]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/onenand/onenand_base.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34         void *ret = dst;
35         short *d = dst;
36         const short *s = src;
37
38         len >>= 1;
39         while (len-- > 0)
40                 *d++ = *s++;
41         return ret;
42 }
43
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49         .eccbytes       = 64,
50         .eccpos         = {
51                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57                 102, 103, 104, 105
58                 },
59         .oobfree        = {
60                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62         }
63 };
64
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69         .eccbytes       = 20,
70         .eccpos         = {
71                 8, 9, 10, 11, 12,
72                 24, 25, 26, 27, 28,
73                 40, 41, 42, 43, 44,
74                 56, 57, 58, 59, 60,
75                 },
76         .oobfree        = {
77                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79         }
80 };
81
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86         .eccbytes       = 10,
87         .eccpos         = {
88                 8, 9, 10, 11, 12,
89                 24, 25, 26, 27, 28,
90                 },
91         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr          address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121         return readw(addr);
122 }
123
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value         value to write
127  * @param addr          address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133         writew(value, addr);
134 }
135
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device        the device id
139  * @param block         the block
140  * @return              translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146         /* Device Flash Core select, NAND Flash Block Address */
147         if (block & this->density_mask)
148                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150         return block;
151 }
152
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device        the device id
156  * @param block         the block
157  * @return              set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163         /* Device BufferRAM Select */
164         if (block & this->density_mask)
165                 return ONENAND_DDP_CHIP1;
166
167         return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page          the page address
173  * @param sector        the sector address
174  * @return              combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180         /* Flash Page Address, Flash Sector Address */
181         int fpa, fsa;
182
183         fpa = page & ONENAND_FPA_MASK;
184         fsa = sector & ONENAND_FSA_MASK;
185
186         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1      DataRAM index
192  * @param sectors       the sector address
193  * @param count         the number of sectors
194  * @return              the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200         int bsa, bsc;
201
202         /* BufferRAM Sector Address */
203         bsa = sectors & ONENAND_BSA_MASK;
204
205         if (dataram1)
206                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
207         else
208                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
209
210         /* BufferRAM Sector Count */
211         bsc = count & ONENAND_BSC_MASK;
212
213         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this          - OneNAND device structure
219  * @param addr          - Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223         unsigned int boundary, blk, die = 0;
224
225         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226                 die = 1;
227                 addr -= this->diesize[0];
228         }
229
230         boundary = this->boundary[die];
231
232         blk = addr >> (this->erase_shift - 1);
233         if (blk > boundary)
234                 blk = (blk + boundary + 1) >> 1;
235
236         blk += die ? this->density_mask : 0;
237         return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242         if (!FLEXONENAND(this))
243                 return addr >> this->erase_shift;
244         return flexonenand_block(this, addr);
245 }
246
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:               OneNAND device structure
250  * @block:              Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256         loff_t ofs = 0;
257         int die = 0, boundary;
258
259         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260                 block -= this->density_mask;
261                 die = 1;
262                 ofs = this->diesize[0];
263         }
264
265         boundary = this->boundary[die];
266         ofs += (loff_t) block << (this->erase_shift - 1);
267         if (block > (boundary + 1))
268                 ofs += (loff_t) (block - boundary - 1)
269                         << (this->erase_shift - 1);
270         return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275         if (!FLEXONENAND(this))
276                 return (loff_t) block << this->erase_shift;
277         return flexonenand_addr(this, block);
278 }
279
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd           MTD device structure
283  * @param addr          address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287         int i;
288
289         for (i = 0; i < mtd->numeraseregions; i++)
290                 if (addr < mtd->eraseregions[i].offset)
291                         break;
292         return i - 1;
293 }
294
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304         return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd           MTD device structure
310  * @param cmd           the command to be sent
311  * @param addr          offset to read from or write to
312  * @param len           number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318                            size_t len)
319 {
320         struct onenand_chip *this = mtd->priv;
321         int value;
322         int block, page;
323
324         /* Now we use page size operation */
325         int sectors = 0, count = 0;
326
327         /* Address translation */
328         switch (cmd) {
329         case ONENAND_CMD_UNLOCK:
330         case ONENAND_CMD_LOCK:
331         case ONENAND_CMD_LOCK_TIGHT:
332         case ONENAND_CMD_UNLOCK_ALL:
333                 block = -1;
334                 page = -1;
335                 break;
336
337         case FLEXONENAND_CMD_PI_ACCESS:
338                 /* addr contains die index */
339                 block = addr * this->density_mask;
340                 page = -1;
341                 break;
342
343         case ONENAND_CMD_ERASE:
344         case ONENAND_CMD_BUFFERRAM:
345                 block = onenand_block(this, addr);
346                 page = -1;
347                 break;
348
349         case FLEXONENAND_CMD_READ_PI:
350                 cmd = ONENAND_CMD_READ;
351                 block = addr * this->density_mask;
352                 page = 0;
353                 break;
354
355         default:
356                 block = onenand_block(this, addr);
357                 page = (int) (addr
358                         - onenand_addr(this, block)) >> this->page_shift;
359                 page &= this->page_mask;
360                 break;
361         }
362
363         /* NOTE: The setting order of the registers is very important! */
364         if (cmd == ONENAND_CMD_BUFFERRAM) {
365                 /* Select DataRAM for DDP */
366                 value = onenand_bufferram_address(this, block);
367                 this->write_word(value,
368                                  this->base + ONENAND_REG_START_ADDRESS2);
369
370                 if (ONENAND_IS_4KB_PAGE(this))
371                         ONENAND_SET_BUFFERRAM0(this);
372                 else
373                         /* Switch to the next data buffer */
374                         ONENAND_SET_NEXT_BUFFERRAM(this);
375
376                 return 0;
377         }
378
379         if (block != -1) {
380                 /* Write 'DFS, FBA' of Flash */
381                 value = onenand_block_address(this, block);
382                 this->write_word(value,
383                                  this->base + ONENAND_REG_START_ADDRESS1);
384
385                 /* Select DataRAM for DDP */
386                 value = onenand_bufferram_address(this, block);
387                 this->write_word(value,
388                                  this->base + ONENAND_REG_START_ADDRESS2);
389         }
390
391         if (page != -1) {
392                 int dataram;
393
394                 switch (cmd) {
395                 case FLEXONENAND_CMD_RECOVER_LSB:
396                 case ONENAND_CMD_READ:
397                 case ONENAND_CMD_READOOB:
398                         if (ONENAND_IS_4KB_PAGE(this))
399                                 dataram = ONENAND_SET_BUFFERRAM0(this);
400                         else
401                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403                         break;
404
405                 default:
406                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
407                         break;
408                 }
409
410                 /* Write 'FPA, FSA' of Flash */
411                 value = onenand_page_address(page, sectors);
412                 this->write_word(value,
413                                  this->base + ONENAND_REG_START_ADDRESS8);
414
415                 /* Write 'BSA, BSC' of DataRAM */
416                 value = onenand_buffer_address(dataram, sectors, count);
417                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418         }
419
420         /* Interrupt clear */
421         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422         /* Write command */
423         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425         return 0;
426 }
427
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this          onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434         int ecc, i;
435
436         if (!FLEXONENAND(this))
437                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439         for (i = 0; i < 4; i++) {
440                 ecc = this->read_word(this->base
441                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442                 if (likely(!ecc))
443                         continue;
444                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445                         return ONENAND_ECC_2BIT_ALL;
446         }
447
448         return 0;
449 }
450
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd           MTD device structure
454  * @param state         state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462         struct onenand_chip *this = mtd->priv;
463         unsigned int flags = ONENAND_INT_MASTER;
464         unsigned int interrupt = 0;
465         unsigned int ctrl;
466
467         while (1) {
468                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469                 if (interrupt & flags)
470                         break;
471         }
472
473         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475         if (interrupt & ONENAND_INT_READ) {
476                 int ecc = onenand_read_ecc(this);
477                 if (ecc & ONENAND_ECC_2BIT_ALL) {
478                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479                         return -EBADMSG;
480                 }
481         }
482
483         if (ctrl & ONENAND_CTRL_ERROR) {
484                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485                 if (ctrl & ONENAND_CTRL_LOCK)
486                         printk("onenand_wait: it's locked error = 0x%04x\n",
487                                 ctrl);
488
489                 return -EIO;
490         }
491
492
493         return 0;
494 }
495
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd           MTD data structure
499  * @param area          BufferRAM area
500  * @return              offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506         struct onenand_chip *this = mtd->priv;
507
508         if (ONENAND_CURRENT_BUFFERRAM(this)) {
509                 if (area == ONENAND_DATARAM)
510                         return mtd->writesize;
511                 if (area == ONENAND_SPARERAM)
512                         return mtd->oobsize;
513         }
514
515         return 0;
516 }
517
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd           MTD data structure
521  * @param area          BufferRAM area
522  * @param buffer        the databuffer to put/get data
523  * @param offset        offset to read from or write to
524  * @param count         number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529                                   unsigned char *buffer, int offset,
530                                   size_t count)
531 {
532         struct onenand_chip *this = mtd->priv;
533         void __iomem *bufferram;
534
535         bufferram = this->base + area;
536         bufferram += onenand_bufferram_offset(mtd, area);
537
538         memcpy_16(buffer, bufferram + offset, count);
539
540         return 0;
541 }
542
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd           MTD data structure
546  * @param area          BufferRAM area
547  * @param buffer        the databuffer to put/get data
548  * @param offset        offset to read from or write to
549  * @param count         number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554                                        unsigned char *buffer, int offset,
555                                        size_t count)
556 {
557         struct onenand_chip *this = mtd->priv;
558         void __iomem *bufferram;
559
560         bufferram = this->base + area;
561         bufferram += onenand_bufferram_offset(mtd, area);
562
563         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565         memcpy_16(buffer, bufferram + offset, count);
566
567         this->mmcontrol(mtd, 0);
568
569         return 0;
570 }
571
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd           MTD data structure
575  * @param area          BufferRAM area
576  * @param buffer        the databuffer to put/get data
577  * @param offset        offset to read from or write to
578  * @param count         number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583                                    const unsigned char *buffer, int offset,
584                                    size_t count)
585 {
586         struct onenand_chip *this = mtd->priv;
587         void __iomem *bufferram;
588
589         bufferram = this->base + area;
590         bufferram += onenand_bufferram_offset(mtd, area);
591
592         memcpy_16(bufferram + offset, buffer, count);
593
594         return 0;
595 }
596
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd           MTD data structure
600  * @param addr          address to check
601  * @return              blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607         struct onenand_chip *this = mtd->priv;
608         int blockpage, block, page;
609
610         /* Calculate the even block number */
611         block = (int) (addr >> this->erase_shift) & ~1;
612         /* Is it the odd plane? */
613         if (addr & this->writesize)
614                 block++;
615         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616         blockpage = (block << 7) | page;
617
618         return blockpage;
619 }
620
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd           MTD data structure
624  * @param addr          address to check
625  * @return              1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631         struct onenand_chip *this = mtd->priv;
632         int blockpage, found = 0;
633         unsigned int i;
634
635         if (ONENAND_IS_2PLANE(this))
636                 blockpage = onenand_get_2x_blockpage(mtd, addr);
637         else
638                 blockpage = (int) (addr >> this->page_shift);
639
640         /* Is there valid data? */
641         i = ONENAND_CURRENT_BUFFERRAM(this);
642         if (this->bufferram[i].blockpage == blockpage)
643                 found = 1;
644         else {
645                 /* Check another BufferRAM */
646                 i = ONENAND_NEXT_BUFFERRAM(this);
647                 if (this->bufferram[i].blockpage == blockpage) {
648                         ONENAND_SET_NEXT_BUFFERRAM(this);
649                         found = 1;
650                 }
651         }
652
653         if (found && ONENAND_IS_DDP(this)) {
654                 /* Select DataRAM for DDP */
655                 int block = onenand_block(this, addr);
656                 int value = onenand_bufferram_address(this, block);
657                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658         }
659
660         return found;
661 }
662
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd           MTD data structure
666  * @param addr          address to update
667  * @param valid         valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672                                     int valid)
673 {
674         struct onenand_chip *this = mtd->priv;
675         int blockpage;
676         unsigned int i;
677
678         if (ONENAND_IS_2PLANE(this))
679                 blockpage = onenand_get_2x_blockpage(mtd, addr);
680         else
681                 blockpage = (int)(addr >> this->page_shift);
682
683         /* Invalidate another BufferRAM */
684         i = ONENAND_NEXT_BUFFERRAM(this);
685         if (this->bufferram[i].blockpage == blockpage)
686                 this->bufferram[i].blockpage = -1;
687
688         /* Update BufferRAM */
689         i = ONENAND_CURRENT_BUFFERRAM(this);
690         if (valid)
691                 this->bufferram[i].blockpage = blockpage;
692         else
693                 this->bufferram[i].blockpage = -1;
694
695         return 0;
696 }
697
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707                                          unsigned int len)
708 {
709         struct onenand_chip *this = mtd->priv;
710         int i;
711         loff_t end_addr = addr + len;
712
713         /* Invalidate BufferRAM */
714         for (i = 0; i < MAX_BUFFERRAM; i++) {
715                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716
717                 if (buf_addr >= addr && buf_addr < end_addr)
718                         this->bufferram[i].blockpage = -1;
719         }
720 }
721
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd           MTD device structure
725  * @param new_state     the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731         /* Do nothing */
732 }
733
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd           MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742         /* Do nothing */
743 }
744
745 /**
746  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747  * @param mtd           MTD device structure
748  * @param buf           destination address
749  * @param column        oob offset to read from
750  * @param thislen       oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753                                         int column, int thislen)
754 {
755         struct onenand_chip *this = mtd->priv;
756         struct nand_oobfree *free;
757         int readcol = column;
758         int readend = column + thislen;
759         int lastgap = 0;
760         unsigned int i;
761         uint8_t *oob_buf = this->oob_buf;
762
763         free = this->ecclayout->oobfree;
764         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
765              i++, free++) {
766                 if (readcol >= lastgap)
767                         readcol += free->offset - lastgap;
768                 if (readend >= lastgap)
769                         readend += free->offset - lastgap;
770                 lastgap = free->offset + free->length;
771         }
772         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
773         free = this->ecclayout->oobfree;
774         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
775              i++, free++) {
776                 int free_end = free->offset + free->length;
777                 if (free->offset < readend && free_end > readcol) {
778                         int st = max_t(int,free->offset,readcol);
779                         int ed = min_t(int,free_end,readend);
780                         int n = ed - st;
781                         memcpy(buf, oob_buf + st, n);
782                         buf += n;
783                 } else if (column == 0)
784                         break;
785         }
786         return 0;
787 }
788
789 /**
790  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
791  * @param mtd           MTD device structure
792  * @param addr          address to recover
793  * @param status        return value from onenand_wait
794  *
795  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
796  * lower page address and MSB page has higher page address in paired pages.
797  * If power off occurs during MSB page program, the paired LSB page data can
798  * become corrupt. LSB page recovery read is a way to read LSB page though page
799  * data are corrupted. When uncorrectable error occurs as a result of LSB page
800  * read after power up, issue LSB page recovery read.
801  */
802 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
803 {
804         struct onenand_chip *this = mtd->priv;
805         int i;
806
807         /* Recovery is only for Flex-OneNAND */
808         if (!FLEXONENAND(this))
809                 return status;
810
811         /* check if we failed due to uncorrectable error */
812         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
813                 return status;
814
815         /* check if address lies in MLC region */
816         i = flexonenand_region(mtd, addr);
817         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
818                 return status;
819
820         printk("onenand_recover_lsb:"
821                 "Attempting to recover from uncorrectable read\n");
822
823         /* Issue the LSB page recovery command */
824         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
825         return this->wait(mtd, FL_READING);
826 }
827
828 /**
829  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
830  * @param mtd           MTD device structure
831  * @param from          offset to read from
832  * @param ops           oob operation description structure
833  *
834  * OneNAND read main and/or out-of-band data
835  */
836 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
837                 struct mtd_oob_ops *ops)
838 {
839         struct onenand_chip *this = mtd->priv;
840         struct mtd_ecc_stats stats;
841         size_t len = ops->len;
842         size_t ooblen = ops->ooblen;
843         u_char *buf = ops->datbuf;
844         u_char *oobbuf = ops->oobbuf;
845         int read = 0, column, thislen;
846         int oobread = 0, oobcolumn, thisooblen, oobsize;
847         int ret = 0, boundary = 0;
848         int writesize = this->writesize;
849
850         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
851
852         if (ops->mode == MTD_OPS_AUTO_OOB)
853                 oobsize = this->ecclayout->oobavail;
854         else
855                 oobsize = mtd->oobsize;
856
857         oobcolumn = from & (mtd->oobsize - 1);
858
859         /* Do not allow reads past end of device */
860         if ((from + len) > mtd->size) {
861                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
862                 ops->retlen = 0;
863                 ops->oobretlen = 0;
864                 return -EINVAL;
865         }
866
867         stats = mtd->ecc_stats;
868
869         /* Read-while-load method */
870         /* Note: We can't use this feature in MLC */
871
872         /* Do first load to bufferRAM */
873         if (read < len) {
874                 if (!onenand_check_bufferram(mtd, from)) {
875                         this->main_buf = buf;
876                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
877                         ret = this->wait(mtd, FL_READING);
878                         if (unlikely(ret))
879                                 ret = onenand_recover_lsb(mtd, from, ret);
880                         onenand_update_bufferram(mtd, from, !ret);
881                         if (ret == -EBADMSG)
882                                 ret = 0;
883                 }
884         }
885
886         thislen = min_t(int, writesize, len - read);
887         column = from & (writesize - 1);
888         if (column + thislen > writesize)
889                 thislen = writesize - column;
890
891         while (!ret) {
892                 /* If there is more to load then start next load */
893                 from += thislen;
894                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
895                         this->main_buf = buf + thislen;
896                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
897                         /*
898                          * Chip boundary handling in DDP
899                          * Now we issued chip 1 read and pointed chip 1
900                          * bufferam so we have to point chip 0 bufferam.
901                          */
902                         if (ONENAND_IS_DDP(this) &&
903                                         unlikely(from == (this->chipsize >> 1))) {
904                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
905                                 boundary = 1;
906                         } else
907                                 boundary = 0;
908                         ONENAND_SET_PREV_BUFFERRAM(this);
909                 }
910
911                 /* While load is going, read from last bufferRAM */
912                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
913
914                 /* Read oob area if needed */
915                 if (oobbuf) {
916                         thisooblen = oobsize - oobcolumn;
917                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
918
919                         if (ops->mode == MTD_OPS_AUTO_OOB)
920                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
921                         else
922                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
923                         oobread += thisooblen;
924                         oobbuf += thisooblen;
925                         oobcolumn = 0;
926                 }
927
928                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
929                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
930                         ret = this->wait(mtd, FL_READING);
931                         if (unlikely(ret))
932                                 ret = onenand_recover_lsb(mtd, from, ret);
933                         onenand_update_bufferram(mtd, from, !ret);
934                         if (mtd_is_eccerr(ret))
935                                 ret = 0;
936                 }
937
938                 /* See if we are done */
939                 read += thislen;
940                 if (read == len)
941                         break;
942                 /* Set up for next read from bufferRAM */
943                 if (unlikely(boundary))
944                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
945                 if (!ONENAND_IS_4KB_PAGE(this))
946                         ONENAND_SET_NEXT_BUFFERRAM(this);
947                 buf += thislen;
948                 thislen = min_t(int, writesize, len - read);
949                 column = 0;
950
951                 if (!ONENAND_IS_4KB_PAGE(this)) {
952                         /* Now wait for load */
953                         ret = this->wait(mtd, FL_READING);
954                         onenand_update_bufferram(mtd, from, !ret);
955                         if (mtd_is_eccerr(ret))
956                                 ret = 0;
957                 }
958         }
959
960         /*
961          * Return success, if no ECC failures, else -EBADMSG
962          * fs driver will take care of that, because
963          * retlen == desired len and result == -EBADMSG
964          */
965         ops->retlen = read;
966         ops->oobretlen = oobread;
967
968         if (ret)
969                 return ret;
970
971         if (mtd->ecc_stats.failed - stats.failed)
972                 return -EBADMSG;
973
974         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
975         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
976 }
977
978 /**
979  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
980  * @param mtd           MTD device structure
981  * @param from          offset to read from
982  * @param ops           oob operation description structure
983  *
984  * OneNAND read out-of-band data from the spare area
985  */
986 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
987                 struct mtd_oob_ops *ops)
988 {
989         struct onenand_chip *this = mtd->priv;
990         struct mtd_ecc_stats stats;
991         int read = 0, thislen, column, oobsize;
992         size_t len = ops->ooblen;
993         unsigned int mode = ops->mode;
994         u_char *buf = ops->oobbuf;
995         int ret = 0, readcmd;
996
997         from += ops->ooboffs;
998
999         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1000
1001         /* Initialize return length value */
1002         ops->oobretlen = 0;
1003
1004         if (mode == MTD_OPS_AUTO_OOB)
1005                 oobsize = this->ecclayout->oobavail;
1006         else
1007                 oobsize = mtd->oobsize;
1008
1009         column = from & (mtd->oobsize - 1);
1010
1011         if (unlikely(column >= oobsize)) {
1012                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1013                 return -EINVAL;
1014         }
1015
1016         /* Do not allow reads past end of device */
1017         if (unlikely(from >= mtd->size ||
1018                 column + len > ((mtd->size >> this->page_shift) -
1019                                 (from >> this->page_shift)) * oobsize)) {
1020                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1021                 return -EINVAL;
1022         }
1023
1024         stats = mtd->ecc_stats;
1025
1026         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1027                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1028
1029         while (read < len) {
1030                 thislen = oobsize - column;
1031                 thislen = min_t(int, thislen, len);
1032
1033                 this->spare_buf = buf;
1034                 this->command(mtd, readcmd, from, mtd->oobsize);
1035
1036                 onenand_update_bufferram(mtd, from, 0);
1037
1038                 ret = this->wait(mtd, FL_READING);
1039                 if (unlikely(ret))
1040                         ret = onenand_recover_lsb(mtd, from, ret);
1041
1042                 if (ret && ret != -EBADMSG) {
1043                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1044                         break;
1045                 }
1046
1047                 if (mode == MTD_OPS_AUTO_OOB)
1048                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1049                 else
1050                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1051
1052                 read += thislen;
1053
1054                 if (read == len)
1055                         break;
1056
1057                 buf += thislen;
1058
1059                 /* Read more? */
1060                 if (read < len) {
1061                         /* Page size */
1062                         from += mtd->writesize;
1063                         column = 0;
1064                 }
1065         }
1066
1067         ops->oobretlen = read;
1068
1069         if (ret)
1070                 return ret;
1071
1072         if (mtd->ecc_stats.failed - stats.failed)
1073                 return -EBADMSG;
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1080  * @param mtd           MTD device structure
1081  * @param from          offset to read from
1082  * @param len           number of bytes to read
1083  * @param retlen        pointer to variable to store the number of read bytes
1084  * @param buf           the databuffer to put data
1085  *
1086  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1087 */
1088 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089                  size_t * retlen, u_char * buf)
1090 {
1091         struct mtd_oob_ops ops = {
1092                 .len    = len,
1093                 .ooblen = 0,
1094                 .datbuf = buf,
1095                 .oobbuf = NULL,
1096         };
1097         int ret;
1098
1099         onenand_get_device(mtd, FL_READING);
1100         ret = onenand_read_ops_nolock(mtd, from, &ops);
1101         onenand_release_device(mtd);
1102
1103         *retlen = ops.retlen;
1104         return ret;
1105 }
1106
1107 /**
1108  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1109  * @param mtd           MTD device structure
1110  * @param from          offset to read from
1111  * @param ops           oob operations description structure
1112  *
1113  * OneNAND main and/or out-of-band
1114  */
1115 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1116                         struct mtd_oob_ops *ops)
1117 {
1118         int ret;
1119
1120         switch (ops->mode) {
1121         case MTD_OPS_PLACE_OOB:
1122         case MTD_OPS_AUTO_OOB:
1123                 break;
1124         case MTD_OPS_RAW:
1125                 /* Not implemented yet */
1126         default:
1127                 return -EINVAL;
1128         }
1129
1130         onenand_get_device(mtd, FL_READING);
1131         if (ops->datbuf)
1132                 ret = onenand_read_ops_nolock(mtd, from, ops);
1133         else
1134                 ret = onenand_read_oob_nolock(mtd, from, ops);
1135         onenand_release_device(mtd);
1136
1137         return ret;
1138 }
1139
1140 /**
1141  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1142  * @param mtd           MTD device structure
1143  * @param state         state to select the max. timeout value
1144  *
1145  * Wait for command done.
1146  */
1147 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1148 {
1149         struct onenand_chip *this = mtd->priv;
1150         unsigned int flags = ONENAND_INT_MASTER;
1151         unsigned int interrupt;
1152         unsigned int ctrl;
1153
1154         while (1) {
1155                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1156                 if (interrupt & flags)
1157                         break;
1158         }
1159
1160         /* To get correct interrupt status in timeout case */
1161         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1162         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1163
1164         if (interrupt & ONENAND_INT_READ) {
1165                 int ecc = onenand_read_ecc(this);
1166                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1167                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1168                                 ", controller = 0x%04x\n", ecc, ctrl);
1169                         return ONENAND_BBT_READ_ERROR;
1170                 }
1171         } else {
1172                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1173                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1174                 return ONENAND_BBT_READ_FATAL_ERROR;
1175         }
1176
1177         /* Initial bad block case: 0x2400 or 0x0400 */
1178         if (ctrl & ONENAND_CTRL_ERROR) {
1179                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1180                 return ONENAND_BBT_READ_ERROR;
1181         }
1182
1183         return 0;
1184 }
1185
1186 /**
1187  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1188  * @param mtd           MTD device structure
1189  * @param from          offset to read from
1190  * @param ops           oob operation description structure
1191  *
1192  * OneNAND read out-of-band data from the spare area for bbt scan
1193  */
1194 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1195                 struct mtd_oob_ops *ops)
1196 {
1197         struct onenand_chip *this = mtd->priv;
1198         int read = 0, thislen, column;
1199         int ret = 0, readcmd;
1200         size_t len = ops->ooblen;
1201         u_char *buf = ops->oobbuf;
1202
1203         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1204
1205         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1206                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1207
1208         /* Initialize return value */
1209         ops->oobretlen = 0;
1210
1211         /* Do not allow reads past end of device */
1212         if (unlikely((from + len) > mtd->size)) {
1213                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1214                 return ONENAND_BBT_READ_FATAL_ERROR;
1215         }
1216
1217         /* Grab the lock and see if the device is available */
1218         onenand_get_device(mtd, FL_READING);
1219
1220         column = from & (mtd->oobsize - 1);
1221
1222         while (read < len) {
1223
1224                 thislen = mtd->oobsize - column;
1225                 thislen = min_t(int, thislen, len);
1226
1227                 this->spare_buf = buf;
1228                 this->command(mtd, readcmd, from, mtd->oobsize);
1229
1230                 onenand_update_bufferram(mtd, from, 0);
1231
1232                 ret = this->bbt_wait(mtd, FL_READING);
1233                 if (unlikely(ret))
1234                         ret = onenand_recover_lsb(mtd, from, ret);
1235
1236                 if (ret)
1237                         break;
1238
1239                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1240                 read += thislen;
1241                 if (read == len)
1242                         break;
1243
1244                 buf += thislen;
1245
1246                 /* Read more? */
1247                 if (read < len) {
1248                         /* Update Page size */
1249                         from += this->writesize;
1250                         column = 0;
1251                 }
1252         }
1253
1254         /* Deselect and wake up anyone waiting on the device */
1255         onenand_release_device(mtd);
1256
1257         ops->oobretlen = read;
1258         return ret;
1259 }
1260
1261
1262 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1263 /**
1264  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1265  * @param mtd           MTD device structure
1266  * @param buf           the databuffer to verify
1267  * @param to            offset to read from
1268  */
1269 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1270 {
1271         struct onenand_chip *this = mtd->priv;
1272         u_char *oob_buf = this->oob_buf;
1273         int status, i, readcmd;
1274
1275         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1276                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1277
1278         this->command(mtd, readcmd, to, mtd->oobsize);
1279         onenand_update_bufferram(mtd, to, 0);
1280         status = this->wait(mtd, FL_READING);
1281         if (status)
1282                 return status;
1283
1284         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1285         for (i = 0; i < mtd->oobsize; i++)
1286                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1287                         return -EBADMSG;
1288
1289         return 0;
1290 }
1291
1292 /**
1293  * onenand_verify - [GENERIC] verify the chip contents after a write
1294  * @param mtd          MTD device structure
1295  * @param buf          the databuffer to verify
1296  * @param addr         offset to read from
1297  * @param len          number of bytes to read and compare
1298  */
1299 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1300 {
1301         struct onenand_chip *this = mtd->priv;
1302         void __iomem *dataram;
1303         int ret = 0;
1304         int thislen, column;
1305
1306         while (len != 0) {
1307                 thislen = min_t(int, this->writesize, len);
1308                 column = addr & (this->writesize - 1);
1309                 if (column + thislen > this->writesize)
1310                         thislen = this->writesize - column;
1311
1312                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1313
1314                 onenand_update_bufferram(mtd, addr, 0);
1315
1316                 ret = this->wait(mtd, FL_READING);
1317                 if (ret)
1318                         return ret;
1319
1320                 onenand_update_bufferram(mtd, addr, 1);
1321
1322                 dataram = this->base + ONENAND_DATARAM;
1323                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1324
1325                 if (memcmp(buf, dataram + column, thislen))
1326                         return -EBADMSG;
1327
1328                 len -= thislen;
1329                 buf += thislen;
1330                 addr += thislen;
1331         }
1332
1333         return 0;
1334 }
1335 #else
1336 #define onenand_verify(...)             (0)
1337 #define onenand_verify_oob(...)         (0)
1338 #endif
1339
1340 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1341
1342 /**
1343  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1344  * @param mtd           MTD device structure
1345  * @param oob_buf       oob buffer
1346  * @param buf           source address
1347  * @param column        oob offset to write to
1348  * @param thislen       oob length to write
1349  */
1350 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1351                 const u_char *buf, int column, int thislen)
1352 {
1353         struct onenand_chip *this = mtd->priv;
1354         struct nand_oobfree *free;
1355         int writecol = column;
1356         int writeend = column + thislen;
1357         int lastgap = 0;
1358         unsigned int i;
1359
1360         free = this->ecclayout->oobfree;
1361         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1362              i++, free++) {
1363                 if (writecol >= lastgap)
1364                         writecol += free->offset - lastgap;
1365                 if (writeend >= lastgap)
1366                         writeend += free->offset - lastgap;
1367                 lastgap = free->offset + free->length;
1368         }
1369         free = this->ecclayout->oobfree;
1370         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1371              i++, free++) {
1372                 int free_end = free->offset + free->length;
1373                 if (free->offset < writeend && free_end > writecol) {
1374                         int st = max_t(int,free->offset,writecol);
1375                         int ed = min_t(int,free_end,writeend);
1376                         int n = ed - st;
1377                         memcpy(oob_buf + st, buf, n);
1378                         buf += n;
1379                 } else if (column == 0)
1380                         break;
1381         }
1382         return 0;
1383 }
1384
1385 /**
1386  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1387  * @param mtd           MTD device structure
1388  * @param to            offset to write to
1389  * @param ops           oob operation description structure
1390  *
1391  * Write main and/or oob with ECC
1392  */
1393 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1394                 struct mtd_oob_ops *ops)
1395 {
1396         struct onenand_chip *this = mtd->priv;
1397         int written = 0, column, thislen, subpage;
1398         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1399         size_t len = ops->len;
1400         size_t ooblen = ops->ooblen;
1401         const u_char *buf = ops->datbuf;
1402         const u_char *oob = ops->oobbuf;
1403         u_char *oobbuf;
1404         int ret = 0;
1405
1406         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1407
1408         /* Initialize retlen, in case of early exit */
1409         ops->retlen = 0;
1410         ops->oobretlen = 0;
1411
1412         /* Reject writes, which are not page aligned */
1413         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1414                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1415                 return -EINVAL;
1416         }
1417
1418         if (ops->mode == MTD_OPS_AUTO_OOB)
1419                 oobsize = this->ecclayout->oobavail;
1420         else
1421                 oobsize = mtd->oobsize;
1422
1423         oobcolumn = to & (mtd->oobsize - 1);
1424
1425         column = to & (mtd->writesize - 1);
1426
1427         /* Loop until all data write */
1428         while (written < len) {
1429                 u_char *wbuf = (u_char *) buf;
1430
1431                 thislen = min_t(int, mtd->writesize - column, len - written);
1432                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1433
1434                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1435
1436                 /* Partial page write */
1437                 subpage = thislen < mtd->writesize;
1438                 if (subpage) {
1439                         memset(this->page_buf, 0xff, mtd->writesize);
1440                         memcpy(this->page_buf + column, buf, thislen);
1441                         wbuf = this->page_buf;
1442                 }
1443
1444                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1445
1446                 if (oob) {
1447                         oobbuf = this->oob_buf;
1448
1449                         /* We send data to spare ram with oobsize
1450                          *                          * to prevent byte access */
1451                         memset(oobbuf, 0xff, mtd->oobsize);
1452                         if (ops->mode == MTD_OPS_AUTO_OOB)
1453                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1454                         else
1455                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1456
1457                         oobwritten += thisooblen;
1458                         oob += thisooblen;
1459                         oobcolumn = 0;
1460                 } else
1461                         oobbuf = (u_char *) ffchars;
1462
1463                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1464
1465                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1466
1467                 ret = this->wait(mtd, FL_WRITING);
1468
1469                 /* In partial page write we don't update bufferram */
1470                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1471                 if (ONENAND_IS_2PLANE(this)) {
1472                         ONENAND_SET_BUFFERRAM1(this);
1473                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1474                 }
1475
1476                 if (ret) {
1477                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1478                         break;
1479                 }
1480
1481                 /* Only check verify write turn on */
1482                 ret = onenand_verify(mtd, buf, to, thislen);
1483                 if (ret) {
1484                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1485                         break;
1486                 }
1487
1488                 written += thislen;
1489
1490                 if (written == len)
1491                         break;
1492
1493                 column = 0;
1494                 to += thislen;
1495                 buf += thislen;
1496         }
1497
1498         ops->retlen = written;
1499
1500         return ret;
1501 }
1502
1503 /**
1504  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1505  * @param mtd           MTD device structure
1506  * @param to            offset to write to
1507  * @param len           number of bytes to write
1508  * @param retlen        pointer to variable to store the number of written bytes
1509  * @param buf           the data to write
1510  * @param mode          operation mode
1511  *
1512  * OneNAND write out-of-band
1513  */
1514 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1515                 struct mtd_oob_ops *ops)
1516 {
1517         struct onenand_chip *this = mtd->priv;
1518         int column, ret = 0, oobsize;
1519         int written = 0, oobcmd;
1520         u_char *oobbuf;
1521         size_t len = ops->ooblen;
1522         const u_char *buf = ops->oobbuf;
1523         unsigned int mode = ops->mode;
1524
1525         to += ops->ooboffs;
1526
1527         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1528
1529         /* Initialize retlen, in case of early exit */
1530         ops->oobretlen = 0;
1531
1532         if (mode == MTD_OPS_AUTO_OOB)
1533                 oobsize = this->ecclayout->oobavail;
1534         else
1535                 oobsize = mtd->oobsize;
1536
1537         column = to & (mtd->oobsize - 1);
1538
1539         if (unlikely(column >= oobsize)) {
1540                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1541                 return -EINVAL;
1542         }
1543
1544         /* For compatibility with NAND: Do not allow write past end of page */
1545         if (unlikely(column + len > oobsize)) {
1546                 printk(KERN_ERR "onenand_write_oob_nolock: "
1547                                 "Attempt to write past end of page\n");
1548                 return -EINVAL;
1549         }
1550
1551         /* Do not allow reads past end of device */
1552         if (unlikely(to >= mtd->size ||
1553                                 column + len > ((mtd->size >> this->page_shift) -
1554                                         (to >> this->page_shift)) * oobsize)) {
1555                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1556                 return -EINVAL;
1557         }
1558
1559         oobbuf = this->oob_buf;
1560
1561         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1562                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1563
1564         /* Loop until all data write */
1565         while (written < len) {
1566                 int thislen = min_t(int, oobsize, len - written);
1567
1568                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1569
1570                 /* We send data to spare ram with oobsize
1571                  * to prevent byte access */
1572                 memset(oobbuf, 0xff, mtd->oobsize);
1573                 if (mode == MTD_OPS_AUTO_OOB)
1574                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1575                 else
1576                         memcpy(oobbuf + column, buf, thislen);
1577                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1578
1579                 if (ONENAND_IS_4KB_PAGE(this)) {
1580                         /* Set main area of DataRAM to 0xff*/
1581                         memset(this->page_buf, 0xff, mtd->writesize);
1582                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1583                                 this->page_buf, 0, mtd->writesize);
1584                 }
1585
1586                 this->command(mtd, oobcmd, to, mtd->oobsize);
1587
1588                 onenand_update_bufferram(mtd, to, 0);
1589                 if (ONENAND_IS_2PLANE(this)) {
1590                         ONENAND_SET_BUFFERRAM1(this);
1591                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1592                 }
1593
1594                 ret = this->wait(mtd, FL_WRITING);
1595                 if (ret) {
1596                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1597                         break;
1598                 }
1599
1600                 ret = onenand_verify_oob(mtd, oobbuf, to);
1601                 if (ret) {
1602                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1603                         break;
1604                 }
1605
1606                 written += thislen;
1607                 if (written == len)
1608                         break;
1609
1610                 to += mtd->writesize;
1611                 buf += thislen;
1612                 column = 0;
1613         }
1614
1615         ops->oobretlen = written;
1616
1617         return ret;
1618 }
1619
1620 /**
1621  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1622  * @param mtd           MTD device structure
1623  * @param to            offset to write to
1624  * @param len           number of bytes to write
1625  * @param retlen        pointer to variable to store the number of written bytes
1626  * @param buf           the data to write
1627  *
1628  * Write with ECC
1629  */
1630 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1631                   size_t * retlen, const u_char * buf)
1632 {
1633         struct mtd_oob_ops ops = {
1634                 .len    = len,
1635                 .ooblen = 0,
1636                 .datbuf = (u_char *) buf,
1637                 .oobbuf = NULL,
1638         };
1639         int ret;
1640
1641         onenand_get_device(mtd, FL_WRITING);
1642         ret = onenand_write_ops_nolock(mtd, to, &ops);
1643         onenand_release_device(mtd);
1644
1645         *retlen = ops.retlen;
1646         return ret;
1647 }
1648
1649 /**
1650  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1651  * @param mtd           MTD device structure
1652  * @param to            offset to write to
1653  * @param ops           oob operation description structure
1654  *
1655  * OneNAND write main and/or out-of-band
1656  */
1657 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1658                         struct mtd_oob_ops *ops)
1659 {
1660         int ret;
1661
1662         switch (ops->mode) {
1663         case MTD_OPS_PLACE_OOB:
1664         case MTD_OPS_AUTO_OOB:
1665                 break;
1666         case MTD_OPS_RAW:
1667                 /* Not implemented yet */
1668         default:
1669                 return -EINVAL;
1670         }
1671
1672         onenand_get_device(mtd, FL_WRITING);
1673         if (ops->datbuf)
1674                 ret = onenand_write_ops_nolock(mtd, to, ops);
1675         else
1676                 ret = onenand_write_oob_nolock(mtd, to, ops);
1677         onenand_release_device(mtd);
1678
1679         return ret;
1680
1681 }
1682
1683 /**
1684  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1685  * @param mtd           MTD device structure
1686  * @param ofs           offset from device start
1687  * @param allowbbt      1, if its allowed to access the bbt area
1688  *
1689  * Check, if the block is bad, Either by reading the bad block table or
1690  * calling of the scan function.
1691  */
1692 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1693 {
1694         struct onenand_chip *this = mtd->priv;
1695         struct bbm_info *bbm = this->bbm;
1696
1697         /* Return info from the table */
1698         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1699 }
1700
1701
1702 /**
1703  * onenand_erase - [MTD Interface] erase block(s)
1704  * @param mtd           MTD device structure
1705  * @param instr         erase instruction
1706  *
1707  * Erase one ore more blocks
1708  */
1709 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1710 {
1711         struct onenand_chip *this = mtd->priv;
1712         unsigned int block_size;
1713         loff_t addr = instr->addr;
1714         unsigned int len = instr->len;
1715         int ret = 0, i;
1716         struct mtd_erase_region_info *region = NULL;
1717         unsigned int region_end = 0;
1718
1719         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1720                         (unsigned int) addr, len);
1721
1722         if (FLEXONENAND(this)) {
1723                 /* Find the eraseregion of this address */
1724                 i = flexonenand_region(mtd, addr);
1725                 region = &mtd->eraseregions[i];
1726
1727                 block_size = region->erasesize;
1728                 region_end = region->offset
1729                         + region->erasesize * region->numblocks;
1730
1731                 /* Start address within region must align on block boundary.
1732                  * Erase region's start offset is always block start address.
1733                  */
1734                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1735                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1736                                 " Unaligned address\n");
1737                         return -EINVAL;
1738                 }
1739         } else {
1740                 block_size = 1 << this->erase_shift;
1741
1742                 /* Start address must align on block boundary */
1743                 if (unlikely(addr & (block_size - 1))) {
1744                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1745                                                 "Unaligned address\n");
1746                         return -EINVAL;
1747                 }
1748         }
1749
1750         /* Length must align on block boundary */
1751         if (unlikely(len & (block_size - 1))) {
1752                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1753                          "onenand_erase: Length not block aligned\n");
1754                 return -EINVAL;
1755         }
1756
1757         /* Grab the lock and see if the device is available */
1758         onenand_get_device(mtd, FL_ERASING);
1759
1760         /* Loop throught the pages */
1761         instr->state = MTD_ERASING;
1762
1763         while (len) {
1764
1765                 /* Check if we have a bad block, we do not erase bad blocks */
1766                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1767                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1768                                 " a bad block at addr 0x%08x\n",
1769                                 (unsigned int) addr);
1770                         instr->state = MTD_ERASE_FAILED;
1771                         goto erase_exit;
1772                 }
1773
1774                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1775
1776                 onenand_invalidate_bufferram(mtd, addr, block_size);
1777
1778                 ret = this->wait(mtd, FL_ERASING);
1779                 /* Check, if it is write protected */
1780                 if (ret) {
1781                         if (ret == -EPERM)
1782                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1783                                           "Device is write protected!!!\n");
1784                         else
1785                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1786                                           "Failed erase, block %d\n",
1787                                         onenand_block(this, addr));
1788                         instr->state = MTD_ERASE_FAILED;
1789                         instr->fail_addr = addr;
1790
1791                         goto erase_exit;
1792                 }
1793
1794                 len -= block_size;
1795                 addr += block_size;
1796
1797                 if (addr == region_end) {
1798                         if (!len)
1799                                 break;
1800                         region++;
1801
1802                         block_size = region->erasesize;
1803                         region_end = region->offset
1804                                 + region->erasesize * region->numblocks;
1805
1806                         if (len & (block_size - 1)) {
1807                                 /* This has been checked at MTD
1808                                  * partitioning level. */
1809                                 printk("onenand_erase: Unaligned address\n");
1810                                 goto erase_exit;
1811                         }
1812                 }
1813         }
1814
1815         instr->state = MTD_ERASE_DONE;
1816
1817 erase_exit:
1818
1819         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1820         /* Do call back function */
1821         if (!ret)
1822                 mtd_erase_callback(instr);
1823
1824         /* Deselect and wake up anyone waiting on the device */
1825         onenand_release_device(mtd);
1826
1827         return ret;
1828 }
1829
1830 /**
1831  * onenand_sync - [MTD Interface] sync
1832  * @param mtd           MTD device structure
1833  *
1834  * Sync is actually a wait for chip ready function
1835  */
1836 void onenand_sync(struct mtd_info *mtd)
1837 {
1838         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1839
1840         /* Grab the lock and see if the device is available */
1841         onenand_get_device(mtd, FL_SYNCING);
1842
1843         /* Release it and go back */
1844         onenand_release_device(mtd);
1845 }
1846
1847 /**
1848  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1849  * @param mtd           MTD device structure
1850  * @param ofs           offset relative to mtd start
1851  *
1852  * Check whether the block is bad
1853  */
1854 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1855 {
1856         int ret;
1857
1858         /* Check for invalid offset */
1859         if (ofs > mtd->size)
1860                 return -EINVAL;
1861
1862         onenand_get_device(mtd, FL_READING);
1863         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1864         onenand_release_device(mtd);
1865         return ret;
1866 }
1867
1868 /**
1869  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1870  * @param mtd           MTD device structure
1871  * @param ofs           offset from device start
1872  *
1873  * This is the default implementation, which can be overridden by
1874  * a hardware specific driver.
1875  */
1876 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1877 {
1878         struct onenand_chip *this = mtd->priv;
1879         struct bbm_info *bbm = this->bbm;
1880         u_char buf[2] = {0, 0};
1881         struct mtd_oob_ops ops = {
1882                 .mode = MTD_OPS_PLACE_OOB,
1883                 .ooblen = 2,
1884                 .oobbuf = buf,
1885                 .ooboffs = 0,
1886         };
1887         int block;
1888
1889         /* Get block number */
1890         block = onenand_block(this, ofs);
1891         if (bbm->bbt)
1892                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1893
1894         /* We write two bytes, so we dont have to mess with 16 bit access */
1895         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1896         return onenand_write_oob_nolock(mtd, ofs, &ops);
1897 }
1898
1899 /**
1900  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1901  * @param mtd           MTD device structure
1902  * @param ofs           offset relative to mtd start
1903  *
1904  * Mark the block as bad
1905  */
1906 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1907 {
1908         int ret;
1909
1910         ret = onenand_block_isbad(mtd, ofs);
1911         if (ret) {
1912                 /* If it was bad already, return success and do nothing */
1913                 if (ret > 0)
1914                         return 0;
1915                 return ret;
1916         }
1917
1918         ret = mtd_block_markbad(mtd, ofs);
1919         return ret;
1920 }
1921
1922 /**
1923  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1924  * @param mtd           MTD device structure
1925  * @param ofs           offset relative to mtd start
1926  * @param len           number of bytes to lock or unlock
1927  * @param cmd           lock or unlock command
1928  *
1929  * Lock or unlock one or more blocks
1930  */
1931 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1932 {
1933         struct onenand_chip *this = mtd->priv;
1934         int start, end, block, value, status;
1935
1936         start = onenand_block(this, ofs);
1937         end = onenand_block(this, ofs + len);
1938
1939         /* Continuous lock scheme */
1940         if (this->options & ONENAND_HAS_CONT_LOCK) {
1941                 /* Set start block address */
1942                 this->write_word(start,
1943                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1944                 /* Set end block address */
1945                 this->write_word(end - 1,
1946                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1947                 /* Write unlock command */
1948                 this->command(mtd, cmd, 0, 0);
1949
1950                 /* There's no return value */
1951                 this->wait(mtd, FL_UNLOCKING);
1952
1953                 /* Sanity check */
1954                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1955                        & ONENAND_CTRL_ONGO)
1956                         continue;
1957
1958                 /* Check lock status */
1959                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1960                 if (!(status & ONENAND_WP_US))
1961                         printk(KERN_ERR "wp status = 0x%x\n", status);
1962
1963                 return 0;
1964         }
1965
1966         /* Block lock scheme */
1967         for (block = start; block < end; block++) {
1968                 /* Set block address */
1969                 value = onenand_block_address(this, block);
1970                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1971                 /* Select DataRAM for DDP */
1972                 value = onenand_bufferram_address(this, block);
1973                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1974
1975                 /* Set start block address */
1976                 this->write_word(block,
1977                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1978                 /* Write unlock command */
1979                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1980
1981                 /* There's no return value */
1982                 this->wait(mtd, FL_UNLOCKING);
1983
1984                 /* Sanity check */
1985                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1986                        & ONENAND_CTRL_ONGO)
1987                         continue;
1988
1989                 /* Check lock status */
1990                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1991                 if (!(status & ONENAND_WP_US))
1992                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1993                                block, status);
1994         }
1995
1996         return 0;
1997 }
1998
1999 #ifdef ONENAND_LINUX
2000 /**
2001  * onenand_lock - [MTD Interface] Lock block(s)
2002  * @param mtd           MTD device structure
2003  * @param ofs           offset relative to mtd start
2004  * @param len           number of bytes to unlock
2005  *
2006  * Lock one or more blocks
2007  */
2008 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2009 {
2010         int ret;
2011
2012         onenand_get_device(mtd, FL_LOCKING);
2013         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2014         onenand_release_device(mtd);
2015         return ret;
2016 }
2017
2018 /**
2019  * onenand_unlock - [MTD Interface] Unlock block(s)
2020  * @param mtd           MTD device structure
2021  * @param ofs           offset relative to mtd start
2022  * @param len           number of bytes to unlock
2023  *
2024  * Unlock one or more blocks
2025  */
2026 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2027 {
2028         int ret;
2029
2030         onenand_get_device(mtd, FL_LOCKING);
2031         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2032         onenand_release_device(mtd);
2033         return ret;
2034 }
2035 #endif
2036
2037 /**
2038  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2039  * @param this          onenand chip data structure
2040  *
2041  * Check lock status
2042  */
2043 static int onenand_check_lock_status(struct onenand_chip *this)
2044 {
2045         unsigned int value, block, status;
2046         unsigned int end;
2047
2048         end = this->chipsize >> this->erase_shift;
2049         for (block = 0; block < end; block++) {
2050                 /* Set block address */
2051                 value = onenand_block_address(this, block);
2052                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2053                 /* Select DataRAM for DDP */
2054                 value = onenand_bufferram_address(this, block);
2055                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2056                 /* Set start block address */
2057                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2058
2059                 /* Check lock status */
2060                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2061                 if (!(status & ONENAND_WP_US)) {
2062                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2063                         return 0;
2064                 }
2065         }
2066
2067         return 1;
2068 }
2069
2070 /**
2071  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2072  * @param mtd           MTD device structure
2073  *
2074  * Unlock all blocks
2075  */
2076 static void onenand_unlock_all(struct mtd_info *mtd)
2077 {
2078         struct onenand_chip *this = mtd->priv;
2079         loff_t ofs = 0;
2080         size_t len = mtd->size;
2081
2082         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2083                 /* Set start block address */
2084                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2085                 /* Write unlock command */
2086                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2087
2088                 /* There's no return value */
2089                 this->wait(mtd, FL_LOCKING);
2090
2091                 /* Sanity check */
2092                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2093                                 & ONENAND_CTRL_ONGO)
2094                         continue;
2095
2096                 /* Check lock status */
2097                 if (onenand_check_lock_status(this))
2098                         return;
2099
2100                 /* Workaround for all block unlock in DDP */
2101                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2102                         /* All blocks on another chip */
2103                         ofs = this->chipsize >> 1;
2104                         len = this->chipsize >> 1;
2105                 }
2106         }
2107
2108         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2109 }
2110
2111
2112 /**
2113  * onenand_check_features - Check and set OneNAND features
2114  * @param mtd           MTD data structure
2115  *
2116  * Check and set OneNAND features
2117  * - lock scheme
2118  * - two plane
2119  */
2120 static void onenand_check_features(struct mtd_info *mtd)
2121 {
2122         struct onenand_chip *this = mtd->priv;
2123         unsigned int density, process;
2124
2125         /* Lock scheme depends on density and process */
2126         density = onenand_get_density(this->device_id);
2127         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2128
2129         /* Lock scheme */
2130         switch (density) {
2131         case ONENAND_DEVICE_DENSITY_4Gb:
2132                 if (ONENAND_IS_DDP(this))
2133                         this->options |= ONENAND_HAS_2PLANE;
2134                 else
2135                         this->options |= ONENAND_HAS_4KB_PAGE;
2136
2137         case ONENAND_DEVICE_DENSITY_2Gb:
2138                 /* 2Gb DDP don't have 2 plane */
2139                 if (!ONENAND_IS_DDP(this))
2140                         this->options |= ONENAND_HAS_2PLANE;
2141                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2142
2143         case ONENAND_DEVICE_DENSITY_1Gb:
2144                 /* A-Die has all block unlock */
2145                 if (process)
2146                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2147                 break;
2148
2149         default:
2150                 /* Some OneNAND has continuous lock scheme */
2151                 if (!process)
2152                         this->options |= ONENAND_HAS_CONT_LOCK;
2153                 break;
2154         }
2155
2156         if (ONENAND_IS_MLC(this))
2157                 this->options |= ONENAND_HAS_4KB_PAGE;
2158
2159         if (ONENAND_IS_4KB_PAGE(this))
2160                 this->options &= ~ONENAND_HAS_2PLANE;
2161
2162         if (FLEXONENAND(this)) {
2163                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2164                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2165         }
2166
2167         if (this->options & ONENAND_HAS_CONT_LOCK)
2168                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2169         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2170                 printk(KERN_DEBUG "Chip support all block unlock\n");
2171         if (this->options & ONENAND_HAS_2PLANE)
2172                 printk(KERN_DEBUG "Chip has 2 plane\n");
2173         if (this->options & ONENAND_HAS_4KB_PAGE)
2174                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2175
2176 }
2177
2178 /**
2179  * onenand_print_device_info - Print device ID
2180  * @param device        device ID
2181  *
2182  * Print device ID
2183  */
2184 char *onenand_print_device_info(int device, int version)
2185 {
2186         int vcc, demuxed, ddp, density, flexonenand;
2187         char *dev_info = malloc(80);
2188         char *p = dev_info;
2189
2190         vcc = device & ONENAND_DEVICE_VCC_MASK;
2191         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2192         ddp = device & ONENAND_DEVICE_IS_DDP;
2193         density = onenand_get_density(device);
2194         flexonenand = device & DEVICE_IS_FLEXONENAND;
2195         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2196                demuxed ? "" : "Muxed ",
2197                flexonenand ? "Flex-" : "",
2198                ddp ? "(DDP)" : "",
2199                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2200
2201         sprintf(p, "\nOneNAND version = 0x%04x", version);
2202         printk("%s\n", dev_info);
2203
2204         return dev_info;
2205 }
2206
2207 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2208         {ONENAND_MFR_NUMONYX, "Numonyx"},
2209         {ONENAND_MFR_SAMSUNG, "Samsung"},
2210 };
2211
2212 /**
2213  * onenand_check_maf - Check manufacturer ID
2214  * @param manuf         manufacturer ID
2215  *
2216  * Check manufacturer ID
2217  */
2218 static int onenand_check_maf(int manuf)
2219 {
2220         int size = ARRAY_SIZE(onenand_manuf_ids);
2221         int i;
2222 #ifdef ONENAND_DEBUG
2223         char *name;
2224 #endif
2225
2226         for (i = 0; i < size; i++)
2227                 if (manuf == onenand_manuf_ids[i].id)
2228                         break;
2229
2230 #ifdef ONENAND_DEBUG
2231         if (i < size)
2232                 name = onenand_manuf_ids[i].name;
2233         else
2234                 name = "Unknown";
2235
2236         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2237 #endif
2238
2239         return i == size;
2240 }
2241
2242 /**
2243 * flexonenand_get_boundary      - Reads the SLC boundary
2244 * @param onenand_info           - onenand info structure
2245 *
2246 * Fill up boundary[] field in onenand_chip
2247 **/
2248 static int flexonenand_get_boundary(struct mtd_info *mtd)
2249 {
2250         struct onenand_chip *this = mtd->priv;
2251         unsigned int die, bdry;
2252         int syscfg, locked;
2253
2254         /* Disable ECC */
2255         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2256         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2257
2258         for (die = 0; die < this->dies; die++) {
2259                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2260                 this->wait(mtd, FL_SYNCING);
2261
2262                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2263                 this->wait(mtd, FL_READING);
2264
2265                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2266                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2267                         locked = 0;
2268                 else
2269                         locked = 1;
2270                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2271
2272                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2273                 this->wait(mtd, FL_RESETING);
2274
2275                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2276                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2277         }
2278
2279         /* Enable ECC */
2280         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2281         return 0;
2282 }
2283
2284 /**
2285  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2286  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2287  *                        mtd->eraseregions
2288  * @param mtd           - MTD device structure
2289  */
2290 static void flexonenand_get_size(struct mtd_info *mtd)
2291 {
2292         struct onenand_chip *this = mtd->priv;
2293         int die, i, eraseshift, density;
2294         int blksperdie, maxbdry;
2295         loff_t ofs;
2296
2297         density = onenand_get_density(this->device_id);
2298         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2299         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2300         maxbdry = blksperdie - 1;
2301         eraseshift = this->erase_shift - 1;
2302
2303         mtd->numeraseregions = this->dies << 1;
2304
2305         /* This fills up the device boundary */
2306         flexonenand_get_boundary(mtd);
2307         die = 0;
2308         ofs = 0;
2309         i = -1;
2310         for (; die < this->dies; die++) {
2311                 if (!die || this->boundary[die-1] != maxbdry) {
2312                         i++;
2313                         mtd->eraseregions[i].offset = ofs;
2314                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2315                         mtd->eraseregions[i].numblocks =
2316                                                         this->boundary[die] + 1;
2317                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2318                         eraseshift++;
2319                 } else {
2320                         mtd->numeraseregions -= 1;
2321                         mtd->eraseregions[i].numblocks +=
2322                                                         this->boundary[die] + 1;
2323                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2324                 }
2325                 if (this->boundary[die] != maxbdry) {
2326                         i++;
2327                         mtd->eraseregions[i].offset = ofs;
2328                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2329                         mtd->eraseregions[i].numblocks = maxbdry ^
2330                                                          this->boundary[die];
2331                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2332                         eraseshift--;
2333                 } else
2334                         mtd->numeraseregions -= 1;
2335         }
2336
2337         /* Expose MLC erase size except when all blocks are SLC */
2338         mtd->erasesize = 1 << this->erase_shift;
2339         if (mtd->numeraseregions == 1)
2340                 mtd->erasesize >>= 1;
2341
2342         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2343         for (i = 0; i < mtd->numeraseregions; i++)
2344                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2345                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2346                         mtd->eraseregions[i].erasesize,
2347                         mtd->eraseregions[i].numblocks);
2348
2349         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2350                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2351                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2352                                                  << (this->erase_shift - 1);
2353                 mtd->size += this->diesize[die];
2354         }
2355 }
2356
2357 /**
2358  * flexonenand_check_blocks_erased - Check if blocks are erased
2359  * @param mtd_info      - mtd info structure
2360  * @param start         - first erase block to check
2361  * @param end           - last erase block to check
2362  *
2363  * Converting an unerased block from MLC to SLC
2364  * causes byte values to change. Since both data and its ECC
2365  * have changed, reads on the block give uncorrectable error.
2366  * This might lead to the block being detected as bad.
2367  *
2368  * Avoid this by ensuring that the block to be converted is
2369  * erased.
2370  */
2371 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2372                                         int start, int end)
2373 {
2374         struct onenand_chip *this = mtd->priv;
2375         int i, ret;
2376         int block;
2377         struct mtd_oob_ops ops = {
2378                 .mode = MTD_OPS_PLACE_OOB,
2379                 .ooboffs = 0,
2380                 .ooblen = mtd->oobsize,
2381                 .datbuf = NULL,
2382                 .oobbuf = this->oob_buf,
2383         };
2384         loff_t addr;
2385
2386         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2387
2388         for (block = start; block <= end; block++) {
2389                 addr = flexonenand_addr(this, block);
2390                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2391                         continue;
2392
2393                 /*
2394                  * Since main area write results in ECC write to spare,
2395                  * it is sufficient to check only ECC bytes for change.
2396                  */
2397                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2398                 if (ret)
2399                         return ret;
2400
2401                 for (i = 0; i < mtd->oobsize; i++)
2402                         if (this->oob_buf[i] != 0xff)
2403                                 break;
2404
2405                 if (i != mtd->oobsize) {
2406                         printk(KERN_WARNING "Block %d not erased.\n", block);
2407                         return 1;
2408                 }
2409         }
2410
2411         return 0;
2412 }
2413
2414 /**
2415  * flexonenand_set_boundary     - Writes the SLC boundary
2416  * @param mtd                   - mtd info structure
2417  */
2418 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2419                                     int boundary, int lock)
2420 {
2421         struct onenand_chip *this = mtd->priv;
2422         int ret, density, blksperdie, old, new, thisboundary;
2423         loff_t addr;
2424
2425         if (die >= this->dies)
2426                 return -EINVAL;
2427
2428         if (boundary == this->boundary[die])
2429                 return 0;
2430
2431         density = onenand_get_density(this->device_id);
2432         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2433         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2434
2435         if (boundary >= blksperdie) {
2436                 printk("flexonenand_set_boundary:"
2437                         "Invalid boundary value. "
2438                         "Boundary not changed.\n");
2439                 return -EINVAL;
2440         }
2441
2442         /* Check if converting blocks are erased */
2443         old = this->boundary[die] + (die * this->density_mask);
2444         new = boundary + (die * this->density_mask);
2445         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2446                                                 + 1, max(old, new));
2447         if (ret) {
2448                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2449                 return ret;
2450         }
2451
2452         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2453         this->wait(mtd, FL_SYNCING);
2454
2455         /* Check is boundary is locked */
2456         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2457         ret = this->wait(mtd, FL_READING);
2458
2459         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2460         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2461                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2462                 goto out;
2463         }
2464
2465         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2466                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2467
2468         boundary &= FLEXONENAND_PI_MASK;
2469         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2470
2471         addr = die ? this->diesize[0] : 0;
2472         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2473         ret = this->wait(mtd, FL_ERASING);
2474         if (ret) {
2475                 printk("flexonenand_set_boundary:"
2476                         "Failed PI erase for Die %d\n", die);
2477                 goto out;
2478         }
2479
2480         this->write_word(boundary, this->base + ONENAND_DATARAM);
2481         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2482         ret = this->wait(mtd, FL_WRITING);
2483         if (ret) {
2484                 printk("flexonenand_set_boundary:"
2485                         "Failed PI write for Die %d\n", die);
2486                 goto out;
2487         }
2488
2489         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2490         ret = this->wait(mtd, FL_WRITING);
2491 out:
2492         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2493         this->wait(mtd, FL_RESETING);
2494         if (!ret)
2495                 /* Recalculate device size on boundary change*/
2496                 flexonenand_get_size(mtd);
2497
2498         return ret;
2499 }
2500
2501 /**
2502  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2503  * @param mtd           MTD device structure
2504  *
2505  * OneNAND detection method:
2506  *   Compare the the values from command with ones from register
2507  */
2508 static int onenand_chip_probe(struct mtd_info *mtd)
2509 {
2510         struct onenand_chip *this = mtd->priv;
2511         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2512         int syscfg;
2513
2514         /* Save system configuration 1 */
2515         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2516
2517         /* Clear Sync. Burst Read mode to read BootRAM */
2518         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2519                          this->base + ONENAND_REG_SYS_CFG1);
2520
2521         /* Send the command for reading device ID from BootRAM */
2522         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2523
2524         /* Read manufacturer and device IDs from BootRAM */
2525         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2526         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2527
2528         /* Reset OneNAND to read default register values */
2529         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2530
2531         /* Wait reset */
2532         this->wait(mtd, FL_RESETING);
2533
2534         /* Restore system configuration 1 */
2535         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2536
2537         /* Check manufacturer ID */
2538         if (onenand_check_maf(bram_maf_id))
2539                 return -ENXIO;
2540
2541         /* Read manufacturer and device IDs from Register */
2542         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2543         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2544
2545         /* Check OneNAND device */
2546         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2547                 return -ENXIO;
2548
2549         return 0;
2550 }
2551
2552 /**
2553  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2554  * @param mtd           MTD device structure
2555  *
2556  * OneNAND detection method:
2557  *   Compare the the values from command with ones from register
2558  */
2559 int onenand_probe(struct mtd_info *mtd)
2560 {
2561         struct onenand_chip *this = mtd->priv;
2562         int dev_id, ver_id;
2563         int density;
2564         int ret;
2565
2566         ret = this->chip_probe(mtd);
2567         if (ret)
2568                 return ret;
2569
2570         /* Read device IDs from Register */
2571         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2572         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2573         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2574
2575         /* Flash device information */
2576         mtd->name = onenand_print_device_info(dev_id, ver_id);
2577         this->device_id = dev_id;
2578         this->version_id = ver_id;
2579
2580         /* Check OneNAND features */
2581         onenand_check_features(mtd);
2582
2583         density = onenand_get_density(dev_id);
2584         if (FLEXONENAND(this)) {
2585                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2586                 /* Maximum possible erase regions */
2587                 mtd->numeraseregions = this->dies << 1;
2588                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2589                                         * (this->dies << 1));
2590                 if (!mtd->eraseregions)
2591                         return -ENOMEM;
2592         }
2593
2594         /*
2595          * For Flex-OneNAND, chipsize represents maximum possible device size.
2596          * mtd->size represents the actual device size.
2597          */
2598         this->chipsize = (16 << density) << 20;
2599
2600         /* OneNAND page size & block size */
2601         /* The data buffer size is equal to page size */
2602         mtd->writesize =
2603             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2604         /* We use the full BufferRAM */
2605         if (ONENAND_IS_4KB_PAGE(this))
2606                 mtd->writesize <<= 1;
2607
2608         mtd->oobsize = mtd->writesize >> 5;
2609         /* Pagers per block is always 64 in OneNAND */
2610         mtd->erasesize = mtd->writesize << 6;
2611         /*
2612          * Flex-OneNAND SLC area has 64 pages per block.
2613          * Flex-OneNAND MLC area has 128 pages per block.
2614          * Expose MLC erase size to find erase_shift and page_mask.
2615          */
2616         if (FLEXONENAND(this))
2617                 mtd->erasesize <<= 1;
2618
2619         this->erase_shift = ffs(mtd->erasesize) - 1;
2620         this->page_shift = ffs(mtd->writesize) - 1;
2621         this->ppb_shift = (this->erase_shift - this->page_shift);
2622         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2623         /* Set density mask. it is used for DDP */
2624         if (ONENAND_IS_DDP(this))
2625                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2626         /* It's real page size */
2627         this->writesize = mtd->writesize;
2628
2629         /* REVIST: Multichip handling */
2630
2631         if (FLEXONENAND(this))
2632                 flexonenand_get_size(mtd);
2633         else
2634                 mtd->size = this->chipsize;
2635
2636         mtd->flags = MTD_CAP_NANDFLASH;
2637         mtd->_erase = onenand_erase;
2638         mtd->_read = onenand_read;
2639         mtd->_write = onenand_write;
2640         mtd->_read_oob = onenand_read_oob;
2641         mtd->_write_oob = onenand_write_oob;
2642         mtd->_sync = onenand_sync;
2643         mtd->_block_isbad = onenand_block_isbad;
2644         mtd->_block_markbad = onenand_block_markbad;
2645
2646         return 0;
2647 }
2648
2649 /**
2650  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2651  * @param mtd           MTD device structure
2652  * @param maxchips      Number of chips to scan for
2653  *
2654  * This fills out all the not initialized function pointers
2655  * with the defaults.
2656  * The flash ID is read and the mtd/chip structures are
2657  * filled with the appropriate values.
2658  */
2659 int onenand_scan(struct mtd_info *mtd, int maxchips)
2660 {
2661         int i;
2662         struct onenand_chip *this = mtd->priv;
2663
2664         if (!this->read_word)
2665                 this->read_word = onenand_readw;
2666         if (!this->write_word)
2667                 this->write_word = onenand_writew;
2668
2669         if (!this->command)
2670                 this->command = onenand_command;
2671         if (!this->wait)
2672                 this->wait = onenand_wait;
2673         if (!this->bbt_wait)
2674                 this->bbt_wait = onenand_bbt_wait;
2675
2676         if (!this->read_bufferram)
2677                 this->read_bufferram = onenand_read_bufferram;
2678         if (!this->write_bufferram)
2679                 this->write_bufferram = onenand_write_bufferram;
2680
2681         if (!this->chip_probe)
2682                 this->chip_probe = onenand_chip_probe;
2683
2684         if (!this->block_markbad)
2685                 this->block_markbad = onenand_default_block_markbad;
2686         if (!this->scan_bbt)
2687                 this->scan_bbt = onenand_default_bbt;
2688
2689         if (onenand_probe(mtd))
2690                 return -ENXIO;
2691
2692         /* Set Sync. Burst Read after probing */
2693         if (this->mmcontrol) {
2694                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2695                 this->read_bufferram = onenand_sync_read_bufferram;
2696         }
2697
2698         /* Allocate buffers, if necessary */
2699         if (!this->page_buf) {
2700                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2701                 if (!this->page_buf) {
2702                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2703                         return -ENOMEM;
2704                 }
2705                 this->options |= ONENAND_PAGEBUF_ALLOC;
2706         }
2707         if (!this->oob_buf) {
2708                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2709                 if (!this->oob_buf) {
2710                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2711                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2712                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2713                                 kfree(this->page_buf);
2714                         }
2715                         return -ENOMEM;
2716                 }
2717                 this->options |= ONENAND_OOBBUF_ALLOC;
2718         }
2719
2720         this->state = FL_READY;
2721
2722         /*
2723          * Allow subpage writes up to oobsize.
2724          */
2725         switch (mtd->oobsize) {
2726         case 128:
2727                 this->ecclayout = &onenand_oob_128;
2728                 mtd->subpage_sft = 0;
2729                 break;
2730
2731         case 64:
2732                 this->ecclayout = &onenand_oob_64;
2733                 mtd->subpage_sft = 2;
2734                 break;
2735
2736         case 32:
2737                 this->ecclayout = &onenand_oob_32;
2738                 mtd->subpage_sft = 1;
2739                 break;
2740
2741         default:
2742                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2743                         mtd->oobsize);
2744                 mtd->subpage_sft = 0;
2745                 /* To prevent kernel oops */
2746                 this->ecclayout = &onenand_oob_32;
2747                 break;
2748         }
2749
2750         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2751
2752         /*
2753          * The number of bytes available for a client to place data into
2754          * the out of band area
2755          */
2756         this->ecclayout->oobavail = 0;
2757
2758         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2759             this->ecclayout->oobfree[i].length; i++)
2760                 this->ecclayout->oobavail +=
2761                         this->ecclayout->oobfree[i].length;
2762         mtd->oobavail = this->ecclayout->oobavail;
2763
2764         mtd->ecclayout = this->ecclayout;
2765
2766         /* Unlock whole block */
2767         onenand_unlock_all(mtd);
2768
2769         return this->scan_bbt(mtd);
2770 }
2771
2772 /**
2773  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2774  * @param mtd           MTD device structure
2775  */
2776 void onenand_release(struct mtd_info *mtd)
2777 {
2778 }