]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/onenand/onenand_base.c
arm: mx5: Add fuse supply enable in fsl_iim
[karo-tx-uboot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34         void *ret = dst;
35         short *d = dst;
36         const short *s = src;
37
38         len >>= 1;
39         while (len-- > 0)
40                 *d++ = *s++;
41         return ret;
42 }
43
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49         .eccbytes       = 64,
50         .eccpos         = {
51                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57                 102, 103, 104, 105
58                 },
59         .oobfree        = {
60                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62         }
63 };
64
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69         .eccbytes       = 20,
70         .eccpos         = {
71                 8, 9, 10, 11, 12,
72                 24, 25, 26, 27, 28,
73                 40, 41, 42, 43, 44,
74                 56, 57, 58, 59, 60,
75                 },
76         .oobfree        = {
77                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79         }
80 };
81
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86         .eccbytes       = 10,
87         .eccpos         = {
88                 8, 9, 10, 11, 12,
89                 24, 25, 26, 27, 28,
90                 },
91         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr          address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121         return readw(addr);
122 }
123
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value         value to write
127  * @param addr          address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133         writew(value, addr);
134 }
135
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device        the device id
139  * @param block         the block
140  * @return              translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146         /* Device Flash Core select, NAND Flash Block Address */
147         if (block & this->density_mask)
148                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150         return block;
151 }
152
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device        the device id
156  * @param block         the block
157  * @return              set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163         /* Device BufferRAM Select */
164         if (block & this->density_mask)
165                 return ONENAND_DDP_CHIP1;
166
167         return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page          the page address
173  * @param sector        the sector address
174  * @return              combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180         /* Flash Page Address, Flash Sector Address */
181         int fpa, fsa;
182
183         fpa = page & ONENAND_FPA_MASK;
184         fsa = sector & ONENAND_FSA_MASK;
185
186         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1      DataRAM index
192  * @param sectors       the sector address
193  * @param count         the number of sectors
194  * @return              the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200         int bsa, bsc;
201
202         /* BufferRAM Sector Address */
203         bsa = sectors & ONENAND_BSA_MASK;
204
205         if (dataram1)
206                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
207         else
208                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
209
210         /* BufferRAM Sector Count */
211         bsc = count & ONENAND_BSC_MASK;
212
213         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this          - OneNAND device structure
219  * @param addr          - Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223         unsigned int boundary, blk, die = 0;
224
225         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226                 die = 1;
227                 addr -= this->diesize[0];
228         }
229
230         boundary = this->boundary[die];
231
232         blk = addr >> (this->erase_shift - 1);
233         if (blk > boundary)
234                 blk = (blk + boundary + 1) >> 1;
235
236         blk += die ? this->density_mask : 0;
237         return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242         if (!FLEXONENAND(this))
243                 return addr >> this->erase_shift;
244         return flexonenand_block(this, addr);
245 }
246
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:               OneNAND device structure
250  * @block:              Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256         loff_t ofs = 0;
257         int die = 0, boundary;
258
259         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260                 block -= this->density_mask;
261                 die = 1;
262                 ofs = this->diesize[0];
263         }
264
265         boundary = this->boundary[die];
266         ofs += (loff_t) block << (this->erase_shift - 1);
267         if (block > (boundary + 1))
268                 ofs += (loff_t) (block - boundary - 1)
269                         << (this->erase_shift - 1);
270         return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275         if (!FLEXONENAND(this))
276                 return (loff_t) block << this->erase_shift;
277         return flexonenand_addr(this, block);
278 }
279
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd           MTD device structure
283  * @param addr          address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287         int i;
288
289         for (i = 0; i < mtd->numeraseregions; i++)
290                 if (addr < mtd->eraseregions[i].offset)
291                         break;
292         return i - 1;
293 }
294
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304         return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd           MTD device structure
310  * @param cmd           the command to be sent
311  * @param addr          offset to read from or write to
312  * @param len           number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318                            size_t len)
319 {
320         struct onenand_chip *this = mtd->priv;
321         int value;
322         int block, page;
323
324         /* Now we use page size operation */
325         int sectors = 0, count = 0;
326
327         /* Address translation */
328         switch (cmd) {
329         case ONENAND_CMD_UNLOCK:
330         case ONENAND_CMD_LOCK:
331         case ONENAND_CMD_LOCK_TIGHT:
332         case ONENAND_CMD_UNLOCK_ALL:
333                 block = -1;
334                 page = -1;
335                 break;
336
337         case FLEXONENAND_CMD_PI_ACCESS:
338                 /* addr contains die index */
339                 block = addr * this->density_mask;
340                 page = -1;
341                 break;
342
343         case ONENAND_CMD_ERASE:
344         case ONENAND_CMD_BUFFERRAM:
345                 block = onenand_block(this, addr);
346                 page = -1;
347                 break;
348
349         case FLEXONENAND_CMD_READ_PI:
350                 cmd = ONENAND_CMD_READ;
351                 block = addr * this->density_mask;
352                 page = 0;
353                 break;
354
355         default:
356                 block = onenand_block(this, addr);
357                 page = (int) (addr
358                         - onenand_addr(this, block)) >> this->page_shift;
359                 page &= this->page_mask;
360                 break;
361         }
362
363         /* NOTE: The setting order of the registers is very important! */
364         if (cmd == ONENAND_CMD_BUFFERRAM) {
365                 /* Select DataRAM for DDP */
366                 value = onenand_bufferram_address(this, block);
367                 this->write_word(value,
368                                  this->base + ONENAND_REG_START_ADDRESS2);
369
370                 if (ONENAND_IS_4KB_PAGE(this))
371                         ONENAND_SET_BUFFERRAM0(this);
372                 else
373                         /* Switch to the next data buffer */
374                         ONENAND_SET_NEXT_BUFFERRAM(this);
375
376                 return 0;
377         }
378
379         if (block != -1) {
380                 /* Write 'DFS, FBA' of Flash */
381                 value = onenand_block_address(this, block);
382                 this->write_word(value,
383                                  this->base + ONENAND_REG_START_ADDRESS1);
384
385                 /* Select DataRAM for DDP */
386                 value = onenand_bufferram_address(this, block);
387                 this->write_word(value,
388                                  this->base + ONENAND_REG_START_ADDRESS2);
389         }
390
391         if (page != -1) {
392                 int dataram;
393
394                 switch (cmd) {
395                 case FLEXONENAND_CMD_RECOVER_LSB:
396                 case ONENAND_CMD_READ:
397                 case ONENAND_CMD_READOOB:
398                         if (ONENAND_IS_4KB_PAGE(this))
399                                 dataram = ONENAND_SET_BUFFERRAM0(this);
400                         else
401                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403                         break;
404
405                 default:
406                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
407                         break;
408                 }
409
410                 /* Write 'FPA, FSA' of Flash */
411                 value = onenand_page_address(page, sectors);
412                 this->write_word(value,
413                                  this->base + ONENAND_REG_START_ADDRESS8);
414
415                 /* Write 'BSA, BSC' of DataRAM */
416                 value = onenand_buffer_address(dataram, sectors, count);
417                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418         }
419
420         /* Interrupt clear */
421         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422         /* Write command */
423         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425         return 0;
426 }
427
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this          onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434         int ecc, i;
435
436         if (!FLEXONENAND(this))
437                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439         for (i = 0; i < 4; i++) {
440                 ecc = this->read_word(this->base
441                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442                 if (likely(!ecc))
443                         continue;
444                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445                         return ONENAND_ECC_2BIT_ALL;
446         }
447
448         return 0;
449 }
450
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd           MTD device structure
454  * @param state         state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462         struct onenand_chip *this = mtd->priv;
463         unsigned int flags = ONENAND_INT_MASTER;
464         unsigned int interrupt = 0;
465         unsigned int ctrl;
466
467         while (1) {
468                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469                 if (interrupt & flags)
470                         break;
471         }
472
473         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475         if (interrupt & ONENAND_INT_READ) {
476                 int ecc = onenand_read_ecc(this);
477                 if (ecc & ONENAND_ECC_2BIT_ALL) {
478                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479                         return -EBADMSG;
480                 }
481         }
482
483         if (ctrl & ONENAND_CTRL_ERROR) {
484                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485                 if (ctrl & ONENAND_CTRL_LOCK)
486                         printk("onenand_wait: it's locked error = 0x%04x\n",
487                                 ctrl);
488
489                 return -EIO;
490         }
491
492
493         return 0;
494 }
495
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd           MTD data structure
499  * @param area          BufferRAM area
500  * @return              offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506         struct onenand_chip *this = mtd->priv;
507
508         if (ONENAND_CURRENT_BUFFERRAM(this)) {
509                 if (area == ONENAND_DATARAM)
510                         return mtd->writesize;
511                 if (area == ONENAND_SPARERAM)
512                         return mtd->oobsize;
513         }
514
515         return 0;
516 }
517
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd           MTD data structure
521  * @param area          BufferRAM area
522  * @param buffer        the databuffer to put/get data
523  * @param offset        offset to read from or write to
524  * @param count         number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529                                   unsigned char *buffer, int offset,
530                                   size_t count)
531 {
532         struct onenand_chip *this = mtd->priv;
533         void __iomem *bufferram;
534
535         bufferram = this->base + area;
536         bufferram += onenand_bufferram_offset(mtd, area);
537
538         memcpy_16(buffer, bufferram + offset, count);
539
540         return 0;
541 }
542
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd           MTD data structure
546  * @param area          BufferRAM area
547  * @param buffer        the databuffer to put/get data
548  * @param offset        offset to read from or write to
549  * @param count         number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554                                        unsigned char *buffer, int offset,
555                                        size_t count)
556 {
557         struct onenand_chip *this = mtd->priv;
558         void __iomem *bufferram;
559
560         bufferram = this->base + area;
561         bufferram += onenand_bufferram_offset(mtd, area);
562
563         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565         memcpy_16(buffer, bufferram + offset, count);
566
567         this->mmcontrol(mtd, 0);
568
569         return 0;
570 }
571
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd           MTD data structure
575  * @param area          BufferRAM area
576  * @param buffer        the databuffer to put/get data
577  * @param offset        offset to read from or write to
578  * @param count         number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583                                    const unsigned char *buffer, int offset,
584                                    size_t count)
585 {
586         struct onenand_chip *this = mtd->priv;
587         void __iomem *bufferram;
588
589         bufferram = this->base + area;
590         bufferram += onenand_bufferram_offset(mtd, area);
591
592         memcpy_16(bufferram + offset, buffer, count);
593
594         return 0;
595 }
596
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd           MTD data structure
600  * @param addr          address to check
601  * @return              blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607         struct onenand_chip *this = mtd->priv;
608         int blockpage, block, page;
609
610         /* Calculate the even block number */
611         block = (int) (addr >> this->erase_shift) & ~1;
612         /* Is it the odd plane? */
613         if (addr & this->writesize)
614                 block++;
615         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616         blockpage = (block << 7) | page;
617
618         return blockpage;
619 }
620
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd           MTD data structure
624  * @param addr          address to check
625  * @return              1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631         struct onenand_chip *this = mtd->priv;
632         int blockpage, found = 0;
633         unsigned int i;
634
635         if (ONENAND_IS_2PLANE(this))
636                 blockpage = onenand_get_2x_blockpage(mtd, addr);
637         else
638                 blockpage = (int) (addr >> this->page_shift);
639
640         /* Is there valid data? */
641         i = ONENAND_CURRENT_BUFFERRAM(this);
642         if (this->bufferram[i].blockpage == blockpage)
643                 found = 1;
644         else {
645                 /* Check another BufferRAM */
646                 i = ONENAND_NEXT_BUFFERRAM(this);
647                 if (this->bufferram[i].blockpage == blockpage) {
648                         ONENAND_SET_NEXT_BUFFERRAM(this);
649                         found = 1;
650                 }
651         }
652
653         if (found && ONENAND_IS_DDP(this)) {
654                 /* Select DataRAM for DDP */
655                 int block = onenand_block(this, addr);
656                 int value = onenand_bufferram_address(this, block);
657                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658         }
659
660         return found;
661 }
662
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd           MTD data structure
666  * @param addr          address to update
667  * @param valid         valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672                                     int valid)
673 {
674         struct onenand_chip *this = mtd->priv;
675         int blockpage;
676         unsigned int i;
677
678         if (ONENAND_IS_2PLANE(this))
679                 blockpage = onenand_get_2x_blockpage(mtd, addr);
680         else
681                 blockpage = (int)(addr >> this->page_shift);
682
683         /* Invalidate another BufferRAM */
684         i = ONENAND_NEXT_BUFFERRAM(this);
685         if (this->bufferram[i].blockpage == blockpage)
686                 this->bufferram[i].blockpage = -1;
687
688         /* Update BufferRAM */
689         i = ONENAND_CURRENT_BUFFERRAM(this);
690         if (valid)
691                 this->bufferram[i].blockpage = blockpage;
692         else
693                 this->bufferram[i].blockpage = -1;
694
695         return 0;
696 }
697
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707                                          unsigned int len)
708 {
709         struct onenand_chip *this = mtd->priv;
710         int i;
711         loff_t end_addr = addr + len;
712
713         /* Invalidate BufferRAM */
714         for (i = 0; i < MAX_BUFFERRAM; i++) {
715                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716
717                 if (buf_addr >= addr && buf_addr < end_addr)
718                         this->bufferram[i].blockpage = -1;
719         }
720 }
721
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd           MTD device structure
725  * @param new_state     the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731         /* Do nothing */
732 }
733
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd           MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742         /* Do nothing */
743 }
744
745 /**
746  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747  * @param mtd           MTD device structure
748  * @param buf           destination address
749  * @param column        oob offset to read from
750  * @param thislen       oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753                                         int column, int thislen)
754 {
755         struct onenand_chip *this = mtd->priv;
756         struct nand_oobfree *free;
757         int readcol = column;
758         int readend = column + thislen;
759         int lastgap = 0;
760         unsigned int i;
761         uint8_t *oob_buf = this->oob_buf;
762
763         free = this->ecclayout->oobfree;
764         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765                 if (readcol >= lastgap)
766                         readcol += free->offset - lastgap;
767                 if (readend >= lastgap)
768                         readend += free->offset - lastgap;
769                 lastgap = free->offset + free->length;
770         }
771         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772         free = this->ecclayout->oobfree;
773         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774                 int free_end = free->offset + free->length;
775                 if (free->offset < readend && free_end > readcol) {
776                         int st = max_t(int,free->offset,readcol);
777                         int ed = min_t(int,free_end,readend);
778                         int n = ed - st;
779                         memcpy(buf, oob_buf + st, n);
780                         buf += n;
781                 } else if (column == 0)
782                         break;
783         }
784         return 0;
785 }
786
787 /**
788  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789  * @param mtd           MTD device structure
790  * @param addr          address to recover
791  * @param status        return value from onenand_wait
792  *
793  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794  * lower page address and MSB page has higher page address in paired pages.
795  * If power off occurs during MSB page program, the paired LSB page data can
796  * become corrupt. LSB page recovery read is a way to read LSB page though page
797  * data are corrupted. When uncorrectable error occurs as a result of LSB page
798  * read after power up, issue LSB page recovery read.
799  */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802         struct onenand_chip *this = mtd->priv;
803         int i;
804
805         /* Recovery is only for Flex-OneNAND */
806         if (!FLEXONENAND(this))
807                 return status;
808
809         /* check if we failed due to uncorrectable error */
810         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
811                 return status;
812
813         /* check if address lies in MLC region */
814         i = flexonenand_region(mtd, addr);
815         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816                 return status;
817
818         printk("onenand_recover_lsb:"
819                 "Attempting to recover from uncorrectable read\n");
820
821         /* Issue the LSB page recovery command */
822         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823         return this->wait(mtd, FL_READING);
824 }
825
826 /**
827  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828  * @param mtd           MTD device structure
829  * @param from          offset to read from
830  * @param ops           oob operation description structure
831  *
832  * OneNAND read main and/or out-of-band data
833  */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835                 struct mtd_oob_ops *ops)
836 {
837         struct onenand_chip *this = mtd->priv;
838         struct mtd_ecc_stats stats;
839         size_t len = ops->len;
840         size_t ooblen = ops->ooblen;
841         u_char *buf = ops->datbuf;
842         u_char *oobbuf = ops->oobbuf;
843         int read = 0, column, thislen;
844         int oobread = 0, oobcolumn, thisooblen, oobsize;
845         int ret = 0, boundary = 0;
846         int writesize = this->writesize;
847
848         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849
850         if (ops->mode == MTD_OPS_AUTO_OOB)
851                 oobsize = this->ecclayout->oobavail;
852         else
853                 oobsize = mtd->oobsize;
854
855         oobcolumn = from & (mtd->oobsize - 1);
856
857         /* Do not allow reads past end of device */
858         if ((from + len) > mtd->size) {
859                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860                 ops->retlen = 0;
861                 ops->oobretlen = 0;
862                 return -EINVAL;
863         }
864
865         stats = mtd->ecc_stats;
866
867         /* Read-while-load method */
868         /* Note: We can't use this feature in MLC */
869
870         /* Do first load to bufferRAM */
871         if (read < len) {
872                 if (!onenand_check_bufferram(mtd, from)) {
873                         this->main_buf = buf;
874                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
875                         ret = this->wait(mtd, FL_READING);
876                         if (unlikely(ret))
877                                 ret = onenand_recover_lsb(mtd, from, ret);
878                         onenand_update_bufferram(mtd, from, !ret);
879                         if (ret == -EBADMSG)
880                                 ret = 0;
881                 }
882         }
883
884         thislen = min_t(int, writesize, len - read);
885         column = from & (writesize - 1);
886         if (column + thislen > writesize)
887                 thislen = writesize - column;
888
889         while (!ret) {
890                 /* If there is more to load then start next load */
891                 from += thislen;
892                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893                         this->main_buf = buf + thislen;
894                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
895                         /*
896                          * Chip boundary handling in DDP
897                          * Now we issued chip 1 read and pointed chip 1
898                          * bufferam so we have to point chip 0 bufferam.
899                          */
900                         if (ONENAND_IS_DDP(this) &&
901                                         unlikely(from == (this->chipsize >> 1))) {
902                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903                                 boundary = 1;
904                         } else
905                                 boundary = 0;
906                         ONENAND_SET_PREV_BUFFERRAM(this);
907                 }
908
909                 /* While load is going, read from last bufferRAM */
910                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911
912                 /* Read oob area if needed */
913                 if (oobbuf) {
914                         thisooblen = oobsize - oobcolumn;
915                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
916
917                         if (ops->mode == MTD_OPS_AUTO_OOB)
918                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919                         else
920                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921                         oobread += thisooblen;
922                         oobbuf += thisooblen;
923                         oobcolumn = 0;
924                 }
925
926                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
928                         ret = this->wait(mtd, FL_READING);
929                         if (unlikely(ret))
930                                 ret = onenand_recover_lsb(mtd, from, ret);
931                         onenand_update_bufferram(mtd, from, !ret);
932                         if (mtd_is_eccerr(ret))
933                                 ret = 0;
934                 }
935
936                 /* See if we are done */
937                 read += thislen;
938                 if (read == len)
939                         break;
940                 /* Set up for next read from bufferRAM */
941                 if (unlikely(boundary))
942                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943                 if (!ONENAND_IS_4KB_PAGE(this))
944                         ONENAND_SET_NEXT_BUFFERRAM(this);
945                 buf += thislen;
946                 thislen = min_t(int, writesize, len - read);
947                 column = 0;
948
949                 if (!ONENAND_IS_4KB_PAGE(this)) {
950                         /* Now wait for load */
951                         ret = this->wait(mtd, FL_READING);
952                         onenand_update_bufferram(mtd, from, !ret);
953                         if (mtd_is_eccerr(ret))
954                                 ret = 0;
955                 }
956         }
957
958         /*
959          * Return success, if no ECC failures, else -EBADMSG
960          * fs driver will take care of that, because
961          * retlen == desired len and result == -EBADMSG
962          */
963         ops->retlen = read;
964         ops->oobretlen = oobread;
965
966         if (ret)
967                 return ret;
968
969         if (mtd->ecc_stats.failed - stats.failed)
970                 return -EBADMSG;
971
972         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
973         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
974 }
975
976 /**
977  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
978  * @param mtd           MTD device structure
979  * @param from          offset to read from
980  * @param ops           oob operation description structure
981  *
982  * OneNAND read out-of-band data from the spare area
983  */
984 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
985                 struct mtd_oob_ops *ops)
986 {
987         struct onenand_chip *this = mtd->priv;
988         struct mtd_ecc_stats stats;
989         int read = 0, thislen, column, oobsize;
990         size_t len = ops->ooblen;
991         unsigned int mode = ops->mode;
992         u_char *buf = ops->oobbuf;
993         int ret = 0, readcmd;
994
995         from += ops->ooboffs;
996
997         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
998
999         /* Initialize return length value */
1000         ops->oobretlen = 0;
1001
1002         if (mode == MTD_OPS_AUTO_OOB)
1003                 oobsize = this->ecclayout->oobavail;
1004         else
1005                 oobsize = mtd->oobsize;
1006
1007         column = from & (mtd->oobsize - 1);
1008
1009         if (unlikely(column >= oobsize)) {
1010                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1011                 return -EINVAL;
1012         }
1013
1014         /* Do not allow reads past end of device */
1015         if (unlikely(from >= mtd->size ||
1016                 column + len > ((mtd->size >> this->page_shift) -
1017                                 (from >> this->page_shift)) * oobsize)) {
1018                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1019                 return -EINVAL;
1020         }
1021
1022         stats = mtd->ecc_stats;
1023
1024         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1025                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1026
1027         while (read < len) {
1028                 thislen = oobsize - column;
1029                 thislen = min_t(int, thislen, len);
1030
1031                 this->spare_buf = buf;
1032                 this->command(mtd, readcmd, from, mtd->oobsize);
1033
1034                 onenand_update_bufferram(mtd, from, 0);
1035
1036                 ret = this->wait(mtd, FL_READING);
1037                 if (unlikely(ret))
1038                         ret = onenand_recover_lsb(mtd, from, ret);
1039
1040                 if (ret && ret != -EBADMSG) {
1041                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1042                         break;
1043                 }
1044
1045                 if (mode == MTD_OPS_AUTO_OOB)
1046                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1047                 else
1048                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1049
1050                 read += thislen;
1051
1052                 if (read == len)
1053                         break;
1054
1055                 buf += thislen;
1056
1057                 /* Read more? */
1058                 if (read < len) {
1059                         /* Page size */
1060                         from += mtd->writesize;
1061                         column = 0;
1062                 }
1063         }
1064
1065         ops->oobretlen = read;
1066
1067         if (ret)
1068                 return ret;
1069
1070         if (mtd->ecc_stats.failed - stats.failed)
1071                 return -EBADMSG;
1072
1073         return 0;
1074 }
1075
1076 /**
1077  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1078  * @param mtd           MTD device structure
1079  * @param from          offset to read from
1080  * @param len           number of bytes to read
1081  * @param retlen        pointer to variable to store the number of read bytes
1082  * @param buf           the databuffer to put data
1083  *
1084  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1085 */
1086 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1087                  size_t * retlen, u_char * buf)
1088 {
1089         struct mtd_oob_ops ops = {
1090                 .len    = len,
1091                 .ooblen = 0,
1092                 .datbuf = buf,
1093                 .oobbuf = NULL,
1094         };
1095         int ret;
1096
1097         onenand_get_device(mtd, FL_READING);
1098         ret = onenand_read_ops_nolock(mtd, from, &ops);
1099         onenand_release_device(mtd);
1100
1101         *retlen = ops.retlen;
1102         return ret;
1103 }
1104
1105 /**
1106  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1107  * @param mtd           MTD device structure
1108  * @param from          offset to read from
1109  * @param ops           oob operations description structure
1110  *
1111  * OneNAND main and/or out-of-band
1112  */
1113 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1114                         struct mtd_oob_ops *ops)
1115 {
1116         int ret;
1117
1118         switch (ops->mode) {
1119         case MTD_OPS_PLACE_OOB:
1120         case MTD_OPS_AUTO_OOB:
1121                 break;
1122         case MTD_OPS_RAW:
1123                 /* Not implemented yet */
1124         default:
1125                 return -EINVAL;
1126         }
1127
1128         onenand_get_device(mtd, FL_READING);
1129         if (ops->datbuf)
1130                 ret = onenand_read_ops_nolock(mtd, from, ops);
1131         else
1132                 ret = onenand_read_oob_nolock(mtd, from, ops);
1133         onenand_release_device(mtd);
1134
1135         return ret;
1136 }
1137
1138 /**
1139  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1140  * @param mtd           MTD device structure
1141  * @param state         state to select the max. timeout value
1142  *
1143  * Wait for command done.
1144  */
1145 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1146 {
1147         struct onenand_chip *this = mtd->priv;
1148         unsigned int flags = ONENAND_INT_MASTER;
1149         unsigned int interrupt;
1150         unsigned int ctrl;
1151
1152         while (1) {
1153                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1154                 if (interrupt & flags)
1155                         break;
1156         }
1157
1158         /* To get correct interrupt status in timeout case */
1159         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1160         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1161
1162         if (interrupt & ONENAND_INT_READ) {
1163                 int ecc = onenand_read_ecc(this);
1164                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1165                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1166                                 ", controller = 0x%04x\n", ecc, ctrl);
1167                         return ONENAND_BBT_READ_ERROR;
1168                 }
1169         } else {
1170                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1171                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1172                 return ONENAND_BBT_READ_FATAL_ERROR;
1173         }
1174
1175         /* Initial bad block case: 0x2400 or 0x0400 */
1176         if (ctrl & ONENAND_CTRL_ERROR) {
1177                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1178                 return ONENAND_BBT_READ_ERROR;
1179         }
1180
1181         return 0;
1182 }
1183
1184 /**
1185  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1186  * @param mtd           MTD device structure
1187  * @param from          offset to read from
1188  * @param ops           oob operation description structure
1189  *
1190  * OneNAND read out-of-band data from the spare area for bbt scan
1191  */
1192 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1193                 struct mtd_oob_ops *ops)
1194 {
1195         struct onenand_chip *this = mtd->priv;
1196         int read = 0, thislen, column;
1197         int ret = 0, readcmd;
1198         size_t len = ops->ooblen;
1199         u_char *buf = ops->oobbuf;
1200
1201         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1202
1203         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1204                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1205
1206         /* Initialize return value */
1207         ops->oobretlen = 0;
1208
1209         /* Do not allow reads past end of device */
1210         if (unlikely((from + len) > mtd->size)) {
1211                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1212                 return ONENAND_BBT_READ_FATAL_ERROR;
1213         }
1214
1215         /* Grab the lock and see if the device is available */
1216         onenand_get_device(mtd, FL_READING);
1217
1218         column = from & (mtd->oobsize - 1);
1219
1220         while (read < len) {
1221
1222                 thislen = mtd->oobsize - column;
1223                 thislen = min_t(int, thislen, len);
1224
1225                 this->spare_buf = buf;
1226                 this->command(mtd, readcmd, from, mtd->oobsize);
1227
1228                 onenand_update_bufferram(mtd, from, 0);
1229
1230                 ret = this->bbt_wait(mtd, FL_READING);
1231                 if (unlikely(ret))
1232                         ret = onenand_recover_lsb(mtd, from, ret);
1233
1234                 if (ret)
1235                         break;
1236
1237                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1238                 read += thislen;
1239                 if (read == len)
1240                         break;
1241
1242                 buf += thislen;
1243
1244                 /* Read more? */
1245                 if (read < len) {
1246                         /* Update Page size */
1247                         from += this->writesize;
1248                         column = 0;
1249                 }
1250         }
1251
1252         /* Deselect and wake up anyone waiting on the device */
1253         onenand_release_device(mtd);
1254
1255         ops->oobretlen = read;
1256         return ret;
1257 }
1258
1259
1260 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1261 /**
1262  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1263  * @param mtd           MTD device structure
1264  * @param buf           the databuffer to verify
1265  * @param to            offset to read from
1266  */
1267 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1268 {
1269         struct onenand_chip *this = mtd->priv;
1270         u_char *oob_buf = this->oob_buf;
1271         int status, i, readcmd;
1272
1273         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1274                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1275
1276         this->command(mtd, readcmd, to, mtd->oobsize);
1277         onenand_update_bufferram(mtd, to, 0);
1278         status = this->wait(mtd, FL_READING);
1279         if (status)
1280                 return status;
1281
1282         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1283         for (i = 0; i < mtd->oobsize; i++)
1284                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1285                         return -EBADMSG;
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * onenand_verify - [GENERIC] verify the chip contents after a write
1292  * @param mtd          MTD device structure
1293  * @param buf          the databuffer to verify
1294  * @param addr         offset to read from
1295  * @param len          number of bytes to read and compare
1296  */
1297 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1298 {
1299         struct onenand_chip *this = mtd->priv;
1300         void __iomem *dataram;
1301         int ret = 0;
1302         int thislen, column;
1303
1304         while (len != 0) {
1305                 thislen = min_t(int, this->writesize, len);
1306                 column = addr & (this->writesize - 1);
1307                 if (column + thislen > this->writesize)
1308                         thislen = this->writesize - column;
1309
1310                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1311
1312                 onenand_update_bufferram(mtd, addr, 0);
1313
1314                 ret = this->wait(mtd, FL_READING);
1315                 if (ret)
1316                         return ret;
1317
1318                 onenand_update_bufferram(mtd, addr, 1);
1319
1320                 dataram = this->base + ONENAND_DATARAM;
1321                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1322
1323                 if (memcmp(buf, dataram + column, thislen))
1324                         return -EBADMSG;
1325
1326                 len -= thislen;
1327                 buf += thislen;
1328                 addr += thislen;
1329         }
1330
1331         return 0;
1332 }
1333 #else
1334 #define onenand_verify(...)             (0)
1335 #define onenand_verify_oob(...)         (0)
1336 #endif
1337
1338 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1339
1340 /**
1341  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1342  * @param mtd           MTD device structure
1343  * @param oob_buf       oob buffer
1344  * @param buf           source address
1345  * @param column        oob offset to write to
1346  * @param thislen       oob length to write
1347  */
1348 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1349                 const u_char *buf, int column, int thislen)
1350 {
1351         struct onenand_chip *this = mtd->priv;
1352         struct nand_oobfree *free;
1353         int writecol = column;
1354         int writeend = column + thislen;
1355         int lastgap = 0;
1356         unsigned int i;
1357
1358         free = this->ecclayout->oobfree;
1359         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1360                 if (writecol >= lastgap)
1361                         writecol += free->offset - lastgap;
1362                 if (writeend >= lastgap)
1363                         writeend += free->offset - lastgap;
1364                 lastgap = free->offset + free->length;
1365         }
1366         free = this->ecclayout->oobfree;
1367         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1368                 int free_end = free->offset + free->length;
1369                 if (free->offset < writeend && free_end > writecol) {
1370                         int st = max_t(int,free->offset,writecol);
1371                         int ed = min_t(int,free_end,writeend);
1372                         int n = ed - st;
1373                         memcpy(oob_buf + st, buf, n);
1374                         buf += n;
1375                 } else if (column == 0)
1376                         break;
1377         }
1378         return 0;
1379 }
1380
1381 /**
1382  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1383  * @param mtd           MTD device structure
1384  * @param to            offset to write to
1385  * @param ops           oob operation description structure
1386  *
1387  * Write main and/or oob with ECC
1388  */
1389 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1390                 struct mtd_oob_ops *ops)
1391 {
1392         struct onenand_chip *this = mtd->priv;
1393         int written = 0, column, thislen, subpage;
1394         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1395         size_t len = ops->len;
1396         size_t ooblen = ops->ooblen;
1397         const u_char *buf = ops->datbuf;
1398         const u_char *oob = ops->oobbuf;
1399         u_char *oobbuf;
1400         int ret = 0;
1401
1402         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1403
1404         /* Initialize retlen, in case of early exit */
1405         ops->retlen = 0;
1406         ops->oobretlen = 0;
1407
1408         /* Reject writes, which are not page aligned */
1409         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1410                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1411                 return -EINVAL;
1412         }
1413
1414         if (ops->mode == MTD_OPS_AUTO_OOB)
1415                 oobsize = this->ecclayout->oobavail;
1416         else
1417                 oobsize = mtd->oobsize;
1418
1419         oobcolumn = to & (mtd->oobsize - 1);
1420
1421         column = to & (mtd->writesize - 1);
1422
1423         /* Loop until all data write */
1424         while (written < len) {
1425                 u_char *wbuf = (u_char *) buf;
1426
1427                 thislen = min_t(int, mtd->writesize - column, len - written);
1428                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1429
1430                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1431
1432                 /* Partial page write */
1433                 subpage = thislen < mtd->writesize;
1434                 if (subpage) {
1435                         memset(this->page_buf, 0xff, mtd->writesize);
1436                         memcpy(this->page_buf + column, buf, thislen);
1437                         wbuf = this->page_buf;
1438                 }
1439
1440                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1441
1442                 if (oob) {
1443                         oobbuf = this->oob_buf;
1444
1445                         /* We send data to spare ram with oobsize
1446                          *                          * to prevent byte access */
1447                         memset(oobbuf, 0xff, mtd->oobsize);
1448                         if (ops->mode == MTD_OPS_AUTO_OOB)
1449                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1450                         else
1451                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1452
1453                         oobwritten += thisooblen;
1454                         oob += thisooblen;
1455                         oobcolumn = 0;
1456                 } else
1457                         oobbuf = (u_char *) ffchars;
1458
1459                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1460
1461                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1462
1463                 ret = this->wait(mtd, FL_WRITING);
1464
1465                 /* In partial page write we don't update bufferram */
1466                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1467                 if (ONENAND_IS_2PLANE(this)) {
1468                         ONENAND_SET_BUFFERRAM1(this);
1469                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1470                 }
1471
1472                 if (ret) {
1473                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1474                         break;
1475                 }
1476
1477                 /* Only check verify write turn on */
1478                 ret = onenand_verify(mtd, buf, to, thislen);
1479                 if (ret) {
1480                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1481                         break;
1482                 }
1483
1484                 written += thislen;
1485
1486                 if (written == len)
1487                         break;
1488
1489                 column = 0;
1490                 to += thislen;
1491                 buf += thislen;
1492         }
1493
1494         ops->retlen = written;
1495
1496         return ret;
1497 }
1498
1499 /**
1500  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1501  * @param mtd           MTD device structure
1502  * @param to            offset to write to
1503  * @param len           number of bytes to write
1504  * @param retlen        pointer to variable to store the number of written bytes
1505  * @param buf           the data to write
1506  * @param mode          operation mode
1507  *
1508  * OneNAND write out-of-band
1509  */
1510 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1511                 struct mtd_oob_ops *ops)
1512 {
1513         struct onenand_chip *this = mtd->priv;
1514         int column, ret = 0, oobsize;
1515         int written = 0, oobcmd;
1516         u_char *oobbuf;
1517         size_t len = ops->ooblen;
1518         const u_char *buf = ops->oobbuf;
1519         unsigned int mode = ops->mode;
1520
1521         to += ops->ooboffs;
1522
1523         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1524
1525         /* Initialize retlen, in case of early exit */
1526         ops->oobretlen = 0;
1527
1528         if (mode == MTD_OPS_AUTO_OOB)
1529                 oobsize = this->ecclayout->oobavail;
1530         else
1531                 oobsize = mtd->oobsize;
1532
1533         column = to & (mtd->oobsize - 1);
1534
1535         if (unlikely(column >= oobsize)) {
1536                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1537                 return -EINVAL;
1538         }
1539
1540         /* For compatibility with NAND: Do not allow write past end of page */
1541         if (unlikely(column + len > oobsize)) {
1542                 printk(KERN_ERR "onenand_write_oob_nolock: "
1543                                 "Attempt to write past end of page\n");
1544                 return -EINVAL;
1545         }
1546
1547         /* Do not allow reads past end of device */
1548         if (unlikely(to >= mtd->size ||
1549                                 column + len > ((mtd->size >> this->page_shift) -
1550                                         (to >> this->page_shift)) * oobsize)) {
1551                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1552                 return -EINVAL;
1553         }
1554
1555         oobbuf = this->oob_buf;
1556
1557         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1558                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1559
1560         /* Loop until all data write */
1561         while (written < len) {
1562                 int thislen = min_t(int, oobsize, len - written);
1563
1564                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1565
1566                 /* We send data to spare ram with oobsize
1567                  * to prevent byte access */
1568                 memset(oobbuf, 0xff, mtd->oobsize);
1569                 if (mode == MTD_OPS_AUTO_OOB)
1570                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1571                 else
1572                         memcpy(oobbuf + column, buf, thislen);
1573                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1574
1575                 if (ONENAND_IS_4KB_PAGE(this)) {
1576                         /* Set main area of DataRAM to 0xff*/
1577                         memset(this->page_buf, 0xff, mtd->writesize);
1578                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1579                                 this->page_buf, 0, mtd->writesize);
1580                 }
1581
1582                 this->command(mtd, oobcmd, to, mtd->oobsize);
1583
1584                 onenand_update_bufferram(mtd, to, 0);
1585                 if (ONENAND_IS_2PLANE(this)) {
1586                         ONENAND_SET_BUFFERRAM1(this);
1587                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1588                 }
1589
1590                 ret = this->wait(mtd, FL_WRITING);
1591                 if (ret) {
1592                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1593                         break;
1594                 }
1595
1596                 ret = onenand_verify_oob(mtd, oobbuf, to);
1597                 if (ret) {
1598                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1599                         break;
1600                 }
1601
1602                 written += thislen;
1603                 if (written == len)
1604                         break;
1605
1606                 to += mtd->writesize;
1607                 buf += thislen;
1608                 column = 0;
1609         }
1610
1611         ops->oobretlen = written;
1612
1613         return ret;
1614 }
1615
1616 /**
1617  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1618  * @param mtd           MTD device structure
1619  * @param to            offset to write to
1620  * @param len           number of bytes to write
1621  * @param retlen        pointer to variable to store the number of written bytes
1622  * @param buf           the data to write
1623  *
1624  * Write with ECC
1625  */
1626 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1627                   size_t * retlen, const u_char * buf)
1628 {
1629         struct mtd_oob_ops ops = {
1630                 .len    = len,
1631                 .ooblen = 0,
1632                 .datbuf = (u_char *) buf,
1633                 .oobbuf = NULL,
1634         };
1635         int ret;
1636
1637         onenand_get_device(mtd, FL_WRITING);
1638         ret = onenand_write_ops_nolock(mtd, to, &ops);
1639         onenand_release_device(mtd);
1640
1641         *retlen = ops.retlen;
1642         return ret;
1643 }
1644
1645 /**
1646  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1647  * @param mtd           MTD device structure
1648  * @param to            offset to write to
1649  * @param ops           oob operation description structure
1650  *
1651  * OneNAND write main and/or out-of-band
1652  */
1653 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1654                         struct mtd_oob_ops *ops)
1655 {
1656         int ret;
1657
1658         switch (ops->mode) {
1659         case MTD_OPS_PLACE_OOB:
1660         case MTD_OPS_AUTO_OOB:
1661                 break;
1662         case MTD_OPS_RAW:
1663                 /* Not implemented yet */
1664         default:
1665                 return -EINVAL;
1666         }
1667
1668         onenand_get_device(mtd, FL_WRITING);
1669         if (ops->datbuf)
1670                 ret = onenand_write_ops_nolock(mtd, to, ops);
1671         else
1672                 ret = onenand_write_oob_nolock(mtd, to, ops);
1673         onenand_release_device(mtd);
1674
1675         return ret;
1676
1677 }
1678
1679 /**
1680  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1681  * @param mtd           MTD device structure
1682  * @param ofs           offset from device start
1683  * @param allowbbt      1, if its allowed to access the bbt area
1684  *
1685  * Check, if the block is bad, Either by reading the bad block table or
1686  * calling of the scan function.
1687  */
1688 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1689 {
1690         struct onenand_chip *this = mtd->priv;
1691         struct bbm_info *bbm = this->bbm;
1692
1693         /* Return info from the table */
1694         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1695 }
1696
1697
1698 /**
1699  * onenand_erase - [MTD Interface] erase block(s)
1700  * @param mtd           MTD device structure
1701  * @param instr         erase instruction
1702  *
1703  * Erase one ore more blocks
1704  */
1705 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1706 {
1707         struct onenand_chip *this = mtd->priv;
1708         unsigned int block_size;
1709         loff_t addr = instr->addr;
1710         unsigned int len = instr->len;
1711         int ret = 0, i;
1712         struct mtd_erase_region_info *region = NULL;
1713         unsigned int region_end = 0;
1714
1715         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1716                         (unsigned int) addr, len);
1717
1718         if (FLEXONENAND(this)) {
1719                 /* Find the eraseregion of this address */
1720                 i = flexonenand_region(mtd, addr);
1721                 region = &mtd->eraseregions[i];
1722
1723                 block_size = region->erasesize;
1724                 region_end = region->offset
1725                         + region->erasesize * region->numblocks;
1726
1727                 /* Start address within region must align on block boundary.
1728                  * Erase region's start offset is always block start address.
1729                  */
1730                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1731                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1732                                 " Unaligned address\n");
1733                         return -EINVAL;
1734                 }
1735         } else {
1736                 block_size = 1 << this->erase_shift;
1737
1738                 /* Start address must align on block boundary */
1739                 if (unlikely(addr & (block_size - 1))) {
1740                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1741                                                 "Unaligned address\n");
1742                         return -EINVAL;
1743                 }
1744         }
1745
1746         /* Length must align on block boundary */
1747         if (unlikely(len & (block_size - 1))) {
1748                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1749                          "onenand_erase: Length not block aligned\n");
1750                 return -EINVAL;
1751         }
1752
1753         /* Grab the lock and see if the device is available */
1754         onenand_get_device(mtd, FL_ERASING);
1755
1756         /* Loop throught the pages */
1757         instr->state = MTD_ERASING;
1758
1759         while (len) {
1760
1761                 /* Check if we have a bad block, we do not erase bad blocks */
1762                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1763                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1764                                 " a bad block at addr 0x%08x\n",
1765                                 (unsigned int) addr);
1766                         instr->state = MTD_ERASE_FAILED;
1767                         goto erase_exit;
1768                 }
1769
1770                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1771
1772                 onenand_invalidate_bufferram(mtd, addr, block_size);
1773
1774                 ret = this->wait(mtd, FL_ERASING);
1775                 /* Check, if it is write protected */
1776                 if (ret) {
1777                         if (ret == -EPERM)
1778                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1779                                           "Device is write protected!!!\n");
1780                         else
1781                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1782                                           "Failed erase, block %d\n",
1783                                         onenand_block(this, addr));
1784                         instr->state = MTD_ERASE_FAILED;
1785                         instr->fail_addr = addr;
1786
1787                         goto erase_exit;
1788                 }
1789
1790                 len -= block_size;
1791                 addr += block_size;
1792
1793                 if (addr == region_end) {
1794                         if (!len)
1795                                 break;
1796                         region++;
1797
1798                         block_size = region->erasesize;
1799                         region_end = region->offset
1800                                 + region->erasesize * region->numblocks;
1801
1802                         if (len & (block_size - 1)) {
1803                                 /* This has been checked at MTD
1804                                  * partitioning level. */
1805                                 printk("onenand_erase: Unaligned address\n");
1806                                 goto erase_exit;
1807                         }
1808                 }
1809         }
1810
1811         instr->state = MTD_ERASE_DONE;
1812
1813 erase_exit:
1814
1815         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1816         /* Do call back function */
1817         if (!ret)
1818                 mtd_erase_callback(instr);
1819
1820         /* Deselect and wake up anyone waiting on the device */
1821         onenand_release_device(mtd);
1822
1823         return ret;
1824 }
1825
1826 /**
1827  * onenand_sync - [MTD Interface] sync
1828  * @param mtd           MTD device structure
1829  *
1830  * Sync is actually a wait for chip ready function
1831  */
1832 void onenand_sync(struct mtd_info *mtd)
1833 {
1834         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1835
1836         /* Grab the lock and see if the device is available */
1837         onenand_get_device(mtd, FL_SYNCING);
1838
1839         /* Release it and go back */
1840         onenand_release_device(mtd);
1841 }
1842
1843 /**
1844  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1845  * @param mtd           MTD device structure
1846  * @param ofs           offset relative to mtd start
1847  *
1848  * Check whether the block is bad
1849  */
1850 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1851 {
1852         int ret;
1853
1854         /* Check for invalid offset */
1855         if (ofs > mtd->size)
1856                 return -EINVAL;
1857
1858         onenand_get_device(mtd, FL_READING);
1859         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1860         onenand_release_device(mtd);
1861         return ret;
1862 }
1863
1864 /**
1865  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1866  * @param mtd           MTD device structure
1867  * @param ofs           offset from device start
1868  *
1869  * This is the default implementation, which can be overridden by
1870  * a hardware specific driver.
1871  */
1872 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1873 {
1874         struct onenand_chip *this = mtd->priv;
1875         struct bbm_info *bbm = this->bbm;
1876         u_char buf[2] = {0, 0};
1877         struct mtd_oob_ops ops = {
1878                 .mode = MTD_OPS_PLACE_OOB,
1879                 .ooblen = 2,
1880                 .oobbuf = buf,
1881                 .ooboffs = 0,
1882         };
1883         int block;
1884
1885         /* Get block number */
1886         block = onenand_block(this, ofs);
1887         if (bbm->bbt)
1888                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1889
1890         /* We write two bytes, so we dont have to mess with 16 bit access */
1891         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1892         return onenand_write_oob_nolock(mtd, ofs, &ops);
1893 }
1894
1895 /**
1896  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1897  * @param mtd           MTD device structure
1898  * @param ofs           offset relative to mtd start
1899  *
1900  * Mark the block as bad
1901  */
1902 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1903 {
1904         int ret;
1905
1906         ret = onenand_block_isbad(mtd, ofs);
1907         if (ret) {
1908                 /* If it was bad already, return success and do nothing */
1909                 if (ret > 0)
1910                         return 0;
1911                 return ret;
1912         }
1913
1914         ret = mtd_block_markbad(mtd, ofs);
1915         return ret;
1916 }
1917
1918 /**
1919  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1920  * @param mtd           MTD device structure
1921  * @param ofs           offset relative to mtd start
1922  * @param len           number of bytes to lock or unlock
1923  * @param cmd           lock or unlock command
1924  *
1925  * Lock or unlock one or more blocks
1926  */
1927 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1928 {
1929         struct onenand_chip *this = mtd->priv;
1930         int start, end, block, value, status;
1931
1932         start = onenand_block(this, ofs);
1933         end = onenand_block(this, ofs + len);
1934
1935         /* Continuous lock scheme */
1936         if (this->options & ONENAND_HAS_CONT_LOCK) {
1937                 /* Set start block address */
1938                 this->write_word(start,
1939                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1940                 /* Set end block address */
1941                 this->write_word(end - 1,
1942                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1943                 /* Write unlock command */
1944                 this->command(mtd, cmd, 0, 0);
1945
1946                 /* There's no return value */
1947                 this->wait(mtd, FL_UNLOCKING);
1948
1949                 /* Sanity check */
1950                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1951                        & ONENAND_CTRL_ONGO)
1952                         continue;
1953
1954                 /* Check lock status */
1955                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1956                 if (!(status & ONENAND_WP_US))
1957                         printk(KERN_ERR "wp status = 0x%x\n", status);
1958
1959                 return 0;
1960         }
1961
1962         /* Block lock scheme */
1963         for (block = start; block < end; block++) {
1964                 /* Set block address */
1965                 value = onenand_block_address(this, block);
1966                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1967                 /* Select DataRAM for DDP */
1968                 value = onenand_bufferram_address(this, block);
1969                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1970
1971                 /* Set start block address */
1972                 this->write_word(block,
1973                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1974                 /* Write unlock command */
1975                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1976
1977                 /* There's no return value */
1978                 this->wait(mtd, FL_UNLOCKING);
1979
1980                 /* Sanity check */
1981                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1982                        & ONENAND_CTRL_ONGO)
1983                         continue;
1984
1985                 /* Check lock status */
1986                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1987                 if (!(status & ONENAND_WP_US))
1988                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1989                                block, status);
1990         }
1991
1992         return 0;
1993 }
1994
1995 #ifdef ONENAND_LINUX
1996 /**
1997  * onenand_lock - [MTD Interface] Lock block(s)
1998  * @param mtd           MTD device structure
1999  * @param ofs           offset relative to mtd start
2000  * @param len           number of bytes to unlock
2001  *
2002  * Lock one or more blocks
2003  */
2004 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2005 {
2006         int ret;
2007
2008         onenand_get_device(mtd, FL_LOCKING);
2009         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2010         onenand_release_device(mtd);
2011         return ret;
2012 }
2013
2014 /**
2015  * onenand_unlock - [MTD Interface] Unlock block(s)
2016  * @param mtd           MTD device structure
2017  * @param ofs           offset relative to mtd start
2018  * @param len           number of bytes to unlock
2019  *
2020  * Unlock one or more blocks
2021  */
2022 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2023 {
2024         int ret;
2025
2026         onenand_get_device(mtd, FL_LOCKING);
2027         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2028         onenand_release_device(mtd);
2029         return ret;
2030 }
2031 #endif
2032
2033 /**
2034  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2035  * @param this          onenand chip data structure
2036  *
2037  * Check lock status
2038  */
2039 static int onenand_check_lock_status(struct onenand_chip *this)
2040 {
2041         unsigned int value, block, status;
2042         unsigned int end;
2043
2044         end = this->chipsize >> this->erase_shift;
2045         for (block = 0; block < end; block++) {
2046                 /* Set block address */
2047                 value = onenand_block_address(this, block);
2048                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2049                 /* Select DataRAM for DDP */
2050                 value = onenand_bufferram_address(this, block);
2051                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2052                 /* Set start block address */
2053                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2054
2055                 /* Check lock status */
2056                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2057                 if (!(status & ONENAND_WP_US)) {
2058                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2059                         return 0;
2060                 }
2061         }
2062
2063         return 1;
2064 }
2065
2066 /**
2067  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2068  * @param mtd           MTD device structure
2069  *
2070  * Unlock all blocks
2071  */
2072 static void onenand_unlock_all(struct mtd_info *mtd)
2073 {
2074         struct onenand_chip *this = mtd->priv;
2075         loff_t ofs = 0;
2076         size_t len = mtd->size;
2077
2078         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2079                 /* Set start block address */
2080                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2081                 /* Write unlock command */
2082                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2083
2084                 /* There's no return value */
2085                 this->wait(mtd, FL_LOCKING);
2086
2087                 /* Sanity check */
2088                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2089                                 & ONENAND_CTRL_ONGO)
2090                         continue;
2091
2092                 /* Check lock status */
2093                 if (onenand_check_lock_status(this))
2094                         return;
2095
2096                 /* Workaround for all block unlock in DDP */
2097                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2098                         /* All blocks on another chip */
2099                         ofs = this->chipsize >> 1;
2100                         len = this->chipsize >> 1;
2101                 }
2102         }
2103
2104         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2105 }
2106
2107
2108 /**
2109  * onenand_check_features - Check and set OneNAND features
2110  * @param mtd           MTD data structure
2111  *
2112  * Check and set OneNAND features
2113  * - lock scheme
2114  * - two plane
2115  */
2116 static void onenand_check_features(struct mtd_info *mtd)
2117 {
2118         struct onenand_chip *this = mtd->priv;
2119         unsigned int density, process;
2120
2121         /* Lock scheme depends on density and process */
2122         density = onenand_get_density(this->device_id);
2123         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2124
2125         /* Lock scheme */
2126         switch (density) {
2127         case ONENAND_DEVICE_DENSITY_4Gb:
2128                 if (ONENAND_IS_DDP(this))
2129                         this->options |= ONENAND_HAS_2PLANE;
2130                 else
2131                         this->options |= ONENAND_HAS_4KB_PAGE;
2132
2133         case ONENAND_DEVICE_DENSITY_2Gb:
2134                 /* 2Gb DDP don't have 2 plane */
2135                 if (!ONENAND_IS_DDP(this))
2136                         this->options |= ONENAND_HAS_2PLANE;
2137                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2138
2139         case ONENAND_DEVICE_DENSITY_1Gb:
2140                 /* A-Die has all block unlock */
2141                 if (process)
2142                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2143                 break;
2144
2145         default:
2146                 /* Some OneNAND has continuous lock scheme */
2147                 if (!process)
2148                         this->options |= ONENAND_HAS_CONT_LOCK;
2149                 break;
2150         }
2151
2152         if (ONENAND_IS_MLC(this))
2153                 this->options |= ONENAND_HAS_4KB_PAGE;
2154
2155         if (ONENAND_IS_4KB_PAGE(this))
2156                 this->options &= ~ONENAND_HAS_2PLANE;
2157
2158         if (FLEXONENAND(this)) {
2159                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2160                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2161         }
2162
2163         if (this->options & ONENAND_HAS_CONT_LOCK)
2164                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2165         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2166                 printk(KERN_DEBUG "Chip support all block unlock\n");
2167         if (this->options & ONENAND_HAS_2PLANE)
2168                 printk(KERN_DEBUG "Chip has 2 plane\n");
2169         if (this->options & ONENAND_HAS_4KB_PAGE)
2170                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2171
2172 }
2173
2174 /**
2175  * onenand_print_device_info - Print device ID
2176  * @param device        device ID
2177  *
2178  * Print device ID
2179  */
2180 char *onenand_print_device_info(int device, int version)
2181 {
2182         int vcc, demuxed, ddp, density, flexonenand;
2183         char *dev_info = malloc(80);
2184         char *p = dev_info;
2185
2186         vcc = device & ONENAND_DEVICE_VCC_MASK;
2187         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2188         ddp = device & ONENAND_DEVICE_IS_DDP;
2189         density = onenand_get_density(device);
2190         flexonenand = device & DEVICE_IS_FLEXONENAND;
2191         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2192                demuxed ? "" : "Muxed ",
2193                flexonenand ? "Flex-" : "",
2194                ddp ? "(DDP)" : "",
2195                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2196
2197         sprintf(p, "\nOneNAND version = 0x%04x", version);
2198         printk("%s\n", dev_info);
2199
2200         return dev_info;
2201 }
2202
2203 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2204         {ONENAND_MFR_NUMONYX, "Numonyx"},
2205         {ONENAND_MFR_SAMSUNG, "Samsung"},
2206 };
2207
2208 /**
2209  * onenand_check_maf - Check manufacturer ID
2210  * @param manuf         manufacturer ID
2211  *
2212  * Check manufacturer ID
2213  */
2214 static int onenand_check_maf(int manuf)
2215 {
2216         int size = ARRAY_SIZE(onenand_manuf_ids);
2217         int i;
2218 #ifdef ONENAND_DEBUG
2219         char *name;
2220 #endif
2221
2222         for (i = 0; i < size; i++)
2223                 if (manuf == onenand_manuf_ids[i].id)
2224                         break;
2225
2226 #ifdef ONENAND_DEBUG
2227         if (i < size)
2228                 name = onenand_manuf_ids[i].name;
2229         else
2230                 name = "Unknown";
2231
2232         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2233 #endif
2234
2235         return i == size;
2236 }
2237
2238 /**
2239 * flexonenand_get_boundary      - Reads the SLC boundary
2240 * @param onenand_info           - onenand info structure
2241 *
2242 * Fill up boundary[] field in onenand_chip
2243 **/
2244 static int flexonenand_get_boundary(struct mtd_info *mtd)
2245 {
2246         struct onenand_chip *this = mtd->priv;
2247         unsigned int die, bdry;
2248         int syscfg, locked;
2249
2250         /* Disable ECC */
2251         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2252         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2253
2254         for (die = 0; die < this->dies; die++) {
2255                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2256                 this->wait(mtd, FL_SYNCING);
2257
2258                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2259                 this->wait(mtd, FL_READING);
2260
2261                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2262                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2263                         locked = 0;
2264                 else
2265                         locked = 1;
2266                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2267
2268                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2269                 this->wait(mtd, FL_RESETING);
2270
2271                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2272                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2273         }
2274
2275         /* Enable ECC */
2276         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2277         return 0;
2278 }
2279
2280 /**
2281  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2282  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2283  *                        mtd->eraseregions
2284  * @param mtd           - MTD device structure
2285  */
2286 static void flexonenand_get_size(struct mtd_info *mtd)
2287 {
2288         struct onenand_chip *this = mtd->priv;
2289         int die, i, eraseshift, density;
2290         int blksperdie, maxbdry;
2291         loff_t ofs;
2292
2293         density = onenand_get_density(this->device_id);
2294         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2295         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2296         maxbdry = blksperdie - 1;
2297         eraseshift = this->erase_shift - 1;
2298
2299         mtd->numeraseregions = this->dies << 1;
2300
2301         /* This fills up the device boundary */
2302         flexonenand_get_boundary(mtd);
2303         die = 0;
2304         ofs = 0;
2305         i = -1;
2306         for (; die < this->dies; die++) {
2307                 if (!die || this->boundary[die-1] != maxbdry) {
2308                         i++;
2309                         mtd->eraseregions[i].offset = ofs;
2310                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2311                         mtd->eraseregions[i].numblocks =
2312                                                         this->boundary[die] + 1;
2313                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2314                         eraseshift++;
2315                 } else {
2316                         mtd->numeraseregions -= 1;
2317                         mtd->eraseregions[i].numblocks +=
2318                                                         this->boundary[die] + 1;
2319                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2320                 }
2321                 if (this->boundary[die] != maxbdry) {
2322                         i++;
2323                         mtd->eraseregions[i].offset = ofs;
2324                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2325                         mtd->eraseregions[i].numblocks = maxbdry ^
2326                                                          this->boundary[die];
2327                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2328                         eraseshift--;
2329                 } else
2330                         mtd->numeraseregions -= 1;
2331         }
2332
2333         /* Expose MLC erase size except when all blocks are SLC */
2334         mtd->erasesize = 1 << this->erase_shift;
2335         if (mtd->numeraseregions == 1)
2336                 mtd->erasesize >>= 1;
2337
2338         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2339         for (i = 0; i < mtd->numeraseregions; i++)
2340                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2341                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2342                         mtd->eraseregions[i].erasesize,
2343                         mtd->eraseregions[i].numblocks);
2344
2345         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2346                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2347                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2348                                                  << (this->erase_shift - 1);
2349                 mtd->size += this->diesize[die];
2350         }
2351 }
2352
2353 /**
2354  * flexonenand_check_blocks_erased - Check if blocks are erased
2355  * @param mtd_info      - mtd info structure
2356  * @param start         - first erase block to check
2357  * @param end           - last erase block to check
2358  *
2359  * Converting an unerased block from MLC to SLC
2360  * causes byte values to change. Since both data and its ECC
2361  * have changed, reads on the block give uncorrectable error.
2362  * This might lead to the block being detected as bad.
2363  *
2364  * Avoid this by ensuring that the block to be converted is
2365  * erased.
2366  */
2367 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2368                                         int start, int end)
2369 {
2370         struct onenand_chip *this = mtd->priv;
2371         int i, ret;
2372         int block;
2373         struct mtd_oob_ops ops = {
2374                 .mode = MTD_OPS_PLACE_OOB,
2375                 .ooboffs = 0,
2376                 .ooblen = mtd->oobsize,
2377                 .datbuf = NULL,
2378                 .oobbuf = this->oob_buf,
2379         };
2380         loff_t addr;
2381
2382         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2383
2384         for (block = start; block <= end; block++) {
2385                 addr = flexonenand_addr(this, block);
2386                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2387                         continue;
2388
2389                 /*
2390                  * Since main area write results in ECC write to spare,
2391                  * it is sufficient to check only ECC bytes for change.
2392                  */
2393                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2394                 if (ret)
2395                         return ret;
2396
2397                 for (i = 0; i < mtd->oobsize; i++)
2398                         if (this->oob_buf[i] != 0xff)
2399                                 break;
2400
2401                 if (i != mtd->oobsize) {
2402                         printk(KERN_WARNING "Block %d not erased.\n", block);
2403                         return 1;
2404                 }
2405         }
2406
2407         return 0;
2408 }
2409
2410 /**
2411  * flexonenand_set_boundary     - Writes the SLC boundary
2412  * @param mtd                   - mtd info structure
2413  */
2414 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2415                                     int boundary, int lock)
2416 {
2417         struct onenand_chip *this = mtd->priv;
2418         int ret, density, blksperdie, old, new, thisboundary;
2419         loff_t addr;
2420
2421         if (die >= this->dies)
2422                 return -EINVAL;
2423
2424         if (boundary == this->boundary[die])
2425                 return 0;
2426
2427         density = onenand_get_density(this->device_id);
2428         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2429         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2430
2431         if (boundary >= blksperdie) {
2432                 printk("flexonenand_set_boundary:"
2433                         "Invalid boundary value. "
2434                         "Boundary not changed.\n");
2435                 return -EINVAL;
2436         }
2437
2438         /* Check if converting blocks are erased */
2439         old = this->boundary[die] + (die * this->density_mask);
2440         new = boundary + (die * this->density_mask);
2441         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2442                                                 + 1, max(old, new));
2443         if (ret) {
2444                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2445                 return ret;
2446         }
2447
2448         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2449         this->wait(mtd, FL_SYNCING);
2450
2451         /* Check is boundary is locked */
2452         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2453         ret = this->wait(mtd, FL_READING);
2454
2455         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2456         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2457                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2458                 goto out;
2459         }
2460
2461         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2462                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2463
2464         boundary &= FLEXONENAND_PI_MASK;
2465         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2466
2467         addr = die ? this->diesize[0] : 0;
2468         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2469         ret = this->wait(mtd, FL_ERASING);
2470         if (ret) {
2471                 printk("flexonenand_set_boundary:"
2472                         "Failed PI erase for Die %d\n", die);
2473                 goto out;
2474         }
2475
2476         this->write_word(boundary, this->base + ONENAND_DATARAM);
2477         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2478         ret = this->wait(mtd, FL_WRITING);
2479         if (ret) {
2480                 printk("flexonenand_set_boundary:"
2481                         "Failed PI write for Die %d\n", die);
2482                 goto out;
2483         }
2484
2485         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2486         ret = this->wait(mtd, FL_WRITING);
2487 out:
2488         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2489         this->wait(mtd, FL_RESETING);
2490         if (!ret)
2491                 /* Recalculate device size on boundary change*/
2492                 flexonenand_get_size(mtd);
2493
2494         return ret;
2495 }
2496
2497 /**
2498  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2499  * @param mtd           MTD device structure
2500  *
2501  * OneNAND detection method:
2502  *   Compare the the values from command with ones from register
2503  */
2504 static int onenand_chip_probe(struct mtd_info *mtd)
2505 {
2506         struct onenand_chip *this = mtd->priv;
2507         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2508         int syscfg;
2509
2510         /* Save system configuration 1 */
2511         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2512
2513         /* Clear Sync. Burst Read mode to read BootRAM */
2514         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2515                          this->base + ONENAND_REG_SYS_CFG1);
2516
2517         /* Send the command for reading device ID from BootRAM */
2518         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2519
2520         /* Read manufacturer and device IDs from BootRAM */
2521         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2522         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2523
2524         /* Reset OneNAND to read default register values */
2525         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2526
2527         /* Wait reset */
2528         this->wait(mtd, FL_RESETING);
2529
2530         /* Restore system configuration 1 */
2531         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2532
2533         /* Check manufacturer ID */
2534         if (onenand_check_maf(bram_maf_id))
2535                 return -ENXIO;
2536
2537         /* Read manufacturer and device IDs from Register */
2538         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2539         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2540
2541         /* Check OneNAND device */
2542         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2543                 return -ENXIO;
2544
2545         return 0;
2546 }
2547
2548 /**
2549  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2550  * @param mtd           MTD device structure
2551  *
2552  * OneNAND detection method:
2553  *   Compare the the values from command with ones from register
2554  */
2555 int onenand_probe(struct mtd_info *mtd)
2556 {
2557         struct onenand_chip *this = mtd->priv;
2558         int dev_id, ver_id;
2559         int density;
2560         int ret;
2561
2562         ret = this->chip_probe(mtd);
2563         if (ret)
2564                 return ret;
2565
2566         /* Read device IDs from Register */
2567         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2568         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2569         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2570
2571         /* Flash device information */
2572         mtd->name = onenand_print_device_info(dev_id, ver_id);
2573         this->device_id = dev_id;
2574         this->version_id = ver_id;
2575
2576         /* Check OneNAND features */
2577         onenand_check_features(mtd);
2578
2579         density = onenand_get_density(dev_id);
2580         if (FLEXONENAND(this)) {
2581                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2582                 /* Maximum possible erase regions */
2583                 mtd->numeraseregions = this->dies << 1;
2584                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2585                                         * (this->dies << 1));
2586                 if (!mtd->eraseregions)
2587                         return -ENOMEM;
2588         }
2589
2590         /*
2591          * For Flex-OneNAND, chipsize represents maximum possible device size.
2592          * mtd->size represents the actual device size.
2593          */
2594         this->chipsize = (16 << density) << 20;
2595
2596         /* OneNAND page size & block size */
2597         /* The data buffer size is equal to page size */
2598         mtd->writesize =
2599             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2600         /* We use the full BufferRAM */
2601         if (ONENAND_IS_4KB_PAGE(this))
2602                 mtd->writesize <<= 1;
2603
2604         mtd->oobsize = mtd->writesize >> 5;
2605         /* Pagers per block is always 64 in OneNAND */
2606         mtd->erasesize = mtd->writesize << 6;
2607         /*
2608          * Flex-OneNAND SLC area has 64 pages per block.
2609          * Flex-OneNAND MLC area has 128 pages per block.
2610          * Expose MLC erase size to find erase_shift and page_mask.
2611          */
2612         if (FLEXONENAND(this))
2613                 mtd->erasesize <<= 1;
2614
2615         this->erase_shift = ffs(mtd->erasesize) - 1;
2616         this->page_shift = ffs(mtd->writesize) - 1;
2617         this->ppb_shift = (this->erase_shift - this->page_shift);
2618         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2619         /* Set density mask. it is used for DDP */
2620         if (ONENAND_IS_DDP(this))
2621                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2622         /* It's real page size */
2623         this->writesize = mtd->writesize;
2624
2625         /* REVIST: Multichip handling */
2626
2627         if (FLEXONENAND(this))
2628                 flexonenand_get_size(mtd);
2629         else
2630                 mtd->size = this->chipsize;
2631
2632         mtd->flags = MTD_CAP_NANDFLASH;
2633         mtd->_erase = onenand_erase;
2634         mtd->_read = onenand_read;
2635         mtd->_write = onenand_write;
2636         mtd->_read_oob = onenand_read_oob;
2637         mtd->_write_oob = onenand_write_oob;
2638         mtd->_sync = onenand_sync;
2639         mtd->_block_isbad = onenand_block_isbad;
2640         mtd->_block_markbad = onenand_block_markbad;
2641
2642         return 0;
2643 }
2644
2645 /**
2646  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2647  * @param mtd           MTD device structure
2648  * @param maxchips      Number of chips to scan for
2649  *
2650  * This fills out all the not initialized function pointers
2651  * with the defaults.
2652  * The flash ID is read and the mtd/chip structures are
2653  * filled with the appropriate values.
2654  */
2655 int onenand_scan(struct mtd_info *mtd, int maxchips)
2656 {
2657         int i;
2658         struct onenand_chip *this = mtd->priv;
2659
2660         if (!this->read_word)
2661                 this->read_word = onenand_readw;
2662         if (!this->write_word)
2663                 this->write_word = onenand_writew;
2664
2665         if (!this->command)
2666                 this->command = onenand_command;
2667         if (!this->wait)
2668                 this->wait = onenand_wait;
2669         if (!this->bbt_wait)
2670                 this->bbt_wait = onenand_bbt_wait;
2671
2672         if (!this->read_bufferram)
2673                 this->read_bufferram = onenand_read_bufferram;
2674         if (!this->write_bufferram)
2675                 this->write_bufferram = onenand_write_bufferram;
2676
2677         if (!this->chip_probe)
2678                 this->chip_probe = onenand_chip_probe;
2679
2680         if (!this->block_markbad)
2681                 this->block_markbad = onenand_default_block_markbad;
2682         if (!this->scan_bbt)
2683                 this->scan_bbt = onenand_default_bbt;
2684
2685         if (onenand_probe(mtd))
2686                 return -ENXIO;
2687
2688         /* Set Sync. Burst Read after probing */
2689         if (this->mmcontrol) {
2690                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2691                 this->read_bufferram = onenand_sync_read_bufferram;
2692         }
2693
2694         /* Allocate buffers, if necessary */
2695         if (!this->page_buf) {
2696                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2697                 if (!this->page_buf) {
2698                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2699                         return -ENOMEM;
2700                 }
2701                 this->options |= ONENAND_PAGEBUF_ALLOC;
2702         }
2703         if (!this->oob_buf) {
2704                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2705                 if (!this->oob_buf) {
2706                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2707                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2708                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2709                                 kfree(this->page_buf);
2710                         }
2711                         return -ENOMEM;
2712                 }
2713                 this->options |= ONENAND_OOBBUF_ALLOC;
2714         }
2715
2716         this->state = FL_READY;
2717
2718         /*
2719          * Allow subpage writes up to oobsize.
2720          */
2721         switch (mtd->oobsize) {
2722         case 128:
2723                 this->ecclayout = &onenand_oob_128;
2724                 mtd->subpage_sft = 0;
2725                 break;
2726
2727         case 64:
2728                 this->ecclayout = &onenand_oob_64;
2729                 mtd->subpage_sft = 2;
2730                 break;
2731
2732         case 32:
2733                 this->ecclayout = &onenand_oob_32;
2734                 mtd->subpage_sft = 1;
2735                 break;
2736
2737         default:
2738                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2739                         mtd->oobsize);
2740                 mtd->subpage_sft = 0;
2741                 /* To prevent kernel oops */
2742                 this->ecclayout = &onenand_oob_32;
2743                 break;
2744         }
2745
2746         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2747
2748         /*
2749          * The number of bytes available for a client to place data into
2750          * the out of band area
2751          */
2752         this->ecclayout->oobavail = 0;
2753         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2754             this->ecclayout->oobfree[i].length; i++)
2755                 this->ecclayout->oobavail +=
2756                         this->ecclayout->oobfree[i].length;
2757         mtd->oobavail = this->ecclayout->oobavail;
2758
2759         mtd->ecclayout = this->ecclayout;
2760
2761         /* Unlock whole block */
2762         onenand_unlock_all(mtd);
2763
2764         return this->scan_bbt(mtd);
2765 }
2766
2767 /**
2768  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2769  * @param mtd           MTD device structure
2770  */
2771 void onenand_release(struct mtd_info *mtd)
2772 {
2773 }