]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up sdr_*_phase() part 4
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292         (*v)++;
1293 }
1294
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297         uint32_t i;
1298
1299         for (i = 0; i < VFIFO_SIZE-1; i++)
1300                 rw_mgr_incr_vfifo(grp, v);
1301 }
1302
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305         uint32_t  v;
1306         uint32_t fail_cnt = 0;
1307         uint32_t test_status;
1308
1309         for (v = 0; v < VFIFO_SIZE; ) {
1310                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311                            __func__, __LINE__, v);
1312                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314                 if (!test_status) {
1315                         fail_cnt++;
1316
1317                         if (fail_cnt == 2)
1318                                 break;
1319                 }
1320
1321                 /* fiddle with FIFO */
1322                 rw_mgr_incr_vfifo(grp, &v);
1323         }
1324
1325         if (v >= VFIFO_SIZE) {
1326                 /* no failing read found!! Something must have gone wrong */
1327                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328                            __func__, __LINE__);
1329                 return 0;
1330         } else {
1331                 return v;
1332         }
1333 }
1334
1335 static int sdr_working_phase(uint32_t grp,
1336                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337                               uint32_t *v, uint32_t *d, uint32_t *p,
1338                               uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340         uint32_t tmp_delay = 0;
1341         uint32_t test_status;
1342         u32 bit_chk;
1343
1344         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346                 *work_bgn = tmp_delay;
1347                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1348
1349                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351                                 IO_DELAY_PER_OPA_TAP) {
1352                                 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1353
1354                                 test_status =
1355                                 rw_mgr_mem_calibrate_read_test_all_ranks
1356                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
1357
1358                                 if (test_status) {
1359                                         *max_working_cnt = 1;
1360                                         return 1;
1361                                 }
1362                         }
1363
1364                         if (*p > IO_DQS_EN_PHASE_MAX)
1365                                 /* fiddle with FIFO */
1366                                 rw_mgr_incr_vfifo(grp, v);
1367                 }
1368         }
1369
1370         /* Cannot find working solution */
1371         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1372                    ptap/dtap\n", __func__, __LINE__);
1373         return 0;
1374 }
1375
1376 static void sdr_backup_phase(uint32_t grp,
1377                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1378                              uint32_t *p, uint32_t *max_working_cnt)
1379 {
1380         uint32_t found_begin = 0;
1381         uint32_t tmp_delay;
1382         u32 bit_chk;
1383
1384         /* Special case code for backing up a phase */
1385         if (*p == 0) {
1386                 *p = IO_DQS_EN_PHASE_MAX;
1387                 rw_mgr_decr_vfifo(grp, v);
1388         } else {
1389                 (*p)--;
1390         }
1391         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1392         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1393
1394         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1395                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1396                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1397
1398                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1399                                                              PASS_ONE_BIT,
1400                                                              &bit_chk, 0)) {
1401                         found_begin = 1;
1402                         *work_bgn = tmp_delay;
1403                         break;
1404                 }
1405         }
1406
1407         /* We have found a working dtap before the ptap found above */
1408         if (found_begin == 1)
1409                 (*max_working_cnt)++;
1410
1411         /*
1412          * Restore VFIFO to old state before we decremented it
1413          * (if needed).
1414          */
1415         (*p)++;
1416         if (*p > IO_DQS_EN_PHASE_MAX) {
1417                 *p = 0;
1418                 rw_mgr_incr_vfifo(grp, v);
1419         }
1420
1421         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1422 }
1423
1424 static int sdr_nonworking_phase(uint32_t grp,
1425                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1426                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1427                              uint32_t *work_end)
1428 {
1429         u32 bit_chk;
1430
1431         (*p)++;
1432         *work_end += IO_DELAY_PER_OPA_TAP;
1433         if (*p > IO_DQS_EN_PHASE_MAX) {
1434                 /* fiddle with FIFO */
1435                 *p = 0;
1436                 rw_mgr_incr_vfifo(grp, v);
1437         }
1438
1439         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1440                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1441                         += IO_DELAY_PER_OPA_TAP) {
1442                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1443
1444                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1445                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1446                                 return 1;
1447                         } else {
1448                                 (*max_working_cnt)++;
1449                         }
1450                 }
1451
1452                 if (*p > IO_DQS_EN_PHASE_MAX) {
1453                         /* fiddle with FIFO */
1454                         rw_mgr_incr_vfifo(grp, v);
1455                         *p = 0;
1456                 }
1457         }
1458
1459         /* Cannot see edge of failing read. */
1460         debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1461                    failed\n", __func__, __LINE__);
1462         return 0;
1463 }
1464
1465 /**
1466  * sdr_find_window_center() - Find center of the working DQS window.
1467  * @grp:        Read/Write group
1468  * @work_bgn:   First working settings
1469  * @work_end:   Last working settings
1470  * @val:        VFIFO value
1471  *
1472  * Find center of the working DQS enable window.
1473  */
1474 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1475                                   const u32 work_end, const u32 val)
1476 {
1477         u32 bit_chk, work_mid, v = val;
1478         int tmp_delay = 0;
1479         int i, p, d;
1480
1481         work_mid = (work_bgn + work_end) / 2;
1482
1483         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1484                    work_bgn, work_end, work_mid);
1485         /* Get the middle delay to be less than a VFIFO delay */
1486         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1487
1488         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1489         work_mid %= tmp_delay;
1490         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1491
1492         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1493         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1494                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1495         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1496
1497         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1498
1499         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1500         if (d > IO_DQS_EN_DELAY_MAX)
1501                 d = IO_DQS_EN_DELAY_MAX;
1502         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1503
1504         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1505
1506         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1507         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1508
1509         /*
1510          * push vfifo until we can successfully calibrate. We can do this
1511          * because the largest possible margin in 1 VFIFO cycle.
1512          */
1513         for (i = 0; i < VFIFO_SIZE; i++) {
1514                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1515                            v);
1516                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1517                                                              PASS_ONE_BIT,
1518                                                              &bit_chk, 0)) {
1519                         debug_cond(DLEVEL == 2,
1520                                    "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1521                                    __func__, __LINE__, v, p, d);
1522                         return 0;
1523                 }
1524
1525                 /* Fiddle with FIFO. */
1526                 rw_mgr_incr_vfifo(grp, &v);
1527         }
1528
1529         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1530                    __func__, __LINE__);
1531         return -EINVAL;
1532 }
1533
1534 /* find a good dqs enable to use */
1535 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1536 {
1537         uint32_t v, d, p, i;
1538         uint32_t max_working_cnt;
1539         uint32_t bit_chk;
1540         uint32_t dtaps_per_ptap;
1541         uint32_t work_bgn, work_end;
1542         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1543
1544         debug("%s:%d %u\n", __func__, __LINE__, grp);
1545
1546         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1547
1548         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1549         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1550
1551         /* ************************************************************** */
1552         /* * Step 0 : Determine number of delay taps for each phase tap * */
1553         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1554
1555         /* ********************************************************* */
1556         /* * Step 1 : First push vfifo until we get a failing read * */
1557         v = find_vfifo_read(grp, &bit_chk);
1558
1559         max_working_cnt = 0;
1560
1561         /* ******************************************************** */
1562         /* * step 2: find first working phase, increment in ptaps * */
1563         work_bgn = 0;
1564         if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d,
1565                               &p, &i, &max_working_cnt) == 0)
1566                 return 0;
1567
1568         work_end = work_bgn;
1569
1570         /*
1571          * If d is 0 then the working window covers a phase tap and
1572          * we can follow the old procedure otherwise, we've found the beginning,
1573          * and we need to increment the dtaps until we find the end.
1574          */
1575         if (d == 0) {
1576                 /* ********************************************************* */
1577                 /* * step 3a: if we have room, back off by one and
1578                 increment in dtaps * */
1579
1580                 sdr_backup_phase(grp, &work_bgn, &v, &d, &p,
1581                                  &max_working_cnt);
1582
1583                 /* ********************************************************* */
1584                 /* * step 4a: go forward from working phase to non working
1585                 phase, increment in ptaps * */
1586                 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
1587                                          &i, &max_working_cnt, &work_end) == 0)
1588                         return 0;
1589
1590                 /* ********************************************************* */
1591                 /* * step 5a:  back off one from last, increment in dtaps  * */
1592
1593                 /* Special case code for backing up a phase */
1594                 if (p == 0) {
1595                         p = IO_DQS_EN_PHASE_MAX;
1596                         rw_mgr_decr_vfifo(grp, &v);
1597                 } else {
1598                         p = p - 1;
1599                 }
1600
1601                 work_end -= IO_DELAY_PER_OPA_TAP;
1602                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1603
1604                 /* * The actual increment of dtaps is done outside of
1605                 the if/else loop to share code */
1606                 d = 0;
1607
1608                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1609                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1610                            v, p);
1611         } else {
1612                 /* ******************************************************* */
1613                 /* * step 3-5b:  Find the right edge of the window using
1614                 delay taps   * */
1615                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1616                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1617                            v, p, d, work_bgn);
1618
1619                 work_end = work_bgn;
1620
1621                 /* * The actual increment of dtaps is done outside of the
1622                 if/else loop to share code */
1623
1624                 /* Only here to counterbalance a subtract later on which is
1625                 not needed if this branch of the algorithm is taken */
1626                 max_working_cnt++;
1627         }
1628
1629         /* The dtap increment to find the failing edge is done here */
1630         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1631                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1632                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1633                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1634                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1635
1636                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1637                                                                       PASS_ONE_BIT,
1638                                                                       &bit_chk, 0)) {
1639                                 break;
1640                         }
1641         }
1642
1643         /* Go back to working dtap */
1644         if (d != 0)
1645                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1646
1647         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1648                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1649                    v, p, d-1, work_end);
1650
1651         if (work_end < work_bgn) {
1652                 /* nil range */
1653                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1654                            failed\n", __func__, __LINE__);
1655                 return 0;
1656         }
1657
1658         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1659                    __func__, __LINE__, work_bgn, work_end);
1660
1661         /* *************************************************************** */
1662         /*
1663          * * We need to calculate the number of dtaps that equal a ptap
1664          * * To do that we'll back up a ptap and re-find the edge of the
1665          * * window using dtaps
1666          */
1667
1668         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1669                    for tracking\n", __func__, __LINE__);
1670
1671         /* Special case code for backing up a phase */
1672         if (p == 0) {
1673                 p = IO_DQS_EN_PHASE_MAX;
1674                 rw_mgr_decr_vfifo(grp, &v);
1675                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1676                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1677                            v, p);
1678         } else {
1679                 p = p - 1;
1680                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1681                            phase only: v=%u p=%u", __func__, __LINE__,
1682                            v, p);
1683         }
1684
1685         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1686
1687         /*
1688          * Increase dtap until we first see a passing read (in case the
1689          * window is smaller than a ptap),
1690          * and then a failing read to mark the edge of the window again
1691          */
1692
1693         /* Find a passing read */
1694         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1695                    __func__, __LINE__);
1696         found_passing_read = 0;
1697         found_failing_read = 0;
1698         initial_failing_dtap = d;
1699         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1700                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1701                            read d=%u\n", __func__, __LINE__, d);
1702                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1703
1704                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1705                                                              PASS_ONE_BIT,
1706                                                              &bit_chk, 0)) {
1707                         found_passing_read = 1;
1708                         break;
1709                 }
1710         }
1711
1712         if (found_passing_read) {
1713                 /* Find a failing read */
1714                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1715                            read\n", __func__, __LINE__);
1716                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1717                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1718                                    testing read d=%u\n", __func__, __LINE__, d);
1719                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1720
1721                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1722                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1723                                 found_failing_read = 1;
1724                                 break;
1725                         }
1726                 }
1727         } else {
1728                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1729                            calculate dtaps", __func__, __LINE__);
1730                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1731         }
1732
1733         /*
1734          * The dynamically calculated dtaps_per_ptap is only valid if we
1735          * found a passing/failing read. If we didn't, it means d hit the max
1736          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1737          * statically calculated value.
1738          */
1739         if (found_passing_read && found_failing_read)
1740                 dtaps_per_ptap = d - initial_failing_dtap;
1741
1742         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1743         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1744                    - %u = %u",  __func__, __LINE__, d,
1745                    initial_failing_dtap, dtaps_per_ptap);
1746
1747         /* ******************************************** */
1748         /* * step 6:  Find the centre of the window   * */
1749         if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1750                 return 0; /* FIXME: Old code, return 0 means failure :-( */
1751
1752         return 1;
1753 }
1754
1755 /* per-bit deskew DQ and center */
1756 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1757         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1758         uint32_t use_read_test, uint32_t update_fom)
1759 {
1760         uint32_t i, p, d, min_index;
1761         /*
1762          * Store these as signed since there are comparisons with
1763          * signed numbers.
1764          */
1765         uint32_t bit_chk;
1766         uint32_t sticky_bit_chk;
1767         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1768         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1769         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1770         int32_t mid;
1771         int32_t orig_mid_min, mid_min;
1772         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1773                 final_dqs_en;
1774         int32_t dq_margin, dqs_margin;
1775         uint32_t stop;
1776         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1777         uint32_t addr;
1778
1779         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1780
1781         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1782         start_dqs = readl(addr + (read_group << 2));
1783         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1784                 start_dqs_en = readl(addr + ((read_group << 2)
1785                                      - IO_DQS_EN_DELAY_OFFSET));
1786
1787         /* set the left and right edge of each bit to an illegal value */
1788         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1789         sticky_bit_chk = 0;
1790         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1791                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1792                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1793         }
1794
1795         /* Search for the left edge of the window for each bit */
1796         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1797                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1798
1799                 writel(0, &sdr_scc_mgr->update);
1800
1801                 /*
1802                  * Stop searching when the read test doesn't pass AND when
1803                  * we've seen a passing read on every bit.
1804                  */
1805                 if (use_read_test) {
1806                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1807                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1808                                 &bit_chk, 0, 0);
1809                 } else {
1810                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1811                                                         0, PASS_ONE_BIT,
1812                                                         &bit_chk, 0);
1813                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1814                                 (read_group - (write_group *
1815                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1816                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1817                         stop = (bit_chk == 0);
1818                 }
1819                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1820                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1821                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1822                            && %u", __func__, __LINE__, d,
1823                            sticky_bit_chk,
1824                         param->read_correct_mask, stop);
1825
1826                 if (stop == 1) {
1827                         break;
1828                 } else {
1829                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1830                                 if (bit_chk & 1) {
1831                                         /* Remember a passing test as the
1832                                         left_edge */
1833                                         left_edge[i] = d;
1834                                 } else {
1835                                         /* If a left edge has not been seen yet,
1836                                         then a future passing test will mark
1837                                         this edge as the right edge */
1838                                         if (left_edge[i] ==
1839                                                 IO_IO_IN_DELAY_MAX + 1) {
1840                                                 right_edge[i] = -(d + 1);
1841                                         }
1842                                 }
1843                                 bit_chk = bit_chk >> 1;
1844                         }
1845                 }
1846         }
1847
1848         /* Reset DQ delay chains to 0 */
1849         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1850         sticky_bit_chk = 0;
1851         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1852                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1853                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1854                            i, left_edge[i], i, right_edge[i]);
1855
1856                 /*
1857                  * Check for cases where we haven't found the left edge,
1858                  * which makes our assignment of the the right edge invalid.
1859                  * Reset it to the illegal value.
1860                  */
1861                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1862                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1863                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1864                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1865                                    right_edge[%u]: %d\n", __func__, __LINE__,
1866                                    i, right_edge[i]);
1867                 }
1868
1869                 /*
1870                  * Reset sticky bit (except for bits where we have seen
1871                  * both the left and right edge).
1872                  */
1873                 sticky_bit_chk = sticky_bit_chk << 1;
1874                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1875                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1876                         sticky_bit_chk = sticky_bit_chk | 1;
1877                 }
1878
1879                 if (i == 0)
1880                         break;
1881         }
1882
1883         /* Search for the right edge of the window for each bit */
1884         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1885                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1886                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1887                         uint32_t delay = d + start_dqs_en;
1888                         if (delay > IO_DQS_EN_DELAY_MAX)
1889                                 delay = IO_DQS_EN_DELAY_MAX;
1890                         scc_mgr_set_dqs_en_delay(read_group, delay);
1891                 }
1892                 scc_mgr_load_dqs(read_group);
1893
1894                 writel(0, &sdr_scc_mgr->update);
1895
1896                 /*
1897                  * Stop searching when the read test doesn't pass AND when
1898                  * we've seen a passing read on every bit.
1899                  */
1900                 if (use_read_test) {
1901                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1902                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1903                                 &bit_chk, 0, 0);
1904                 } else {
1905                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1906                                                         0, PASS_ONE_BIT,
1907                                                         &bit_chk, 0);
1908                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1909                                 (read_group - (write_group *
1910                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1911                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1912                         stop = (bit_chk == 0);
1913                 }
1914                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1915                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1916
1917                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1918                            %u && %u", __func__, __LINE__, d,
1919                            sticky_bit_chk, param->read_correct_mask, stop);
1920
1921                 if (stop == 1) {
1922                         break;
1923                 } else {
1924                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1925                                 if (bit_chk & 1) {
1926                                         /* Remember a passing test as
1927                                         the right_edge */
1928                                         right_edge[i] = d;
1929                                 } else {
1930                                         if (d != 0) {
1931                                                 /* If a right edge has not been
1932                                                 seen yet, then a future passing
1933                                                 test will mark this edge as the
1934                                                 left edge */
1935                                                 if (right_edge[i] ==
1936                                                 IO_IO_IN_DELAY_MAX + 1) {
1937                                                         left_edge[i] = -(d + 1);
1938                                                 }
1939                                         } else {
1940                                                 /* d = 0 failed, but it passed
1941                                                 when testing the left edge,
1942                                                 so it must be marginal,
1943                                                 set it to -1 */
1944                                                 if (right_edge[i] ==
1945                                                         IO_IO_IN_DELAY_MAX + 1 &&
1946                                                         left_edge[i] !=
1947                                                         IO_IO_IN_DELAY_MAX
1948                                                         + 1) {
1949                                                         right_edge[i] = -1;
1950                                                 }
1951                                                 /* If a right edge has not been
1952                                                 seen yet, then a future passing
1953                                                 test will mark this edge as the
1954                                                 left edge */
1955                                                 else if (right_edge[i] ==
1956                                                         IO_IO_IN_DELAY_MAX +
1957                                                         1) {
1958                                                         left_edge[i] = -(d + 1);
1959                                                 }
1960                                         }
1961                                 }
1962
1963                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1964                                            d=%u]: ", __func__, __LINE__, d);
1965                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1966                                            (int)(bit_chk & 1), i, left_edge[i]);
1967                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1968                                            right_edge[i]);
1969                                 bit_chk = bit_chk >> 1;
1970                         }
1971                 }
1972         }
1973
1974         /* Check that all bits have a window */
1975         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1976                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1977                            %d right_edge[%u]: %d", __func__, __LINE__,
1978                            i, left_edge[i], i, right_edge[i]);
1979                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1980                         == IO_IO_IN_DELAY_MAX + 1)) {
1981                         /*
1982                          * Restore delay chain settings before letting the loop
1983                          * in rw_mgr_mem_calibrate_vfifo to retry different
1984                          * dqs/ck relationships.
1985                          */
1986                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1987                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1988                                 scc_mgr_set_dqs_en_delay(read_group,
1989                                                          start_dqs_en);
1990                         }
1991                         scc_mgr_load_dqs(read_group);
1992                         writel(0, &sdr_scc_mgr->update);
1993
1994                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1995                                    find edge [%u]: %d %d", __func__, __LINE__,
1996                                    i, left_edge[i], right_edge[i]);
1997                         if (use_read_test) {
1998                                 set_failing_group_stage(read_group *
1999                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2000                                         CAL_STAGE_VFIFO,
2001                                         CAL_SUBSTAGE_VFIFO_CENTER);
2002                         } else {
2003                                 set_failing_group_stage(read_group *
2004                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2005                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2006                                         CAL_SUBSTAGE_VFIFO_CENTER);
2007                         }
2008                         return 0;
2009                 }
2010         }
2011
2012         /* Find middle of window for each DQ bit */
2013         mid_min = left_edge[0] - right_edge[0];
2014         min_index = 0;
2015         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2016                 mid = left_edge[i] - right_edge[i];
2017                 if (mid < mid_min) {
2018                         mid_min = mid;
2019                         min_index = i;
2020                 }
2021         }
2022
2023         /*
2024          * -mid_min/2 represents the amount that we need to move DQS.
2025          * If mid_min is odd and positive we'll need to add one to
2026          * make sure the rounding in further calculations is correct
2027          * (always bias to the right), so just add 1 for all positive values.
2028          */
2029         if (mid_min > 0)
2030                 mid_min++;
2031
2032         mid_min = mid_min / 2;
2033
2034         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2035                    __func__, __LINE__, mid_min, min_index);
2036
2037         /* Determine the amount we can change DQS (which is -mid_min) */
2038         orig_mid_min = mid_min;
2039         new_dqs = start_dqs - mid_min;
2040         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2041                 new_dqs = IO_DQS_IN_DELAY_MAX;
2042         else if (new_dqs < 0)
2043                 new_dqs = 0;
2044
2045         mid_min = start_dqs - new_dqs;
2046         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2047                    mid_min, new_dqs);
2048
2049         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2050                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2051                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2052                 else if (start_dqs_en - mid_min < 0)
2053                         mid_min += start_dqs_en - mid_min;
2054         }
2055         new_dqs = start_dqs - mid_min;
2056
2057         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2058                    new_dqs=%d mid_min=%d\n", start_dqs,
2059                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2060                    new_dqs, mid_min);
2061
2062         /* Initialize data for export structures */
2063         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2064         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2065
2066         /* add delay to bring centre of all DQ windows to the same "level" */
2067         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2068                 /* Use values before divide by 2 to reduce round off error */
2069                 shift_dq = (left_edge[i] - right_edge[i] -
2070                         (left_edge[min_index] - right_edge[min_index]))/2  +
2071                         (orig_mid_min - mid_min);
2072
2073                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2074                            shift_dq[%u]=%d\n", i, shift_dq);
2075
2076                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2077                 temp_dq_in_delay1 = readl(addr + (p << 2));
2078                 temp_dq_in_delay2 = readl(addr + (i << 2));
2079
2080                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2081                         (int32_t)IO_IO_IN_DELAY_MAX) {
2082                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2083                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2084                         shift_dq = -(int32_t)temp_dq_in_delay1;
2085                 }
2086                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2087                            shift_dq[%u]=%d\n", i, shift_dq);
2088                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2089                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2090                 scc_mgr_load_dq(p);
2091
2092                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2093                            left_edge[i] - shift_dq + (-mid_min),
2094                            right_edge[i] + shift_dq - (-mid_min));
2095                 /* To determine values for export structures */
2096                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2097                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2098
2099                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2100                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2101         }
2102
2103         final_dqs = new_dqs;
2104         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2105                 final_dqs_en = start_dqs_en - mid_min;
2106
2107         /* Move DQS-en */
2108         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2109                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2110                 scc_mgr_load_dqs(read_group);
2111         }
2112
2113         /* Move DQS */
2114         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2115         scc_mgr_load_dqs(read_group);
2116         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2117                    dqs_margin=%d", __func__, __LINE__,
2118                    dq_margin, dqs_margin);
2119
2120         /*
2121          * Do not remove this line as it makes sure all of our decisions
2122          * have been applied. Apply the update bit.
2123          */
2124         writel(0, &sdr_scc_mgr->update);
2125
2126         return (dq_margin >= 0) && (dqs_margin >= 0);
2127 }
2128
2129 /**
2130  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2131  * @rw_group:   Read/Write Group
2132  * @phase:      DQ/DQS phase
2133  *
2134  * Because initially no communication ca be reliably performed with the memory
2135  * device, the sequencer uses a guaranteed write mechanism to write data into
2136  * the memory device.
2137  */
2138 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2139                                                  const u32 phase)
2140 {
2141         int ret;
2142
2143         /* Set a particular DQ/DQS phase. */
2144         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2145
2146         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2147                    __func__, __LINE__, rw_group, phase);
2148
2149         /*
2150          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2151          * Load up the patterns used by read calibration using the
2152          * current DQDQS phase.
2153          */
2154         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2155
2156         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2157                 return 0;
2158
2159         /*
2160          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2161          * Back-to-Back reads of the patterns used for calibration.
2162          */
2163         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2164         if (ret)
2165                 debug_cond(DLEVEL == 1,
2166                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2167                            __func__, __LINE__, rw_group, phase);
2168         return ret;
2169 }
2170
2171 /**
2172  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2173  * @rw_group:   Read/Write Group
2174  * @test_bgn:   Rank at which the test begins
2175  *
2176  * DQS enable calibration ensures reliable capture of the DQ signal without
2177  * glitches on the DQS line.
2178  */
2179 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2180                                                        const u32 test_bgn)
2181 {
2182         /*
2183          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2184          * DQS and DQS Eanble Signal Relationships.
2185          */
2186
2187         /* We start at zero, so have one less dq to devide among */
2188         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2189                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2190         int found;
2191         u32 i, p, d, r;
2192
2193         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2194
2195         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2196         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2197              r += NUM_RANKS_PER_SHADOW_REG) {
2198                 for (i = 0, p = test_bgn, d = 0;
2199                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2200                      i++, p++, d += delay_step) {
2201                         debug_cond(DLEVEL == 1,
2202                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2203                                    __func__, __LINE__, rw_group, r, i, p, d);
2204
2205                         scc_mgr_set_dq_in_delay(p, d);
2206                         scc_mgr_load_dq(p);
2207                 }
2208
2209                 writel(0, &sdr_scc_mgr->update);
2210         }
2211
2212         /*
2213          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2214          * dq_in_delay values
2215          */
2216         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2217
2218         debug_cond(DLEVEL == 1,
2219                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2220                    __func__, __LINE__, rw_group, found);
2221
2222         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2223              r += NUM_RANKS_PER_SHADOW_REG) {
2224                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2225                 writel(0, &sdr_scc_mgr->update);
2226         }
2227
2228         if (!found)
2229                 return -EINVAL;
2230
2231         return 0;
2232
2233 }
2234
2235 /**
2236  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2237  * @rw_group:           Read/Write Group
2238  * @test_bgn:           Rank at which the test begins
2239  * @use_read_test:      Perform a read test
2240  * @update_fom:         Update FOM
2241  *
2242  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2243  * within a group.
2244  */
2245 static int
2246 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2247                                       const int use_read_test,
2248                                       const int update_fom)
2249
2250 {
2251         int ret, grp_calibrated;
2252         u32 rank_bgn, sr;
2253
2254         /*
2255          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2256          * Read per-bit deskew can be done on a per shadow register basis.
2257          */
2258         grp_calibrated = 1;
2259         for (rank_bgn = 0, sr = 0;
2260              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2261              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2262                 /* Check if this set of ranks should be skipped entirely. */
2263                 if (param->skip_shadow_regs[sr])
2264                         continue;
2265
2266                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2267                                                         rw_group, test_bgn,
2268                                                         use_read_test,
2269                                                         update_fom);
2270                 if (ret)
2271                         continue;
2272
2273                 grp_calibrated = 0;
2274         }
2275
2276         if (!grp_calibrated)
2277                 return -EIO;
2278
2279         return 0;
2280 }
2281
2282 /**
2283  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2284  * @rw_group:           Read/Write Group
2285  * @test_bgn:           Rank at which the test begins
2286  *
2287  * Stage 1: Calibrate the read valid prediction FIFO.
2288  *
2289  * This function implements UniPHY calibration Stage 1, as explained in
2290  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2291  *
2292  * - read valid prediction will consist of finding:
2293  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2294  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2295  *  - we also do a per-bit deskew on the DQ lines.
2296  */
2297 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2298 {
2299         uint32_t p, d;
2300         uint32_t dtaps_per_ptap;
2301         uint32_t failed_substage;
2302
2303         int ret;
2304
2305         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2306
2307         /* Update info for sims */
2308         reg_file_set_group(rw_group);
2309         reg_file_set_stage(CAL_STAGE_VFIFO);
2310         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2311
2312         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2313
2314         /* USER Determine number of delay taps for each phase tap. */
2315         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2316                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2317
2318         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2319                 /*
2320                  * In RLDRAMX we may be messing the delay of pins in
2321                  * the same write rw_group but outside of the current read
2322                  * the rw_group, but that's ok because we haven't calibrated
2323                  * output side yet.
2324                  */
2325                 if (d > 0) {
2326                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2327                                                                 rw_group, d);
2328                 }
2329
2330                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2331                         /* 1) Guaranteed Write */
2332                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2333                         if (ret)
2334                                 break;
2335
2336                         /* 2) DQS Enable Calibration */
2337                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2338                                                                           test_bgn);
2339                         if (ret) {
2340                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2341                                 continue;
2342                         }
2343
2344                         /* 3) Centering DQ/DQS */
2345                         /*
2346                          * If doing read after write calibration, do not update
2347                          * FOM now. Do it then.
2348                          */
2349                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2350                                                                 test_bgn, 1, 0);
2351                         if (ret) {
2352                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2353                                 continue;
2354                         }
2355
2356                         /* All done. */
2357                         goto cal_done_ok;
2358                 }
2359         }
2360
2361         /* Calibration Stage 1 failed. */
2362         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2363         return 0;
2364
2365         /* Calibration Stage 1 completed OK. */
2366 cal_done_ok:
2367         /*
2368          * Reset the delay chains back to zero if they have moved > 1
2369          * (check for > 1 because loop will increase d even when pass in
2370          * first case).
2371          */
2372         if (d > 2)
2373                 scc_mgr_zero_group(rw_group, 1);
2374
2375         return 1;
2376 }
2377
2378 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2379 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2380                                                uint32_t test_bgn)
2381 {
2382         uint32_t rank_bgn, sr;
2383         uint32_t grp_calibrated;
2384         uint32_t write_group;
2385
2386         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2387
2388         /* update info for sims */
2389
2390         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2391         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2392
2393         write_group = read_group;
2394
2395         /* update info for sims */
2396         reg_file_set_group(read_group);
2397
2398         grp_calibrated = 1;
2399         /* Read per-bit deskew can be done on a per shadow register basis */
2400         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2401                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2402                 /* Determine if this set of ranks should be skipped entirely */
2403                 if (!param->skip_shadow_regs[sr]) {
2404                 /* This is the last calibration round, update FOM here */
2405                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2406                                                                 write_group,
2407                                                                 read_group,
2408                                                                 test_bgn, 0,
2409                                                                 1)) {
2410                                 grp_calibrated = 0;
2411                         }
2412                 }
2413         }
2414
2415
2416         if (grp_calibrated == 0) {
2417                 set_failing_group_stage(write_group,
2418                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2419                                         CAL_SUBSTAGE_VFIFO_CENTER);
2420                 return 0;
2421         }
2422
2423         return 1;
2424 }
2425
2426 /* Calibrate LFIFO to find smallest read latency */
2427 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2428 {
2429         uint32_t found_one;
2430         uint32_t bit_chk;
2431
2432         debug("%s:%d\n", __func__, __LINE__);
2433
2434         /* update info for sims */
2435         reg_file_set_stage(CAL_STAGE_LFIFO);
2436         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2437
2438         /* Load up the patterns used by read calibration for all ranks */
2439         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2440         found_one = 0;
2441
2442         do {
2443                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2444                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2445                            __func__, __LINE__, gbl->curr_read_lat);
2446
2447                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2448                                                               NUM_READ_TESTS,
2449                                                               PASS_ALL_BITS,
2450                                                               &bit_chk, 1)) {
2451                         break;
2452                 }
2453
2454                 found_one = 1;
2455                 /* reduce read latency and see if things are working */
2456                 /* correctly */
2457                 gbl->curr_read_lat--;
2458         } while (gbl->curr_read_lat > 0);
2459
2460         /* reset the fifos to get pointers to known state */
2461
2462         writel(0, &phy_mgr_cmd->fifo_reset);
2463
2464         if (found_one) {
2465                 /* add a fudge factor to the read latency that was determined */
2466                 gbl->curr_read_lat += 2;
2467                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2468                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2469                            read_lat=%u\n", __func__, __LINE__,
2470                            gbl->curr_read_lat);
2471                 return 1;
2472         } else {
2473                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2474                                         CAL_SUBSTAGE_READ_LATENCY);
2475
2476                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2477                            read_lat=%u\n", __func__, __LINE__,
2478                            gbl->curr_read_lat);
2479                 return 0;
2480         }
2481 }
2482
2483 /*
2484  * issue write test command.
2485  * two variants are provided. one that just tests a write pattern and
2486  * another that tests datamask functionality.
2487  */
2488 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2489                                                   uint32_t test_dm)
2490 {
2491         uint32_t mcc_instruction;
2492         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2493                 ENABLE_SUPER_QUICK_CALIBRATION);
2494         uint32_t rw_wl_nop_cycles;
2495         uint32_t addr;
2496
2497         /*
2498          * Set counter and jump addresses for the right
2499          * number of NOP cycles.
2500          * The number of supported NOP cycles can range from -1 to infinity
2501          * Three different cases are handled:
2502          *
2503          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2504          *    mechanism will be used to insert the right number of NOPs
2505          *
2506          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2507          *    issuing the write command will jump straight to the
2508          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2509          *    data (for RLD), skipping
2510          *    the NOP micro-instruction all together
2511          *
2512          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2513          *    turned on in the same micro-instruction that issues the write
2514          *    command. Then we need
2515          *    to directly jump to the micro-instruction that sends out the data
2516          *
2517          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2518          *       (2 and 3). One jump-counter (0) is used to perform multiple
2519          *       write-read operations.
2520          *       one counter left to issue this command in "multiple-group" mode
2521          */
2522
2523         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2524
2525         if (rw_wl_nop_cycles == -1) {
2526                 /*
2527                  * CNTR 2 - We want to execute the special write operation that
2528                  * turns on DQS right away and then skip directly to the
2529                  * instruction that sends out the data. We set the counter to a
2530                  * large number so that the jump is always taken.
2531                  */
2532                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2533
2534                 /* CNTR 3 - Not used */
2535                 if (test_dm) {
2536                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2537                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2538                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2539                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2540                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2541                 } else {
2542                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2543                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2544                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2545                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2546                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2547                 }
2548         } else if (rw_wl_nop_cycles == 0) {
2549                 /*
2550                  * CNTR 2 - We want to skip the NOP operation and go straight
2551                  * to the DQS enable instruction. We set the counter to a large
2552                  * number so that the jump is always taken.
2553                  */
2554                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2555
2556                 /* CNTR 3 - Not used */
2557                 if (test_dm) {
2558                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2559                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2560                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2561                 } else {
2562                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2563                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2564                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2565                 }
2566         } else {
2567                 /*
2568                  * CNTR 2 - In this case we want to execute the next instruction
2569                  * and NOT take the jump. So we set the counter to 0. The jump
2570                  * address doesn't count.
2571                  */
2572                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2573                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2574
2575                 /*
2576                  * CNTR 3 - Set the nop counter to the number of cycles we
2577                  * need to loop for, minus 1.
2578                  */
2579                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2580                 if (test_dm) {
2581                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2582                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2583                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2584                 } else {
2585                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2586                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2587                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2588                 }
2589         }
2590
2591         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2592                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2593
2594         if (quick_write_mode)
2595                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2596         else
2597                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2598
2599         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2600
2601         /*
2602          * CNTR 1 - This is used to ensure enough time elapses
2603          * for read data to come back.
2604          */
2605         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2606
2607         if (test_dm) {
2608                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2609                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2610         } else {
2611                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2612                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2613         }
2614
2615         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2616         writel(mcc_instruction, addr + (group << 2));
2617 }
2618
2619 /* Test writes, can check for a single bit pass or multiple bit pass */
2620 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2621         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2622         uint32_t *bit_chk, uint32_t all_ranks)
2623 {
2624         uint32_t r;
2625         uint32_t correct_mask_vg;
2626         uint32_t tmp_bit_chk;
2627         uint32_t vg;
2628         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2629                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2630         uint32_t addr_rw_mgr;
2631         uint32_t base_rw_mgr;
2632
2633         *bit_chk = param->write_correct_mask;
2634         correct_mask_vg = param->write_correct_mask_vg;
2635
2636         for (r = rank_bgn; r < rank_end; r++) {
2637                 if (param->skip_ranks[r]) {
2638                         /* request to skip the rank */
2639                         continue;
2640                 }
2641
2642                 /* set rank */
2643                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2644
2645                 tmp_bit_chk = 0;
2646                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2647                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2648                         /* reset the fifos to get pointers to known state */
2649                         writel(0, &phy_mgr_cmd->fifo_reset);
2650
2651                         tmp_bit_chk = tmp_bit_chk <<
2652                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2653                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2654                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2655                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2656                                 use_dm);
2657
2658                         base_rw_mgr = readl(addr_rw_mgr);
2659                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2660                         if (vg == 0)
2661                                 break;
2662                 }
2663                 *bit_chk &= tmp_bit_chk;
2664         }
2665
2666         if (all_correct) {
2667                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2668                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2669                            %u => %lu", write_group, use_dm,
2670                            *bit_chk, param->write_correct_mask,
2671                            (long unsigned int)(*bit_chk ==
2672                            param->write_correct_mask));
2673                 return *bit_chk == param->write_correct_mask;
2674         } else {
2675                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2676                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2677                        write_group, use_dm, *bit_chk);
2678                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2679                         (long unsigned int)(*bit_chk != 0));
2680                 return *bit_chk != 0x00;
2681         }
2682 }
2683
2684 /*
2685  * center all windows. do per-bit-deskew to possibly increase size of
2686  * certain windows.
2687  */
2688 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2689         uint32_t write_group, uint32_t test_bgn)
2690 {
2691         uint32_t i, p, min_index;
2692         int32_t d;
2693         /*
2694          * Store these as signed since there are comparisons with
2695          * signed numbers.
2696          */
2697         uint32_t bit_chk;
2698         uint32_t sticky_bit_chk;
2699         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2700         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2701         int32_t mid;
2702         int32_t mid_min, orig_mid_min;
2703         int32_t new_dqs, start_dqs, shift_dq;
2704         int32_t dq_margin, dqs_margin, dm_margin;
2705         uint32_t stop;
2706         uint32_t temp_dq_out1_delay;
2707         uint32_t addr;
2708
2709         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2710
2711         dm_margin = 0;
2712
2713         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2714         start_dqs = readl(addr +
2715                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2716
2717         /* per-bit deskew */
2718
2719         /*
2720          * set the left and right edge of each bit to an illegal value
2721          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2722          */
2723         sticky_bit_chk = 0;
2724         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2725                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2726                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2727         }
2728
2729         /* Search for the left edge of the window for each bit */
2730         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2731                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2732
2733                 writel(0, &sdr_scc_mgr->update);
2734
2735                 /*
2736                  * Stop searching when the read test doesn't pass AND when
2737                  * we've seen a passing read on every bit.
2738                  */
2739                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2740                         0, PASS_ONE_BIT, &bit_chk, 0);
2741                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2742                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2743                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2744                            == %u && %u [bit_chk= %u ]\n",
2745                         d, sticky_bit_chk, param->write_correct_mask,
2746                         stop, bit_chk);
2747
2748                 if (stop == 1) {
2749                         break;
2750                 } else {
2751                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2752                                 if (bit_chk & 1) {
2753                                         /*
2754                                          * Remember a passing test as the
2755                                          * left_edge.
2756                                          */
2757                                         left_edge[i] = d;
2758                                 } else {
2759                                         /*
2760                                          * If a left edge has not been seen
2761                                          * yet, then a future passing test will
2762                                          * mark this edge as the right edge.
2763                                          */
2764                                         if (left_edge[i] ==
2765                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2766                                                 right_edge[i] = -(d + 1);
2767                                         }
2768                                 }
2769                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2770                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2771                                            (int)(bit_chk & 1), i, left_edge[i]);
2772                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2773                                        right_edge[i]);
2774                                 bit_chk = bit_chk >> 1;
2775                         }
2776                 }
2777         }
2778
2779         /* Reset DQ delay chains to 0 */
2780         scc_mgr_apply_group_dq_out1_delay(0);
2781         sticky_bit_chk = 0;
2782         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2783                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2784                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2785                            i, left_edge[i], i, right_edge[i]);
2786
2787                 /*
2788                  * Check for cases where we haven't found the left edge,
2789                  * which makes our assignment of the the right edge invalid.
2790                  * Reset it to the illegal value.
2791                  */
2792                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2793                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2794                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2795                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2796                                    right_edge[%u]: %d\n", __func__, __LINE__,
2797                                    i, right_edge[i]);
2798                 }
2799
2800                 /*
2801                  * Reset sticky bit (except for bits where we have
2802                  * seen the left edge).
2803                  */
2804                 sticky_bit_chk = sticky_bit_chk << 1;
2805                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2806                         sticky_bit_chk = sticky_bit_chk | 1;
2807
2808                 if (i == 0)
2809                         break;
2810         }
2811
2812         /* Search for the right edge of the window for each bit */
2813         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2814                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2815                                                         d + start_dqs);
2816
2817                 writel(0, &sdr_scc_mgr->update);
2818
2819                 /*
2820                  * Stop searching when the read test doesn't pass AND when
2821                  * we've seen a passing read on every bit.
2822                  */
2823                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2824                         0, PASS_ONE_BIT, &bit_chk, 0);
2825
2826                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2827                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2828
2829                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2830                            %u && %u\n", d, sticky_bit_chk,
2831                            param->write_correct_mask, stop);
2832
2833                 if (stop == 1) {
2834                         if (d == 0) {
2835                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2836                                         i++) {
2837                                         /* d = 0 failed, but it passed when
2838                                         testing the left edge, so it must be
2839                                         marginal, set it to -1 */
2840                                         if (right_edge[i] ==
2841                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2842                                                 left_edge[i] !=
2843                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2844                                                 right_edge[i] = -1;
2845                                         }
2846                                 }
2847                         }
2848                         break;
2849                 } else {
2850                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2851                                 if (bit_chk & 1) {
2852                                         /*
2853                                          * Remember a passing test as
2854                                          * the right_edge.
2855                                          */
2856                                         right_edge[i] = d;
2857                                 } else {
2858                                         if (d != 0) {
2859                                                 /*
2860                                                  * If a right edge has not
2861                                                  * been seen yet, then a future
2862                                                  * passing test will mark this
2863                                                  * edge as the left edge.
2864                                                  */
2865                                                 if (right_edge[i] ==
2866                                                     IO_IO_OUT1_DELAY_MAX + 1)
2867                                                         left_edge[i] = -(d + 1);
2868                                         } else {
2869                                                 /*
2870                                                  * d = 0 failed, but it passed
2871                                                  * when testing the left edge,
2872                                                  * so it must be marginal, set
2873                                                  * it to -1.
2874                                                  */
2875                                                 if (right_edge[i] ==
2876                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2877                                                     left_edge[i] !=
2878                                                     IO_IO_OUT1_DELAY_MAX + 1)
2879                                                         right_edge[i] = -1;
2880                                                 /*
2881                                                  * If a right edge has not been
2882                                                  * seen yet, then a future
2883                                                  * passing test will mark this
2884                                                  * edge as the left edge.
2885                                                  */
2886                                                 else if (right_edge[i] ==
2887                                                         IO_IO_OUT1_DELAY_MAX +
2888                                                         1)
2889                                                         left_edge[i] = -(d + 1);
2890                                         }
2891                                 }
2892                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2893                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2894                                            (int)(bit_chk & 1), i, left_edge[i]);
2895                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2896                                            right_edge[i]);
2897                                 bit_chk = bit_chk >> 1;
2898                         }
2899                 }
2900         }
2901
2902         /* Check that all bits have a window */
2903         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2904                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2905                            %d right_edge[%u]: %d", __func__, __LINE__,
2906                            i, left_edge[i], i, right_edge[i]);
2907                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2908                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2909                         set_failing_group_stage(test_bgn + i,
2910                                                 CAL_STAGE_WRITES,
2911                                                 CAL_SUBSTAGE_WRITES_CENTER);
2912                         return 0;
2913                 }
2914         }
2915
2916         /* Find middle of window for each DQ bit */
2917         mid_min = left_edge[0] - right_edge[0];
2918         min_index = 0;
2919         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2920                 mid = left_edge[i] - right_edge[i];
2921                 if (mid < mid_min) {
2922                         mid_min = mid;
2923                         min_index = i;
2924                 }
2925         }
2926
2927         /*
2928          * -mid_min/2 represents the amount that we need to move DQS.
2929          * If mid_min is odd and positive we'll need to add one to
2930          * make sure the rounding in further calculations is correct
2931          * (always bias to the right), so just add 1 for all positive values.
2932          */
2933         if (mid_min > 0)
2934                 mid_min++;
2935         mid_min = mid_min / 2;
2936         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2937                    __LINE__, mid_min);
2938
2939         /* Determine the amount we can change DQS (which is -mid_min) */
2940         orig_mid_min = mid_min;
2941         new_dqs = start_dqs;
2942         mid_min = 0;
2943         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2944                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2945         /* Initialize data for export structures */
2946         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2947         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2948
2949         /* add delay to bring centre of all DQ windows to the same "level" */
2950         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2951                 /* Use values before divide by 2 to reduce round off error */
2952                 shift_dq = (left_edge[i] - right_edge[i] -
2953                         (left_edge[min_index] - right_edge[min_index]))/2  +
2954                 (orig_mid_min - mid_min);
2955
2956                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2957                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2958
2959                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2960                 temp_dq_out1_delay = readl(addr + (i << 2));
2961                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2962                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2963                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2964                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2965                         shift_dq = -(int32_t)temp_dq_out1_delay;
2966                 }
2967                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2968                            i, shift_dq);
2969                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2970                 scc_mgr_load_dq(i);
2971
2972                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2973                            left_edge[i] - shift_dq + (-mid_min),
2974                            right_edge[i] + shift_dq - (-mid_min));
2975                 /* To determine values for export structures */
2976                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2977                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2978
2979                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2980                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2981         }
2982
2983         /* Move DQS */
2984         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2985         writel(0, &sdr_scc_mgr->update);
2986
2987         /* Centre DM */
2988         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2989
2990         /*
2991          * set the left and right edge of each bit to an illegal value,
2992          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2993          */
2994         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2995         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2996         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2997         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2998         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2999         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3000         int32_t win_best = 0;
3001
3002         /* Search for the/part of the window with DM shift */
3003         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3004                 scc_mgr_apply_group_dm_out1_delay(d);
3005                 writel(0, &sdr_scc_mgr->update);
3006
3007                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3008                                                     PASS_ALL_BITS, &bit_chk,
3009                                                     0)) {
3010                         /* USE Set current end of the window */
3011                         end_curr = -d;
3012                         /*
3013                          * If a starting edge of our window has not been seen
3014                          * this is our current start of the DM window.
3015                          */
3016                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3017                                 bgn_curr = -d;
3018
3019                         /*
3020                          * If current window is bigger than best seen.
3021                          * Set best seen to be current window.
3022                          */
3023                         if ((end_curr-bgn_curr+1) > win_best) {
3024                                 win_best = end_curr-bgn_curr+1;
3025                                 bgn_best = bgn_curr;
3026                                 end_best = end_curr;
3027                         }
3028                 } else {
3029                         /* We just saw a failing test. Reset temp edge */
3030                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3031                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032                         }
3033                 }
3034
3035
3036         /* Reset DM delay chains to 0 */
3037         scc_mgr_apply_group_dm_out1_delay(0);
3038
3039         /*
3040          * Check to see if the current window nudges up aganist 0 delay.
3041          * If so we need to continue the search by shifting DQS otherwise DQS
3042          * search begins as a new search. */
3043         if (end_curr != 0) {
3044                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3045                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046         }
3047
3048         /* Search for the/part of the window with DQS shifts */
3049         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3050                 /*
3051                  * Note: This only shifts DQS, so are we limiting ourselve to
3052                  * width of DQ unnecessarily.
3053                  */
3054                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3055                                                         d + new_dqs);
3056
3057                 writel(0, &sdr_scc_mgr->update);
3058                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3059                                                     PASS_ALL_BITS, &bit_chk,
3060                                                     0)) {
3061                         /* USE Set current end of the window */
3062                         end_curr = d;
3063                         /*
3064                          * If a beginning edge of our window has not been seen
3065                          * this is our current begin of the DM window.
3066                          */
3067                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3068                                 bgn_curr = d;
3069
3070                         /*
3071                          * If current window is bigger than best seen. Set best
3072                          * seen to be current window.
3073                          */
3074                         if ((end_curr-bgn_curr+1) > win_best) {
3075                                 win_best = end_curr-bgn_curr+1;
3076                                 bgn_best = bgn_curr;
3077                                 end_best = end_curr;
3078                         }
3079                 } else {
3080                         /* We just saw a failing test. Reset temp edge */
3081                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3082                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3083
3084                         /* Early exit optimization: if ther remaining delay
3085                         chain space is less than already seen largest window
3086                         we can exit */
3087                         if ((win_best-1) >
3088                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3089                                         break;
3090                                 }
3091                         }
3092                 }
3093
3094         /* assign left and right edge for cal and reporting; */
3095         left_edge[0] = -1*bgn_best;
3096         right_edge[0] = end_best;
3097
3098         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3099                    __LINE__, left_edge[0], right_edge[0]);
3100
3101         /* Move DQS (back to orig) */
3102         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3103
3104         /* Move DM */
3105
3106         /* Find middle of window for the DM bit */
3107         mid = (left_edge[0] - right_edge[0]) / 2;
3108
3109         /* only move right, since we are not moving DQS/DQ */
3110         if (mid < 0)
3111                 mid = 0;
3112
3113         /* dm_marign should fail if we never find a window */
3114         if (win_best == 0)
3115                 dm_margin = -1;
3116         else
3117                 dm_margin = left_edge[0] - mid;
3118
3119         scc_mgr_apply_group_dm_out1_delay(mid);
3120         writel(0, &sdr_scc_mgr->update);
3121
3122         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3123                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3124                    right_edge[0], mid, dm_margin);
3125         /* Export values */
3126         gbl->fom_out += dq_margin + dqs_margin;
3127
3128         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3129                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3130                    dq_margin, dqs_margin, dm_margin);
3131
3132         /*
3133          * Do not remove this line as it makes sure all of our
3134          * decisions have been applied.
3135          */
3136         writel(0, &sdr_scc_mgr->update);
3137         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3138 }
3139
3140 /* calibrate the write operations */
3141 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3142         uint32_t test_bgn)
3143 {
3144         /* update info for sims */
3145         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3146
3147         reg_file_set_stage(CAL_STAGE_WRITES);
3148         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3149
3150         reg_file_set_group(g);
3151
3152         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3153                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3154                                         CAL_SUBSTAGE_WRITES_CENTER);
3155                 return 0;
3156         }
3157
3158         return 1;
3159 }
3160
3161 /**
3162  * mem_precharge_and_activate() - Precharge all banks and activate
3163  *
3164  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3165  */
3166 static void mem_precharge_and_activate(void)
3167 {
3168         int r;
3169
3170         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3171                 /* Test if the rank should be skipped. */
3172                 if (param->skip_ranks[r])
3173                         continue;
3174
3175                 /* Set rank. */
3176                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3177
3178                 /* Precharge all banks. */
3179                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3180                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3181
3182                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3183                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3184                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3185
3186                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3187                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3188                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3189
3190                 /* Activate rows. */
3191                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3192                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3193         }
3194 }
3195
3196 /**
3197  * mem_init_latency() - Configure memory RLAT and WLAT settings
3198  *
3199  * Configure memory RLAT and WLAT parameters.
3200  */
3201 static void mem_init_latency(void)
3202 {
3203         /*
3204          * For AV/CV, LFIFO is hardened and always runs at full rate
3205          * so max latency in AFI clocks, used here, is correspondingly
3206          * smaller.
3207          */
3208         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3209         u32 rlat, wlat;
3210
3211         debug("%s:%d\n", __func__, __LINE__);
3212
3213         /*
3214          * Read in write latency.
3215          * WL for Hard PHY does not include additive latency.
3216          */
3217         wlat = readl(&data_mgr->t_wl_add);
3218         wlat += readl(&data_mgr->mem_t_add);
3219
3220         gbl->rw_wl_nop_cycles = wlat - 1;
3221
3222         /* Read in readl latency. */
3223         rlat = readl(&data_mgr->t_rl_add);
3224
3225         /* Set a pretty high read latency initially. */
3226         gbl->curr_read_lat = rlat + 16;
3227         if (gbl->curr_read_lat > max_latency)
3228                 gbl->curr_read_lat = max_latency;
3229
3230         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3231
3232         /* Advertise write latency. */
3233         writel(wlat, &phy_mgr_cfg->afi_wlat);
3234 }
3235
3236 /**
3237  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3238  *
3239  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3240  */
3241 static void mem_skip_calibrate(void)
3242 {
3243         uint32_t vfifo_offset;
3244         uint32_t i, j, r;
3245
3246         debug("%s:%d\n", __func__, __LINE__);
3247         /* Need to update every shadow register set used by the interface */
3248         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3249              r += NUM_RANKS_PER_SHADOW_REG) {
3250                 /*
3251                  * Set output phase alignment settings appropriate for
3252                  * skip calibration.
3253                  */
3254                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3255                         scc_mgr_set_dqs_en_phase(i, 0);
3256 #if IO_DLL_CHAIN_LENGTH == 6
3257                         scc_mgr_set_dqdqs_output_phase(i, 6);
3258 #else
3259                         scc_mgr_set_dqdqs_output_phase(i, 7);
3260 #endif
3261                         /*
3262                          * Case:33398
3263                          *
3264                          * Write data arrives to the I/O two cycles before write
3265                          * latency is reached (720 deg).
3266                          *   -> due to bit-slip in a/c bus
3267                          *   -> to allow board skew where dqs is longer than ck
3268                          *      -> how often can this happen!?
3269                          *      -> can claim back some ptaps for high freq
3270                          *       support if we can relax this, but i digress...
3271                          *
3272                          * The write_clk leads mem_ck by 90 deg
3273                          * The minimum ptap of the OPA is 180 deg
3274                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3275                          * The write_clk is always delayed by 2 ptaps
3276                          *
3277                          * Hence, to make DQS aligned to CK, we need to delay
3278                          * DQS by:
3279                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3280                          *
3281                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3282                          * gives us the number of ptaps, which simplies to:
3283                          *
3284                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3285                          */
3286                         scc_mgr_set_dqdqs_output_phase(i,
3287                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3288                 }
3289                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3290                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3291
3292                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3293                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3294                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3295                 }
3296                 writel(0xff, &sdr_scc_mgr->dq_ena);
3297                 writel(0xff, &sdr_scc_mgr->dm_ena);
3298                 writel(0, &sdr_scc_mgr->update);
3299         }
3300
3301         /* Compensate for simulation model behaviour */
3302         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3303                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3304                 scc_mgr_load_dqs(i);
3305         }
3306         writel(0, &sdr_scc_mgr->update);
3307
3308         /*
3309          * ArriaV has hard FIFOs that can only be initialized by incrementing
3310          * in sequencer.
3311          */
3312         vfifo_offset = CALIB_VFIFO_OFFSET;
3313         for (j = 0; j < vfifo_offset; j++)
3314                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3315         writel(0, &phy_mgr_cmd->fifo_reset);
3316
3317         /*
3318          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3319          * setting from generation-time constant.
3320          */
3321         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3322         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3323 }
3324
3325 /**
3326  * mem_calibrate() - Memory calibration entry point.
3327  *
3328  * Perform memory calibration.
3329  */
3330 static uint32_t mem_calibrate(void)
3331 {
3332         uint32_t i;
3333         uint32_t rank_bgn, sr;
3334         uint32_t write_group, write_test_bgn;
3335         uint32_t read_group, read_test_bgn;
3336         uint32_t run_groups, current_run;
3337         uint32_t failing_groups = 0;
3338         uint32_t group_failed = 0;
3339
3340         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3341                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3342
3343         debug("%s:%d\n", __func__, __LINE__);
3344
3345         /* Initialize the data settings */
3346         gbl->error_substage = CAL_SUBSTAGE_NIL;
3347         gbl->error_stage = CAL_STAGE_NIL;
3348         gbl->error_group = 0xff;
3349         gbl->fom_in = 0;
3350         gbl->fom_out = 0;
3351
3352         /* Initialize WLAT and RLAT. */
3353         mem_init_latency();
3354
3355         /* Initialize bit slips. */
3356         mem_precharge_and_activate();
3357
3358         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3359                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3360                           SCC_MGR_GROUP_COUNTER_OFFSET);
3361                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3362                 if (i == 0)
3363                         scc_mgr_set_hhp_extras();
3364
3365                 scc_set_bypass_mode(i);
3366         }
3367
3368         /* Calibration is skipped. */
3369         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3370                 /*
3371                  * Set VFIFO and LFIFO to instant-on settings in skip
3372                  * calibration mode.
3373                  */
3374                 mem_skip_calibrate();
3375
3376                 /*
3377                  * Do not remove this line as it makes sure all of our
3378                  * decisions have been applied.
3379                  */
3380                 writel(0, &sdr_scc_mgr->update);
3381                 return 1;
3382         }
3383
3384         /* Calibration is not skipped. */
3385         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3386                 /*
3387                  * Zero all delay chain/phase settings for all
3388                  * groups and all shadow register sets.
3389                  */
3390                 scc_mgr_zero_all();
3391
3392                 run_groups = ~param->skip_groups;
3393
3394                 for (write_group = 0, write_test_bgn = 0; write_group
3395                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3396                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3397
3398                         /* Initialize the group failure */
3399                         group_failed = 0;
3400
3401                         current_run = run_groups & ((1 <<
3402                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3403                         run_groups = run_groups >>
3404                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3405
3406                         if (current_run == 0)
3407                                 continue;
3408
3409                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3410                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3411                         scc_mgr_zero_group(write_group, 0);
3412
3413                         for (read_group = write_group * rwdqs_ratio,
3414                              read_test_bgn = 0;
3415                              read_group < (write_group + 1) * rwdqs_ratio;
3416                              read_group++,
3417                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3418                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3419                                         continue;
3420
3421                                 /* Calibrate the VFIFO */
3422                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3423                                                                read_test_bgn))
3424                                         continue;
3425
3426                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3427                                         return 0;
3428
3429                                 /* The group failed, we're done. */
3430                                 goto grp_failed;
3431                         }
3432
3433                         /* Calibrate the output side */
3434                         for (rank_bgn = 0, sr = 0;
3435                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3436                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3437                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3438                                         continue;
3439
3440                                 /* Not needed in quick mode! */
3441                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3442                                         continue;
3443
3444                                 /*
3445                                  * Determine if this set of ranks
3446                                  * should be skipped entirely.
3447                                  */
3448                                 if (param->skip_shadow_regs[sr])
3449                                         continue;
3450
3451                                 /* Calibrate WRITEs */
3452                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3453                                                 write_group, write_test_bgn))
3454                                         continue;
3455
3456                                 group_failed = 1;
3457                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3458                                         return 0;
3459                         }
3460
3461                         /* Some group failed, we're done. */
3462                         if (group_failed)
3463                                 goto grp_failed;
3464
3465                         for (read_group = write_group * rwdqs_ratio,
3466                              read_test_bgn = 0;
3467                              read_group < (write_group + 1) * rwdqs_ratio;
3468                              read_group++,
3469                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3470                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3471                                         continue;
3472
3473                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3474                                                                 read_test_bgn))
3475                                         continue;
3476
3477                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3478                                         return 0;
3479
3480                                 /* The group failed, we're done. */
3481                                 goto grp_failed;
3482                         }
3483
3484                         /* No group failed, continue as usual. */
3485                         continue;
3486
3487 grp_failed:             /* A group failed, increment the counter. */
3488                         failing_groups++;
3489                 }
3490
3491                 /*
3492                  * USER If there are any failing groups then report
3493                  * the failure.
3494                  */
3495                 if (failing_groups != 0)
3496                         return 0;
3497
3498                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3499                         continue;
3500
3501                 /*
3502                  * If we're skipping groups as part of debug,
3503                  * don't calibrate LFIFO.
3504                  */
3505                 if (param->skip_groups != 0)
3506                         continue;
3507
3508                 /* Calibrate the LFIFO */
3509                 if (!rw_mgr_mem_calibrate_lfifo())
3510                         return 0;
3511         }
3512
3513         /*
3514          * Do not remove this line as it makes sure all of our decisions
3515          * have been applied.
3516          */
3517         writel(0, &sdr_scc_mgr->update);
3518         return 1;
3519 }
3520
3521 /**
3522  * run_mem_calibrate() - Perform memory calibration
3523  *
3524  * This function triggers the entire memory calibration procedure.
3525  */
3526 static int run_mem_calibrate(void)
3527 {
3528         int pass;
3529
3530         debug("%s:%d\n", __func__, __LINE__);
3531
3532         /* Reset pass/fail status shown on afi_cal_success/fail */
3533         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3534
3535         /* Stop tracking manager. */
3536         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3537
3538         phy_mgr_initialize();
3539         rw_mgr_mem_initialize();
3540
3541         /* Perform the actual memory calibration. */
3542         pass = mem_calibrate();
3543
3544         mem_precharge_and_activate();
3545         writel(0, &phy_mgr_cmd->fifo_reset);
3546
3547         /* Handoff. */
3548         rw_mgr_mem_handoff();
3549         /*
3550          * In Hard PHY this is a 2-bit control:
3551          * 0: AFI Mux Select
3552          * 1: DDIO Mux Select
3553          */
3554         writel(0x2, &phy_mgr_cfg->mux_sel);
3555
3556         /* Start tracking manager. */
3557         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3558
3559         return pass;
3560 }
3561
3562 /**
3563  * debug_mem_calibrate() - Report result of memory calibration
3564  * @pass:       Value indicating whether calibration passed or failed
3565  *
3566  * This function reports the results of the memory calibration
3567  * and writes debug information into the register file.
3568  */
3569 static void debug_mem_calibrate(int pass)
3570 {
3571         uint32_t debug_info;
3572
3573         if (pass) {
3574                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3575
3576                 gbl->fom_in /= 2;
3577                 gbl->fom_out /= 2;
3578
3579                 if (gbl->fom_in > 0xff)
3580                         gbl->fom_in = 0xff;
3581
3582                 if (gbl->fom_out > 0xff)
3583                         gbl->fom_out = 0xff;
3584
3585                 /* Update the FOM in the register file */
3586                 debug_info = gbl->fom_in;
3587                 debug_info |= gbl->fom_out << 8;
3588                 writel(debug_info, &sdr_reg_file->fom);
3589
3590                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3591                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3592         } else {
3593                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3594
3595                 debug_info = gbl->error_stage;
3596                 debug_info |= gbl->error_substage << 8;
3597                 debug_info |= gbl->error_group << 16;
3598
3599                 writel(debug_info, &sdr_reg_file->failing_stage);
3600                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3601                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3602
3603                 /* Update the failing group/stage in the register file */
3604                 debug_info = gbl->error_stage;
3605                 debug_info |= gbl->error_substage << 8;
3606                 debug_info |= gbl->error_group << 16;
3607                 writel(debug_info, &sdr_reg_file->failing_stage);
3608         }
3609
3610         printf("%s: Calibration complete\n", __FILE__);
3611 }
3612
3613 /**
3614  * hc_initialize_rom_data() - Initialize ROM data
3615  *
3616  * Initialize ROM data.
3617  */
3618 static void hc_initialize_rom_data(void)
3619 {
3620         u32 i, addr;
3621
3622         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3623         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3624                 writel(inst_rom_init[i], addr + (i << 2));
3625
3626         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3627         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3628                 writel(ac_rom_init[i], addr + (i << 2));
3629 }
3630
3631 /**
3632  * initialize_reg_file() - Initialize SDR register file
3633  *
3634  * Initialize SDR register file.
3635  */
3636 static void initialize_reg_file(void)
3637 {
3638         /* Initialize the register file with the correct data */
3639         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3640         writel(0, &sdr_reg_file->debug_data_addr);
3641         writel(0, &sdr_reg_file->cur_stage);
3642         writel(0, &sdr_reg_file->fom);
3643         writel(0, &sdr_reg_file->failing_stage);
3644         writel(0, &sdr_reg_file->debug1);
3645         writel(0, &sdr_reg_file->debug2);
3646 }
3647
3648 /**
3649  * initialize_hps_phy() - Initialize HPS PHY
3650  *
3651  * Initialize HPS PHY.
3652  */
3653 static void initialize_hps_phy(void)
3654 {
3655         uint32_t reg;
3656         /*
3657          * Tracking also gets configured here because it's in the
3658          * same register.
3659          */
3660         uint32_t trk_sample_count = 7500;
3661         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3662         /*
3663          * Format is number of outer loops in the 16 MSB, sample
3664          * count in 16 LSB.
3665          */
3666
3667         reg = 0;
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3669         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3670         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3672         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3674         /*
3675          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3676          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3677          */
3678         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3680                 trk_sample_count);
3681         writel(reg, &sdr_ctrl->phy_ctrl0);
3682
3683         reg = 0;
3684         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3685                 trk_sample_count >>
3686                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3687         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3688                 trk_long_idle_sample_count);
3689         writel(reg, &sdr_ctrl->phy_ctrl1);
3690
3691         reg = 0;
3692         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3693                 trk_long_idle_sample_count >>
3694                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3695         writel(reg, &sdr_ctrl->phy_ctrl2);
3696 }
3697
3698 /**
3699  * initialize_tracking() - Initialize tracking
3700  *
3701  * Initialize the register file with usable initial data.
3702  */
3703 static void initialize_tracking(void)
3704 {
3705         /*
3706          * Initialize the register file with the correct data.
3707          * Compute usable version of value in case we skip full
3708          * computation later.
3709          */
3710         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3711                &sdr_reg_file->dtaps_per_ptap);
3712
3713         /* trk_sample_count */
3714         writel(7500, &sdr_reg_file->trk_sample_count);
3715
3716         /* longidle outer loop [15:0] */
3717         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3718
3719         /*
3720          * longidle sample count [31:24]
3721          * trfc, worst case of 933Mhz 4Gb [23:16]
3722          * trcd, worst case [15:8]
3723          * vfifo wait [7:0]
3724          */
3725         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3726                &sdr_reg_file->delays);
3727
3728         /* mux delay */
3729         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3730                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3731                &sdr_reg_file->trk_rw_mgr_addr);
3732
3733         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3734                &sdr_reg_file->trk_read_dqs_width);
3735
3736         /* trefi [7:0] */
3737         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3738                &sdr_reg_file->trk_rfsh);
3739 }
3740
3741 int sdram_calibration_full(void)
3742 {
3743         struct param_type my_param;
3744         struct gbl_type my_gbl;
3745         uint32_t pass;
3746
3747         memset(&my_param, 0, sizeof(my_param));
3748         memset(&my_gbl, 0, sizeof(my_gbl));
3749
3750         param = &my_param;
3751         gbl = &my_gbl;
3752
3753         /* Set the calibration enabled by default */
3754         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3755         /*
3756          * Only sweep all groups (regardless of fail state) by default
3757          * Set enabled read test by default.
3758          */
3759 #if DISABLE_GUARANTEED_READ
3760         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3761 #endif
3762         /* Initialize the register file */
3763         initialize_reg_file();
3764
3765         /* Initialize any PHY CSR */
3766         initialize_hps_phy();
3767
3768         scc_mgr_initialize();
3769
3770         initialize_tracking();
3771
3772         printf("%s: Preparing to start memory calibration\n", __FILE__);
3773
3774         debug("%s:%d\n", __func__, __LINE__);
3775         debug_cond(DLEVEL == 1,
3776                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3777                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3778                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3779                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3780                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3781         debug_cond(DLEVEL == 1,
3782                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3783                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3784                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3785                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3786         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3787                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3788         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3789                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3790                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3791         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3792                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3793                    IO_IO_OUT2_DELAY_MAX);
3794         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3795                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3796
3797         hc_initialize_rom_data();
3798
3799         /* update info for sims */
3800         reg_file_set_stage(CAL_STAGE_NIL);
3801         reg_file_set_group(0);
3802
3803         /*
3804          * Load global needed for those actions that require
3805          * some dynamic calibration support.
3806          */
3807         dyn_calib_steps = STATIC_CALIB_STEPS;
3808         /*
3809          * Load global to allow dynamic selection of delay loop settings
3810          * based on calibration mode.
3811          */
3812         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3813                 skip_delay_mask = 0xff;
3814         else
3815                 skip_delay_mask = 0x0;
3816
3817         pass = run_mem_calibrate();
3818         debug_mem_calibrate(pass);
3819         return pass;
3820 }