(debug_info, &sdr_reg_file->failing_stage);
3631         }
3632
3633         printf("%s: Calibration complete\n", __FILE__);
3634 }
3635
3636 /**
3637  * hc_initialize_rom_data() - Initialize ROM data
3638  *
3639  * Initialize ROM data.
3640  */
3641 static void hc_initialize_rom_data(void)
3642 {
3643         u32 i, addr;
3644
3645         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3646         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3647                 writel(inst_rom_init[i], addr + (i << 2));
3648
3649         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3650         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3651                 writel(ac_rom_init[i], addr + (i << 2));
3652 }
3653
3654 /**
3655  * initialize_reg_file() - Initialize SDR register file
3656  *
3657  * Initialize SDR register file.
3658  */
3659 static void initialize_reg_file(void)
3660 {
3661         /* Initialize the register file with the correct data */
3662         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3663         writel(0, &sdr_reg_file->debug_data_addr);
3664         writel(0, &sdr_reg_file->cur_stage);
3665         writel(0, &sdr_reg_file->fom);
3666         writel(0, &sdr_reg_file->failing_stage);
3667         writel(0, &sdr_reg_file->debug1);
3668         writel(0, &sdr_reg_file->debug2);
3669 }
3670
3671 /**
3672  * initialize_hps_phy() - Initialize HPS PHY
3673  *
3674  * Initialize HPS PHY.
3675  */
3676 static void initialize_hps_phy(void)
3677 {
3678         uint32_t reg;
3679         /*
3680          * Tracking also gets configured here because it's in the
3681          * same register.
3682          */
3683         uint32_t trk_sample_count = 7500;
3684         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3685         /*
3686          * Format is number of outer loops in the 16 MSB, sample
3687          * count in 16 LSB.
3688          */
3689
3690         reg = 0;
3691         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3692         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3693         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3694         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3695         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3696         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3697         /*
3698          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3699          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3700          */
3701         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3702         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3703                 trk_sample_count);
3704         writel(reg, &sdr_ctrl->phy_ctrl0);
3705
3706         reg = 0;
3707         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3708                 trk_sample_count >>
3709                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3710         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3711                 trk_long_idle_sample_count);
3712         writel(reg, &sdr_ctrl->phy_ctrl1);
3713
3714         reg = 0;
3715         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3716                 trk_long_idle_sample_count >>
3717                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3718         writel(reg, &sdr_ctrl->phy_ctrl2);
3719 }
3720
3721 /**
3722  * initialize_tracking() - Initialize tracking
3723  *
3724  * Initialize the register file with usable initial data.
3725  */
3726 static void initialize_tracking(void)
3727 {
3728         /*
3729          * Initialize the register file with the correct data.
3730          * Compute usable version of value in case we skip full
3731          * computation later.
3732          */
3733         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3734                &sdr_reg_file->dtaps_per_ptap);
3735
3736         /* trk_sample_count */
3737         writel(7500, &sdr_reg_file->trk_sample_count);
3738
3739         /* longidle outer loop [15:0] */
3740         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3741
3742         /*
3743          * longidle sample count [31:24]
3744          * trfc, worst case of 933Mhz 4Gb [23:16]
3745          * trcd, worst case [15:8]
3746          * vfifo wait [7:0]
3747          */
3748         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3749                &sdr_reg_file->delays);
3750
3751         /* mux delay */
3752         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3753                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3754                &sdr_reg_file->trk_rw_mgr_addr);
3755
3756         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3757                &sdr_reg_file->trk_read_dqs_width);
3758
3759         /* trefi [7:0] */
3760         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3761                &sdr_reg_file->trk_rfsh);
3762 }
3763
3764 int sdram_calibration_full(void)
3765 {
3766         struct param_type my_param;
3767         struct gbl_type my_gbl;
3768         uint32_t pass;
3769
3770         memset(&my_param, 0, sizeof(my_param));
3771         memset(&my_gbl, 0, sizeof(my_gbl));
3772
3773         param = &my_param;
3774         gbl = &my_gbl;
3775
3776         /* Set the calibration enabled by default */
3777         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3778         /*
3779          * Only sweep all groups (regardless of fail state) by default
3780          * Set enabled read test by default.
3781          */
3782 #if DISABLE_GUARANTEED_READ
3783         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3784 #endif
3785         /* Initialize the register file */
3786         initialize_reg_file();
3787
3788         /* Initialize any PHY CSR */
3789         initialize_hps_phy();
3790
3791         scc_mgr_initialize();
3792
3793         initialize_tracking();
3794
3795         printf("%s: Preparing to start memory calibration\n", __FILE__);
3796
3797         debug("%s:%d\n", __func__, __LINE__);
3798         debug_cond(DLEVEL == 1,
3799                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3800                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3801                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3802                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3803                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3804         debug_cond(DLEVEL == 1,
3805                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3806                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3807                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3808                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3809         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3810                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3811         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3812                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3813                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3814         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3815                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3816                    IO_IO_OUT2_DELAY_MAX);
3817         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3818                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3819
3820         hc_initialize_rom_data();
3821
3822         /* update info for sims */
3823         reg_file_set_stage(CAL_STAGE_NIL);
3824         reg_file_set_group(0);
3825
3826         /*
3827          * Load global needed for those actions that require
3828          * some dynamic calibration support.
3829          */
3830         dyn_calib_steps = STATIC_CALIB_STEPS;
3831         /*
3832          * Load global to allow dynamic selection of delay loop settings
3833          * based on calibration mode.
3834          */
3835         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3836                 skip_delay_mask = 0xff;
3837         else
3838                 skip_delay_mask = 0x0;
3839
3840         pass = run_mem_calibrate();
3841         debug_mem_calibrate(pass);
3842         return pass;
3843 }