]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() part 6
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 /**
1290  * rw_mgr_incr_vfifo() - Increase VFIFO value
1291  * @grp:        Read/Write group
1292  *
1293  * Increase VFIFO value.
1294  */
1295 static void rw_mgr_incr_vfifo(const u32 grp)
1296 {
1297         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1298 }
1299
1300 /**
1301  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302  * @grp:        Read/Write group
1303  *
1304  * Decrease VFIFO value.
1305  */
1306 static void rw_mgr_decr_vfifo(const u32 grp)
1307 {
1308         u32 i;
1309
1310         for (i = 0; i < VFIFO_SIZE - 1; i++)
1311                 rw_mgr_incr_vfifo(grp);
1312 }
1313
1314 /**
1315  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1316  * @grp:        Read/Write group
1317  *
1318  * Push VFIFO until a failing read happens.
1319  */
1320 static int find_vfifo_failing_read(const u32 grp)
1321 {
1322         u32 v, ret, bit_chk, fail_cnt = 0;
1323
1324         for (v = 0; v < VFIFO_SIZE; v++) {
1325                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1326                            __func__, __LINE__, v);
1327                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1328                                                 PASS_ONE_BIT, &bit_chk, 0);
1329                 if (!ret) {
1330                         fail_cnt++;
1331
1332                         if (fail_cnt == 2)
1333                                 return v;
1334                 }
1335
1336                 /* Fiddle with FIFO. */
1337                 rw_mgr_incr_vfifo(grp);
1338         }
1339
1340         /* No failing read found! Something must have gone wrong. */
1341         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1342         return 0;
1343 }
1344
1345 /**
1346  * sdr_find_phase_delay() - Find DQS enable phase or delay
1347  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1348  * @delay:      If 1, look for delay, if 0, look for phase
1349  * @grp:        Read/Write group
1350  * @work:       Working window position
1351  * @work_inc:   Working window increment
1352  * @pd:         DQS Phase/Delay Iterator
1353  *
1354  * Find working or non-working DQS enable phase setting.
1355  */
1356 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1357                                 u32 *work, const u32 work_inc, u32 *pd)
1358 {
1359         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1360         u32 ret, bit_chk;
1361
1362         for (; *pd <= max; (*pd)++) {
1363                 if (delay)
1364                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1365                 else
1366                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1367
1368                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1369                                         PASS_ONE_BIT, &bit_chk, 0);
1370                 if (!working)
1371                         ret = !ret;
1372
1373                 if (ret)
1374                         return 0;
1375
1376                 if (work)
1377                         *work += work_inc;
1378         }
1379
1380         return -EINVAL;
1381 }
1382 /**
1383  * sdr_find_phase() - Find DQS enable phase
1384  * @working:    If 1, look for working phase, if 0, look for non-working phase
1385  * @grp:        Read/Write group
1386  * @work:       Working window position
1387  * @i:          Iterator
1388  * @p:          DQS Phase Iterator
1389  *
1390  * Find working or non-working DQS enable phase setting.
1391  */
1392 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1393                           u32 *i, u32 *p)
1394 {
1395         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1396         int ret;
1397
1398         for (; *i < end; (*i)++) {
1399                 if (working)
1400                         *p = 0;
1401
1402                 ret = sdr_find_phase_delay(working, 0, grp, work,
1403                                            IO_DELAY_PER_OPA_TAP, p);
1404                 if (!ret)
1405                         return 0;
1406
1407                 if (*p > IO_DQS_EN_PHASE_MAX) {
1408                         /* Fiddle with FIFO. */
1409                         rw_mgr_incr_vfifo(grp);
1410                         if (!working)
1411                                 *p = 0;
1412                 }
1413         }
1414
1415         return -EINVAL;
1416 }
1417
1418 /**
1419  * sdr_working_phase() - Find working DQS enable phase
1420  * @grp:        Read/Write group
1421  * @work_bgn:   Working window start position
1422  * @d:          dtaps output value
1423  * @p:          DQS Phase Iterator
1424  * @i:          Iterator
1425  *
1426  * Find working DQS enable phase setting.
1427  */
1428 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1429                              u32 *p, u32 *i)
1430 {
1431         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1432                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1433         int ret;
1434
1435         *work_bgn = 0;
1436
1437         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1438                 *i = 0;
1439                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1440                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1441                 if (!ret)
1442                         return 0;
1443                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1444         }
1445
1446         /* Cannot find working solution */
1447         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1448                    __func__, __LINE__);
1449         return -EINVAL;
1450 }
1451
1452 /**
1453  * sdr_backup_phase() - Find DQS enable backup phase
1454  * @grp:        Read/Write group
1455  * @work_bgn:   Working window start position
1456  * @p:          DQS Phase Iterator
1457  *
1458  * Find DQS enable backup phase setting.
1459  */
1460 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1461 {
1462         u32 tmp_delay, bit_chk, d;
1463         int ret;
1464
1465         /* Special case code for backing up a phase */
1466         if (*p == 0) {
1467                 *p = IO_DQS_EN_PHASE_MAX;
1468                 rw_mgr_decr_vfifo(grp);
1469         } else {
1470                 (*p)--;
1471         }
1472         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1473         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1474
1475         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1476                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1477
1478                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1479                                         PASS_ONE_BIT, &bit_chk, 0);
1480                 if (ret) {
1481                         *work_bgn = tmp_delay;
1482                         break;
1483                 }
1484
1485                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1486         }
1487
1488         /* Restore VFIFO to old state before we decremented it (if needed). */
1489         (*p)++;
1490         if (*p > IO_DQS_EN_PHASE_MAX) {
1491                 *p = 0;
1492                 rw_mgr_incr_vfifo(grp);
1493         }
1494
1495         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1496 }
1497
1498 /**
1499  * sdr_nonworking_phase() - Find non-working DQS enable phase
1500  * @grp:        Read/Write group
1501  * @work_end:   Working window end position
1502  * @p:          DQS Phase Iterator
1503  * @i:          Iterator
1504  *
1505  * Find non-working DQS enable phase setting.
1506  */
1507 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1508 {
1509         int ret;
1510
1511         (*p)++;
1512         *work_end += IO_DELAY_PER_OPA_TAP;
1513         if (*p > IO_DQS_EN_PHASE_MAX) {
1514                 /* Fiddle with FIFO. */
1515                 *p = 0;
1516                 rw_mgr_incr_vfifo(grp);
1517         }
1518
1519         ret = sdr_find_phase(0, grp, work_end, i, p);
1520         if (ret) {
1521                 /* Cannot see edge of failing read. */
1522                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1523                            __func__, __LINE__);
1524         }
1525
1526         return ret;
1527 }
1528
1529 /**
1530  * sdr_find_window_center() - Find center of the working DQS window.
1531  * @grp:        Read/Write group
1532  * @work_bgn:   First working settings
1533  * @work_end:   Last working settings
1534  *
1535  * Find center of the working DQS enable window.
1536  */
1537 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1538                                   const u32 work_end)
1539 {
1540         u32 bit_chk, work_mid;
1541         int tmp_delay = 0;
1542         int i, p, d;
1543
1544         work_mid = (work_bgn + work_end) / 2;
1545
1546         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1547                    work_bgn, work_end, work_mid);
1548         /* Get the middle delay to be less than a VFIFO delay */
1549         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1550
1551         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1552         work_mid %= tmp_delay;
1553         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1554
1555         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1556         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1557                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1558         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1559
1560         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1561
1562         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1563         if (d > IO_DQS_EN_DELAY_MAX)
1564                 d = IO_DQS_EN_DELAY_MAX;
1565         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1566
1567         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1568
1569         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1570         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1571
1572         /*
1573          * push vfifo until we can successfully calibrate. We can do this
1574          * because the largest possible margin in 1 VFIFO cycle.
1575          */
1576         for (i = 0; i < VFIFO_SIZE; i++) {
1577                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1578                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1579                                                              PASS_ONE_BIT,
1580                                                              &bit_chk, 0)) {
1581                         debug_cond(DLEVEL == 2,
1582                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1583                                    __func__, __LINE__, p, d);
1584                         return 0;
1585                 }
1586
1587                 /* Fiddle with FIFO. */
1588                 rw_mgr_incr_vfifo(grp);
1589         }
1590
1591         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1592                    __func__, __LINE__);
1593         return -EINVAL;
1594 }
1595
1596 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1597 {
1598         u32 d, p, i;
1599         u32 dtaps_per_ptap;
1600         u32 work_bgn, work_end;
1601         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1602         int ret;
1603
1604         debug("%s:%d %u\n", __func__, __LINE__, grp);
1605
1606         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1607
1608         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1609         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1610
1611         /* Step 0: Determine number of delay taps for each phase tap. */
1612         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1613
1614         /* Step 1: First push vfifo until we get a failing read. */
1615         find_vfifo_failing_read(grp);
1616
1617         /* Step 2: Find first working phase, increment in ptaps. */
1618         work_bgn = 0;
1619         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1620         if (ret)
1621                 return ret;
1622
1623         work_end = work_bgn;
1624
1625         /*
1626          * If d is 0 then the working window covers a phase tap and we can
1627          * follow the old procedure. Otherwise, we've found the beginning
1628          * and we need to increment the dtaps until we find the end.
1629          */
1630         if (d == 0) {
1631                 /*
1632                  * Step 3a: If we have room, back off by one and
1633                  *          increment in dtaps.
1634                  */
1635                 sdr_backup_phase(grp, &work_bgn, &p);
1636
1637                 /*
1638                  * Step 4a: go forward from working phase to non working
1639                  * phase, increment in ptaps.
1640                  */
1641                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1642                 if (ret)
1643                         return ret;
1644
1645                 /* Step 5a: Back off one from last, increment in dtaps. */
1646
1647                 /* Special case code for backing up a phase */
1648                 if (p == 0) {
1649                         p = IO_DQS_EN_PHASE_MAX;
1650                         rw_mgr_decr_vfifo(grp);
1651                 } else {
1652                         p = p - 1;
1653                 }
1654
1655                 work_end -= IO_DELAY_PER_OPA_TAP;
1656                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1657
1658                 d = 0;
1659
1660                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1661                            __func__, __LINE__, p);
1662         }
1663
1664         /* The dtap increment to find the failing edge is done here. */
1665         sdr_find_phase_delay(0, 1, grp, &work_end,
1666                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1667
1668         /* Go back to working dtap */
1669         if (d != 0)
1670                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1671
1672         debug_cond(DLEVEL == 2,
1673                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1674                    __func__, __LINE__, p, d - 1, work_end);
1675
1676         if (work_end < work_bgn) {
1677                 /* nil range */
1678                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1679                            __func__, __LINE__);
1680                 return -EINVAL;
1681         }
1682
1683         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1684                    __func__, __LINE__, work_bgn, work_end);
1685
1686         /*
1687          * We need to calculate the number of dtaps that equal a ptap.
1688          * To do that we'll back up a ptap and re-find the edge of the
1689          * window using dtaps
1690          */
1691         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1692                    __func__, __LINE__);
1693
1694         /* Special case code for backing up a phase */
1695         if (p == 0) {
1696                 p = IO_DQS_EN_PHASE_MAX;
1697                 rw_mgr_decr_vfifo(grp);
1698                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1699                            __func__, __LINE__, p);
1700         } else {
1701                 p = p - 1;
1702                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1703                            __func__, __LINE__, p);
1704         }
1705
1706         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1707
1708         /*
1709          * Increase dtap until we first see a passing read (in case the
1710          * window is smaller than a ptap), and then a failing read to
1711          * mark the edge of the window again.
1712          */
1713
1714         /* Find a passing read. */
1715         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1716                    __func__, __LINE__);
1717
1718         initial_failing_dtap = d;
1719
1720         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1721         if (found_passing_read) {
1722                 /* Find a failing read. */
1723                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1724                            __func__, __LINE__);
1725                 d++;
1726                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1727                                                            &d);
1728         } else {
1729                 debug_cond(DLEVEL == 1,
1730                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1731                            __func__, __LINE__);
1732         }
1733
1734         /*
1735          * The dynamically calculated dtaps_per_ptap is only valid if we
1736          * found a passing/failing read. If we didn't, it means d hit the max
1737          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1738          * statically calculated value.
1739          */
1740         if (found_passing_read && found_failing_read)
1741                 dtaps_per_ptap = d - initial_failing_dtap;
1742
1743         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1744         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1745                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1746
1747         /* Step 6: Find the centre of the window. */
1748         ret = sdr_find_window_center(grp, work_bgn, work_end);
1749
1750         return ret;
1751 }
1752
1753 /* per-bit deskew DQ and center */
1754 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1755         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1756         uint32_t use_read_test, uint32_t update_fom)
1757 {
1758         uint32_t i, p, d, min_index;
1759         /*
1760          * Store these as signed since there are comparisons with
1761          * signed numbers.
1762          */
1763         uint32_t bit_chk;
1764         uint32_t sticky_bit_chk;
1765         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1766         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1767         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1768         int32_t mid;
1769         int32_t orig_mid_min, mid_min;
1770         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1771                 final_dqs_en;
1772         int32_t dq_margin, dqs_margin;
1773         uint32_t stop;
1774         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1775         uint32_t addr;
1776
1777         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1778
1779         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1780         start_dqs = readl(addr + (read_group << 2));
1781         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1782                 start_dqs_en = readl(addr + ((read_group << 2)
1783                                      - IO_DQS_EN_DELAY_OFFSET));
1784
1785         /* set the left and right edge of each bit to an illegal value */
1786         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1787         sticky_bit_chk = 0;
1788         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1789                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1790                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1791         }
1792
1793         /* Search for the left edge of the window for each bit */
1794         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1795                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1796
1797                 writel(0, &sdr_scc_mgr->update);
1798
1799                 /*
1800                  * Stop searching when the read test doesn't pass AND when
1801                  * we've seen a passing read on every bit.
1802                  */
1803                 if (use_read_test) {
1804                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1805                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1806                                 &bit_chk, 0, 0);
1807                 } else {
1808                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1809                                                         0, PASS_ONE_BIT,
1810                                                         &bit_chk, 0);
1811                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1812                                 (read_group - (write_group *
1813                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1814                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1815                         stop = (bit_chk == 0);
1816                 }
1817                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1818                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1819                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1820                            && %u", __func__, __LINE__, d,
1821                            sticky_bit_chk,
1822                         param->read_correct_mask, stop);
1823
1824                 if (stop == 1) {
1825                         break;
1826                 } else {
1827                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1828                                 if (bit_chk & 1) {
1829                                         /* Remember a passing test as the
1830                                         left_edge */
1831                                         left_edge[i] = d;
1832                                 } else {
1833                                         /* If a left edge has not been seen yet,
1834                                         then a future passing test will mark
1835                                         this edge as the right edge */
1836                                         if (left_edge[i] ==
1837                                                 IO_IO_IN_DELAY_MAX + 1) {
1838                                                 right_edge[i] = -(d + 1);
1839                                         }
1840                                 }
1841                                 bit_chk = bit_chk >> 1;
1842                         }
1843                 }
1844         }
1845
1846         /* Reset DQ delay chains to 0 */
1847         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1848         sticky_bit_chk = 0;
1849         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1850                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1851                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1852                            i, left_edge[i], i, right_edge[i]);
1853
1854                 /*
1855                  * Check for cases where we haven't found the left edge,
1856                  * which makes our assignment of the the right edge invalid.
1857                  * Reset it to the illegal value.
1858                  */
1859                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1860                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1861                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1862                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1863                                    right_edge[%u]: %d\n", __func__, __LINE__,
1864                                    i, right_edge[i]);
1865                 }
1866
1867                 /*
1868                  * Reset sticky bit (except for bits where we have seen
1869                  * both the left and right edge).
1870                  */
1871                 sticky_bit_chk = sticky_bit_chk << 1;
1872                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1873                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1874                         sticky_bit_chk = sticky_bit_chk | 1;
1875                 }
1876
1877                 if (i == 0)
1878                         break;
1879         }
1880
1881         /* Search for the right edge of the window for each bit */
1882         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1883                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1884                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1885                         uint32_t delay = d + start_dqs_en;
1886                         if (delay > IO_DQS_EN_DELAY_MAX)
1887                                 delay = IO_DQS_EN_DELAY_MAX;
1888                         scc_mgr_set_dqs_en_delay(read_group, delay);
1889                 }
1890                 scc_mgr_load_dqs(read_group);
1891
1892                 writel(0, &sdr_scc_mgr->update);
1893
1894                 /*
1895                  * Stop searching when the read test doesn't pass AND when
1896                  * we've seen a passing read on every bit.
1897                  */
1898                 if (use_read_test) {
1899                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1900                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1901                                 &bit_chk, 0, 0);
1902                 } else {
1903                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1904                                                         0, PASS_ONE_BIT,
1905                                                         &bit_chk, 0);
1906                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1907                                 (read_group - (write_group *
1908                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1909                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1910                         stop = (bit_chk == 0);
1911                 }
1912                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1913                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1914
1915                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1916                            %u && %u", __func__, __LINE__, d,
1917                            sticky_bit_chk, param->read_correct_mask, stop);
1918
1919                 if (stop == 1) {
1920                         break;
1921                 } else {
1922                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1923                                 if (bit_chk & 1) {
1924                                         /* Remember a passing test as
1925                                         the right_edge */
1926                                         right_edge[i] = d;
1927                                 } else {
1928                                         if (d != 0) {
1929                                                 /* If a right edge has not been
1930                                                 seen yet, then a future passing
1931                                                 test will mark this edge as the
1932                                                 left edge */
1933                                                 if (right_edge[i] ==
1934                                                 IO_IO_IN_DELAY_MAX + 1) {
1935                                                         left_edge[i] = -(d + 1);
1936                                                 }
1937                                         } else {
1938                                                 /* d = 0 failed, but it passed
1939                                                 when testing the left edge,
1940                                                 so it must be marginal,
1941                                                 set it to -1 */
1942                                                 if (right_edge[i] ==
1943                                                         IO_IO_IN_DELAY_MAX + 1 &&
1944                                                         left_edge[i] !=
1945                                                         IO_IO_IN_DELAY_MAX
1946                                                         + 1) {
1947                                                         right_edge[i] = -1;
1948                                                 }
1949                                                 /* If a right edge has not been
1950                                                 seen yet, then a future passing
1951                                                 test will mark this edge as the
1952                                                 left edge */
1953                                                 else if (right_edge[i] ==
1954                                                         IO_IO_IN_DELAY_MAX +
1955                                                         1) {
1956                                                         left_edge[i] = -(d + 1);
1957                                                 }
1958                                         }
1959                                 }
1960
1961                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1962                                            d=%u]: ", __func__, __LINE__, d);
1963                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1964                                            (int)(bit_chk & 1), i, left_edge[i]);
1965                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1966                                            right_edge[i]);
1967                                 bit_chk = bit_chk >> 1;
1968                         }
1969                 }
1970         }
1971
1972         /* Check that all bits have a window */
1973         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1974                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1975                            %d right_edge[%u]: %d", __func__, __LINE__,
1976                            i, left_edge[i], i, right_edge[i]);
1977                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1978                         == IO_IO_IN_DELAY_MAX + 1)) {
1979                         /*
1980                          * Restore delay chain settings before letting the loop
1981                          * in rw_mgr_mem_calibrate_vfifo to retry different
1982                          * dqs/ck relationships.
1983                          */
1984                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1985                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1986                                 scc_mgr_set_dqs_en_delay(read_group,
1987                                                          start_dqs_en);
1988                         }
1989                         scc_mgr_load_dqs(read_group);
1990                         writel(0, &sdr_scc_mgr->update);
1991
1992                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1993                                    find edge [%u]: %d %d", __func__, __LINE__,
1994                                    i, left_edge[i], right_edge[i]);
1995                         if (use_read_test) {
1996                                 set_failing_group_stage(read_group *
1997                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
1998                                         CAL_STAGE_VFIFO,
1999                                         CAL_SUBSTAGE_VFIFO_CENTER);
2000                         } else {
2001                                 set_failing_group_stage(read_group *
2002                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2003                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2004                                         CAL_SUBSTAGE_VFIFO_CENTER);
2005                         }
2006                         return 0;
2007                 }
2008         }
2009
2010         /* Find middle of window for each DQ bit */
2011         mid_min = left_edge[0] - right_edge[0];
2012         min_index = 0;
2013         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2014                 mid = left_edge[i] - right_edge[i];
2015                 if (mid < mid_min) {
2016                         mid_min = mid;
2017                         min_index = i;
2018                 }
2019         }
2020
2021         /*
2022          * -mid_min/2 represents the amount that we need to move DQS.
2023          * If mid_min is odd and positive we'll need to add one to
2024          * make sure the rounding in further calculations is correct
2025          * (always bias to the right), so just add 1 for all positive values.
2026          */
2027         if (mid_min > 0)
2028                 mid_min++;
2029
2030         mid_min = mid_min / 2;
2031
2032         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2033                    __func__, __LINE__, mid_min, min_index);
2034
2035         /* Determine the amount we can change DQS (which is -mid_min) */
2036         orig_mid_min = mid_min;
2037         new_dqs = start_dqs - mid_min;
2038         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2039                 new_dqs = IO_DQS_IN_DELAY_MAX;
2040         else if (new_dqs < 0)
2041                 new_dqs = 0;
2042
2043         mid_min = start_dqs - new_dqs;
2044         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2045                    mid_min, new_dqs);
2046
2047         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2048                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2049                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2050                 else if (start_dqs_en - mid_min < 0)
2051                         mid_min += start_dqs_en - mid_min;
2052         }
2053         new_dqs = start_dqs - mid_min;
2054
2055         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2056                    new_dqs=%d mid_min=%d\n", start_dqs,
2057                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2058                    new_dqs, mid_min);
2059
2060         /* Initialize data for export structures */
2061         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2062         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2063
2064         /* add delay to bring centre of all DQ windows to the same "level" */
2065         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2066                 /* Use values before divide by 2 to reduce round off error */
2067                 shift_dq = (left_edge[i] - right_edge[i] -
2068                         (left_edge[min_index] - right_edge[min_index]))/2  +
2069                         (orig_mid_min - mid_min);
2070
2071                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2072                            shift_dq[%u]=%d\n", i, shift_dq);
2073
2074                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2075                 temp_dq_in_delay1 = readl(addr + (p << 2));
2076                 temp_dq_in_delay2 = readl(addr + (i << 2));
2077
2078                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2079                         (int32_t)IO_IO_IN_DELAY_MAX) {
2080                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2081                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2082                         shift_dq = -(int32_t)temp_dq_in_delay1;
2083                 }
2084                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2085                            shift_dq[%u]=%d\n", i, shift_dq);
2086                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2087                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2088                 scc_mgr_load_dq(p);
2089
2090                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2091                            left_edge[i] - shift_dq + (-mid_min),
2092                            right_edge[i] + shift_dq - (-mid_min));
2093                 /* To determine values for export structures */
2094                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2095                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2096
2097                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2098                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2099         }
2100
2101         final_dqs = new_dqs;
2102         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2103                 final_dqs_en = start_dqs_en - mid_min;
2104
2105         /* Move DQS-en */
2106         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2107                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2108                 scc_mgr_load_dqs(read_group);
2109         }
2110
2111         /* Move DQS */
2112         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2113         scc_mgr_load_dqs(read_group);
2114         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2115                    dqs_margin=%d", __func__, __LINE__,
2116                    dq_margin, dqs_margin);
2117
2118         /*
2119          * Do not remove this line as it makes sure all of our decisions
2120          * have been applied. Apply the update bit.
2121          */
2122         writel(0, &sdr_scc_mgr->update);
2123
2124         return (dq_margin >= 0) && (dqs_margin >= 0);
2125 }
2126
2127 /**
2128  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2129  * @rw_group:   Read/Write Group
2130  * @phase:      DQ/DQS phase
2131  *
2132  * Because initially no communication ca be reliably performed with the memory
2133  * device, the sequencer uses a guaranteed write mechanism to write data into
2134  * the memory device.
2135  */
2136 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2137                                                  const u32 phase)
2138 {
2139         int ret;
2140
2141         /* Set a particular DQ/DQS phase. */
2142         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2143
2144         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2145                    __func__, __LINE__, rw_group, phase);
2146
2147         /*
2148          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2149          * Load up the patterns used by read calibration using the
2150          * current DQDQS phase.
2151          */
2152         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2153
2154         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2155                 return 0;
2156
2157         /*
2158          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2159          * Back-to-Back reads of the patterns used for calibration.
2160          */
2161         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2162         if (ret)
2163                 debug_cond(DLEVEL == 1,
2164                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2165                            __func__, __LINE__, rw_group, phase);
2166         return ret;
2167 }
2168
2169 /**
2170  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2171  * @rw_group:   Read/Write Group
2172  * @test_bgn:   Rank at which the test begins
2173  *
2174  * DQS enable calibration ensures reliable capture of the DQ signal without
2175  * glitches on the DQS line.
2176  */
2177 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2178                                                        const u32 test_bgn)
2179 {
2180         /*
2181          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2182          * DQS and DQS Eanble Signal Relationships.
2183          */
2184
2185         /* We start at zero, so have one less dq to devide among */
2186         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2187                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2188         int ret;
2189         u32 i, p, d, r;
2190
2191         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2192
2193         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2194         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2195              r += NUM_RANKS_PER_SHADOW_REG) {
2196                 for (i = 0, p = test_bgn, d = 0;
2197                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2198                      i++, p++, d += delay_step) {
2199                         debug_cond(DLEVEL == 1,
2200                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2201                                    __func__, __LINE__, rw_group, r, i, p, d);
2202
2203                         scc_mgr_set_dq_in_delay(p, d);
2204                         scc_mgr_load_dq(p);
2205                 }
2206
2207                 writel(0, &sdr_scc_mgr->update);
2208         }
2209
2210         /*
2211          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2212          * dq_in_delay values
2213          */
2214         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2215
2216         debug_cond(DLEVEL == 1,
2217                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2218                    __func__, __LINE__, rw_group, !ret);
2219
2220         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2221              r += NUM_RANKS_PER_SHADOW_REG) {
2222                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2223                 writel(0, &sdr_scc_mgr->update);
2224         }
2225
2226         return ret;
2227 }
2228
2229 /**
2230  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2231  * @rw_group:           Read/Write Group
2232  * @test_bgn:           Rank at which the test begins
2233  * @use_read_test:      Perform a read test
2234  * @update_fom:         Update FOM
2235  *
2236  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2237  * within a group.
2238  */
2239 static int
2240 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2241                                       const int use_read_test,
2242                                       const int update_fom)
2243
2244 {
2245         int ret, grp_calibrated;
2246         u32 rank_bgn, sr;
2247
2248         /*
2249          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2250          * Read per-bit deskew can be done on a per shadow register basis.
2251          */
2252         grp_calibrated = 1;
2253         for (rank_bgn = 0, sr = 0;
2254              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2255              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2256                 /* Check if this set of ranks should be skipped entirely. */
2257                 if (param->skip_shadow_regs[sr])
2258                         continue;
2259
2260                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2261                                                         rw_group, test_bgn,
2262                                                         use_read_test,
2263                                                         update_fom);
2264                 if (ret)
2265                         continue;
2266
2267                 grp_calibrated = 0;
2268         }
2269
2270         if (!grp_calibrated)
2271                 return -EIO;
2272
2273         return 0;
2274 }
2275
2276 /**
2277  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2278  * @rw_group:           Read/Write Group
2279  * @test_bgn:           Rank at which the test begins
2280  *
2281  * Stage 1: Calibrate the read valid prediction FIFO.
2282  *
2283  * This function implements UniPHY calibration Stage 1, as explained in
2284  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2285  *
2286  * - read valid prediction will consist of finding:
2287  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2288  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2289  *  - we also do a per-bit deskew on the DQ lines.
2290  */
2291 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2292 {
2293         uint32_t p, d;
2294         uint32_t dtaps_per_ptap;
2295         uint32_t failed_substage;
2296
2297         int ret;
2298
2299         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2300
2301         /* Update info for sims */
2302         reg_file_set_group(rw_group);
2303         reg_file_set_stage(CAL_STAGE_VFIFO);
2304         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2305
2306         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2307
2308         /* USER Determine number of delay taps for each phase tap. */
2309         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2310                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2311
2312         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2313                 /*
2314                  * In RLDRAMX we may be messing the delay of pins in
2315                  * the same write rw_group but outside of the current read
2316                  * the rw_group, but that's ok because we haven't calibrated
2317                  * output side yet.
2318                  */
2319                 if (d > 0) {
2320                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2321                                                                 rw_group, d);
2322                 }
2323
2324                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2325                         /* 1) Guaranteed Write */
2326                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2327                         if (ret)
2328                                 break;
2329
2330                         /* 2) DQS Enable Calibration */
2331                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2332                                                                           test_bgn);
2333                         if (ret) {
2334                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2335                                 continue;
2336                         }
2337
2338                         /* 3) Centering DQ/DQS */
2339                         /*
2340                          * If doing read after write calibration, do not update
2341                          * FOM now. Do it then.
2342                          */
2343                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2344                                                                 test_bgn, 1, 0);
2345                         if (ret) {
2346                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2347                                 continue;
2348                         }
2349
2350                         /* All done. */
2351                         goto cal_done_ok;
2352                 }
2353         }
2354
2355         /* Calibration Stage 1 failed. */
2356         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2357         return 0;
2358
2359         /* Calibration Stage 1 completed OK. */
2360 cal_done_ok:
2361         /*
2362          * Reset the delay chains back to zero if they have moved > 1
2363          * (check for > 1 because loop will increase d even when pass in
2364          * first case).
2365          */
2366         if (d > 2)
2367                 scc_mgr_zero_group(rw_group, 1);
2368
2369         return 1;
2370 }
2371
2372 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2373 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2374                                                uint32_t test_bgn)
2375 {
2376         uint32_t rank_bgn, sr;
2377         uint32_t grp_calibrated;
2378         uint32_t write_group;
2379
2380         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2381
2382         /* update info for sims */
2383
2384         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2385         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2386
2387         write_group = read_group;
2388
2389         /* update info for sims */
2390         reg_file_set_group(read_group);
2391
2392         grp_calibrated = 1;
2393         /* Read per-bit deskew can be done on a per shadow register basis */
2394         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2395                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2396                 /* Determine if this set of ranks should be skipped entirely */
2397                 if (!param->skip_shadow_regs[sr]) {
2398                 /* This is the last calibration round, update FOM here */
2399                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2400                                                                 write_group,
2401                                                                 read_group,
2402                                                                 test_bgn, 0,
2403                                                                 1)) {
2404                                 grp_calibrated = 0;
2405                         }
2406                 }
2407         }
2408
2409
2410         if (grp_calibrated == 0) {
2411                 set_failing_group_stage(write_group,
2412                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2413                                         CAL_SUBSTAGE_VFIFO_CENTER);
2414                 return 0;
2415         }
2416
2417         return 1;
2418 }
2419
2420 /* Calibrate LFIFO to find smallest read latency */
2421 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2422 {
2423         uint32_t found_one;
2424         uint32_t bit_chk;
2425
2426         debug("%s:%d\n", __func__, __LINE__);
2427
2428         /* update info for sims */
2429         reg_file_set_stage(CAL_STAGE_LFIFO);
2430         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2431
2432         /* Load up the patterns used by read calibration for all ranks */
2433         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2434         found_one = 0;
2435
2436         do {
2437                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2438                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2439                            __func__, __LINE__, gbl->curr_read_lat);
2440
2441                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2442                                                               NUM_READ_TESTS,
2443                                                               PASS_ALL_BITS,
2444                                                               &bit_chk, 1)) {
2445                         break;
2446                 }
2447
2448                 found_one = 1;
2449                 /* reduce read latency and see if things are working */
2450                 /* correctly */
2451                 gbl->curr_read_lat--;
2452         } while (gbl->curr_read_lat > 0);
2453
2454         /* reset the fifos to get pointers to known state */
2455
2456         writel(0, &phy_mgr_cmd->fifo_reset);
2457
2458         if (found_one) {
2459                 /* add a fudge factor to the read latency that was determined */
2460                 gbl->curr_read_lat += 2;
2461                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2462                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2463                            read_lat=%u\n", __func__, __LINE__,
2464                            gbl->curr_read_lat);
2465                 return 1;
2466         } else {
2467                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2468                                         CAL_SUBSTAGE_READ_LATENCY);
2469
2470                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2471                            read_lat=%u\n", __func__, __LINE__,
2472                            gbl->curr_read_lat);
2473                 return 0;
2474         }
2475 }
2476
2477 /*
2478  * issue write test command.
2479  * two variants are provided. one that just tests a write pattern and
2480  * another that tests datamask functionality.
2481  */
2482 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2483                                                   uint32_t test_dm)
2484 {
2485         uint32_t mcc_instruction;
2486         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2487                 ENABLE_SUPER_QUICK_CALIBRATION);
2488         uint32_t rw_wl_nop_cycles;
2489         uint32_t addr;
2490
2491         /*
2492          * Set counter and jump addresses for the right
2493          * number of NOP cycles.
2494          * The number of supported NOP cycles can range from -1 to infinity
2495          * Three different cases are handled:
2496          *
2497          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2498          *    mechanism will be used to insert the right number of NOPs
2499          *
2500          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2501          *    issuing the write command will jump straight to the
2502          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2503          *    data (for RLD), skipping
2504          *    the NOP micro-instruction all together
2505          *
2506          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2507          *    turned on in the same micro-instruction that issues the write
2508          *    command. Then we need
2509          *    to directly jump to the micro-instruction that sends out the data
2510          *
2511          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2512          *       (2 and 3). One jump-counter (0) is used to perform multiple
2513          *       write-read operations.
2514          *       one counter left to issue this command in "multiple-group" mode
2515          */
2516
2517         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2518
2519         if (rw_wl_nop_cycles == -1) {
2520                 /*
2521                  * CNTR 2 - We want to execute the special write operation that
2522                  * turns on DQS right away and then skip directly to the
2523                  * instruction that sends out the data. We set the counter to a
2524                  * large number so that the jump is always taken.
2525                  */
2526                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2527
2528                 /* CNTR 3 - Not used */
2529                 if (test_dm) {
2530                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2531                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2532                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2533                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2534                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2535                 } else {
2536                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2537                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2538                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2539                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2540                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2541                 }
2542         } else if (rw_wl_nop_cycles == 0) {
2543                 /*
2544                  * CNTR 2 - We want to skip the NOP operation and go straight
2545                  * to the DQS enable instruction. We set the counter to a large
2546                  * number so that the jump is always taken.
2547                  */
2548                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2549
2550                 /* CNTR 3 - Not used */
2551                 if (test_dm) {
2552                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2553                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2554                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2555                 } else {
2556                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2557                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2558                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559                 }
2560         } else {
2561                 /*
2562                  * CNTR 2 - In this case we want to execute the next instruction
2563                  * and NOT take the jump. So we set the counter to 0. The jump
2564                  * address doesn't count.
2565                  */
2566                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2567                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2568
2569                 /*
2570                  * CNTR 3 - Set the nop counter to the number of cycles we
2571                  * need to loop for, minus 1.
2572                  */
2573                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2574                 if (test_dm) {
2575                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2576                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2577                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2578                 } else {
2579                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2580                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2581                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2582                 }
2583         }
2584
2585         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2586                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2587
2588         if (quick_write_mode)
2589                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2590         else
2591                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2592
2593         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2594
2595         /*
2596          * CNTR 1 - This is used to ensure enough time elapses
2597          * for read data to come back.
2598          */
2599         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2600
2601         if (test_dm) {
2602                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2603                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2604         } else {
2605                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2606                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2607         }
2608
2609         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2610         writel(mcc_instruction, addr + (group << 2));
2611 }
2612
2613 /* Test writes, can check for a single bit pass or multiple bit pass */
2614 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2615         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2616         uint32_t *bit_chk, uint32_t all_ranks)
2617 {
2618         uint32_t r;
2619         uint32_t correct_mask_vg;
2620         uint32_t tmp_bit_chk;
2621         uint32_t vg;
2622         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2623                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2624         uint32_t addr_rw_mgr;
2625         uint32_t base_rw_mgr;
2626
2627         *bit_chk = param->write_correct_mask;
2628         correct_mask_vg = param->write_correct_mask_vg;
2629
2630         for (r = rank_bgn; r < rank_end; r++) {
2631                 if (param->skip_ranks[r]) {
2632                         /* request to skip the rank */
2633                         continue;
2634                 }
2635
2636                 /* set rank */
2637                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2638
2639                 tmp_bit_chk = 0;
2640                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2641                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2642                         /* reset the fifos to get pointers to known state */
2643                         writel(0, &phy_mgr_cmd->fifo_reset);
2644
2645                         tmp_bit_chk = tmp_bit_chk <<
2646                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2647                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2648                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2649                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2650                                 use_dm);
2651
2652                         base_rw_mgr = readl(addr_rw_mgr);
2653                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2654                         if (vg == 0)
2655                                 break;
2656                 }
2657                 *bit_chk &= tmp_bit_chk;
2658         }
2659
2660         if (all_correct) {
2661                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2662                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2663                            %u => %lu", write_group, use_dm,
2664                            *bit_chk, param->write_correct_mask,
2665                            (long unsigned int)(*bit_chk ==
2666                            param->write_correct_mask));
2667                 return *bit_chk == param->write_correct_mask;
2668         } else {
2669                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2670                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2671                        write_group, use_dm, *bit_chk);
2672                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2673                         (long unsigned int)(*bit_chk != 0));
2674                 return *bit_chk != 0x00;
2675         }
2676 }
2677
2678 /*
2679  * center all windows. do per-bit-deskew to possibly increase size of
2680  * certain windows.
2681  */
2682 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2683         uint32_t write_group, uint32_t test_bgn)
2684 {
2685         uint32_t i, p, min_index;
2686         int32_t d;
2687         /*
2688          * Store these as signed since there are comparisons with
2689          * signed numbers.
2690          */
2691         uint32_t bit_chk;
2692         uint32_t sticky_bit_chk;
2693         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2694         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2695         int32_t mid;
2696         int32_t mid_min, orig_mid_min;
2697         int32_t new_dqs, start_dqs, shift_dq;
2698         int32_t dq_margin, dqs_margin, dm_margin;
2699         uint32_t stop;
2700         uint32_t temp_dq_out1_delay;
2701         uint32_t addr;
2702
2703         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2704
2705         dm_margin = 0;
2706
2707         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2708         start_dqs = readl(addr +
2709                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2710
2711         /* per-bit deskew */
2712
2713         /*
2714          * set the left and right edge of each bit to an illegal value
2715          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2716          */
2717         sticky_bit_chk = 0;
2718         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2719                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2720                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2721         }
2722
2723         /* Search for the left edge of the window for each bit */
2724         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2725                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2726
2727                 writel(0, &sdr_scc_mgr->update);
2728
2729                 /*
2730                  * Stop searching when the read test doesn't pass AND when
2731                  * we've seen a passing read on every bit.
2732                  */
2733                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2734                         0, PASS_ONE_BIT, &bit_chk, 0);
2735                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2736                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2737                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2738                            == %u && %u [bit_chk= %u ]\n",
2739                         d, sticky_bit_chk, param->write_correct_mask,
2740                         stop, bit_chk);
2741
2742                 if (stop == 1) {
2743                         break;
2744                 } else {
2745                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2746                                 if (bit_chk & 1) {
2747                                         /*
2748                                          * Remember a passing test as the
2749                                          * left_edge.
2750                                          */
2751                                         left_edge[i] = d;
2752                                 } else {
2753                                         /*
2754                                          * If a left edge has not been seen
2755                                          * yet, then a future passing test will
2756                                          * mark this edge as the right edge.
2757                                          */
2758                                         if (left_edge[i] ==
2759                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2760                                                 right_edge[i] = -(d + 1);
2761                                         }
2762                                 }
2763                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2764                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2765                                            (int)(bit_chk & 1), i, left_edge[i]);
2766                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2767                                        right_edge[i]);
2768                                 bit_chk = bit_chk >> 1;
2769                         }
2770                 }
2771         }
2772
2773         /* Reset DQ delay chains to 0 */
2774         scc_mgr_apply_group_dq_out1_delay(0);
2775         sticky_bit_chk = 0;
2776         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2777                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2778                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2779                            i, left_edge[i], i, right_edge[i]);
2780
2781                 /*
2782                  * Check for cases where we haven't found the left edge,
2783                  * which makes our assignment of the the right edge invalid.
2784                  * Reset it to the illegal value.
2785                  */
2786                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2787                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2788                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2789                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2790                                    right_edge[%u]: %d\n", __func__, __LINE__,
2791                                    i, right_edge[i]);
2792                 }
2793
2794                 /*
2795                  * Reset sticky bit (except for bits where we have
2796                  * seen the left edge).
2797                  */
2798                 sticky_bit_chk = sticky_bit_chk << 1;
2799                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2800                         sticky_bit_chk = sticky_bit_chk | 1;
2801
2802                 if (i == 0)
2803                         break;
2804         }
2805
2806         /* Search for the right edge of the window for each bit */
2807         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2808                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2809                                                         d + start_dqs);
2810
2811                 writel(0, &sdr_scc_mgr->update);
2812
2813                 /*
2814                  * Stop searching when the read test doesn't pass AND when
2815                  * we've seen a passing read on every bit.
2816                  */
2817                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2818                         0, PASS_ONE_BIT, &bit_chk, 0);
2819
2820                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2821                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2822
2823                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2824                            %u && %u\n", d, sticky_bit_chk,
2825                            param->write_correct_mask, stop);
2826
2827                 if (stop == 1) {
2828                         if (d == 0) {
2829                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2830                                         i++) {
2831                                         /* d = 0 failed, but it passed when
2832                                         testing the left edge, so it must be
2833                                         marginal, set it to -1 */
2834                                         if (right_edge[i] ==
2835                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2836                                                 left_edge[i] !=
2837                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2838                                                 right_edge[i] = -1;
2839                                         }
2840                                 }
2841                         }
2842                         break;
2843                 } else {
2844                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2845                                 if (bit_chk & 1) {
2846                                         /*
2847                                          * Remember a passing test as
2848                                          * the right_edge.
2849                                          */
2850                                         right_edge[i] = d;
2851                                 } else {
2852                                         if (d != 0) {
2853                                                 /*
2854                                                  * If a right edge has not
2855                                                  * been seen yet, then a future
2856                                                  * passing test will mark this
2857                                                  * edge as the left edge.
2858                                                  */
2859                                                 if (right_edge[i] ==
2860                                                     IO_IO_OUT1_DELAY_MAX + 1)
2861                                                         left_edge[i] = -(d + 1);
2862                                         } else {
2863                                                 /*
2864                                                  * d = 0 failed, but it passed
2865                                                  * when testing the left edge,
2866                                                  * so it must be marginal, set
2867                                                  * it to -1.
2868                                                  */
2869                                                 if (right_edge[i] ==
2870                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2871                                                     left_edge[i] !=
2872                                                     IO_IO_OUT1_DELAY_MAX + 1)
2873                                                         right_edge[i] = -1;
2874                                                 /*
2875                                                  * If a right edge has not been
2876                                                  * seen yet, then a future
2877                                                  * passing test will mark this
2878                                                  * edge as the left edge.
2879                                                  */
2880                                                 else if (right_edge[i] ==
2881                                                         IO_IO_OUT1_DELAY_MAX +
2882                                                         1)
2883                                                         left_edge[i] = -(d + 1);
2884                                         }
2885                                 }
2886                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2887                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2888                                            (int)(bit_chk & 1), i, left_edge[i]);
2889                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2890                                            right_edge[i]);
2891                                 bit_chk = bit_chk >> 1;
2892                         }
2893                 }
2894         }
2895
2896         /* Check that all bits have a window */
2897         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2898                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2899                            %d right_edge[%u]: %d", __func__, __LINE__,
2900                            i, left_edge[i], i, right_edge[i]);
2901                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2902                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2903                         set_failing_group_stage(test_bgn + i,
2904                                                 CAL_STAGE_WRITES,
2905                                                 CAL_SUBSTAGE_WRITES_CENTER);
2906                         return 0;
2907                 }
2908         }
2909
2910         /* Find middle of window for each DQ bit */
2911         mid_min = left_edge[0] - right_edge[0];
2912         min_index = 0;
2913         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2914                 mid = left_edge[i] - right_edge[i];
2915                 if (mid < mid_min) {
2916                         mid_min = mid;
2917                         min_index = i;
2918                 }
2919         }
2920
2921         /*
2922          * -mid_min/2 represents the amount that we need to move DQS.
2923          * If mid_min is odd and positive we'll need to add one to
2924          * make sure the rounding in further calculations is correct
2925          * (always bias to the right), so just add 1 for all positive values.
2926          */
2927         if (mid_min > 0)
2928                 mid_min++;
2929         mid_min = mid_min / 2;
2930         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2931                    __LINE__, mid_min);
2932
2933         /* Determine the amount we can change DQS (which is -mid_min) */
2934         orig_mid_min = mid_min;
2935         new_dqs = start_dqs;
2936         mid_min = 0;
2937         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2938                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2939         /* Initialize data for export structures */
2940         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2941         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2942
2943         /* add delay to bring centre of all DQ windows to the same "level" */
2944         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2945                 /* Use values before divide by 2 to reduce round off error */
2946                 shift_dq = (left_edge[i] - right_edge[i] -
2947                         (left_edge[min_index] - right_edge[min_index]))/2  +
2948                 (orig_mid_min - mid_min);
2949
2950                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2951                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2952
2953                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2954                 temp_dq_out1_delay = readl(addr + (i << 2));
2955                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2956                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2957                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2958                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2959                         shift_dq = -(int32_t)temp_dq_out1_delay;
2960                 }
2961                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2962                            i, shift_dq);
2963                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2964                 scc_mgr_load_dq(i);
2965
2966                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2967                            left_edge[i] - shift_dq + (-mid_min),
2968                            right_edge[i] + shift_dq - (-mid_min));
2969                 /* To determine values for export structures */
2970                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2971                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2972
2973                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2974                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2975         }
2976
2977         /* Move DQS */
2978         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2979         writel(0, &sdr_scc_mgr->update);
2980
2981         /* Centre DM */
2982         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2983
2984         /*
2985          * set the left and right edge of each bit to an illegal value,
2986          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2987          */
2988         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2989         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2990         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2991         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2992         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2993         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2994         int32_t win_best = 0;
2995
2996         /* Search for the/part of the window with DM shift */
2997         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2998                 scc_mgr_apply_group_dm_out1_delay(d);
2999                 writel(0, &sdr_scc_mgr->update);
3000
3001                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3002                                                     PASS_ALL_BITS, &bit_chk,
3003                                                     0)) {
3004                         /* USE Set current end of the window */
3005                         end_curr = -d;
3006                         /*
3007                          * If a starting edge of our window has not been seen
3008                          * this is our current start of the DM window.
3009                          */
3010                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3011                                 bgn_curr = -d;
3012
3013                         /*
3014                          * If current window is bigger than best seen.
3015                          * Set best seen to be current window.
3016                          */
3017                         if ((end_curr-bgn_curr+1) > win_best) {
3018                                 win_best = end_curr-bgn_curr+1;
3019                                 bgn_best = bgn_curr;
3020                                 end_best = end_curr;
3021                         }
3022                 } else {
3023                         /* We just saw a failing test. Reset temp edge */
3024                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3025                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3026                         }
3027                 }
3028
3029
3030         /* Reset DM delay chains to 0 */
3031         scc_mgr_apply_group_dm_out1_delay(0);
3032
3033         /*
3034          * Check to see if the current window nudges up aganist 0 delay.
3035          * If so we need to continue the search by shifting DQS otherwise DQS
3036          * search begins as a new search. */
3037         if (end_curr != 0) {
3038                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3039                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3040         }
3041
3042         /* Search for the/part of the window with DQS shifts */
3043         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3044                 /*
3045                  * Note: This only shifts DQS, so are we limiting ourselve to
3046                  * width of DQ unnecessarily.
3047                  */
3048                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3049                                                         d + new_dqs);
3050
3051                 writel(0, &sdr_scc_mgr->update);
3052                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3053                                                     PASS_ALL_BITS, &bit_chk,
3054                                                     0)) {
3055                         /* USE Set current end of the window */
3056                         end_curr = d;
3057                         /*
3058                          * If a beginning edge of our window has not been seen
3059                          * this is our current begin of the DM window.
3060                          */
3061                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3062                                 bgn_curr = d;
3063
3064                         /*
3065                          * If current window is bigger than best seen. Set best
3066                          * seen to be current window.
3067                          */
3068                         if ((end_curr-bgn_curr+1) > win_best) {
3069                                 win_best = end_curr-bgn_curr+1;
3070                                 bgn_best = bgn_curr;
3071                                 end_best = end_curr;
3072                         }
3073                 } else {
3074                         /* We just saw a failing test. Reset temp edge */
3075                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3076                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077
3078                         /* Early exit optimization: if ther remaining delay
3079                         chain space is less than already seen largest window
3080                         we can exit */
3081                         if ((win_best-1) >
3082                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3083                                         break;
3084                                 }
3085                         }
3086                 }
3087
3088         /* assign left and right edge for cal and reporting; */
3089         left_edge[0] = -1*bgn_best;
3090         right_edge[0] = end_best;
3091
3092         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3093                    __LINE__, left_edge[0], right_edge[0]);
3094
3095         /* Move DQS (back to orig) */
3096         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3097
3098         /* Move DM */
3099
3100         /* Find middle of window for the DM bit */
3101         mid = (left_edge[0] - right_edge[0]) / 2;
3102
3103         /* only move right, since we are not moving DQS/DQ */
3104         if (mid < 0)
3105                 mid = 0;
3106
3107         /* dm_marign should fail if we never find a window */
3108         if (win_best == 0)
3109                 dm_margin = -1;
3110         else
3111                 dm_margin = left_edge[0] - mid;
3112
3113         scc_mgr_apply_group_dm_out1_delay(mid);
3114         writel(0, &sdr_scc_mgr->update);
3115
3116         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3117                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3118                    right_edge[0], mid, dm_margin);
3119         /* Export values */
3120         gbl->fom_out += dq_margin + dqs_margin;
3121
3122         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3123                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3124                    dq_margin, dqs_margin, dm_margin);
3125
3126         /*
3127          * Do not remove this line as it makes sure all of our
3128          * decisions have been applied.
3129          */
3130         writel(0, &sdr_scc_mgr->update);
3131         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3132 }
3133
3134 /* calibrate the write operations */
3135 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3136         uint32_t test_bgn)
3137 {
3138         /* update info for sims */
3139         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3140
3141         reg_file_set_stage(CAL_STAGE_WRITES);
3142         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3143
3144         reg_file_set_group(g);
3145
3146         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3147                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3148                                         CAL_SUBSTAGE_WRITES_CENTER);
3149                 return 0;
3150         }
3151
3152         return 1;
3153 }
3154
3155 /**
3156  * mem_precharge_and_activate() - Precharge all banks and activate
3157  *
3158  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3159  */
3160 static void mem_precharge_and_activate(void)
3161 {
3162         int r;
3163
3164         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3165                 /* Test if the rank should be skipped. */
3166                 if (param->skip_ranks[r])
3167                         continue;
3168
3169                 /* Set rank. */
3170                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3171
3172                 /* Precharge all banks. */
3173                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3174                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3175
3176                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3177                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3178                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3179
3180                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3181                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3182                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3183
3184                 /* Activate rows. */
3185                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3186                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3187         }
3188 }
3189
3190 /**
3191  * mem_init_latency() - Configure memory RLAT and WLAT settings
3192  *
3193  * Configure memory RLAT and WLAT parameters.
3194  */
3195 static void mem_init_latency(void)
3196 {
3197         /*
3198          * For AV/CV, LFIFO is hardened and always runs at full rate
3199          * so max latency in AFI clocks, used here, is correspondingly
3200          * smaller.
3201          */
3202         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3203         u32 rlat, wlat;
3204
3205         debug("%s:%d\n", __func__, __LINE__);
3206
3207         /*
3208          * Read in write latency.
3209          * WL for Hard PHY does not include additive latency.
3210          */
3211         wlat = readl(&data_mgr->t_wl_add);
3212         wlat += readl(&data_mgr->mem_t_add);
3213
3214         gbl->rw_wl_nop_cycles = wlat - 1;
3215
3216         /* Read in readl latency. */
3217         rlat = readl(&data_mgr->t_rl_add);
3218
3219         /* Set a pretty high read latency initially. */
3220         gbl->curr_read_lat = rlat + 16;
3221         if (gbl->curr_read_lat > max_latency)
3222                 gbl->curr_read_lat = max_latency;
3223
3224         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3225
3226         /* Advertise write latency. */
3227         writel(wlat, &phy_mgr_cfg->afi_wlat);
3228 }
3229
3230 /**
3231  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3232  *
3233  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3234  */
3235 static void mem_skip_calibrate(void)
3236 {
3237         uint32_t vfifo_offset;
3238         uint32_t i, j, r;
3239
3240         debug("%s:%d\n", __func__, __LINE__);
3241         /* Need to update every shadow register set used by the interface */
3242         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3243              r += NUM_RANKS_PER_SHADOW_REG) {
3244                 /*
3245                  * Set output phase alignment settings appropriate for
3246                  * skip calibration.
3247                  */
3248                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3249                         scc_mgr_set_dqs_en_phase(i, 0);
3250 #if IO_DLL_CHAIN_LENGTH == 6
3251                         scc_mgr_set_dqdqs_output_phase(i, 6);
3252 #else
3253                         scc_mgr_set_dqdqs_output_phase(i, 7);
3254 #endif
3255                         /*
3256                          * Case:33398
3257                          *
3258                          * Write data arrives to the I/O two cycles before write
3259                          * latency is reached (720 deg).
3260                          *   -> due to bit-slip in a/c bus
3261                          *   -> to allow board skew where dqs is longer than ck
3262                          *      -> how often can this happen!?
3263                          *      -> can claim back some ptaps for high freq
3264                          *       support if we can relax this, but i digress...
3265                          *
3266                          * The write_clk leads mem_ck by 90 deg
3267                          * The minimum ptap of the OPA is 180 deg
3268                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3269                          * The write_clk is always delayed by 2 ptaps
3270                          *
3271                          * Hence, to make DQS aligned to CK, we need to delay
3272                          * DQS by:
3273                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3274                          *
3275                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3276                          * gives us the number of ptaps, which simplies to:
3277                          *
3278                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3279                          */
3280                         scc_mgr_set_dqdqs_output_phase(i,
3281                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3282                 }
3283                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3284                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3285
3286                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3287                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3288                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3289                 }
3290                 writel(0xff, &sdr_scc_mgr->dq_ena);
3291                 writel(0xff, &sdr_scc_mgr->dm_ena);
3292                 writel(0, &sdr_scc_mgr->update);
3293         }
3294
3295         /* Compensate for simulation model behaviour */
3296         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3297                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3298                 scc_mgr_load_dqs(i);
3299         }
3300         writel(0, &sdr_scc_mgr->update);
3301
3302         /*
3303          * ArriaV has hard FIFOs that can only be initialized by incrementing
3304          * in sequencer.
3305          */
3306         vfifo_offset = CALIB_VFIFO_OFFSET;
3307         for (j = 0; j < vfifo_offset; j++)
3308                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3309         writel(0, &phy_mgr_cmd->fifo_reset);
3310
3311         /*
3312          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3313          * setting from generation-time constant.
3314          */
3315         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3316         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3317 }
3318
3319 /**
3320  * mem_calibrate() - Memory calibration entry point.
3321  *
3322  * Perform memory calibration.
3323  */
3324 static uint32_t mem_calibrate(void)
3325 {
3326         uint32_t i;
3327         uint32_t rank_bgn, sr;
3328         uint32_t write_group, write_test_bgn;
3329         uint32_t read_group, read_test_bgn;
3330         uint32_t run_groups, current_run;
3331         uint32_t failing_groups = 0;
3332         uint32_t group_failed = 0;
3333
3334         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3335                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3336
3337         debug("%s:%d\n", __func__, __LINE__);
3338
3339         /* Initialize the data settings */
3340         gbl->error_substage = CAL_SUBSTAGE_NIL;
3341         gbl->error_stage = CAL_STAGE_NIL;
3342         gbl->error_group = 0xff;
3343         gbl->fom_in = 0;
3344         gbl->fom_out = 0;
3345
3346         /* Initialize WLAT and RLAT. */
3347         mem_init_latency();
3348
3349         /* Initialize bit slips. */
3350         mem_precharge_and_activate();
3351
3352         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3353                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3354                           SCC_MGR_GROUP_COUNTER_OFFSET);
3355                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3356                 if (i == 0)
3357                         scc_mgr_set_hhp_extras();
3358
3359                 scc_set_bypass_mode(i);
3360         }
3361
3362         /* Calibration is skipped. */
3363         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3364                 /*
3365                  * Set VFIFO and LFIFO to instant-on settings in skip
3366                  * calibration mode.
3367                  */
3368                 mem_skip_calibrate();
3369
3370                 /*
3371                  * Do not remove this line as it makes sure all of our
3372                  * decisions have been applied.
3373                  */
3374                 writel(0, &sdr_scc_mgr->update);
3375                 return 1;
3376         }
3377
3378         /* Calibration is not skipped. */
3379         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3380                 /*
3381                  * Zero all delay chain/phase settings for all
3382                  * groups and all shadow register sets.
3383                  */
3384                 scc_mgr_zero_all();
3385
3386                 run_groups = ~param->skip_groups;
3387
3388                 for (write_group = 0, write_test_bgn = 0; write_group
3389                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3390                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3391
3392                         /* Initialize the group failure */
3393                         group_failed = 0;
3394
3395                         current_run = run_groups & ((1 <<
3396                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3397                         run_groups = run_groups >>
3398                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3399
3400                         if (current_run == 0)
3401                                 continue;
3402
3403                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3404                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3405                         scc_mgr_zero_group(write_group, 0);
3406
3407                         for (read_group = write_group * rwdqs_ratio,
3408                              read_test_bgn = 0;
3409                              read_group < (write_group + 1) * rwdqs_ratio;
3410                              read_group++,
3411                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3412                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3413                                         continue;
3414
3415                                 /* Calibrate the VFIFO */
3416                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3417                                                                read_test_bgn))
3418                                         continue;
3419
3420                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3421                                         return 0;
3422
3423                                 /* The group failed, we're done. */
3424                                 goto grp_failed;
3425                         }
3426
3427                         /* Calibrate the output side */
3428                         for (rank_bgn = 0, sr = 0;
3429                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3430                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3431                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3432                                         continue;
3433
3434                                 /* Not needed in quick mode! */
3435                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3436                                         continue;
3437
3438                                 /*
3439                                  * Determine if this set of ranks
3440                                  * should be skipped entirely.
3441                                  */
3442                                 if (param->skip_shadow_regs[sr])
3443                                         continue;
3444
3445                                 /* Calibrate WRITEs */
3446                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3447                                                 write_group, write_test_bgn))
3448                                         continue;
3449
3450                                 group_failed = 1;
3451                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3452                                         return 0;
3453                         }
3454
3455                         /* Some group failed, we're done. */
3456                         if (group_failed)
3457                                 goto grp_failed;
3458
3459                         for (read_group = write_group * rwdqs_ratio,
3460                              read_test_bgn = 0;
3461                              read_group < (write_group + 1) * rwdqs_ratio;
3462                              read_group++,
3463                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3464                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3465                                         continue;
3466
3467                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3468                                                                 read_test_bgn))
3469                                         continue;
3470
3471                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3472                                         return 0;
3473
3474                                 /* The group failed, we're done. */
3475                                 goto grp_failed;
3476                         }
3477
3478                         /* No group failed, continue as usual. */
3479                         continue;
3480
3481 grp_failed:             /* A group failed, increment the counter. */
3482                         failing_groups++;
3483                 }
3484
3485                 /*
3486                  * USER If there are any failing groups then report
3487                  * the failure.
3488                  */
3489                 if (failing_groups != 0)
3490                         return 0;
3491
3492                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3493                         continue;
3494
3495                 /*
3496                  * If we're skipping groups as part of debug,
3497                  * don't calibrate LFIFO.
3498                  */
3499                 if (param->skip_groups != 0)
3500                         continue;
3501
3502                 /* Calibrate the LFIFO */
3503                 if (!rw_mgr_mem_calibrate_lfifo())
3504                         return 0;
3505         }
3506
3507         /*
3508          * Do not remove this line as it makes sure all of our decisions
3509          * have been applied.
3510          */
3511         writel(0, &sdr_scc_mgr->update);
3512         return 1;
3513 }
3514
3515 /**
3516  * run_mem_calibrate() - Perform memory calibration
3517  *
3518  * This function triggers the entire memory calibration procedure.
3519  */
3520 static int run_mem_calibrate(void)
3521 {
3522         int pass;
3523
3524         debug("%s:%d\n", __func__, __LINE__);
3525
3526         /* Reset pass/fail status shown on afi_cal_success/fail */
3527         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3528
3529         /* Stop tracking manager. */
3530         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3531
3532         phy_mgr_initialize();
3533         rw_mgr_mem_initialize();
3534
3535         /* Perform the actual memory calibration. */
3536         pass = mem_calibrate();
3537
3538         mem_precharge_and_activate();
3539         writel(0, &phy_mgr_cmd->fifo_reset);
3540
3541         /* Handoff. */
3542         rw_mgr_mem_handoff();
3543         /*
3544          * In Hard PHY this is a 2-bit control:
3545          * 0: AFI Mux Select
3546          * 1: DDIO Mux Select
3547          */
3548         writel(0x2, &phy_mgr_cfg->mux_sel);
3549
3550         /* Start tracking manager. */
3551         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3552
3553         return pass;
3554 }
3555
3556 /**
3557  * debug_mem_calibrate() - Report result of memory calibration
3558  * @pass:       Value indicating whether calibration passed or failed
3559  *
3560  * This function reports the results of the memory calibration
3561  * and writes debug information into the register file.
3562  */
3563 static void debug_mem_calibrate(int pass)
3564 {
3565         uint32_t debug_info;
3566
3567         if (pass) {
3568                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3569
3570                 gbl->fom_in /= 2;
3571                 gbl->fom_out /= 2;
3572
3573                 if (gbl->fom_in > 0xff)
3574                         gbl->fom_in = 0xff;
3575
3576                 if (gbl->fom_out > 0xff)
3577                         gbl->fom_out = 0xff;
3578
3579                 /* Update the FOM in the register file */
3580                 debug_info = gbl->fom_in;
3581                 debug_info |= gbl->fom_out << 8;
3582                 writel(debug_info, &sdr_reg_file->fom);
3583
3584                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3585                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3586         } else {
3587                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3588
3589                 debug_info = gbl->error_stage;
3590                 debug_info |= gbl->error_substage << 8;
3591                 debug_info |= gbl->error_group << 16;
3592
3593                 writel(debug_info, &sdr_reg_file->failing_stage);
3594                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3595                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3596
3597                 /* Update the failing group/stage in the register file */
3598                 debug_info = gbl->error_stage;
3599                 debug_info |= gbl->error_substage << 8;
3600                 debug_info |= gbl->error_group << 16;
3601                 writel(debug_info, &sdr_reg_file->failing_stage);
3602         }
3603
3604         printf("%s: Calibration complete\n", __FILE__);
3605 }
3606
3607 /**
3608  * hc_initialize_rom_data() - Initialize ROM data
3609  *
3610  * Initialize ROM data.
3611  */
3612 static void hc_initialize_rom_data(void)
3613 {
3614         u32 i, addr;
3615
3616         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3617         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3618                 writel(inst_rom_init[i], addr + (i << 2));
3619
3620         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3621         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3622                 writel(ac_rom_init[i], addr + (i << 2));
3623 }
3624
3625 /**
3626  * initialize_reg_file() - Initialize SDR register file
3627  *
3628  * Initialize SDR register file.
3629  */
3630 static void initialize_reg_file(void)
3631 {
3632         /* Initialize the register file with the correct data */
3633         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3634         writel(0, &sdr_reg_file->debug_data_addr);
3635         writel(0, &sdr_reg_file->cur_stage);
3636         writel(0, &sdr_reg_file->fom);
3637         writel(0, &sdr_reg_file->failing_stage);
3638         writel(0, &sdr_reg_file->debug1);
3639         writel(0, &sdr_reg_file->debug2);
3640 }
3641
3642 /**
3643  * initialize_hps_phy() - Initialize HPS PHY
3644  *
3645  * Initialize HPS PHY.
3646  */
3647 static void initialize_hps_phy(void)
3648 {
3649         uint32_t reg;
3650         /*
3651          * Tracking also gets configured here because it's in the
3652          * same register.
3653          */
3654         uint32_t trk_sample_count = 7500;
3655         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3656         /*
3657          * Format is number of outer loops in the 16 MSB, sample
3658          * count in 16 LSB.
3659          */
3660
3661         reg = 0;
3662         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3663         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3664         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3665         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3666         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3667         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3668         /*
3669          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3670          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3671          */
3672         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3674                 trk_sample_count);
3675         writel(reg, &sdr_ctrl->phy_ctrl0);
3676
3677         reg = 0;
3678         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3679                 trk_sample_count >>
3680                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3681         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3682                 trk_long_idle_sample_count);
3683         writel(reg, &sdr_ctrl->phy_ctrl1);
3684
3685         reg = 0;
3686         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3687                 trk_long_idle_sample_count >>
3688                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3689         writel(reg, &sdr_ctrl->phy_ctrl2);
3690 }
3691
3692 /**
3693  * initialize_tracking() - Initialize tracking
3694  *
3695  * Initialize the register file with usable initial data.
3696  */
3697 static void initialize_tracking(void)
3698 {
3699         /*
3700          * Initialize the register file with the correct data.
3701          * Compute usable version of value in case we skip full
3702          * computation later.
3703          */
3704         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3705                &sdr_reg_file->dtaps_per_ptap);
3706
3707         /* trk_sample_count */
3708         writel(7500, &sdr_reg_file->trk_sample_count);
3709
3710         /* longidle outer loop [15:0] */
3711         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3712
3713         /*
3714          * longidle sample count [31:24]
3715          * trfc, worst case of 933Mhz 4Gb [23:16]
3716          * trcd, worst case [15:8]
3717          * vfifo wait [7:0]
3718          */
3719         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3720                &sdr_reg_file->delays);
3721
3722         /* mux delay */
3723         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3724                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3725                &sdr_reg_file->trk_rw_mgr_addr);
3726
3727         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3728                &sdr_reg_file->trk_read_dqs_width);
3729
3730         /* trefi [7:0] */
3731         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3732                &sdr_reg_file->trk_rfsh);
3733 }
3734
3735 int sdram_calibration_full(void)
3736 {
3737         struct param_type my_param;
3738         struct gbl_type my_gbl;
3739         uint32_t pass;
3740
3741         memset(&my_param, 0, sizeof(my_param));
3742         memset(&my_gbl, 0, sizeof(my_gbl));
3743
3744         param = &my_param;
3745         gbl = &my_gbl;
3746
3747         /* Set the calibration enabled by default */
3748         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3749         /*
3750          * Only sweep all groups (regardless of fail state) by default
3751          * Set enabled read test by default.
3752          */
3753 #if DISABLE_GUARANTEED_READ
3754         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3755 #endif
3756         /* Initialize the register file */
3757         initialize_reg_file();
3758
3759         /* Initialize any PHY CSR */
3760         initialize_hps_phy();
3761
3762         scc_mgr_initialize();
3763
3764         initialize_tracking();
3765
3766         printf("%s: Preparing to start memory calibration\n", __FILE__);
3767
3768         debug("%s:%d\n", __func__, __LINE__);
3769         debug_cond(DLEVEL == 1,
3770                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3771                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3772                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3773                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3774                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3775         debug_cond(DLEVEL == 1,
3776                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3777                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3778                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3779                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3780         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3781                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3782         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3783                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3784                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3785         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3786                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3787                    IO_IO_OUT2_DELAY_MAX);
3788         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3789                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3790
3791         hc_initialize_rom_data();
3792
3793         /* update info for sims */
3794         reg_file_set_stage(CAL_STAGE_NIL);
3795         reg_file_set_group(0);
3796
3797         /*
3798          * Load global needed for those actions that require
3799          * some dynamic calibration support.
3800          */
3801         dyn_calib_steps = STATIC_CALIB_STEPS;
3802         /*
3803          * Load global to allow dynamic selection of delay loop settings
3804          * based on calibration mode.
3805          */
3806         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3807                 skip_delay_mask = 0xff;
3808         else
3809                 skip_delay_mask = 0x0;
3810
3811         pass = run_mem_calibrate();
3812         debug_mem_calibrate(pass);
3813         return pass;
3814 }