]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/vf610_nfc.c
mtd: vf610_nfc: implement OOB only read
[karo-tx-uboot.git] / drivers / mtd / nand / vf610_nfc.c
1 /*
2  * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Ported to U-Boot by Stefan Agner
6  * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
7  * Jason ported to M54418TWR and MVFA5.
8  * Authors: Stefan Agner <stefan.agner@toradex.com>
9  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
10  *          Shaohui Xie <b21989@freescale.com>
11  *          Jason Jin <Jason.jin@freescale.com>
12  *
13  * Based on original driver mpc5121_nfc.c.
14  *
15  * This is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Limitations:
21  * - Untested on MPC5125 and M54418.
22  * - DMA not used.
23  * - 2K pages or less.
24  * - Only 2K page w. 64+OOB and hardware ECC.
25  */
26
27 #include <common.h>
28 #include <malloc.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33
34 #include <nand.h>
35 #include <errno.h>
36 #include <asm/io.h>
37
38 /* Register Offsets */
39 #define NFC_FLASH_CMD1                  0x3F00
40 #define NFC_FLASH_CMD2                  0x3F04
41 #define NFC_COL_ADDR                    0x3F08
42 #define NFC_ROW_ADDR                    0x3F0c
43 #define NFC_ROW_ADDR_INC                0x3F14
44 #define NFC_FLASH_STATUS1               0x3F18
45 #define NFC_FLASH_STATUS2               0x3F1c
46 #define NFC_CACHE_SWAP                  0x3F28
47 #define NFC_SECTOR_SIZE                 0x3F2c
48 #define NFC_FLASH_CONFIG                0x3F30
49 #define NFC_IRQ_STATUS                  0x3F38
50
51 /* Addresses for NFC MAIN RAM BUFFER areas */
52 #define NFC_MAIN_AREA(n)                ((n) *  0x1000)
53
54 #define PAGE_2K                         0x0800
55 #define OOB_64                          0x0040
56
57 /*
58  * NFC_CMD2[CODE] values. See section:
59  *  - 31.4.7 Flash Command Code Description, Vybrid manual
60  *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
61  *
62  * Briefly these are bitmasks of controller cycles.
63  */
64 #define READ_PAGE_CMD_CODE              0x7EE0
65 #define PROGRAM_PAGE_CMD_CODE           0x7FC0
66 #define ERASE_CMD_CODE                  0x4EC0
67 #define READ_ID_CMD_CODE                0x4804
68 #define RESET_CMD_CODE                  0x4040
69 #define STATUS_READ_CMD_CODE            0x4068
70
71 /* NFC ECC mode define */
72 #define ECC_BYPASS                      0
73 #define ECC_45_BYTE                     6
74
75 /*** Register Mask and bit definitions */
76
77 /* NFC_FLASH_CMD1 Field */
78 #define CMD_BYTE2_MASK                          0xFF000000
79 #define CMD_BYTE2_SHIFT                         24
80
81 /* NFC_FLASH_CM2 Field */
82 #define CMD_BYTE1_MASK                          0xFF000000
83 #define CMD_BYTE1_SHIFT                         24
84 #define CMD_CODE_MASK                           0x00FFFF00
85 #define CMD_CODE_SHIFT                          8
86 #define BUFNO_MASK                              0x00000006
87 #define BUFNO_SHIFT                             1
88 #define START_BIT                               (1<<0)
89
90 /* NFC_COL_ADDR Field */
91 #define COL_ADDR_MASK                           0x0000FFFF
92 #define COL_ADDR_SHIFT                          0
93
94 /* NFC_ROW_ADDR Field */
95 #define ROW_ADDR_MASK                           0x00FFFFFF
96 #define ROW_ADDR_SHIFT                          0
97 #define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
98 #define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
99 #define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
100 #define ROW_ADDR_CHIP_SEL_SHIFT                 24
101
102 /* NFC_FLASH_STATUS2 Field */
103 #define STATUS_BYTE1_MASK                       0x000000FF
104
105 /* NFC_FLASH_CONFIG Field */
106 #define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
107 #define CONFIG_ECC_SRAM_ADDR_SHIFT              22
108 #define CONFIG_ECC_SRAM_REQ_BIT                 (1<<21)
109 #define CONFIG_DMA_REQ_BIT                      (1<<20)
110 #define CONFIG_ECC_MODE_MASK                    0x000E0000
111 #define CONFIG_ECC_MODE_SHIFT                   17
112 #define CONFIG_FAST_FLASH_BIT                   (1<<16)
113 #define CONFIG_16BIT                            (1<<7)
114 #define CONFIG_BOOT_MODE_BIT                    (1<<6)
115 #define CONFIG_ADDR_AUTO_INCR_BIT               (1<<5)
116 #define CONFIG_BUFNO_AUTO_INCR_BIT              (1<<4)
117 #define CONFIG_PAGE_CNT_MASK                    0xF
118 #define CONFIG_PAGE_CNT_SHIFT                   0
119
120 /* NFC_IRQ_STATUS Field */
121 #define IDLE_IRQ_BIT                            (1<<29)
122 #define IDLE_EN_BIT                             (1<<20)
123 #define CMD_DONE_CLEAR_BIT                      (1<<18)
124 #define IDLE_CLEAR_BIT                          (1<<17)
125
126 #define NFC_TIMEOUT     (1000)
127
128 /* ECC status placed at end of buffers. */
129 #define ECC_SRAM_ADDR   ((PAGE_2K+256-8) >> 3)
130 #define ECC_STATUS_MASK 0x80
131 #define ECC_ERR_COUNT   0x3F
132
133 /*
134  * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
135  * and +7 for big-endian SOC.
136  */
137 #ifdef CONFIG_SOC_VF610
138 #define ECC_OFFSET      4
139 #else
140 #define ECC_OFFSET      7
141 #endif
142
143 struct vf610_nfc {
144         struct mtd_info   *mtd;
145         struct nand_chip   chip;
146         void __iomem      *regs;
147         uint               column;
148         /* Status and ID are in alternate locations. */
149         int                alt_buf;
150 #define ALT_BUF_ID   1
151 #define ALT_BUF_STAT 2
152         struct clk        *clk;
153 };
154
155 #define mtd_to_nfc(_mtd) \
156         (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
157
158 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160
161 static struct nand_bbt_descr bbt_main_descr = {
162         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
163                    NAND_BBT_2BIT | NAND_BBT_VERSION,
164         .offs = 11,
165         .len = 4,
166         .veroffs = 15,
167         .maxblocks = 4,
168         .pattern = bbt_pattern,
169 };
170
171 static struct nand_bbt_descr bbt_mirror_descr = {
172         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
173                    NAND_BBT_2BIT | NAND_BBT_VERSION,
174         .offs = 11,
175         .len = 4,
176         .veroffs = 15,
177         .maxblocks = 4,
178         .pattern = mirror_pattern,
179 };
180
181 static struct nand_ecclayout vf610_nfc_ecc45 = {
182         .eccbytes = 45,
183         .eccpos = {19, 20, 21, 22, 23,
184                    24, 25, 26, 27, 28, 29, 30, 31,
185                    32, 33, 34, 35, 36, 37, 38, 39,
186                    40, 41, 42, 43, 44, 45, 46, 47,
187                    48, 49, 50, 51, 52, 53, 54, 55,
188                    56, 57, 58, 59, 60, 61, 62, 63},
189         .oobfree = {
190                 {.offset = 8,
191                  .length = 11} }
192 };
193
194 static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
195 {
196         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
197
198         return readl(nfc->regs + reg);
199 }
200
201 static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
202 {
203         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
204
205         writel(val, nfc->regs + reg);
206 }
207
208 static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
209 {
210         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
211 }
212
213 static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
214 {
215         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
216 }
217
218 static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
219                                        u32 mask, u32 shift, u32 val)
220 {
221         vf610_nfc_write(mtd, reg,
222                         (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
223 }
224
225 static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
226 {
227         /*
228          * Use this accessor for the interal SRAM buffers. On ARM we can
229          * treat the SRAM buffer as if its memory, hence use memcpy
230          */
231         memcpy(dst, src, n);
232 }
233
234 /* Clear flags for upcoming command */
235 static inline void vf610_nfc_clear_status(void __iomem *regbase)
236 {
237         void __iomem *reg = regbase + NFC_IRQ_STATUS;
238         u32 tmp = __raw_readl(reg);
239         tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
240         __raw_writel(tmp, reg);
241 }
242
243 /* Wait for complete operation */
244 static inline void vf610_nfc_done(struct mtd_info *mtd)
245 {
246         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
247         uint start;
248
249         /*
250          * Barrier is needed after this write. This write need
251          * to be done before reading the next register the first
252          * time.
253          * vf610_nfc_set implicates such a barrier by using writel
254          * to write to the register.
255          */
256         vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
257
258         start = get_timer(0);
259
260         while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
261                 if (get_timer(start) > NFC_TIMEOUT) {
262                         printf("Timeout while waiting for !BUSY.\n");
263                         return;
264                 }
265         }
266         vf610_nfc_clear_status(nfc->regs);
267 }
268
269 static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
270 {
271         u32 flash_id;
272
273         if (col < 4) {
274                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
275                 return (flash_id >> (3-col)*8) & 0xff;
276         } else {
277                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
278                 return flash_id >> 24;
279         }
280 }
281
282 static u8 vf610_nfc_get_status(struct mtd_info *mtd)
283 {
284         return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
285 }
286
287 /* Single command */
288 static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
289                                    u32 cmd_code)
290 {
291         void __iomem *reg = regbase + NFC_FLASH_CMD2;
292         u32 tmp;
293         vf610_nfc_clear_status(regbase);
294
295         tmp = __raw_readl(reg);
296         tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
297         tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
298         tmp |= cmd_code << CMD_CODE_SHIFT;
299         __raw_writel(tmp, reg);
300 }
301
302 /* Two commands */
303 static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
304                               u32 cmd_byte2, u32 cmd_code)
305 {
306         void __iomem *reg = regbase + NFC_FLASH_CMD1;
307         u32 tmp;
308         vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
309
310         tmp = __raw_readl(reg);
311         tmp &= ~CMD_BYTE2_MASK;
312         tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
313         __raw_writel(tmp, reg);
314 }
315
316 static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
317 {
318         if (column != -1) {
319                 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
320                 if (nfc->chip.options & NAND_BUSWIDTH_16)
321                         column = column / 2;
322                 vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
323                                     COL_ADDR_SHIFT, column);
324         }
325         if (page != -1)
326                 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
327                                     ROW_ADDR_SHIFT, page);
328 }
329
330 static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
331 {
332         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
333                             CONFIG_ECC_MODE_MASK,
334                             CONFIG_ECC_MODE_SHIFT, ecc_mode);
335 }
336
337 static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
338 {
339         __raw_writel(size, regbase + NFC_SECTOR_SIZE);
340 }
341
342 /* Send command to NAND chip */
343 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
344                               int column, int page)
345 {
346         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
347         int page_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
348
349         nfc->column = max(column, 0);
350         nfc->alt_buf = 0;
351
352         switch (command) {
353         case NAND_CMD_SEQIN:
354                 /* Use valid column/page from preread... */
355                 vf610_nfc_addr_cycle(mtd, column, page);
356                 /*
357                  * SEQIN => data => PAGEPROG sequence is done by the controller
358                  * hence we do not need to issue the command here...
359                  */
360                 return;
361         case NAND_CMD_PAGEPROG:
362                 page_sz += mtd->writesize + mtd->oobsize;
363                 vf610_nfc_transfer_size(nfc->regs, page_sz);
364                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
365                                         command, PROGRAM_PAGE_CMD_CODE);
366                 vf610_nfc_ecc_mode(mtd, ECC_45_BYTE);
367                 break;
368
369         case NAND_CMD_RESET:
370                 vf610_nfc_transfer_size(nfc->regs, 0);
371                 vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
372                 break;
373
374         case NAND_CMD_READOOB:
375                 page_sz += mtd->oobsize;
376                 column = mtd->writesize;
377                 vf610_nfc_transfer_size(nfc->regs, page_sz);
378                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
379                                         NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
380                 vf610_nfc_addr_cycle(mtd, column, page);
381                 vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
382                 break;
383
384         case NAND_CMD_READ0:
385                 page_sz += mtd->writesize + mtd->oobsize;
386                 column = 0;
387                 vf610_nfc_transfer_size(nfc->regs, page_sz);
388                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
389                                         NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
390                 vf610_nfc_addr_cycle(mtd, column, page);
391                 vf610_nfc_ecc_mode(mtd, ECC_45_BYTE);
392                 break;
393
394         case NAND_CMD_ERASE1:
395                 vf610_nfc_transfer_size(nfc->regs, 0);
396                 vf610_nfc_send_commands(nfc->regs, command,
397                                         NAND_CMD_ERASE2, ERASE_CMD_CODE);
398                 vf610_nfc_addr_cycle(mtd, column, page);
399                 break;
400
401         case NAND_CMD_READID:
402                 nfc->alt_buf = ALT_BUF_ID;
403                 vf610_nfc_transfer_size(nfc->regs, 0);
404                 vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
405                 break;
406
407         case NAND_CMD_STATUS:
408                 nfc->alt_buf = ALT_BUF_STAT;
409                 vf610_nfc_transfer_size(nfc->regs, 0);
410                 vf610_nfc_send_command(nfc->regs, command,
411                                        STATUS_READ_CMD_CODE);
412                 break;
413         default:
414                 return;
415         }
416
417         vf610_nfc_done(mtd);
418 }
419
420 /* Read data from NFC buffers */
421 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
422 {
423         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
424         uint c = nfc->column;
425
426         switch (nfc->alt_buf) {
427         case ALT_BUF_ID:
428                 *buf = vf610_nfc_get_id(mtd, c);
429                 break;
430         case ALT_BUF_STAT:
431                 *buf = vf610_nfc_get_status(mtd);
432                 break;
433         default:
434                 vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
435                 break;
436         }
437
438         nfc->column += len;
439 }
440
441 /* Write data to NFC buffers */
442 static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
443                                 int len)
444 {
445         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
446         uint c = nfc->column;
447         uint l;
448
449         l = min((uint)len, mtd->writesize + mtd->oobsize - c);
450         nfc->column += l;
451         vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
452 }
453
454 /* Read byte from NFC buffers */
455 static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
456 {
457         u8 tmp;
458         vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
459         return tmp;
460 }
461
462 /* Read word from NFC buffers */
463 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
464 {
465         u16 tmp;
466         vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
467         return tmp;
468 }
469
470 /* If not provided, upper layers apply a fixed delay. */
471 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
472 {
473         /* NFC handles R/B internally; always ready.  */
474         return 1;
475 }
476
477 /*
478  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
479  */
480 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
481 {
482 #ifdef CONFIG_SOC_VF610
483         u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
484         tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
485         tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
486
487         if (chip == 0)
488                 tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
489         else if (chip == 1)
490                 tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
491
492         vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
493 #endif
494 }
495
496 /* Count the number of 0's in buff upto max_bits */
497 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
498 {
499         uint32_t *buff32 = (uint32_t *)buff;
500         int k, written_bits = 0;
501
502         for (k = 0; k < (size / 4); k++) {
503                 written_bits += hweight32(~buff32[k]);
504                 if (written_bits > max_bits)
505                         break;
506         }
507
508         return written_bits;
509 }
510
511 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
512 {
513         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
514         u8 ecc_status;
515         u8 ecc_count;
516         int flip;
517
518         ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
519         ecc_count = ecc_status & ECC_ERR_COUNT;
520         if (!(ecc_status & ECC_STATUS_MASK))
521                 return ecc_count;
522
523         /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
524         flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
525
526         /* ECC failed. */
527         if (flip > ecc_count && flip > (nfc->chip.ecc.strength / 2))
528                 return -1;
529
530         /* Erased page. */
531         memset(dat, 0xff, nfc->chip.ecc.size);
532         return 0;
533 }
534
535
536 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
537                                 uint8_t *buf, int oob_required, int page)
538 {
539         int eccsize = chip->ecc.size;
540         int stat;
541         uint8_t *p = buf;
542
543
544         vf610_nfc_read_buf(mtd, p, eccsize);
545
546         if (oob_required)
547                 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
548
549         stat = vf610_nfc_correct_data(mtd, p);
550
551         if (stat < 0)
552                 mtd->ecc_stats.failed++;
553         else
554                 mtd->ecc_stats.corrected += stat;
555
556         return 0;
557 }
558
559 /*
560  * ECC will be calculated automatically
561  */
562 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
563                                const uint8_t *buf, int oob_required)
564 {
565         vf610_nfc_write_buf(mtd, buf, mtd->writesize);
566         if (oob_required)
567                 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
568
569         return 0;
570 }
571
572 struct vf610_nfc_config {
573         int hardware_ecc;
574         int width;
575         int flash_bbt;
576 };
577
578 static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
579 {
580         struct mtd_info *mtd = &nand_info[devnum];
581         struct nand_chip *chip;
582         struct vf610_nfc *nfc;
583         int err = 0;
584         struct vf610_nfc_config cfg = {
585                 .hardware_ecc = 1,
586 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
587                 .width = 16,
588 #else
589                 .width = 8,
590 #endif
591                 .flash_bbt = 1,
592         };
593
594         nfc = malloc(sizeof(*nfc));
595         if (!nfc) {
596                 printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
597                 return -ENOMEM;
598         }
599
600         chip = &nfc->chip;
601         nfc->regs = addr;
602
603         mtd->priv = chip;
604         chip->priv = nfc;
605
606         if (cfg.width == 16) {
607                 chip->options |= NAND_BUSWIDTH_16;
608                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
609         } else {
610                 chip->options &= ~NAND_BUSWIDTH_16;
611                 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
612         }
613
614         /* Disable subpage writes as we do not provide ecc->hwctl */
615         chip->options |= NAND_NO_SUBPAGE_WRITE;
616
617         chip->dev_ready = vf610_nfc_dev_ready;
618         chip->cmdfunc = vf610_nfc_command;
619         chip->read_byte = vf610_nfc_read_byte;
620         chip->read_word = vf610_nfc_read_word;
621         chip->read_buf = vf610_nfc_read_buf;
622         chip->write_buf = vf610_nfc_write_buf;
623         chip->select_chip = vf610_nfc_select_chip;
624
625         /* Bad block options. */
626         if (cfg.flash_bbt)
627                 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
628
629         chip->bbt_td = &bbt_main_descr;
630         chip->bbt_md = &bbt_mirror_descr;
631
632         /* Set configuration register. */
633         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
634         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
635         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
636         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
637         vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
638
639         /* Enable Idle IRQ */
640         vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
641
642         /* PAGE_CNT = 1 */
643         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
644                             CONFIG_PAGE_CNT_SHIFT, 1);
645
646         /* Set ECC_STATUS offset */
647         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
648                             CONFIG_ECC_SRAM_ADDR_MASK,
649                             CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
650
651         /* first scan to find the device and get the page size */
652         if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
653                 err = -ENXIO;
654                 goto error;
655         }
656
657         chip->ecc.mode = NAND_ECC_SOFT; /* default */
658
659         /* Single buffer only, max 256 OOB minus ECC status */
660         if (mtd->writesize + mtd->oobsize > PAGE_2K + 256 - 8) {
661                 dev_err(nfc->dev, "Unsupported flash size\n");
662                 err = -ENXIO;
663                 goto error;
664         }
665
666         if (cfg.hardware_ecc) {
667                 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
668                         dev_err(nfc->dev, "Unsupported flash with hwecc\n");
669                         err = -ENXIO;
670                         goto error;
671                 }
672
673                 chip->ecc.layout = &vf610_nfc_ecc45;
674
675                 /* propagate ecc.layout to mtd_info */
676                 mtd->ecclayout = chip->ecc.layout;
677                 chip->ecc.read_page = vf610_nfc_read_page;
678                 chip->ecc.write_page = vf610_nfc_write_page;
679                 chip->ecc.mode = NAND_ECC_HW;
680
681                 chip->ecc.bytes = 45;
682                 chip->ecc.size = PAGE_2K;
683                 chip->ecc.strength = 24;
684
685                 /* Enable ECC_STATUS */
686                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
687         }
688
689         /* second phase scan */
690         err = nand_scan_tail(mtd);
691         if (err)
692                 return err;
693
694         err = nand_register(devnum);
695         if (err)
696                 return err;
697
698         return 0;
699
700 error:
701         return err;
702 }
703
704 void board_nand_init(void)
705 {
706         int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
707         if (err)
708                 printf("VF610 NAND init failed (err %d)\n", err);
709 }