]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_center() part 3
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /**
1173  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1174  * @rank_bgn:           Rank number
1175  * @group:              Read/Write group
1176  * @num_tries:          Number of retries of the test
1177  * @all_correct:        All bits must be correct in the mask
1178  * @bit_chk:            Resulting bit mask after the test
1179  * @all_groups:         Test all R/W groups
1180  * @all_ranks:          Test all ranks
1181  *
1182  * Try a read and see if it returns correct data back. Test has dummy reads
1183  * inserted into the mix used to align DQS enable. Test has more thorough
1184  * checks than the regular read test.
1185  */
1186 static int
1187 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1188                                const u32 num_tries, const u32 all_correct,
1189                                u32 *bit_chk,
1190                                const u32 all_groups, const u32 all_ranks)
1191 {
1192         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1193                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1194         const u32 quick_read_mode =
1195                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1196                  ENABLE_SUPER_QUICK_CALIBRATION);
1197         u32 correct_mask_vg = param->read_correct_mask_vg;
1198         u32 tmp_bit_chk;
1199         u32 base_rw_mgr;
1200         u32 addr;
1201
1202         int r, vg, ret;
1203
1204         *bit_chk = param->read_correct_mask;
1205
1206         for (r = rank_bgn; r < rank_end; r++) {
1207                 if (param->skip_ranks[r])
1208                         /* request to skip the rank */
1209                         continue;
1210
1211                 /* set rank */
1212                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1213
1214                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1215
1216                 writel(RW_MGR_READ_B2B_WAIT1,
1217                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1218
1219                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1220                 writel(RW_MGR_READ_B2B_WAIT2,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1222
1223                 if (quick_read_mode)
1224                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1225                         /* need at least two (1+1) reads to capture failures */
1226                 else if (all_groups)
1227                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1228                 else
1229                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1230
1231                 writel(RW_MGR_READ_B2B,
1232                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1233                 if (all_groups)
1234                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1235                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1236                                &sdr_rw_load_mgr_regs->load_cntr3);
1237                 else
1238                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1239
1240                 writel(RW_MGR_READ_B2B,
1241                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1242
1243                 tmp_bit_chk = 0;
1244                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1245                      vg--) {
1246                         /* Reset the FIFOs to get pointers to known state. */
1247                         writel(0, &phy_mgr_cmd->fifo_reset);
1248                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1249                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1250
1251                         if (all_groups) {
1252                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1253                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1254                         } else {
1255                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1256                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1257                         }
1258
1259                         writel(RW_MGR_READ_B2B, addr +
1260                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1261                                vg) << 2));
1262
1263                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1264                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1265                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1266                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1267                 }
1268
1269                 *bit_chk &= tmp_bit_chk;
1270         }
1271
1272         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1273         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1274
1275         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1276
1277         if (all_correct) {
1278                 ret = (*bit_chk == param->read_correct_mask);
1279                 debug_cond(DLEVEL == 2,
1280                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1281                            __func__, __LINE__, group, all_groups, *bit_chk,
1282                            param->read_correct_mask, ret);
1283         } else  {
1284                 ret = (*bit_chk != 0x00);
1285                 debug_cond(DLEVEL == 2,
1286                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1287                            __func__, __LINE__, group, all_groups, *bit_chk,
1288                            0, ret);
1289         }
1290
1291         return ret;
1292 }
1293
1294 /**
1295  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1296  * @grp:                Read/Write group
1297  * @num_tries:          Number of retries of the test
1298  * @all_correct:        All bits must be correct in the mask
1299  * @all_groups:         Test all R/W groups
1300  *
1301  * Perform a READ test across all memory ranks.
1302  */
1303 static int
1304 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1305                                          const u32 all_correct,
1306                                          const u32 all_groups)
1307 {
1308         u32 bit_chk;
1309         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1310                                               &bit_chk, all_groups, 1);
1311 }
1312
1313 /**
1314  * rw_mgr_incr_vfifo() - Increase VFIFO value
1315  * @grp:        Read/Write group
1316  *
1317  * Increase VFIFO value.
1318  */
1319 static void rw_mgr_incr_vfifo(const u32 grp)
1320 {
1321         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1322 }
1323
1324 /**
1325  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1326  * @grp:        Read/Write group
1327  *
1328  * Decrease VFIFO value.
1329  */
1330 static void rw_mgr_decr_vfifo(const u32 grp)
1331 {
1332         u32 i;
1333
1334         for (i = 0; i < VFIFO_SIZE - 1; i++)
1335                 rw_mgr_incr_vfifo(grp);
1336 }
1337
1338 /**
1339  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1340  * @grp:        Read/Write group
1341  *
1342  * Push VFIFO until a failing read happens.
1343  */
1344 static int find_vfifo_failing_read(const u32 grp)
1345 {
1346         u32 v, ret, fail_cnt = 0;
1347
1348         for (v = 0; v < VFIFO_SIZE; v++) {
1349                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1350                            __func__, __LINE__, v);
1351                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1352                                                 PASS_ONE_BIT, 0);
1353                 if (!ret) {
1354                         fail_cnt++;
1355
1356                         if (fail_cnt == 2)
1357                                 return v;
1358                 }
1359
1360                 /* Fiddle with FIFO. */
1361                 rw_mgr_incr_vfifo(grp);
1362         }
1363
1364         /* No failing read found! Something must have gone wrong. */
1365         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1366         return 0;
1367 }
1368
1369 /**
1370  * sdr_find_phase_delay() - Find DQS enable phase or delay
1371  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1372  * @delay:      If 1, look for delay, if 0, look for phase
1373  * @grp:        Read/Write group
1374  * @work:       Working window position
1375  * @work_inc:   Working window increment
1376  * @pd:         DQS Phase/Delay Iterator
1377  *
1378  * Find working or non-working DQS enable phase setting.
1379  */
1380 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1381                                 u32 *work, const u32 work_inc, u32 *pd)
1382 {
1383         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1384         u32 ret;
1385
1386         for (; *pd <= max; (*pd)++) {
1387                 if (delay)
1388                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1389                 else
1390                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1391
1392                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1393                                         PASS_ONE_BIT, 0);
1394                 if (!working)
1395                         ret = !ret;
1396
1397                 if (ret)
1398                         return 0;
1399
1400                 if (work)
1401                         *work += work_inc;
1402         }
1403
1404         return -EINVAL;
1405 }
1406 /**
1407  * sdr_find_phase() - Find DQS enable phase
1408  * @working:    If 1, look for working phase, if 0, look for non-working phase
1409  * @grp:        Read/Write group
1410  * @work:       Working window position
1411  * @i:          Iterator
1412  * @p:          DQS Phase Iterator
1413  *
1414  * Find working or non-working DQS enable phase setting.
1415  */
1416 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1417                           u32 *i, u32 *p)
1418 {
1419         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1420         int ret;
1421
1422         for (; *i < end; (*i)++) {
1423                 if (working)
1424                         *p = 0;
1425
1426                 ret = sdr_find_phase_delay(working, 0, grp, work,
1427                                            IO_DELAY_PER_OPA_TAP, p);
1428                 if (!ret)
1429                         return 0;
1430
1431                 if (*p > IO_DQS_EN_PHASE_MAX) {
1432                         /* Fiddle with FIFO. */
1433                         rw_mgr_incr_vfifo(grp);
1434                         if (!working)
1435                                 *p = 0;
1436                 }
1437         }
1438
1439         return -EINVAL;
1440 }
1441
1442 /**
1443  * sdr_working_phase() - Find working DQS enable phase
1444  * @grp:        Read/Write group
1445  * @work_bgn:   Working window start position
1446  * @d:          dtaps output value
1447  * @p:          DQS Phase Iterator
1448  * @i:          Iterator
1449  *
1450  * Find working DQS enable phase setting.
1451  */
1452 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1453                              u32 *p, u32 *i)
1454 {
1455         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1456                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1457         int ret;
1458
1459         *work_bgn = 0;
1460
1461         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1462                 *i = 0;
1463                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1464                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1465                 if (!ret)
1466                         return 0;
1467                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1468         }
1469
1470         /* Cannot find working solution */
1471         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1472                    __func__, __LINE__);
1473         return -EINVAL;
1474 }
1475
1476 /**
1477  * sdr_backup_phase() - Find DQS enable backup phase
1478  * @grp:        Read/Write group
1479  * @work_bgn:   Working window start position
1480  * @p:          DQS Phase Iterator
1481  *
1482  * Find DQS enable backup phase setting.
1483  */
1484 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1485 {
1486         u32 tmp_delay, d;
1487         int ret;
1488
1489         /* Special case code for backing up a phase */
1490         if (*p == 0) {
1491                 *p = IO_DQS_EN_PHASE_MAX;
1492                 rw_mgr_decr_vfifo(grp);
1493         } else {
1494                 (*p)--;
1495         }
1496         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1497         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1498
1499         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1500                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1501
1502                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1503                                         PASS_ONE_BIT, 0);
1504                 if (ret) {
1505                         *work_bgn = tmp_delay;
1506                         break;
1507                 }
1508
1509                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1510         }
1511
1512         /* Restore VFIFO to old state before we decremented it (if needed). */
1513         (*p)++;
1514         if (*p > IO_DQS_EN_PHASE_MAX) {
1515                 *p = 0;
1516                 rw_mgr_incr_vfifo(grp);
1517         }
1518
1519         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1520 }
1521
1522 /**
1523  * sdr_nonworking_phase() - Find non-working DQS enable phase
1524  * @grp:        Read/Write group
1525  * @work_end:   Working window end position
1526  * @p:          DQS Phase Iterator
1527  * @i:          Iterator
1528  *
1529  * Find non-working DQS enable phase setting.
1530  */
1531 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1532 {
1533         int ret;
1534
1535         (*p)++;
1536         *work_end += IO_DELAY_PER_OPA_TAP;
1537         if (*p > IO_DQS_EN_PHASE_MAX) {
1538                 /* Fiddle with FIFO. */
1539                 *p = 0;
1540                 rw_mgr_incr_vfifo(grp);
1541         }
1542
1543         ret = sdr_find_phase(0, grp, work_end, i, p);
1544         if (ret) {
1545                 /* Cannot see edge of failing read. */
1546                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1547                            __func__, __LINE__);
1548         }
1549
1550         return ret;
1551 }
1552
1553 /**
1554  * sdr_find_window_center() - Find center of the working DQS window.
1555  * @grp:        Read/Write group
1556  * @work_bgn:   First working settings
1557  * @work_end:   Last working settings
1558  *
1559  * Find center of the working DQS enable window.
1560  */
1561 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1562                                   const u32 work_end)
1563 {
1564         u32 work_mid;
1565         int tmp_delay = 0;
1566         int i, p, d;
1567
1568         work_mid = (work_bgn + work_end) / 2;
1569
1570         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1571                    work_bgn, work_end, work_mid);
1572         /* Get the middle delay to be less than a VFIFO delay */
1573         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1574
1575         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1576         work_mid %= tmp_delay;
1577         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1578
1579         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1580         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1581                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1582         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1583
1584         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1585
1586         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1587         if (d > IO_DQS_EN_DELAY_MAX)
1588                 d = IO_DQS_EN_DELAY_MAX;
1589         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1590
1591         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1592
1593         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1594         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1595
1596         /*
1597          * push vfifo until we can successfully calibrate. We can do this
1598          * because the largest possible margin in 1 VFIFO cycle.
1599          */
1600         for (i = 0; i < VFIFO_SIZE; i++) {
1601                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1602                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1603                                                              PASS_ONE_BIT,
1604                                                              0)) {
1605                         debug_cond(DLEVEL == 2,
1606                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1607                                    __func__, __LINE__, p, d);
1608                         return 0;
1609                 }
1610
1611                 /* Fiddle with FIFO. */
1612                 rw_mgr_incr_vfifo(grp);
1613         }
1614
1615         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1616                    __func__, __LINE__);
1617         return -EINVAL;
1618 }
1619
1620 /**
1621  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1622  * @grp:        Read/Write Group
1623  *
1624  * Find a good DQS enable to use.
1625  */
1626 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1627 {
1628         u32 d, p, i;
1629         u32 dtaps_per_ptap;
1630         u32 work_bgn, work_end;
1631         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1632         int ret;
1633
1634         debug("%s:%d %u\n", __func__, __LINE__, grp);
1635
1636         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1637
1638         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1639         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1640
1641         /* Step 0: Determine number of delay taps for each phase tap. */
1642         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1643
1644         /* Step 1: First push vfifo until we get a failing read. */
1645         find_vfifo_failing_read(grp);
1646
1647         /* Step 2: Find first working phase, increment in ptaps. */
1648         work_bgn = 0;
1649         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1650         if (ret)
1651                 return ret;
1652
1653         work_end = work_bgn;
1654
1655         /*
1656          * If d is 0 then the working window covers a phase tap and we can
1657          * follow the old procedure. Otherwise, we've found the beginning
1658          * and we need to increment the dtaps until we find the end.
1659          */
1660         if (d == 0) {
1661                 /*
1662                  * Step 3a: If we have room, back off by one and
1663                  *          increment in dtaps.
1664                  */
1665                 sdr_backup_phase(grp, &work_bgn, &p);
1666
1667                 /*
1668                  * Step 4a: go forward from working phase to non working
1669                  * phase, increment in ptaps.
1670                  */
1671                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1672                 if (ret)
1673                         return ret;
1674
1675                 /* Step 5a: Back off one from last, increment in dtaps. */
1676
1677                 /* Special case code for backing up a phase */
1678                 if (p == 0) {
1679                         p = IO_DQS_EN_PHASE_MAX;
1680                         rw_mgr_decr_vfifo(grp);
1681                 } else {
1682                         p = p - 1;
1683                 }
1684
1685                 work_end -= IO_DELAY_PER_OPA_TAP;
1686                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1687
1688                 d = 0;
1689
1690                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1691                            __func__, __LINE__, p);
1692         }
1693
1694         /* The dtap increment to find the failing edge is done here. */
1695         sdr_find_phase_delay(0, 1, grp, &work_end,
1696                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1697
1698         /* Go back to working dtap */
1699         if (d != 0)
1700                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1701
1702         debug_cond(DLEVEL == 2,
1703                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1704                    __func__, __LINE__, p, d - 1, work_end);
1705
1706         if (work_end < work_bgn) {
1707                 /* nil range */
1708                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1709                            __func__, __LINE__);
1710                 return -EINVAL;
1711         }
1712
1713         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1714                    __func__, __LINE__, work_bgn, work_end);
1715
1716         /*
1717          * We need to calculate the number of dtaps that equal a ptap.
1718          * To do that we'll back up a ptap and re-find the edge of the
1719          * window using dtaps
1720          */
1721         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1722                    __func__, __LINE__);
1723
1724         /* Special case code for backing up a phase */
1725         if (p == 0) {
1726                 p = IO_DQS_EN_PHASE_MAX;
1727                 rw_mgr_decr_vfifo(grp);
1728                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1729                            __func__, __LINE__, p);
1730         } else {
1731                 p = p - 1;
1732                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1733                            __func__, __LINE__, p);
1734         }
1735
1736         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1737
1738         /*
1739          * Increase dtap until we first see a passing read (in case the
1740          * window is smaller than a ptap), and then a failing read to
1741          * mark the edge of the window again.
1742          */
1743
1744         /* Find a passing read. */
1745         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1746                    __func__, __LINE__);
1747
1748         initial_failing_dtap = d;
1749
1750         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1751         if (found_passing_read) {
1752                 /* Find a failing read. */
1753                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1754                            __func__, __LINE__);
1755                 d++;
1756                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1757                                                            &d);
1758         } else {
1759                 debug_cond(DLEVEL == 1,
1760                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1761                            __func__, __LINE__);
1762         }
1763
1764         /*
1765          * The dynamically calculated dtaps_per_ptap is only valid if we
1766          * found a passing/failing read. If we didn't, it means d hit the max
1767          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1768          * statically calculated value.
1769          */
1770         if (found_passing_read && found_failing_read)
1771                 dtaps_per_ptap = d - initial_failing_dtap;
1772
1773         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1774         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1775                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1776
1777         /* Step 6: Find the centre of the window. */
1778         ret = sdr_find_window_center(grp, work_bgn, work_end);
1779
1780         return ret;
1781 }
1782
1783 /**
1784  * search_stop_check() - Check if the detected edge is valid
1785  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1786  * @d:                  DQS delay
1787  * @rank_bgn:           Rank number
1788  * @write_group:        Write Group
1789  * @read_group:         Read Group
1790  * @bit_chk:            Resulting bit mask after the test
1791  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1792  * @use_read_test:      Perform read test
1793  *
1794  * Test if the found edge is valid.
1795  */
1796 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1797                              const u32 write_group, const u32 read_group,
1798                              u32 *bit_chk, u32 *sticky_bit_chk,
1799                              const u32 use_read_test)
1800 {
1801         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1802                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1803         const u32 correct_mask = write ? param->write_correct_mask :
1804                                          param->read_correct_mask;
1805         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1806                                     RW_MGR_MEM_DQ_PER_READ_DQS;
1807         u32 ret;
1808         /*
1809          * Stop searching when the read test doesn't pass AND when
1810          * we've seen a passing read on every bit.
1811          */
1812         if (write) {                    /* WRITE-ONLY */
1813                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1814                                                          0, PASS_ONE_BIT,
1815                                                          bit_chk, 0);
1816         } else if (use_read_test) {     /* READ-ONLY */
1817                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1818                                                         NUM_READ_PB_TESTS,
1819                                                         PASS_ONE_BIT, bit_chk,
1820                                                         0, 0);
1821         } else {                        /* READ-ONLY */
1822                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1823                                                 PASS_ONE_BIT, bit_chk, 0);
1824                 *bit_chk = *bit_chk >> (per_dqs *
1825                         (read_group - (write_group * ratio)));
1826                 ret = (*bit_chk == 0);
1827         }
1828         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
1829         ret = ret && (*sticky_bit_chk == correct_mask);
1830         debug_cond(DLEVEL == 2,
1831                    "%s:%d center(left): dtap=%u => %u == %u && %u",
1832                    __func__, __LINE__, d,
1833                    *sticky_bit_chk, correct_mask, ret);
1834         return ret;
1835 }
1836
1837 /**
1838  * search_left_edge() - Find left edge of DQ/DQS working phase
1839  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1840  * @rank_bgn:           Rank number
1841  * @write_group:        Write Group
1842  * @read_group:         Read Group
1843  * @test_bgn:           Rank number to begin the test
1844  * @bit_chk:            Resulting bit mask after the test
1845  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1846  * @left_edge:          Left edge of the DQ/DQS phase
1847  * @right_edge:         Right edge of the DQ/DQS phase
1848  * @use_read_test:      Perform read test
1849  *
1850  * Find left edge of DQ/DQS working phase.
1851  */
1852 static void search_left_edge(const int write, const int rank_bgn,
1853         const u32 write_group, const u32 read_group, const u32 test_bgn,
1854         u32 *bit_chk, u32 *sticky_bit_chk,
1855         int *left_edge, int *right_edge, const u32 use_read_test)
1856 {
1857         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
1858         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
1859         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1860                                     RW_MGR_MEM_DQ_PER_READ_DQS;
1861         u32 stop;
1862         int i, d;
1863
1864         for (d = 0; d <= dqs_max; d++) {
1865                 if (write)
1866                         scc_mgr_apply_group_dq_out1_delay(d);
1867                 else
1868                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
1869
1870                 writel(0, &sdr_scc_mgr->update);
1871
1872                 stop = search_stop_check(write, d, rank_bgn, write_group,
1873                                          read_group, bit_chk, sticky_bit_chk,
1874                                          use_read_test);
1875                 if (stop == 1)
1876                         break;
1877
1878                 /* stop != 1 */
1879                 for (i = 0; i < per_dqs; i++) {
1880                         if (*bit_chk & 1) {
1881                                 /*
1882                                  * Remember a passing test as
1883                                  * the left_edge.
1884                                  */
1885                                 left_edge[i] = d;
1886                         } else {
1887                                 /*
1888                                  * If a left edge has not been seen
1889                                  * yet, then a future passing test
1890                                  * will mark this edge as the right
1891                                  * edge.
1892                                  */
1893                                 if (left_edge[i] == delay_max + 1)
1894                                         right_edge[i] = -(d + 1);
1895                         }
1896                         *bit_chk = *bit_chk >> 1;
1897                 }
1898         }
1899
1900         /* Reset DQ delay chains to 0 */
1901         if (write)
1902                 scc_mgr_apply_group_dq_out1_delay(0);
1903         else
1904                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1905
1906         *sticky_bit_chk = 0;
1907         for (i = per_dqs - 1; i >= 0; i--) {
1908                 debug_cond(DLEVEL == 2,
1909                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
1910                            __func__, __LINE__, i, left_edge[i],
1911                            i, right_edge[i]);
1912
1913                 /*
1914                  * Check for cases where we haven't found the left edge,
1915                  * which makes our assignment of the the right edge invalid.
1916                  * Reset it to the illegal value.
1917                  */
1918                 if ((left_edge[i] == delay_max + 1) &&
1919                     (right_edge[i] != delay_max + 1)) {
1920                         right_edge[i] = delay_max + 1;
1921                         debug_cond(DLEVEL == 2,
1922                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
1923                                    __func__, __LINE__, i, right_edge[i]);
1924                 }
1925
1926                 /*
1927                  * Reset sticky bit
1928                  * READ: except for bits where we have seen both
1929                  *       the left and right edge.
1930                  * WRITE: except for bits where we have seen the
1931                  *        left edge.
1932                  */
1933                 *sticky_bit_chk <<= 1;
1934                 if (write) {
1935                         if (left_edge[i] != delay_max + 1)
1936                                 *sticky_bit_chk |= 1;
1937                 } else {
1938                         if ((left_edge[i] != delay_max + 1) &&
1939                             (right_edge[i] != delay_max + 1))
1940                                 *sticky_bit_chk |= 1;
1941                 }
1942         }
1943
1944
1945 }
1946
1947 /**
1948  * search_right_edge() - Find right edge of DQ/DQS working phase
1949  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1950  * @rank_bgn:           Rank number
1951  * @write_group:        Write Group
1952  * @read_group:         Read Group
1953  * @start_dqs:          DQS start phase
1954  * @start_dqs_en:       DQS enable start phase
1955  * @bit_chk:            Resulting bit mask after the test
1956  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1957  * @left_edge:          Left edge of the DQ/DQS phase
1958  * @right_edge:         Right edge of the DQ/DQS phase
1959  * @use_read_test:      Perform read test
1960  *
1961  * Find right edge of DQ/DQS working phase.
1962  */
1963 static int search_right_edge(const int write, const int rank_bgn,
1964         const u32 write_group, const u32 read_group,
1965         const int start_dqs, const int start_dqs_en,
1966         u32 *bit_chk, u32 *sticky_bit_chk,
1967         int *left_edge, int *right_edge, const u32 use_read_test)
1968 {
1969         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
1970         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
1971         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1972                                     RW_MGR_MEM_DQ_PER_READ_DQS;
1973         u32 stop;
1974         int i, d;
1975
1976         for (d = 0; d <= dqs_max - start_dqs; d++) {
1977                 if (write) {    /* WRITE-ONLY */
1978                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
1979                                                                 d + start_dqs);
1980                 } else {        /* READ-ONLY */
1981                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1982                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1983                                 uint32_t delay = d + start_dqs_en;
1984                                 if (delay > IO_DQS_EN_DELAY_MAX)
1985                                         delay = IO_DQS_EN_DELAY_MAX;
1986                                 scc_mgr_set_dqs_en_delay(read_group, delay);
1987                         }
1988                         scc_mgr_load_dqs(read_group);
1989                 }
1990
1991                 writel(0, &sdr_scc_mgr->update);
1992
1993                 stop = search_stop_check(write, d, rank_bgn, write_group,
1994                                          read_group, bit_chk, sticky_bit_chk,
1995                                          use_read_test);
1996                 if (stop == 1) {
1997                         if (write && (d == 0)) {        /* WRITE-ONLY */
1998                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
1999                                         /*
2000                                          * d = 0 failed, but it passed when
2001                                          * testing the left edge, so it must be
2002                                          * marginal, set it to -1
2003                                          */
2004                                         if (right_edge[i] == delay_max + 1 &&
2005                                             left_edge[i] != delay_max + 1)
2006                                                 right_edge[i] = -1;
2007                                 }
2008                         }
2009                         break;
2010                 }
2011
2012                 /* stop != 1 */
2013                 for (i = 0; i < per_dqs; i++) {
2014                         if (*bit_chk & 1) {
2015                                 /*
2016                                  * Remember a passing test as
2017                                  * the right_edge.
2018                                  */
2019                                 right_edge[i] = d;
2020                         } else {
2021                                 if (d != 0) {
2022                                         /*
2023                                          * If a right edge has not
2024                                          * been seen yet, then a future
2025                                          * passing test will mark this
2026                                          * edge as the left edge.
2027                                          */
2028                                         if (right_edge[i] == delay_max + 1)
2029                                                 left_edge[i] = -(d + 1);
2030                                 } else {
2031                                         /*
2032                                          * d = 0 failed, but it passed
2033                                          * when testing the left edge,
2034                                          * so it must be marginal, set
2035                                          * it to -1
2036                                          */
2037                                         if (right_edge[i] == delay_max + 1 &&
2038                                             left_edge[i] != delay_max + 1)
2039                                                 right_edge[i] = -1;
2040                                         /*
2041                                          * If a right edge has not been
2042                                          * seen yet, then a future
2043                                          * passing test will mark this
2044                                          * edge as the left edge.
2045                                          */
2046                                         else if (right_edge[i] == delay_max + 1)
2047                                                 left_edge[i] = -(d + 1);
2048                                 }
2049                         }
2050
2051                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2052                                    __func__, __LINE__, d);
2053                         debug_cond(DLEVEL == 2,
2054                                    "bit_chk_test=%i left_edge[%u]: %d ",
2055                                    *bit_chk & 1, i, left_edge[i]);
2056                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2057                                    right_edge[i]);
2058                         *bit_chk = *bit_chk >> 1;
2059                 }
2060         }
2061
2062         /* Check that all bits have a window */
2063         for (i = 0; i < per_dqs; i++) {
2064                 debug_cond(DLEVEL == 2,
2065                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2066                            __func__, __LINE__, i, left_edge[i],
2067                            i, right_edge[i]);
2068                 if ((left_edge[i] == dqs_max + 1) ||
2069                     (right_edge[i] == dqs_max + 1))
2070                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2071         }
2072
2073         return 0;
2074 }
2075
2076 /* per-bit deskew DQ and center */
2077 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
2078         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
2079         uint32_t use_read_test, uint32_t update_fom)
2080 {
2081         uint32_t i, p, min_index;
2082         /*
2083          * Store these as signed since there are comparisons with
2084          * signed numbers.
2085          */
2086         uint32_t bit_chk;
2087         uint32_t sticky_bit_chk;
2088         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2089         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2090         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
2091         int32_t mid;
2092         int32_t orig_mid_min, mid_min;
2093         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
2094                 final_dqs_en;
2095         int32_t dq_margin, dqs_margin;
2096         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
2097         uint32_t addr;
2098         int ret;
2099
2100         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
2101
2102         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
2103         start_dqs = readl(addr + (read_group << 2));
2104         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2105                 start_dqs_en = readl(addr + ((read_group << 2)
2106                                      - IO_DQS_EN_DELAY_OFFSET));
2107
2108         /* set the left and right edge of each bit to an illegal value */
2109         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2110         sticky_bit_chk = 0;
2111         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2112                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2113                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2114         }
2115
2116         /* Search for the left edge of the window for each bit */
2117         search_left_edge(0, rank_bgn, write_group, read_group, test_bgn,
2118                          &bit_chk, &sticky_bit_chk,
2119                          left_edge, right_edge, use_read_test);
2120
2121         /* Search for the right edge of the window for each bit */
2122         ret = search_right_edge(0, rank_bgn, write_group, read_group,
2123                                 start_dqs, start_dqs_en,
2124                                 &bit_chk, &sticky_bit_chk,
2125                                 left_edge, right_edge, use_read_test);
2126         if (ret) {
2127                 /*
2128                  * Restore delay chain settings before letting the loop
2129                  * in rw_mgr_mem_calibrate_vfifo to retry different
2130                  * dqs/ck relationships.
2131                  */
2132                 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2133                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2134                         scc_mgr_set_dqs_en_delay(read_group, start_dqs_en);
2135
2136                 scc_mgr_load_dqs(read_group);
2137                 writel(0, &sdr_scc_mgr->update);
2138
2139                 debug_cond(DLEVEL == 1,
2140                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2141                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2142                 if (use_read_test) {
2143                         set_failing_group_stage(read_group *
2144                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2145                                 CAL_STAGE_VFIFO,
2146                                 CAL_SUBSTAGE_VFIFO_CENTER);
2147                 } else {
2148                         set_failing_group_stage(read_group *
2149                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2150                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2151                                 CAL_SUBSTAGE_VFIFO_CENTER);
2152                 }
2153                 return 0;
2154         }
2155
2156         /* Find middle of window for each DQ bit */
2157         mid_min = left_edge[0] - right_edge[0];
2158         min_index = 0;
2159         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2160                 mid = left_edge[i] - right_edge[i];
2161                 if (mid < mid_min) {
2162                         mid_min = mid;
2163                         min_index = i;
2164                 }
2165         }
2166
2167         /*
2168          * -mid_min/2 represents the amount that we need to move DQS.
2169          * If mid_min is odd and positive we'll need to add one to
2170          * make sure the rounding in further calculations is correct
2171          * (always bias to the right), so just add 1 for all positive values.
2172          */
2173         if (mid_min > 0)
2174                 mid_min++;
2175
2176         mid_min = mid_min / 2;
2177
2178         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2179                    __func__, __LINE__, mid_min, min_index);
2180
2181         /* Determine the amount we can change DQS (which is -mid_min) */
2182         orig_mid_min = mid_min;
2183         new_dqs = start_dqs - mid_min;
2184         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2185                 new_dqs = IO_DQS_IN_DELAY_MAX;
2186         else if (new_dqs < 0)
2187                 new_dqs = 0;
2188
2189         mid_min = start_dqs - new_dqs;
2190         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2191                    mid_min, new_dqs);
2192
2193         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2194                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2195                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2196                 else if (start_dqs_en - mid_min < 0)
2197                         mid_min += start_dqs_en - mid_min;
2198         }
2199         new_dqs = start_dqs - mid_min;
2200
2201         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2202                    new_dqs=%d mid_min=%d\n", start_dqs,
2203                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2204                    new_dqs, mid_min);
2205
2206         /* Initialize data for export structures */
2207         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2208         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2209
2210         /* add delay to bring centre of all DQ windows to the same "level" */
2211         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2212                 /* Use values before divide by 2 to reduce round off error */
2213                 shift_dq = (left_edge[i] - right_edge[i] -
2214                         (left_edge[min_index] - right_edge[min_index]))/2  +
2215                         (orig_mid_min - mid_min);
2216
2217                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2218                            shift_dq[%u]=%d\n", i, shift_dq);
2219
2220                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2221                 temp_dq_in_delay1 = readl(addr + (p << 2));
2222                 temp_dq_in_delay2 = readl(addr + (i << 2));
2223
2224                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2225                         (int32_t)IO_IO_IN_DELAY_MAX) {
2226                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2227                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2228                         shift_dq = -(int32_t)temp_dq_in_delay1;
2229                 }
2230                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2231                            shift_dq[%u]=%d\n", i, shift_dq);
2232                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2233                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2234                 scc_mgr_load_dq(p);
2235
2236                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2237                            left_edge[i] - shift_dq + (-mid_min),
2238                            right_edge[i] + shift_dq - (-mid_min));
2239                 /* To determine values for export structures */
2240                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2241                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2242
2243                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2244                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2245         }
2246
2247         final_dqs = new_dqs;
2248         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2249                 final_dqs_en = start_dqs_en - mid_min;
2250
2251         /* Move DQS-en */
2252         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2253                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2254                 scc_mgr_load_dqs(read_group);
2255         }
2256
2257         /* Move DQS */
2258         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2259         scc_mgr_load_dqs(read_group);
2260         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2261                    dqs_margin=%d", __func__, __LINE__,
2262                    dq_margin, dqs_margin);
2263
2264         /*
2265          * Do not remove this line as it makes sure all of our decisions
2266          * have been applied. Apply the update bit.
2267          */
2268         writel(0, &sdr_scc_mgr->update);
2269
2270         return (dq_margin >= 0) && (dqs_margin >= 0);
2271 }
2272
2273 /**
2274  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2275  * @rw_group:   Read/Write Group
2276  * @phase:      DQ/DQS phase
2277  *
2278  * Because initially no communication ca be reliably performed with the memory
2279  * device, the sequencer uses a guaranteed write mechanism to write data into
2280  * the memory device.
2281  */
2282 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2283                                                  const u32 phase)
2284 {
2285         int ret;
2286
2287         /* Set a particular DQ/DQS phase. */
2288         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2289
2290         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2291                    __func__, __LINE__, rw_group, phase);
2292
2293         /*
2294          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2295          * Load up the patterns used by read calibration using the
2296          * current DQDQS phase.
2297          */
2298         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2299
2300         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2301                 return 0;
2302
2303         /*
2304          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2305          * Back-to-Back reads of the patterns used for calibration.
2306          */
2307         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2308         if (ret)
2309                 debug_cond(DLEVEL == 1,
2310                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2311                            __func__, __LINE__, rw_group, phase);
2312         return ret;
2313 }
2314
2315 /**
2316  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2317  * @rw_group:   Read/Write Group
2318  * @test_bgn:   Rank at which the test begins
2319  *
2320  * DQS enable calibration ensures reliable capture of the DQ signal without
2321  * glitches on the DQS line.
2322  */
2323 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2324                                                        const u32 test_bgn)
2325 {
2326         /*
2327          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2328          * DQS and DQS Eanble Signal Relationships.
2329          */
2330
2331         /* We start at zero, so have one less dq to devide among */
2332         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2333                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2334         int ret;
2335         u32 i, p, d, r;
2336
2337         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2338
2339         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2340         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2341              r += NUM_RANKS_PER_SHADOW_REG) {
2342                 for (i = 0, p = test_bgn, d = 0;
2343                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2344                      i++, p++, d += delay_step) {
2345                         debug_cond(DLEVEL == 1,
2346                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2347                                    __func__, __LINE__, rw_group, r, i, p, d);
2348
2349                         scc_mgr_set_dq_in_delay(p, d);
2350                         scc_mgr_load_dq(p);
2351                 }
2352
2353                 writel(0, &sdr_scc_mgr->update);
2354         }
2355
2356         /*
2357          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2358          * dq_in_delay values
2359          */
2360         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2361
2362         debug_cond(DLEVEL == 1,
2363                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2364                    __func__, __LINE__, rw_group, !ret);
2365
2366         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2367              r += NUM_RANKS_PER_SHADOW_REG) {
2368                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2369                 writel(0, &sdr_scc_mgr->update);
2370         }
2371
2372         return ret;
2373 }
2374
2375 /**
2376  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2377  * @rw_group:           Read/Write Group
2378  * @test_bgn:           Rank at which the test begins
2379  * @use_read_test:      Perform a read test
2380  * @update_fom:         Update FOM
2381  *
2382  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2383  * within a group.
2384  */
2385 static int
2386 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2387                                       const int use_read_test,
2388                                       const int update_fom)
2389
2390 {
2391         int ret, grp_calibrated;
2392         u32 rank_bgn, sr;
2393
2394         /*
2395          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2396          * Read per-bit deskew can be done on a per shadow register basis.
2397          */
2398         grp_calibrated = 1;
2399         for (rank_bgn = 0, sr = 0;
2400              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2401              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2402                 /* Check if this set of ranks should be skipped entirely. */
2403                 if (param->skip_shadow_regs[sr])
2404                         continue;
2405
2406                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2407                                                         rw_group, test_bgn,
2408                                                         use_read_test,
2409                                                         update_fom);
2410                 if (ret)
2411                         continue;
2412
2413                 grp_calibrated = 0;
2414         }
2415
2416         if (!grp_calibrated)
2417                 return -EIO;
2418
2419         return 0;
2420 }
2421
2422 /**
2423  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2424  * @rw_group:           Read/Write Group
2425  * @test_bgn:           Rank at which the test begins
2426  *
2427  * Stage 1: Calibrate the read valid prediction FIFO.
2428  *
2429  * This function implements UniPHY calibration Stage 1, as explained in
2430  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2431  *
2432  * - read valid prediction will consist of finding:
2433  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2434  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2435  *  - we also do a per-bit deskew on the DQ lines.
2436  */
2437 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2438 {
2439         uint32_t p, d;
2440         uint32_t dtaps_per_ptap;
2441         uint32_t failed_substage;
2442
2443         int ret;
2444
2445         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2446
2447         /* Update info for sims */
2448         reg_file_set_group(rw_group);
2449         reg_file_set_stage(CAL_STAGE_VFIFO);
2450         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2451
2452         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2453
2454         /* USER Determine number of delay taps for each phase tap. */
2455         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2456                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2457
2458         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2459                 /*
2460                  * In RLDRAMX we may be messing the delay of pins in
2461                  * the same write rw_group but outside of the current read
2462                  * the rw_group, but that's ok because we haven't calibrated
2463                  * output side yet.
2464                  */
2465                 if (d > 0) {
2466                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2467                                                                 rw_group, d);
2468                 }
2469
2470                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2471                         /* 1) Guaranteed Write */
2472                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2473                         if (ret)
2474                                 break;
2475
2476                         /* 2) DQS Enable Calibration */
2477                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2478                                                                           test_bgn);
2479                         if (ret) {
2480                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2481                                 continue;
2482                         }
2483
2484                         /* 3) Centering DQ/DQS */
2485                         /*
2486                          * If doing read after write calibration, do not update
2487                          * FOM now. Do it then.
2488                          */
2489                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2490                                                                 test_bgn, 1, 0);
2491                         if (ret) {
2492                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2493                                 continue;
2494                         }
2495
2496                         /* All done. */
2497                         goto cal_done_ok;
2498                 }
2499         }
2500
2501         /* Calibration Stage 1 failed. */
2502         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2503         return 0;
2504
2505         /* Calibration Stage 1 completed OK. */
2506 cal_done_ok:
2507         /*
2508          * Reset the delay chains back to zero if they have moved > 1
2509          * (check for > 1 because loop will increase d even when pass in
2510          * first case).
2511          */
2512         if (d > 2)
2513                 scc_mgr_zero_group(rw_group, 1);
2514
2515         return 1;
2516 }
2517
2518 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2519 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2520                                                uint32_t test_bgn)
2521 {
2522         uint32_t rank_bgn, sr;
2523         uint32_t grp_calibrated;
2524         uint32_t write_group;
2525
2526         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2527
2528         /* update info for sims */
2529
2530         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2531         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2532
2533         write_group = read_group;
2534
2535         /* update info for sims */
2536         reg_file_set_group(read_group);
2537
2538         grp_calibrated = 1;
2539         /* Read per-bit deskew can be done on a per shadow register basis */
2540         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2541                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2542                 /* Determine if this set of ranks should be skipped entirely */
2543                 if (!param->skip_shadow_regs[sr]) {
2544                 /* This is the last calibration round, update FOM here */
2545                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2546                                                                 write_group,
2547                                                                 read_group,
2548                                                                 test_bgn, 0,
2549                                                                 1)) {
2550                                 grp_calibrated = 0;
2551                         }
2552                 }
2553         }
2554
2555
2556         if (grp_calibrated == 0) {
2557                 set_failing_group_stage(write_group,
2558                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2559                                         CAL_SUBSTAGE_VFIFO_CENTER);
2560                 return 0;
2561         }
2562
2563         return 1;
2564 }
2565
2566 /* Calibrate LFIFO to find smallest read latency */
2567 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2568 {
2569         uint32_t found_one;
2570
2571         debug("%s:%d\n", __func__, __LINE__);
2572
2573         /* update info for sims */
2574         reg_file_set_stage(CAL_STAGE_LFIFO);
2575         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2576
2577         /* Load up the patterns used by read calibration for all ranks */
2578         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2579         found_one = 0;
2580
2581         do {
2582                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2583                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2584                            __func__, __LINE__, gbl->curr_read_lat);
2585
2586                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2587                                                               NUM_READ_TESTS,
2588                                                               PASS_ALL_BITS,
2589                                                               1)) {
2590                         break;
2591                 }
2592
2593                 found_one = 1;
2594                 /* reduce read latency and see if things are working */
2595                 /* correctly */
2596                 gbl->curr_read_lat--;
2597         } while (gbl->curr_read_lat > 0);
2598
2599         /* reset the fifos to get pointers to known state */
2600
2601         writel(0, &phy_mgr_cmd->fifo_reset);
2602
2603         if (found_one) {
2604                 /* add a fudge factor to the read latency that was determined */
2605                 gbl->curr_read_lat += 2;
2606                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2607                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2608                            read_lat=%u\n", __func__, __LINE__,
2609                            gbl->curr_read_lat);
2610                 return 1;
2611         } else {
2612                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2613                                         CAL_SUBSTAGE_READ_LATENCY);
2614
2615                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2616                            read_lat=%u\n", __func__, __LINE__,
2617                            gbl->curr_read_lat);
2618                 return 0;
2619         }
2620 }
2621
2622 /*
2623  * issue write test command.
2624  * two variants are provided. one that just tests a write pattern and
2625  * another that tests datamask functionality.
2626  */
2627 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2628                                                   uint32_t test_dm)
2629 {
2630         uint32_t mcc_instruction;
2631         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2632                 ENABLE_SUPER_QUICK_CALIBRATION);
2633         uint32_t rw_wl_nop_cycles;
2634         uint32_t addr;
2635
2636         /*
2637          * Set counter and jump addresses for the right
2638          * number of NOP cycles.
2639          * The number of supported NOP cycles can range from -1 to infinity
2640          * Three different cases are handled:
2641          *
2642          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2643          *    mechanism will be used to insert the right number of NOPs
2644          *
2645          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2646          *    issuing the write command will jump straight to the
2647          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2648          *    data (for RLD), skipping
2649          *    the NOP micro-instruction all together
2650          *
2651          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2652          *    turned on in the same micro-instruction that issues the write
2653          *    command. Then we need
2654          *    to directly jump to the micro-instruction that sends out the data
2655          *
2656          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2657          *       (2 and 3). One jump-counter (0) is used to perform multiple
2658          *       write-read operations.
2659          *       one counter left to issue this command in "multiple-group" mode
2660          */
2661
2662         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2663
2664         if (rw_wl_nop_cycles == -1) {
2665                 /*
2666                  * CNTR 2 - We want to execute the special write operation that
2667                  * turns on DQS right away and then skip directly to the
2668                  * instruction that sends out the data. We set the counter to a
2669                  * large number so that the jump is always taken.
2670                  */
2671                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2672
2673                 /* CNTR 3 - Not used */
2674                 if (test_dm) {
2675                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2676                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2677                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2678                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2679                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2680                 } else {
2681                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2682                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2683                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2684                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2685                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2686                 }
2687         } else if (rw_wl_nop_cycles == 0) {
2688                 /*
2689                  * CNTR 2 - We want to skip the NOP operation and go straight
2690                  * to the DQS enable instruction. We set the counter to a large
2691                  * number so that the jump is always taken.
2692                  */
2693                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2694
2695                 /* CNTR 3 - Not used */
2696                 if (test_dm) {
2697                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2698                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2699                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2700                 } else {
2701                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2702                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2703                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2704                 }
2705         } else {
2706                 /*
2707                  * CNTR 2 - In this case we want to execute the next instruction
2708                  * and NOT take the jump. So we set the counter to 0. The jump
2709                  * address doesn't count.
2710                  */
2711                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2712                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2713
2714                 /*
2715                  * CNTR 3 - Set the nop counter to the number of cycles we
2716                  * need to loop for, minus 1.
2717                  */
2718                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2719                 if (test_dm) {
2720                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2721                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2722                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2723                 } else {
2724                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2725                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2726                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2727                 }
2728         }
2729
2730         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2731                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2732
2733         if (quick_write_mode)
2734                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2735         else
2736                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2737
2738         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2739
2740         /*
2741          * CNTR 1 - This is used to ensure enough time elapses
2742          * for read data to come back.
2743          */
2744         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2745
2746         if (test_dm) {
2747                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2748                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2749         } else {
2750                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2751                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2752         }
2753
2754         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2755         writel(mcc_instruction, addr + (group << 2));
2756 }
2757
2758 /* Test writes, can check for a single bit pass or multiple bit pass */
2759 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2760         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2761         uint32_t *bit_chk, uint32_t all_ranks)
2762 {
2763         uint32_t r;
2764         uint32_t correct_mask_vg;
2765         uint32_t tmp_bit_chk;
2766         uint32_t vg;
2767         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2768                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2769         uint32_t addr_rw_mgr;
2770         uint32_t base_rw_mgr;
2771
2772         *bit_chk = param->write_correct_mask;
2773         correct_mask_vg = param->write_correct_mask_vg;
2774
2775         for (r = rank_bgn; r < rank_end; r++) {
2776                 if (param->skip_ranks[r]) {
2777                         /* request to skip the rank */
2778                         continue;
2779                 }
2780
2781                 /* set rank */
2782                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2783
2784                 tmp_bit_chk = 0;
2785                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2786                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2787                         /* reset the fifos to get pointers to known state */
2788                         writel(0, &phy_mgr_cmd->fifo_reset);
2789
2790                         tmp_bit_chk = tmp_bit_chk <<
2791                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2792                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2793                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2794                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2795                                 use_dm);
2796
2797                         base_rw_mgr = readl(addr_rw_mgr);
2798                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2799                         if (vg == 0)
2800                                 break;
2801                 }
2802                 *bit_chk &= tmp_bit_chk;
2803         }
2804
2805         if (all_correct) {
2806                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2807                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2808                            %u => %lu", write_group, use_dm,
2809                            *bit_chk, param->write_correct_mask,
2810                            (long unsigned int)(*bit_chk ==
2811                            param->write_correct_mask));
2812                 return *bit_chk == param->write_correct_mask;
2813         } else {
2814                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2815                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2816                        write_group, use_dm, *bit_chk);
2817                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2818                         (long unsigned int)(*bit_chk != 0));
2819                 return *bit_chk != 0x00;
2820         }
2821 }
2822
2823 /*
2824  * center all windows. do per-bit-deskew to possibly increase size of
2825  * certain windows.
2826  */
2827 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2828         uint32_t write_group, uint32_t test_bgn)
2829 {
2830         uint32_t i, p, min_index;
2831         int32_t d;
2832         /*
2833          * Store these as signed since there are comparisons with
2834          * signed numbers.
2835          */
2836         uint32_t bit_chk;
2837         uint32_t sticky_bit_chk;
2838         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2839         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2840         int32_t mid;
2841         int32_t mid_min, orig_mid_min;
2842         int32_t new_dqs, start_dqs, shift_dq;
2843         int32_t dq_margin, dqs_margin, dm_margin;
2844         uint32_t temp_dq_out1_delay;
2845         uint32_t addr;
2846
2847         int ret;
2848
2849         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2850
2851         dm_margin = 0;
2852
2853         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2854         start_dqs = readl(addr +
2855                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2856
2857         /* per-bit deskew */
2858
2859         /*
2860          * set the left and right edge of each bit to an illegal value
2861          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2862          */
2863         sticky_bit_chk = 0;
2864         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2865                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2866                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2867         }
2868
2869         /* Search for the left edge of the window for each bit */
2870         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2871                          &bit_chk, &sticky_bit_chk,
2872                          left_edge, right_edge, 0);
2873
2874         /* Search for the right edge of the window for each bit */
2875         ret = search_right_edge(1, rank_bgn, write_group, 0,
2876                                 start_dqs, 0,
2877                                 &bit_chk, &sticky_bit_chk,
2878                                 left_edge, right_edge, 0);
2879         if (ret) {
2880                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2881                                         CAL_SUBSTAGE_WRITES_CENTER);
2882                 return 0;
2883         }
2884
2885         /* Find middle of window for each DQ bit */
2886         mid_min = left_edge[0] - right_edge[0];
2887         min_index = 0;
2888         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2889                 mid = left_edge[i] - right_edge[i];
2890                 if (mid < mid_min) {
2891                         mid_min = mid;
2892                         min_index = i;
2893                 }
2894         }
2895
2896         /*
2897          * -mid_min/2 represents the amount that we need to move DQS.
2898          * If mid_min is odd and positive we'll need to add one to
2899          * make sure the rounding in further calculations is correct
2900          * (always bias to the right), so just add 1 for all positive values.
2901          */
2902         if (mid_min > 0)
2903                 mid_min++;
2904         mid_min = mid_min / 2;
2905         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2906                    __LINE__, mid_min);
2907
2908         /* Determine the amount we can change DQS (which is -mid_min) */
2909         orig_mid_min = mid_min;
2910         new_dqs = start_dqs;
2911         mid_min = 0;
2912         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2913                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2914         /* Initialize data for export structures */
2915         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2916         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2917
2918         /* add delay to bring centre of all DQ windows to the same "level" */
2919         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2920                 /* Use values before divide by 2 to reduce round off error */
2921                 shift_dq = (left_edge[i] - right_edge[i] -
2922                         (left_edge[min_index] - right_edge[min_index]))/2  +
2923                 (orig_mid_min - mid_min);
2924
2925                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2926                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2927
2928                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2929                 temp_dq_out1_delay = readl(addr + (i << 2));
2930                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2931                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2932                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2933                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2934                         shift_dq = -(int32_t)temp_dq_out1_delay;
2935                 }
2936                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2937                            i, shift_dq);
2938                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2939                 scc_mgr_load_dq(i);
2940
2941                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2942                            left_edge[i] - shift_dq + (-mid_min),
2943                            right_edge[i] + shift_dq - (-mid_min));
2944                 /* To determine values for export structures */
2945                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2946                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2947
2948                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2949                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2950         }
2951
2952         /* Move DQS */
2953         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2954         writel(0, &sdr_scc_mgr->update);
2955
2956         /* Centre DM */
2957         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2958
2959         /*
2960          * set the left and right edge of each bit to an illegal value,
2961          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2962          */
2963         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2964         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2965         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2966         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2967         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2968         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2969         int32_t win_best = 0;
2970
2971         /* Search for the/part of the window with DM shift */
2972         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2973                 scc_mgr_apply_group_dm_out1_delay(d);
2974                 writel(0, &sdr_scc_mgr->update);
2975
2976                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2977                                                     PASS_ALL_BITS, &bit_chk,
2978                                                     0)) {
2979                         /* USE Set current end of the window */
2980                         end_curr = -d;
2981                         /*
2982                          * If a starting edge of our window has not been seen
2983                          * this is our current start of the DM window.
2984                          */
2985                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2986                                 bgn_curr = -d;
2987
2988                         /*
2989                          * If current window is bigger than best seen.
2990                          * Set best seen to be current window.
2991                          */
2992                         if ((end_curr-bgn_curr+1) > win_best) {
2993                                 win_best = end_curr-bgn_curr+1;
2994                                 bgn_best = bgn_curr;
2995                                 end_best = end_curr;
2996                         }
2997                 } else {
2998                         /* We just saw a failing test. Reset temp edge */
2999                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3000                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3001                         }
3002                 }
3003
3004
3005         /* Reset DM delay chains to 0 */
3006         scc_mgr_apply_group_dm_out1_delay(0);
3007
3008         /*
3009          * Check to see if the current window nudges up aganist 0 delay.
3010          * If so we need to continue the search by shifting DQS otherwise DQS
3011          * search begins as a new search. */
3012         if (end_curr != 0) {
3013                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015         }
3016
3017         /* Search for the/part of the window with DQS shifts */
3018         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3019                 /*
3020                  * Note: This only shifts DQS, so are we limiting ourselve to
3021                  * width of DQ unnecessarily.
3022                  */
3023                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3024                                                         d + new_dqs);
3025
3026                 writel(0, &sdr_scc_mgr->update);
3027                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3028                                                     PASS_ALL_BITS, &bit_chk,
3029                                                     0)) {
3030                         /* USE Set current end of the window */
3031                         end_curr = d;
3032                         /*
3033                          * If a beginning edge of our window has not been seen
3034                          * this is our current begin of the DM window.
3035                          */
3036                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3037                                 bgn_curr = d;
3038
3039                         /*
3040                          * If current window is bigger than best seen. Set best
3041                          * seen to be current window.
3042                          */
3043                         if ((end_curr-bgn_curr+1) > win_best) {
3044                                 win_best = end_curr-bgn_curr+1;
3045                                 bgn_best = bgn_curr;
3046                                 end_best = end_curr;
3047                         }
3048                 } else {
3049                         /* We just saw a failing test. Reset temp edge */
3050                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3051                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3052
3053                         /* Early exit optimization: if ther remaining delay
3054                         chain space is less than already seen largest window
3055                         we can exit */
3056                         if ((win_best-1) >
3057                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3058                                         break;
3059                                 }
3060                         }
3061                 }
3062
3063         /* assign left and right edge for cal and reporting; */
3064         left_edge[0] = -1*bgn_best;
3065         right_edge[0] = end_best;
3066
3067         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3068                    __LINE__, left_edge[0], right_edge[0]);
3069
3070         /* Move DQS (back to orig) */
3071         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3072
3073         /* Move DM */
3074
3075         /* Find middle of window for the DM bit */
3076         mid = (left_edge[0] - right_edge[0]) / 2;
3077
3078         /* only move right, since we are not moving DQS/DQ */
3079         if (mid < 0)
3080                 mid = 0;
3081
3082         /* dm_marign should fail if we never find a window */
3083         if (win_best == 0)
3084                 dm_margin = -1;
3085         else
3086                 dm_margin = left_edge[0] - mid;
3087
3088         scc_mgr_apply_group_dm_out1_delay(mid);
3089         writel(0, &sdr_scc_mgr->update);
3090
3091         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3092                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3093                    right_edge[0], mid, dm_margin);
3094         /* Export values */
3095         gbl->fom_out += dq_margin + dqs_margin;
3096
3097         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3098                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3099                    dq_margin, dqs_margin, dm_margin);
3100
3101         /*
3102          * Do not remove this line as it makes sure all of our
3103          * decisions have been applied.
3104          */
3105         writel(0, &sdr_scc_mgr->update);
3106         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3107 }
3108
3109 /**
3110  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3111  * @rank_bgn:           Rank number
3112  * @group:              Read/Write Group
3113  * @test_bgn:           Rank at which the test begins
3114  *
3115  * Stage 2: Write Calibration Part One.
3116  *
3117  * This function implements UniPHY calibration Stage 2, as explained in
3118  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3119  */
3120 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3121                                        const u32 test_bgn)
3122 {
3123         int ret;
3124
3125         /* Update info for sims */
3126         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3127
3128         reg_file_set_group(group);
3129         reg_file_set_stage(CAL_STAGE_WRITES);
3130         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3131
3132         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3133         if (!ret) {
3134                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3135                                         CAL_SUBSTAGE_WRITES_CENTER);
3136                 return -EIO;
3137         }
3138
3139         return 0;
3140 }
3141
3142 /**
3143  * mem_precharge_and_activate() - Precharge all banks and activate
3144  *
3145  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3146  */
3147 static void mem_precharge_and_activate(void)
3148 {
3149         int r;
3150
3151         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3152                 /* Test if the rank should be skipped. */
3153                 if (param->skip_ranks[r])
3154                         continue;
3155
3156                 /* Set rank. */
3157                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3158
3159                 /* Precharge all banks. */
3160                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162
3163                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3164                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3165                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3166
3167                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3168                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3169                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3170
3171                 /* Activate rows. */
3172                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3173                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3174         }
3175 }
3176
3177 /**
3178  * mem_init_latency() - Configure memory RLAT and WLAT settings
3179  *
3180  * Configure memory RLAT and WLAT parameters.
3181  */
3182 static void mem_init_latency(void)
3183 {
3184         /*
3185          * For AV/CV, LFIFO is hardened and always runs at full rate
3186          * so max latency in AFI clocks, used here, is correspondingly
3187          * smaller.
3188          */
3189         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3190         u32 rlat, wlat;
3191
3192         debug("%s:%d\n", __func__, __LINE__);
3193
3194         /*
3195          * Read in write latency.
3196          * WL for Hard PHY does not include additive latency.
3197          */
3198         wlat = readl(&data_mgr->t_wl_add);
3199         wlat += readl(&data_mgr->mem_t_add);
3200
3201         gbl->rw_wl_nop_cycles = wlat - 1;
3202
3203         /* Read in readl latency. */
3204         rlat = readl(&data_mgr->t_rl_add);
3205
3206         /* Set a pretty high read latency initially. */
3207         gbl->curr_read_lat = rlat + 16;
3208         if (gbl->curr_read_lat > max_latency)
3209                 gbl->curr_read_lat = max_latency;
3210
3211         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3212
3213         /* Advertise write latency. */
3214         writel(wlat, &phy_mgr_cfg->afi_wlat);
3215 }
3216
3217 /**
3218  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3219  *
3220  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3221  */
3222 static void mem_skip_calibrate(void)
3223 {
3224         uint32_t vfifo_offset;
3225         uint32_t i, j, r;
3226
3227         debug("%s:%d\n", __func__, __LINE__);
3228         /* Need to update every shadow register set used by the interface */
3229         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3230              r += NUM_RANKS_PER_SHADOW_REG) {
3231                 /*
3232                  * Set output phase alignment settings appropriate for
3233                  * skip calibration.
3234                  */
3235                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3236                         scc_mgr_set_dqs_en_phase(i, 0);
3237 #if IO_DLL_CHAIN_LENGTH == 6
3238                         scc_mgr_set_dqdqs_output_phase(i, 6);
3239 #else
3240                         scc_mgr_set_dqdqs_output_phase(i, 7);
3241 #endif
3242                         /*
3243                          * Case:33398
3244                          *
3245                          * Write data arrives to the I/O two cycles before write
3246                          * latency is reached (720 deg).
3247                          *   -> due to bit-slip in a/c bus
3248                          *   -> to allow board skew where dqs is longer than ck
3249                          *      -> how often can this happen!?
3250                          *      -> can claim back some ptaps for high freq
3251                          *       support if we can relax this, but i digress...
3252                          *
3253                          * The write_clk leads mem_ck by 90 deg
3254                          * The minimum ptap of the OPA is 180 deg
3255                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3256                          * The write_clk is always delayed by 2 ptaps
3257                          *
3258                          * Hence, to make DQS aligned to CK, we need to delay
3259                          * DQS by:
3260                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3261                          *
3262                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3263                          * gives us the number of ptaps, which simplies to:
3264                          *
3265                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3266                          */
3267                         scc_mgr_set_dqdqs_output_phase(i,
3268                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3269                 }
3270                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3271                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3272
3273                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3274                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3275                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3276                 }
3277                 writel(0xff, &sdr_scc_mgr->dq_ena);
3278                 writel(0xff, &sdr_scc_mgr->dm_ena);
3279                 writel(0, &sdr_scc_mgr->update);
3280         }
3281
3282         /* Compensate for simulation model behaviour */
3283         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3284                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3285                 scc_mgr_load_dqs(i);
3286         }
3287         writel(0, &sdr_scc_mgr->update);
3288
3289         /*
3290          * ArriaV has hard FIFOs that can only be initialized by incrementing
3291          * in sequencer.
3292          */
3293         vfifo_offset = CALIB_VFIFO_OFFSET;
3294         for (j = 0; j < vfifo_offset; j++)
3295                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3296         writel(0, &phy_mgr_cmd->fifo_reset);
3297
3298         /*
3299          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3300          * setting from generation-time constant.
3301          */
3302         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3303         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3304 }
3305
3306 /**
3307  * mem_calibrate() - Memory calibration entry point.
3308  *
3309  * Perform memory calibration.
3310  */
3311 static uint32_t mem_calibrate(void)
3312 {
3313         uint32_t i;
3314         uint32_t rank_bgn, sr;
3315         uint32_t write_group, write_test_bgn;
3316         uint32_t read_group, read_test_bgn;
3317         uint32_t run_groups, current_run;
3318         uint32_t failing_groups = 0;
3319         uint32_t group_failed = 0;
3320
3321         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3322                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3323
3324         debug("%s:%d\n", __func__, __LINE__);
3325
3326         /* Initialize the data settings */
3327         gbl->error_substage = CAL_SUBSTAGE_NIL;
3328         gbl->error_stage = CAL_STAGE_NIL;
3329         gbl->error_group = 0xff;
3330         gbl->fom_in = 0;
3331         gbl->fom_out = 0;
3332
3333         /* Initialize WLAT and RLAT. */
3334         mem_init_latency();
3335
3336         /* Initialize bit slips. */
3337         mem_precharge_and_activate();
3338
3339         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3340                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3341                           SCC_MGR_GROUP_COUNTER_OFFSET);
3342                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3343                 if (i == 0)
3344                         scc_mgr_set_hhp_extras();
3345
3346                 scc_set_bypass_mode(i);
3347         }
3348
3349         /* Calibration is skipped. */
3350         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3351                 /*
3352                  * Set VFIFO and LFIFO to instant-on settings in skip
3353                  * calibration mode.
3354                  */
3355                 mem_skip_calibrate();
3356
3357                 /*
3358                  * Do not remove this line as it makes sure all of our
3359                  * decisions have been applied.
3360                  */
3361                 writel(0, &sdr_scc_mgr->update);
3362                 return 1;
3363         }
3364
3365         /* Calibration is not skipped. */
3366         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3367                 /*
3368                  * Zero all delay chain/phase settings for all
3369                  * groups and all shadow register sets.
3370                  */
3371                 scc_mgr_zero_all();
3372
3373                 run_groups = ~param->skip_groups;
3374
3375                 for (write_group = 0, write_test_bgn = 0; write_group
3376                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3377                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3378
3379                         /* Initialize the group failure */
3380                         group_failed = 0;
3381
3382                         current_run = run_groups & ((1 <<
3383                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3384                         run_groups = run_groups >>
3385                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3386
3387                         if (current_run == 0)
3388                                 continue;
3389
3390                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3391                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3392                         scc_mgr_zero_group(write_group, 0);
3393
3394                         for (read_group = write_group * rwdqs_ratio,
3395                              read_test_bgn = 0;
3396                              read_group < (write_group + 1) * rwdqs_ratio;
3397                              read_group++,
3398                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3399                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3400                                         continue;
3401
3402                                 /* Calibrate the VFIFO */
3403                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3404                                                                read_test_bgn))
3405                                         continue;
3406
3407                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3408                                         return 0;
3409
3410                                 /* The group failed, we're done. */
3411                                 goto grp_failed;
3412                         }
3413
3414                         /* Calibrate the output side */
3415                         for (rank_bgn = 0, sr = 0;
3416                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3417                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3418                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3419                                         continue;
3420
3421                                 /* Not needed in quick mode! */
3422                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3423                                         continue;
3424
3425                                 /*
3426                                  * Determine if this set of ranks
3427                                  * should be skipped entirely.
3428                                  */
3429                                 if (param->skip_shadow_regs[sr])
3430                                         continue;
3431
3432                                 /* Calibrate WRITEs */
3433                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3434                                                 write_group, write_test_bgn))
3435                                         continue;
3436
3437                                 group_failed = 1;
3438                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3439                                         return 0;
3440                         }
3441
3442                         /* Some group failed, we're done. */
3443                         if (group_failed)
3444                                 goto grp_failed;
3445
3446                         for (read_group = write_group * rwdqs_ratio,
3447                              read_test_bgn = 0;
3448                              read_group < (write_group + 1) * rwdqs_ratio;
3449                              read_group++,
3450                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3451                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3452                                         continue;
3453
3454                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3455                                                                 read_test_bgn))
3456                                         continue;
3457
3458                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459                                         return 0;
3460
3461                                 /* The group failed, we're done. */
3462                                 goto grp_failed;
3463                         }
3464
3465                         /* No group failed, continue as usual. */
3466                         continue;
3467
3468 grp_failed:             /* A group failed, increment the counter. */
3469                         failing_groups++;
3470                 }
3471
3472                 /*
3473                  * USER If there are any failing groups then report
3474                  * the failure.
3475                  */
3476                 if (failing_groups != 0)
3477                         return 0;
3478
3479                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3480                         continue;
3481
3482                 /*
3483                  * If we're skipping groups as part of debug,
3484                  * don't calibrate LFIFO.
3485                  */
3486                 if (param->skip_groups != 0)
3487                         continue;
3488
3489                 /* Calibrate the LFIFO */
3490                 if (!rw_mgr_mem_calibrate_lfifo())
3491                         return 0;
3492         }
3493
3494         /*
3495          * Do not remove this line as it makes sure all of our decisions
3496          * have been applied.
3497          */
3498         writel(0, &sdr_scc_mgr->update);
3499         return 1;
3500 }
3501
3502 /**
3503  * run_mem_calibrate() - Perform memory calibration
3504  *
3505  * This function triggers the entire memory calibration procedure.
3506  */
3507 static int run_mem_calibrate(void)
3508 {
3509         int pass;
3510
3511         debug("%s:%d\n", __func__, __LINE__);
3512
3513         /* Reset pass/fail status shown on afi_cal_success/fail */
3514         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3515
3516         /* Stop tracking manager. */
3517         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3518
3519         phy_mgr_initialize();
3520         rw_mgr_mem_initialize();
3521
3522         /* Perform the actual memory calibration. */
3523         pass = mem_calibrate();
3524
3525         mem_precharge_and_activate();
3526         writel(0, &phy_mgr_cmd->fifo_reset);
3527
3528         /* Handoff. */
3529         rw_mgr_mem_handoff();
3530         /*
3531          * In Hard PHY this is a 2-bit control:
3532          * 0: AFI Mux Select
3533          * 1: DDIO Mux Select
3534          */
3535         writel(0x2, &phy_mgr_cfg->mux_sel);
3536
3537         /* Start tracking manager. */
3538         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3539
3540         return pass;
3541 }
3542
3543 /**
3544  * debug_mem_calibrate() - Report result of memory calibration
3545  * @pass:       Value indicating whether calibration passed or failed
3546  *
3547  * This function reports the results of the memory calibration
3548  * and writes debug information into the register file.
3549  */
3550 static void debug_mem_calibrate(int pass)
3551 {
3552         uint32_t debug_info;
3553
3554         if (pass) {
3555                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3556
3557                 gbl->fom_in /= 2;
3558                 gbl->fom_out /= 2;
3559
3560                 if (gbl->fom_in > 0xff)
3561                         gbl->fom_in = 0xff;
3562
3563                 if (gbl->fom_out > 0xff)
3564                         gbl->fom_out = 0xff;
3565
3566                 /* Update the FOM in the register file */
3567                 debug_info = gbl->fom_in;
3568                 debug_info |= gbl->fom_out << 8;
3569                 writel(debug_info, &sdr_reg_file->fom);
3570
3571                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3572                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3573         } else {
3574                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3575
3576                 debug_info = gbl->error_stage;
3577                 debug_info |= gbl->error_substage << 8;
3578                 debug_info |= gbl->error_group << 16;
3579
3580                 writel(debug_info, &sdr_reg_file->failing_stage);
3581                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3582                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3583
3584                 /* Update the failing group/stage in the register file */
3585                 debug_info = gbl->error_stage;
3586                 debug_info |= gbl->error_substage << 8;
3587                 debug_info |= gbl->error_group << 16;
3588                 writel(debug_info, &sdr_reg_file->failing_stage);
3589         }
3590
3591         printf("%s: Calibration complete\n", __FILE__);
3592 }
3593
3594 /**
3595  * hc_initialize_rom_data() - Initialize ROM data
3596  *
3597  * Initialize ROM data.
3598  */
3599 static void hc_initialize_rom_data(void)
3600 {
3601         u32 i, addr;
3602
3603         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3604         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3605                 writel(inst_rom_init[i], addr + (i << 2));
3606
3607         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3608         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3609                 writel(ac_rom_init[i], addr + (i << 2));
3610 }
3611
3612 /**
3613  * initialize_reg_file() - Initialize SDR register file
3614  *
3615  * Initialize SDR register file.
3616  */
3617 static void initialize_reg_file(void)
3618 {
3619         /* Initialize the register file with the correct data */
3620         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3621         writel(0, &sdr_reg_file->debug_data_addr);
3622         writel(0, &sdr_reg_file->cur_stage);
3623         writel(0, &sdr_reg_file->fom);
3624         writel(0, &sdr_reg_file->failing_stage);
3625         writel(0, &sdr_reg_file->debug1);
3626         writel(0, &sdr_reg_file->debug2);
3627 }
3628
3629 /**
3630  * initialize_hps_phy() - Initialize HPS PHY
3631  *
3632  * Initialize HPS PHY.
3633  */
3634 static void initialize_hps_phy(void)
3635 {
3636         uint32_t reg;
3637         /*
3638          * Tracking also gets configured here because it's in the
3639          * same register.
3640          */
3641         uint32_t trk_sample_count = 7500;
3642         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3643         /*
3644          * Format is number of outer loops in the 16 MSB, sample
3645          * count in 16 LSB.
3646          */
3647
3648         reg = 0;
3649         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3650         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3651         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3652         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3653         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3654         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3655         /*
3656          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3657          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3658          */
3659         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3660         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3661                 trk_sample_count);
3662         writel(reg, &sdr_ctrl->phy_ctrl0);
3663
3664         reg = 0;
3665         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3666                 trk_sample_count >>
3667                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3669                 trk_long_idle_sample_count);
3670         writel(reg, &sdr_ctrl->phy_ctrl1);
3671
3672         reg = 0;
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3674                 trk_long_idle_sample_count >>
3675                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3676         writel(reg, &sdr_ctrl->phy_ctrl2);
3677 }
3678
3679 /**
3680  * initialize_tracking() - Initialize tracking
3681  *
3682  * Initialize the register file with usable initial data.
3683  */
3684 static void initialize_tracking(void)
3685 {
3686         /*
3687          * Initialize the register file with the correct data.
3688          * Compute usable version of value in case we skip full
3689          * computation later.
3690          */
3691         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3692                &sdr_reg_file->dtaps_per_ptap);
3693
3694         /* trk_sample_count */
3695         writel(7500, &sdr_reg_file->trk_sample_count);
3696
3697         /* longidle outer loop [15:0] */
3698         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3699
3700         /*
3701          * longidle sample count [31:24]
3702          * trfc, worst case of 933Mhz 4Gb [23:16]
3703          * trcd, worst case [15:8]
3704          * vfifo wait [7:0]
3705          */
3706         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3707                &sdr_reg_file->delays);
3708
3709         /* mux delay */
3710         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3711                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3712                &sdr_reg_file->trk_rw_mgr_addr);
3713
3714         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3715                &sdr_reg_file->trk_read_dqs_width);
3716
3717         /* trefi [7:0] */
3718         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3719                &sdr_reg_file->trk_rfsh);
3720 }
3721
3722 int sdram_calibration_full(void)
3723 {
3724         struct param_type my_param;
3725         struct gbl_type my_gbl;
3726         uint32_t pass;
3727
3728         memset(&my_param, 0, sizeof(my_param));
3729         memset(&my_gbl, 0, sizeof(my_gbl));
3730
3731         param = &my_param;
3732         gbl = &my_gbl;
3733
3734         /* Set the calibration enabled by default */
3735         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3736         /*
3737          * Only sweep all groups (regardless of fail state) by default
3738          * Set enabled read test by default.
3739          */
3740 #if DISABLE_GUARANTEED_READ
3741         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3742 #endif
3743         /* Initialize the register file */
3744         initialize_reg_file();
3745
3746         /* Initialize any PHY CSR */
3747         initialize_hps_phy();
3748
3749         scc_mgr_initialize();
3750
3751         initialize_tracking();
3752
3753         printf("%s: Preparing to start memory calibration\n", __FILE__);
3754
3755         debug("%s:%d\n", __func__, __LINE__);
3756         debug_cond(DLEVEL == 1,
3757                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3758                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3759                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3760                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3761                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3762         debug_cond(DLEVEL == 1,
3763                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3764                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3765                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3766                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3767         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3768                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3769         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3770                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3771                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3772         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3773                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3774                    IO_IO_OUT2_DELAY_MAX);
3775         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3776                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3777
3778         hc_initialize_rom_data();
3779
3780         /* update info for sims */
3781         reg_file_set_stage(CAL_STAGE_NIL);
3782         reg_file_set_group(0);
3783
3784         /*
3785          * Load global needed for those actions that require
3786          * some dynamic calibration support.
3787          */
3788         dyn_calib_steps = STATIC_CALIB_STEPS;
3789         /*
3790          * Load global to allow dynamic selection of delay loop settings
3791          * based on calibration mode.
3792          */
3793         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3794                 skip_delay_mask = 0xff;
3795         else
3796                 skip_delay_mask = 0x0;
3797
3798         pass = run_mem_calibrate();
3799         debug_mem_calibrate(pass);
3800         return pass;
3801 }