]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/e1000.c
Merge branch 'master' of git://git.denx.de/u-boot-net
[karo-tx-uboot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
25
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  *
44  *  Copyright 2011 Freescale Semiconductor, Inc.
45  */
46
47 #include "e1000.h"
48
49 #define TOUT_LOOP   100000
50
51 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
52 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
53
54 #define E1000_DEFAULT_PCI_PBA   0x00000030
55 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
56
57 /* NIC specific static variables go here */
58
59 static char tx_pool[128 + 16];
60 static char rx_pool[128 + 16];
61 static char packet[2096];
62
63 static struct e1000_tx_desc *tx_base;
64 static struct e1000_rx_desc *rx_base;
65
66 static int tx_tail;
67 static int rx_tail, rx_last;
68
69 static struct pci_device_id e1000_supported[] = {
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
87         /* E1000 PCIe card */
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
104         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
105         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
110         {}
111 };
112
113 /* Function forward declarations */
114 static int e1000_setup_link(struct eth_device *nic);
115 static int e1000_setup_fiber_link(struct eth_device *nic);
116 static int e1000_setup_copper_link(struct eth_device *nic);
117 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118 static void e1000_config_collision_dist(struct e1000_hw *hw);
119 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121 static int e1000_check_for_link(struct eth_device *nic);
122 static int e1000_wait_autoneg(struct e1000_hw *hw);
123 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
124                                        uint16_t * duplex);
125 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126                               uint16_t * phy_data);
127 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128                                uint16_t phy_data);
129 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
130 static int e1000_phy_reset(struct e1000_hw *hw);
131 static int e1000_detect_gig_phy(struct e1000_hw *hw);
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static void e1000_set_media_type(struct e1000_hw *hw);
134
135 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
137
138 #ifndef CONFIG_AP1000 /* remove for warnings */
139 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
140                 uint16_t words,
141                 uint16_t *data);
142 /******************************************************************************
143  * Raises the EEPROM's clock input.
144  *
145  * hw - Struct containing variables accessed by shared code
146  * eecd - EECD's current value
147  *****************************************************************************/
148 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
149 {
150         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
151          * wait 50 microseconds.
152          */
153         *eecd = *eecd | E1000_EECD_SK;
154         E1000_WRITE_REG(hw, EECD, *eecd);
155         E1000_WRITE_FLUSH(hw);
156         udelay(50);
157 }
158
159 /******************************************************************************
160  * Lowers the EEPROM's clock input.
161  *
162  * hw - Struct containing variables accessed by shared code
163  * eecd - EECD's current value
164  *****************************************************************************/
165 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
166 {
167         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
168          * wait 50 microseconds.
169          */
170         *eecd = *eecd & ~E1000_EECD_SK;
171         E1000_WRITE_REG(hw, EECD, *eecd);
172         E1000_WRITE_FLUSH(hw);
173         udelay(50);
174 }
175
176 /******************************************************************************
177  * Shift data bits out to the EEPROM.
178  *
179  * hw - Struct containing variables accessed by shared code
180  * data - data to send to the EEPROM
181  * count - number of bits to shift out
182  *****************************************************************************/
183 static void
184 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
185 {
186         uint32_t eecd;
187         uint32_t mask;
188
189         /* We need to shift "count" bits out to the EEPROM. So, value in the
190          * "data" parameter will be shifted out to the EEPROM one bit at a time.
191          * In order to do this, "data" must be broken down into bits.
192          */
193         mask = 0x01 << (count - 1);
194         eecd = E1000_READ_REG(hw, EECD);
195         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
196         do {
197                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
198                  * and then raising and then lowering the clock (the SK bit controls
199                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
200                  * by setting "DI" to "0" and then raising and then lowering the clock.
201                  */
202                 eecd &= ~E1000_EECD_DI;
203
204                 if (data & mask)
205                         eecd |= E1000_EECD_DI;
206
207                 E1000_WRITE_REG(hw, EECD, eecd);
208                 E1000_WRITE_FLUSH(hw);
209
210                 udelay(50);
211
212                 e1000_raise_ee_clk(hw, &eecd);
213                 e1000_lower_ee_clk(hw, &eecd);
214
215                 mask = mask >> 1;
216
217         } while (mask);
218
219         /* We leave the "DI" bit set to "0" when we leave this routine. */
220         eecd &= ~E1000_EECD_DI;
221         E1000_WRITE_REG(hw, EECD, eecd);
222 }
223
224 /******************************************************************************
225  * Shift data bits in from the EEPROM
226  *
227  * hw - Struct containing variables accessed by shared code
228  *****************************************************************************/
229 static uint16_t
230 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
231 {
232         uint32_t eecd;
233         uint32_t i;
234         uint16_t data;
235
236         /* In order to read a register from the EEPROM, we need to shift 'count'
237          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
238          * input to the EEPROM (setting the SK bit), and then reading the
239          * value of the "DO" bit.  During this "shifting in" process the
240          * "DI" bit should always be clear.
241          */
242
243         eecd = E1000_READ_REG(hw, EECD);
244
245         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
246         data = 0;
247
248         for (i = 0; i < count; i++) {
249                 data = data << 1;
250                 e1000_raise_ee_clk(hw, &eecd);
251
252                 eecd = E1000_READ_REG(hw, EECD);
253
254                 eecd &= ~(E1000_EECD_DI);
255                 if (eecd & E1000_EECD_DO)
256                         data |= 1;
257
258                 e1000_lower_ee_clk(hw, &eecd);
259         }
260
261         return data;
262 }
263
264 /******************************************************************************
265  * Returns EEPROM to a "standby" state
266  *
267  * hw - Struct containing variables accessed by shared code
268  *****************************************************************************/
269 void e1000_standby_eeprom(struct e1000_hw *hw)
270 {
271         struct e1000_eeprom_info *eeprom = &hw->eeprom;
272         uint32_t eecd;
273
274         eecd = E1000_READ_REG(hw, EECD);
275
276         if (eeprom->type == e1000_eeprom_microwire) {
277                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278                 E1000_WRITE_REG(hw, EECD, eecd);
279                 E1000_WRITE_FLUSH(hw);
280                 udelay(eeprom->delay_usec);
281
282                 /* Clock high */
283                 eecd |= E1000_EECD_SK;
284                 E1000_WRITE_REG(hw, EECD, eecd);
285                 E1000_WRITE_FLUSH(hw);
286                 udelay(eeprom->delay_usec);
287
288                 /* Select EEPROM */
289                 eecd |= E1000_EECD_CS;
290                 E1000_WRITE_REG(hw, EECD, eecd);
291                 E1000_WRITE_FLUSH(hw);
292                 udelay(eeprom->delay_usec);
293
294                 /* Clock low */
295                 eecd &= ~E1000_EECD_SK;
296                 E1000_WRITE_REG(hw, EECD, eecd);
297                 E1000_WRITE_FLUSH(hw);
298                 udelay(eeprom->delay_usec);
299         } else if (eeprom->type == e1000_eeprom_spi) {
300                 /* Toggle CS to flush commands */
301                 eecd |= E1000_EECD_CS;
302                 E1000_WRITE_REG(hw, EECD, eecd);
303                 E1000_WRITE_FLUSH(hw);
304                 udelay(eeprom->delay_usec);
305                 eecd &= ~E1000_EECD_CS;
306                 E1000_WRITE_REG(hw, EECD, eecd);
307                 E1000_WRITE_FLUSH(hw);
308                 udelay(eeprom->delay_usec);
309         }
310 }
311
312 /***************************************************************************
313 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
314 *
315 * hw - Struct containing variables accessed by shared code
316 ****************************************************************************/
317 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
318 {
319         uint32_t eecd = 0;
320
321         DEBUGFUNC();
322
323         if (hw->mac_type == e1000_ich8lan)
324                 return FALSE;
325
326         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
327                 eecd = E1000_READ_REG(hw, EECD);
328
329                 /* Isolate bits 15 & 16 */
330                 eecd = ((eecd >> 15) & 0x03);
331
332                 /* If both bits are set, device is Flash type */
333                 if (eecd == 0x03)
334                         return FALSE;
335         }
336         return TRUE;
337 }
338
339 /******************************************************************************
340  * Prepares EEPROM for access
341  *
342  * hw - Struct containing variables accessed by shared code
343  *
344  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
345  * function should be called before issuing a command to the EEPROM.
346  *****************************************************************************/
347 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
348 {
349         struct e1000_eeprom_info *eeprom = &hw->eeprom;
350         uint32_t eecd, i = 0;
351
352         DEBUGFUNC();
353
354         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
355                 return -E1000_ERR_SWFW_SYNC;
356         eecd = E1000_READ_REG(hw, EECD);
357
358         if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
359                 /* Request EEPROM Access */
360                 if (hw->mac_type > e1000_82544) {
361                         eecd |= E1000_EECD_REQ;
362                         E1000_WRITE_REG(hw, EECD, eecd);
363                         eecd = E1000_READ_REG(hw, EECD);
364                         while ((!(eecd & E1000_EECD_GNT)) &&
365                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
366                                 i++;
367                                 udelay(5);
368                                 eecd = E1000_READ_REG(hw, EECD);
369                         }
370                         if (!(eecd & E1000_EECD_GNT)) {
371                                 eecd &= ~E1000_EECD_REQ;
372                                 E1000_WRITE_REG(hw, EECD, eecd);
373                                 DEBUGOUT("Could not acquire EEPROM grant\n");
374                                 return -E1000_ERR_EEPROM;
375                         }
376                 }
377         }
378
379         /* Setup EEPROM for Read/Write */
380
381         if (eeprom->type == e1000_eeprom_microwire) {
382                 /* Clear SK and DI */
383                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
384                 E1000_WRITE_REG(hw, EECD, eecd);
385
386                 /* Set CS */
387                 eecd |= E1000_EECD_CS;
388                 E1000_WRITE_REG(hw, EECD, eecd);
389         } else if (eeprom->type == e1000_eeprom_spi) {
390                 /* Clear SK and CS */
391                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
392                 E1000_WRITE_REG(hw, EECD, eecd);
393                 udelay(1);
394         }
395
396         return E1000_SUCCESS;
397 }
398
399 /******************************************************************************
400  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
401  * is configured.  Additionally, if this is ICH8, the flash controller GbE
402  * registers must be mapped, or this will crash.
403  *
404  * hw - Struct containing variables accessed by shared code
405  *****************************************************************************/
406 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
407 {
408         struct e1000_eeprom_info *eeprom = &hw->eeprom;
409         uint32_t eecd = E1000_READ_REG(hw, EECD);
410         int32_t ret_val = E1000_SUCCESS;
411         uint16_t eeprom_size;
412
413         DEBUGFUNC();
414
415         switch (hw->mac_type) {
416         case e1000_82542_rev2_0:
417         case e1000_82542_rev2_1:
418         case e1000_82543:
419         case e1000_82544:
420                 eeprom->type = e1000_eeprom_microwire;
421                 eeprom->word_size = 64;
422                 eeprom->opcode_bits = 3;
423                 eeprom->address_bits = 6;
424                 eeprom->delay_usec = 50;
425                 eeprom->use_eerd = FALSE;
426                 eeprom->use_eewr = FALSE;
427         break;
428         case e1000_82540:
429         case e1000_82545:
430         case e1000_82545_rev_3:
431         case e1000_82546:
432         case e1000_82546_rev_3:
433                 eeprom->type = e1000_eeprom_microwire;
434                 eeprom->opcode_bits = 3;
435                 eeprom->delay_usec = 50;
436                 if (eecd & E1000_EECD_SIZE) {
437                         eeprom->word_size = 256;
438                         eeprom->address_bits = 8;
439                 } else {
440                         eeprom->word_size = 64;
441                         eeprom->address_bits = 6;
442                 }
443                 eeprom->use_eerd = FALSE;
444                 eeprom->use_eewr = FALSE;
445                 break;
446         case e1000_82541:
447         case e1000_82541_rev_2:
448         case e1000_82547:
449         case e1000_82547_rev_2:
450                 if (eecd & E1000_EECD_TYPE) {
451                         eeprom->type = e1000_eeprom_spi;
452                         eeprom->opcode_bits = 8;
453                         eeprom->delay_usec = 1;
454                         if (eecd & E1000_EECD_ADDR_BITS) {
455                                 eeprom->page_size = 32;
456                                 eeprom->address_bits = 16;
457                         } else {
458                                 eeprom->page_size = 8;
459                                 eeprom->address_bits = 8;
460                         }
461                 } else {
462                         eeprom->type = e1000_eeprom_microwire;
463                         eeprom->opcode_bits = 3;
464                         eeprom->delay_usec = 50;
465                         if (eecd & E1000_EECD_ADDR_BITS) {
466                                 eeprom->word_size = 256;
467                                 eeprom->address_bits = 8;
468                         } else {
469                                 eeprom->word_size = 64;
470                                 eeprom->address_bits = 6;
471                         }
472                 }
473                 eeprom->use_eerd = FALSE;
474                 eeprom->use_eewr = FALSE;
475                 break;
476         case e1000_82571:
477         case e1000_82572:
478                 eeprom->type = e1000_eeprom_spi;
479                 eeprom->opcode_bits = 8;
480                 eeprom->delay_usec = 1;
481                 if (eecd & E1000_EECD_ADDR_BITS) {
482                         eeprom->page_size = 32;
483                         eeprom->address_bits = 16;
484                 } else {
485                         eeprom->page_size = 8;
486                         eeprom->address_bits = 8;
487                 }
488                 eeprom->use_eerd = FALSE;
489                 eeprom->use_eewr = FALSE;
490                 break;
491         case e1000_82573:
492         case e1000_82574:
493                 eeprom->type = e1000_eeprom_spi;
494                 eeprom->opcode_bits = 8;
495                 eeprom->delay_usec = 1;
496                 if (eecd & E1000_EECD_ADDR_BITS) {
497                         eeprom->page_size = 32;
498                         eeprom->address_bits = 16;
499                 } else {
500                         eeprom->page_size = 8;
501                         eeprom->address_bits = 8;
502                 }
503                 eeprom->use_eerd = TRUE;
504                 eeprom->use_eewr = TRUE;
505                 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
506                         eeprom->type = e1000_eeprom_flash;
507                         eeprom->word_size = 2048;
508
509                 /* Ensure that the Autonomous FLASH update bit is cleared due to
510                  * Flash update issue on parts which use a FLASH for NVM. */
511                         eecd &= ~E1000_EECD_AUPDEN;
512                         E1000_WRITE_REG(hw, EECD, eecd);
513                 }
514                 break;
515         case e1000_80003es2lan:
516                 eeprom->type = e1000_eeprom_spi;
517                 eeprom->opcode_bits = 8;
518                 eeprom->delay_usec = 1;
519                 if (eecd & E1000_EECD_ADDR_BITS) {
520                         eeprom->page_size = 32;
521                         eeprom->address_bits = 16;
522                 } else {
523                         eeprom->page_size = 8;
524                         eeprom->address_bits = 8;
525                 }
526                 eeprom->use_eerd = TRUE;
527                 eeprom->use_eewr = FALSE;
528                 break;
529
530         /* ich8lan does not support currently. if needed, please
531          * add corresponding code and functions.
532          */
533 #if 0
534         case e1000_ich8lan:
535                 {
536                 int32_t  i = 0;
537
538                 eeprom->type = e1000_eeprom_ich8;
539                 eeprom->use_eerd = FALSE;
540                 eeprom->use_eewr = FALSE;
541                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
542                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
543                                 ICH_FLASH_GFPREG);
544                 /* Zero the shadow RAM structure. But don't load it from NVM
545                  * so as to save time for driver init */
546                 if (hw->eeprom_shadow_ram != NULL) {
547                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
548                                 hw->eeprom_shadow_ram[i].modified = FALSE;
549                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
550                         }
551                 }
552
553                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
554                                 ICH_FLASH_SECTOR_SIZE;
555
556                 hw->flash_bank_size = ((flash_size >> 16)
557                                 & ICH_GFPREG_BASE_MASK) + 1;
558                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
559
560                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
561
562                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
563                 break;
564                 }
565 #endif
566         default:
567                 break;
568         }
569
570         if (eeprom->type == e1000_eeprom_spi) {
571                 /* eeprom_size will be an enum [0..8] that maps
572                  * to eeprom sizes 128B to
573                  * 32KB (incremented by powers of 2).
574                  */
575                 if (hw->mac_type <= e1000_82547_rev_2) {
576                         /* Set to default value for initial eeprom read. */
577                         eeprom->word_size = 64;
578                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
579                                         &eeprom_size);
580                         if (ret_val)
581                                 return ret_val;
582                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
583                                 >> EEPROM_SIZE_SHIFT;
584                         /* 256B eeprom size was not supported in earlier
585                          * hardware, so we bump eeprom_size up one to
586                          * ensure that "1" (which maps to 256B) is never
587                          * the result used in the shifting logic below. */
588                         if (eeprom_size)
589                                 eeprom_size++;
590                 } else {
591                         eeprom_size = (uint16_t)((eecd &
592                                 E1000_EECD_SIZE_EX_MASK) >>
593                                 E1000_EECD_SIZE_EX_SHIFT);
594                 }
595
596                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
597         }
598         return ret_val;
599 }
600
601 /******************************************************************************
602  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
603  *
604  * hw - Struct containing variables accessed by shared code
605  *****************************************************************************/
606 static int32_t
607 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
608 {
609         uint32_t attempts = 100000;
610         uint32_t i, reg = 0;
611         int32_t done = E1000_ERR_EEPROM;
612
613         for (i = 0; i < attempts; i++) {
614                 if (eerd == E1000_EEPROM_POLL_READ)
615                         reg = E1000_READ_REG(hw, EERD);
616                 else
617                         reg = E1000_READ_REG(hw, EEWR);
618
619                 if (reg & E1000_EEPROM_RW_REG_DONE) {
620                         done = E1000_SUCCESS;
621                         break;
622                 }
623                 udelay(5);
624         }
625
626         return done;
627 }
628
629 /******************************************************************************
630  * Reads a 16 bit word from the EEPROM using the EERD register.
631  *
632  * hw - Struct containing variables accessed by shared code
633  * offset - offset of  word in the EEPROM to read
634  * data - word read from the EEPROM
635  * words - number of words to read
636  *****************************************************************************/
637 static int32_t
638 e1000_read_eeprom_eerd(struct e1000_hw *hw,
639                         uint16_t offset,
640                         uint16_t words,
641                         uint16_t *data)
642 {
643         uint32_t i, eerd = 0;
644         int32_t error = 0;
645
646         for (i = 0; i < words; i++) {
647                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
648                         E1000_EEPROM_RW_REG_START;
649
650                 E1000_WRITE_REG(hw, EERD, eerd);
651                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
652
653                 if (error)
654                         break;
655                 data[i] = (E1000_READ_REG(hw, EERD) >>
656                                 E1000_EEPROM_RW_REG_DATA);
657
658         }
659
660         return error;
661 }
662
663 void e1000_release_eeprom(struct e1000_hw *hw)
664 {
665         uint32_t eecd;
666
667         DEBUGFUNC();
668
669         eecd = E1000_READ_REG(hw, EECD);
670
671         if (hw->eeprom.type == e1000_eeprom_spi) {
672                 eecd |= E1000_EECD_CS;  /* Pull CS high */
673                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
674
675                 E1000_WRITE_REG(hw, EECD, eecd);
676
677                 udelay(hw->eeprom.delay_usec);
678         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
679                 /* cleanup eeprom */
680
681                 /* CS on Microwire is active-high */
682                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
683
684                 E1000_WRITE_REG(hw, EECD, eecd);
685
686                 /* Rising edge of clock */
687                 eecd |= E1000_EECD_SK;
688                 E1000_WRITE_REG(hw, EECD, eecd);
689                 E1000_WRITE_FLUSH(hw);
690                 udelay(hw->eeprom.delay_usec);
691
692                 /* Falling edge of clock */
693                 eecd &= ~E1000_EECD_SK;
694                 E1000_WRITE_REG(hw, EECD, eecd);
695                 E1000_WRITE_FLUSH(hw);
696                 udelay(hw->eeprom.delay_usec);
697         }
698
699         /* Stop requesting EEPROM access */
700         if (hw->mac_type > e1000_82544) {
701                 eecd &= ~E1000_EECD_REQ;
702                 E1000_WRITE_REG(hw, EECD, eecd);
703         }
704 }
705 /******************************************************************************
706  * Reads a 16 bit word from the EEPROM.
707  *
708  * hw - Struct containing variables accessed by shared code
709  *****************************************************************************/
710 static int32_t
711 e1000_spi_eeprom_ready(struct e1000_hw *hw)
712 {
713         uint16_t retry_count = 0;
714         uint8_t spi_stat_reg;
715
716         DEBUGFUNC();
717
718         /* Read "Status Register" repeatedly until the LSB is cleared.  The
719          * EEPROM will signal that the command has been completed by clearing
720          * bit 0 of the internal status register.  If it's not cleared within
721          * 5 milliseconds, then error out.
722          */
723         retry_count = 0;
724         do {
725                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
726                         hw->eeprom.opcode_bits);
727                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
728                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
729                         break;
730
731                 udelay(5);
732                 retry_count += 5;
733
734                 e1000_standby_eeprom(hw);
735         } while (retry_count < EEPROM_MAX_RETRY_SPI);
736
737         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
738          * only 0-5mSec on 5V devices)
739          */
740         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
741                 DEBUGOUT("SPI EEPROM Status error\n");
742                 return -E1000_ERR_EEPROM;
743         }
744
745         return E1000_SUCCESS;
746 }
747
748 /******************************************************************************
749  * Reads a 16 bit word from the EEPROM.
750  *
751  * hw - Struct containing variables accessed by shared code
752  * offset - offset of  word in the EEPROM to read
753  * data - word read from the EEPROM
754  *****************************************************************************/
755 static int32_t
756 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
757                 uint16_t words, uint16_t *data)
758 {
759         struct e1000_eeprom_info *eeprom = &hw->eeprom;
760         uint32_t i = 0;
761
762         DEBUGFUNC();
763
764         /* If eeprom is not yet detected, do so now */
765         if (eeprom->word_size == 0)
766                 e1000_init_eeprom_params(hw);
767
768         /* A check for invalid values:  offset too large, too many words,
769          * and not enough words.
770          */
771         if ((offset >= eeprom->word_size) ||
772                 (words > eeprom->word_size - offset) ||
773                 (words == 0)) {
774                 DEBUGOUT("\"words\" parameter out of bounds."
775                         "Words = %d, size = %d\n", offset, eeprom->word_size);
776                 return -E1000_ERR_EEPROM;
777         }
778
779         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
780          * directly. In this case, we need to acquire the EEPROM so that
781          * FW or other port software does not interrupt.
782          */
783         if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
784                 hw->eeprom.use_eerd == FALSE) {
785
786                 /* Prepare the EEPROM for bit-bang reading */
787                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
788                         return -E1000_ERR_EEPROM;
789         }
790
791         /* Eerd register EEPROM access requires no eeprom aquire/release */
792         if (eeprom->use_eerd == TRUE)
793                 return e1000_read_eeprom_eerd(hw, offset, words, data);
794
795         /* ich8lan does not support currently. if needed, please
796          * add corresponding code and functions.
797          */
798 #if 0
799         /* ICH EEPROM access is done via the ICH flash controller */
800         if (eeprom->type == e1000_eeprom_ich8)
801                 return e1000_read_eeprom_ich8(hw, offset, words, data);
802 #endif
803         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
804          * acquired the EEPROM at this point, so any returns should relase it */
805         if (eeprom->type == e1000_eeprom_spi) {
806                 uint16_t word_in;
807                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
808
809                 if (e1000_spi_eeprom_ready(hw)) {
810                         e1000_release_eeprom(hw);
811                         return -E1000_ERR_EEPROM;
812                 }
813
814                 e1000_standby_eeprom(hw);
815
816                 /* Some SPI eeproms use the 8th address bit embedded in
817                  * the opcode */
818                 if ((eeprom->address_bits == 8) && (offset >= 128))
819                         read_opcode |= EEPROM_A8_OPCODE_SPI;
820
821                 /* Send the READ command (opcode + addr)  */
822                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
823                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
824                                 eeprom->address_bits);
825
826                 /* Read the data.  The address of the eeprom internally
827                  * increments with each byte (spi) being read, saving on the
828                  * overhead of eeprom setup and tear-down.  The address
829                  * counter will roll over if reading beyond the size of
830                  * the eeprom, thus allowing the entire memory to be read
831                  * starting from any offset. */
832                 for (i = 0; i < words; i++) {
833                         word_in = e1000_shift_in_ee_bits(hw, 16);
834                         data[i] = (word_in >> 8) | (word_in << 8);
835                 }
836         } else if (eeprom->type == e1000_eeprom_microwire) {
837                 for (i = 0; i < words; i++) {
838                         /* Send the READ command (opcode + addr)  */
839                         e1000_shift_out_ee_bits(hw,
840                                 EEPROM_READ_OPCODE_MICROWIRE,
841                                 eeprom->opcode_bits);
842                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
843                                 eeprom->address_bits);
844
845                         /* Read the data.  For microwire, each word requires
846                          * the overhead of eeprom setup and tear-down. */
847                         data[i] = e1000_shift_in_ee_bits(hw, 16);
848                         e1000_standby_eeprom(hw);
849                 }
850         }
851
852         /* End this read operation */
853         e1000_release_eeprom(hw);
854
855         return E1000_SUCCESS;
856 }
857
858 /******************************************************************************
859  * Verifies that the EEPROM has a valid checksum
860  *
861  * hw - Struct containing variables accessed by shared code
862  *
863  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
864  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
865  * valid.
866  *****************************************************************************/
867 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
868 {
869         uint16_t i, checksum, checksum_reg, *buf;
870
871         DEBUGFUNC();
872
873         /* Allocate a temporary buffer */
874         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
875         if (!buf) {
876                 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
877                 return -E1000_ERR_EEPROM;
878         }
879
880         /* Read the EEPROM */
881         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
882                 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
883                 return -E1000_ERR_EEPROM;
884         }
885
886         /* Compute the checksum */
887         checksum = 0;
888         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
889                 checksum += buf[i];
890         checksum = ((uint16_t)EEPROM_SUM) - checksum;
891         checksum_reg = buf[i];
892
893         /* Verify it! */
894         if (checksum == checksum_reg)
895                 return 0;
896
897         /* Hrm, verification failed, print an error */
898         E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
899         E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
900                         checksum_reg, checksum);
901
902         return -E1000_ERR_EEPROM;
903 }
904
905 /*****************************************************************************
906  * Set PHY to class A mode
907  * Assumes the following operations will follow to enable the new class mode.
908  *  1. Do a PHY soft reset
909  *  2. Restart auto-negotiation or force link.
910  *
911  * hw - Struct containing variables accessed by shared code
912  ****************************************************************************/
913 static int32_t
914 e1000_set_phy_mode(struct e1000_hw *hw)
915 {
916         int32_t ret_val;
917         uint16_t eeprom_data;
918
919         DEBUGFUNC();
920
921         if ((hw->mac_type == e1000_82545_rev_3) &&
922                 (hw->media_type == e1000_media_type_copper)) {
923                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
924                                 1, &eeprom_data);
925                 if (ret_val)
926                         return ret_val;
927
928                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
929                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
930                         ret_val = e1000_write_phy_reg(hw,
931                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
932                         if (ret_val)
933                                 return ret_val;
934                         ret_val = e1000_write_phy_reg(hw,
935                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
936                         if (ret_val)
937                                 return ret_val;
938
939                         hw->phy_reset_disable = FALSE;
940                 }
941         }
942
943         return E1000_SUCCESS;
944 }
945 #endif /* #ifndef CONFIG_AP1000 */
946
947 /***************************************************************************
948  *
949  * Obtaining software semaphore bit (SMBI) before resetting PHY.
950  *
951  * hw: Struct containing variables accessed by shared code
952  *
953  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
954  *            E1000_SUCCESS at any other case.
955  *
956  ***************************************************************************/
957 static int32_t
958 e1000_get_software_semaphore(struct e1000_hw *hw)
959 {
960          int32_t timeout = hw->eeprom.word_size + 1;
961          uint32_t swsm;
962
963         DEBUGFUNC();
964
965         if (hw->mac_type != e1000_80003es2lan)
966                 return E1000_SUCCESS;
967
968         while (timeout) {
969                 swsm = E1000_READ_REG(hw, SWSM);
970                 /* If SMBI bit cleared, it is now set and we hold
971                  * the semaphore */
972                 if (!(swsm & E1000_SWSM_SMBI))
973                         break;
974                 mdelay(1);
975                 timeout--;
976         }
977
978         if (!timeout) {
979                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
980                 return -E1000_ERR_RESET;
981         }
982
983         return E1000_SUCCESS;
984 }
985
986 /***************************************************************************
987  * This function clears HW semaphore bits.
988  *
989  * hw: Struct containing variables accessed by shared code
990  *
991  * returns: - None.
992  *
993  ***************************************************************************/
994 static void
995 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
996 {
997          uint32_t swsm;
998
999         DEBUGFUNC();
1000
1001         if (!hw->eeprom_semaphore_present)
1002                 return;
1003
1004         swsm = E1000_READ_REG(hw, SWSM);
1005         if (hw->mac_type == e1000_80003es2lan) {
1006                 /* Release both semaphores. */
1007                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1008         } else
1009                 swsm &= ~(E1000_SWSM_SWESMBI);
1010         E1000_WRITE_REG(hw, SWSM, swsm);
1011 }
1012
1013 /***************************************************************************
1014  *
1015  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1016  * adapter or Eeprom access.
1017  *
1018  * hw: Struct containing variables accessed by shared code
1019  *
1020  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1021  *            E1000_SUCCESS at any other case.
1022  *
1023  ***************************************************************************/
1024 static int32_t
1025 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1026 {
1027         int32_t timeout;
1028         uint32_t swsm;
1029
1030         DEBUGFUNC();
1031
1032         if (!hw->eeprom_semaphore_present)
1033                 return E1000_SUCCESS;
1034
1035         if (hw->mac_type == e1000_80003es2lan) {
1036                 /* Get the SW semaphore. */
1037                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1038                         return -E1000_ERR_EEPROM;
1039         }
1040
1041         /* Get the FW semaphore. */
1042         timeout = hw->eeprom.word_size + 1;
1043         while (timeout) {
1044                 swsm = E1000_READ_REG(hw, SWSM);
1045                 swsm |= E1000_SWSM_SWESMBI;
1046                 E1000_WRITE_REG(hw, SWSM, swsm);
1047                 /* if we managed to set the bit we got the semaphore. */
1048                 swsm = E1000_READ_REG(hw, SWSM);
1049                 if (swsm & E1000_SWSM_SWESMBI)
1050                         break;
1051
1052                 udelay(50);
1053                 timeout--;
1054         }
1055
1056         if (!timeout) {
1057                 /* Release semaphores */
1058                 e1000_put_hw_eeprom_semaphore(hw);
1059                 DEBUGOUT("Driver can't access the Eeprom - "
1060                                 "SWESMBI bit is set.\n");
1061                 return -E1000_ERR_EEPROM;
1062         }
1063
1064         return E1000_SUCCESS;
1065 }
1066
1067 static int32_t
1068 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1069 {
1070         uint32_t swfw_sync = 0;
1071         uint32_t swmask = mask;
1072         uint32_t fwmask = mask << 16;
1073         int32_t timeout = 200;
1074
1075         DEBUGFUNC();
1076         while (timeout) {
1077                 if (e1000_get_hw_eeprom_semaphore(hw))
1078                         return -E1000_ERR_SWFW_SYNC;
1079
1080                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1081                 if (!(swfw_sync & (fwmask | swmask)))
1082                         break;
1083
1084                 /* firmware currently using resource (fwmask) */
1085                 /* or other software thread currently using resource (swmask) */
1086                 e1000_put_hw_eeprom_semaphore(hw);
1087                 mdelay(5);
1088                 timeout--;
1089         }
1090
1091         if (!timeout) {
1092                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1093                 return -E1000_ERR_SWFW_SYNC;
1094         }
1095
1096         swfw_sync |= swmask;
1097         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1098
1099         e1000_put_hw_eeprom_semaphore(hw);
1100         return E1000_SUCCESS;
1101 }
1102
1103 static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1104 {
1105         switch (hw->mac_type) {
1106         case e1000_80003es2lan:
1107         case e1000_82546:
1108         case e1000_82571:
1109                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1110                         return TRUE;
1111                 /* Fallthrough */
1112         default:
1113                 return FALSE;
1114         }
1115 }
1116
1117 /******************************************************************************
1118  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1119  * second function of dual function devices
1120  *
1121  * nic - Struct containing variables accessed by shared code
1122  *****************************************************************************/
1123 static int
1124 e1000_read_mac_addr(struct eth_device *nic)
1125 {
1126 #ifndef CONFIG_AP1000
1127         struct e1000_hw *hw = nic->priv;
1128         uint16_t offset;
1129         uint16_t eeprom_data;
1130         int i;
1131
1132         DEBUGFUNC();
1133
1134         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1135                 offset = i >> 1;
1136                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1137                         DEBUGOUT("EEPROM Read Error\n");
1138                         return -E1000_ERR_EEPROM;
1139                 }
1140                 nic->enetaddr[i] = eeprom_data & 0xff;
1141                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1142         }
1143
1144         /* Invert the last bit if this is the second device */
1145         if (e1000_is_second_port(hw))
1146                 nic->enetaddr[5] ^= 1;
1147
1148 #ifdef CONFIG_E1000_FALLBACK_MAC
1149         if (!is_valid_ether_addr(nic->enetaddr)) {
1150                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1151
1152                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1153         }
1154 #endif
1155 #else
1156         /*
1157          * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1158          * environment variables.  Currently this does not support the addition
1159          * of a PMC e1000 card, which is certainly a possibility, so this should
1160          * be updated to properly use the env variable only for the onboard e1000
1161          */
1162
1163         int ii;
1164         char *s, *e;
1165
1166         DEBUGFUNC();
1167
1168         s = getenv ("ethaddr");
1169         if (s == NULL) {
1170                 return -E1000_ERR_EEPROM;
1171         } else {
1172                 for(ii = 0; ii < 6; ii++) {
1173                         nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1174                         if (s){
1175                                 s = (*e) ? e + 1 : e;
1176                         }
1177                 }
1178         }
1179 #endif
1180         return 0;
1181 }
1182
1183 /******************************************************************************
1184  * Initializes receive address filters.
1185  *
1186  * hw - Struct containing variables accessed by shared code
1187  *
1188  * Places the MAC address in receive address register 0 and clears the rest
1189  * of the receive addresss registers. Clears the multicast table. Assumes
1190  * the receiver is in reset when the routine is called.
1191  *****************************************************************************/
1192 static void
1193 e1000_init_rx_addrs(struct eth_device *nic)
1194 {
1195         struct e1000_hw *hw = nic->priv;
1196         uint32_t i;
1197         uint32_t addr_low;
1198         uint32_t addr_high;
1199
1200         DEBUGFUNC();
1201
1202         /* Setup the receive address. */
1203         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204         addr_low = (nic->enetaddr[0] |
1205                     (nic->enetaddr[1] << 8) |
1206                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1207
1208         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1209
1210         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212
1213         /* Zero out the other 15 receive addresses. */
1214         DEBUGOUT("Clearing RAR[1-15]\n");
1215         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218         }
1219 }
1220
1221 /******************************************************************************
1222  * Clears the VLAN filer table
1223  *
1224  * hw - Struct containing variables accessed by shared code
1225  *****************************************************************************/
1226 static void
1227 e1000_clear_vfta(struct e1000_hw *hw)
1228 {
1229         uint32_t offset;
1230
1231         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233 }
1234
1235 /******************************************************************************
1236  * Set the mac type member in the hw struct.
1237  *
1238  * hw - Struct containing variables accessed by shared code
1239  *****************************************************************************/
1240 int32_t
1241 e1000_set_mac_type(struct e1000_hw *hw)
1242 {
1243         DEBUGFUNC();
1244
1245         switch (hw->device_id) {
1246         case E1000_DEV_ID_82542:
1247                 switch (hw->revision_id) {
1248                 case E1000_82542_2_0_REV_ID:
1249                         hw->mac_type = e1000_82542_rev2_0;
1250                         break;
1251                 case E1000_82542_2_1_REV_ID:
1252                         hw->mac_type = e1000_82542_rev2_1;
1253                         break;
1254                 default:
1255                         /* Invalid 82542 revision ID */
1256                         return -E1000_ERR_MAC_TYPE;
1257                 }
1258                 break;
1259         case E1000_DEV_ID_82543GC_FIBER:
1260         case E1000_DEV_ID_82543GC_COPPER:
1261                 hw->mac_type = e1000_82543;
1262                 break;
1263         case E1000_DEV_ID_82544EI_COPPER:
1264         case E1000_DEV_ID_82544EI_FIBER:
1265         case E1000_DEV_ID_82544GC_COPPER:
1266         case E1000_DEV_ID_82544GC_LOM:
1267                 hw->mac_type = e1000_82544;
1268                 break;
1269         case E1000_DEV_ID_82540EM:
1270         case E1000_DEV_ID_82540EM_LOM:
1271         case E1000_DEV_ID_82540EP:
1272         case E1000_DEV_ID_82540EP_LOM:
1273         case E1000_DEV_ID_82540EP_LP:
1274                 hw->mac_type = e1000_82540;
1275                 break;
1276         case E1000_DEV_ID_82545EM_COPPER:
1277         case E1000_DEV_ID_82545EM_FIBER:
1278                 hw->mac_type = e1000_82545;
1279                 break;
1280         case E1000_DEV_ID_82545GM_COPPER:
1281         case E1000_DEV_ID_82545GM_FIBER:
1282         case E1000_DEV_ID_82545GM_SERDES:
1283                 hw->mac_type = e1000_82545_rev_3;
1284                 break;
1285         case E1000_DEV_ID_82546EB_COPPER:
1286         case E1000_DEV_ID_82546EB_FIBER:
1287         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1288                 hw->mac_type = e1000_82546;
1289                 break;
1290         case E1000_DEV_ID_82546GB_COPPER:
1291         case E1000_DEV_ID_82546GB_FIBER:
1292         case E1000_DEV_ID_82546GB_SERDES:
1293         case E1000_DEV_ID_82546GB_PCIE:
1294         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296                 hw->mac_type = e1000_82546_rev_3;
1297                 break;
1298         case E1000_DEV_ID_82541EI:
1299         case E1000_DEV_ID_82541EI_MOBILE:
1300         case E1000_DEV_ID_82541ER_LOM:
1301                 hw->mac_type = e1000_82541;
1302                 break;
1303         case E1000_DEV_ID_82541ER:
1304         case E1000_DEV_ID_82541GI:
1305         case E1000_DEV_ID_82541GI_LF:
1306         case E1000_DEV_ID_82541GI_MOBILE:
1307                 hw->mac_type = e1000_82541_rev_2;
1308                 break;
1309         case E1000_DEV_ID_82547EI:
1310         case E1000_DEV_ID_82547EI_MOBILE:
1311                 hw->mac_type = e1000_82547;
1312                 break;
1313         case E1000_DEV_ID_82547GI:
1314                 hw->mac_type = e1000_82547_rev_2;
1315                 break;
1316         case E1000_DEV_ID_82571EB_COPPER:
1317         case E1000_DEV_ID_82571EB_FIBER:
1318         case E1000_DEV_ID_82571EB_SERDES:
1319         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325                 hw->mac_type = e1000_82571;
1326                 break;
1327         case E1000_DEV_ID_82572EI_COPPER:
1328         case E1000_DEV_ID_82572EI_FIBER:
1329         case E1000_DEV_ID_82572EI_SERDES:
1330         case E1000_DEV_ID_82572EI:
1331                 hw->mac_type = e1000_82572;
1332                 break;
1333         case E1000_DEV_ID_82573E:
1334         case E1000_DEV_ID_82573E_IAMT:
1335         case E1000_DEV_ID_82573L:
1336                 hw->mac_type = e1000_82573;
1337                 break;
1338         case E1000_DEV_ID_82574L:
1339                 hw->mac_type = e1000_82574;
1340                 break;
1341         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345                 hw->mac_type = e1000_80003es2lan;
1346                 break;
1347         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348         case E1000_DEV_ID_ICH8_IGP_AMT:
1349         case E1000_DEV_ID_ICH8_IGP_C:
1350         case E1000_DEV_ID_ICH8_IFE:
1351         case E1000_DEV_ID_ICH8_IFE_GT:
1352         case E1000_DEV_ID_ICH8_IFE_G:
1353         case E1000_DEV_ID_ICH8_IGP_M:
1354                 hw->mac_type = e1000_ich8lan;
1355                 break;
1356         default:
1357                 /* Should never have loaded on this device */
1358                 return -E1000_ERR_MAC_TYPE;
1359         }
1360         return E1000_SUCCESS;
1361 }
1362
1363 /******************************************************************************
1364  * Reset the transmit and receive units; mask and clear all interrupts.
1365  *
1366  * hw - Struct containing variables accessed by shared code
1367  *****************************************************************************/
1368 void
1369 e1000_reset_hw(struct e1000_hw *hw)
1370 {
1371         uint32_t ctrl;
1372         uint32_t ctrl_ext;
1373         uint32_t manc;
1374         uint32_t pba = 0;
1375
1376         DEBUGFUNC();
1377
1378         /* get the correct pba value for both PCI and PCIe*/
1379         if (hw->mac_type <  e1000_82571)
1380                 pba = E1000_DEFAULT_PCI_PBA;
1381         else
1382                 pba = E1000_DEFAULT_PCIE_PBA;
1383
1384         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1385         if (hw->mac_type == e1000_82542_rev2_0) {
1386                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1387                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1388                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1389         }
1390
1391         /* Clear interrupt mask to stop board from generating interrupts */
1392         DEBUGOUT("Masking off all interrupts\n");
1393         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1394
1395         /* Disable the Transmit and Receive units.  Then delay to allow
1396          * any pending transactions to complete before we hit the MAC with
1397          * the global reset.
1398          */
1399         E1000_WRITE_REG(hw, RCTL, 0);
1400         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1401         E1000_WRITE_FLUSH(hw);
1402
1403         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1404         hw->tbi_compatibility_on = FALSE;
1405
1406         /* Delay to allow any outstanding PCI transactions to complete before
1407          * resetting the device
1408          */
1409         mdelay(10);
1410
1411         /* Issue a global reset to the MAC.  This will reset the chip's
1412          * transmit, receive, DMA, and link units.  It will not effect
1413          * the current PCI configuration.  The global reset bit is self-
1414          * clearing, and should clear within a microsecond.
1415          */
1416         DEBUGOUT("Issuing a global reset to MAC\n");
1417         ctrl = E1000_READ_REG(hw, CTRL);
1418
1419         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1420
1421         /* Force a reload from the EEPROM if necessary */
1422         if (hw->mac_type < e1000_82540) {
1423                 /* Wait for reset to complete */
1424                 udelay(10);
1425                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1426                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1427                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1428                 E1000_WRITE_FLUSH(hw);
1429                 /* Wait for EEPROM reload */
1430                 mdelay(2);
1431         } else {
1432                 /* Wait for EEPROM reload (it happens automatically) */
1433                 mdelay(4);
1434                 /* Dissable HW ARPs on ASF enabled adapters */
1435                 manc = E1000_READ_REG(hw, MANC);
1436                 manc &= ~(E1000_MANC_ARP_EN);
1437                 E1000_WRITE_REG(hw, MANC, manc);
1438         }
1439
1440         /* Clear interrupt mask to stop board from generating interrupts */
1441         DEBUGOUT("Masking off all interrupts\n");
1442         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1443
1444         /* Clear any pending interrupt events. */
1445         E1000_READ_REG(hw, ICR);
1446
1447         /* If MWI was previously enabled, reenable it. */
1448         if (hw->mac_type == e1000_82542_rev2_0) {
1449                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1450         }
1451         E1000_WRITE_REG(hw, PBA, pba);
1452 }
1453
1454 /******************************************************************************
1455  *
1456  * Initialize a number of hardware-dependent bits
1457  *
1458  * hw: Struct containing variables accessed by shared code
1459  *
1460  * This function contains hardware limitation workarounds for PCI-E adapters
1461  *
1462  *****************************************************************************/
1463 static void
1464 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1465 {
1466         if ((hw->mac_type >= e1000_82571) &&
1467                         (!hw->initialize_hw_bits_disable)) {
1468                 /* Settings common to all PCI-express silicon */
1469                 uint32_t reg_ctrl, reg_ctrl_ext;
1470                 uint32_t reg_tarc0, reg_tarc1;
1471                 uint32_t reg_tctl;
1472                 uint32_t reg_txdctl, reg_txdctl1;
1473
1474                 /* link autonegotiation/sync workarounds */
1475                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1476                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1477
1478                 /* Enable not-done TX descriptor counting */
1479                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1480                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1481                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1482
1483                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1484                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1485                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1486
1487                 switch (hw->mac_type) {
1488                 case e1000_82571:
1489                 case e1000_82572:
1490                         /* Clear PHY TX compatible mode bits */
1491                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1492                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1493
1494                         /* link autonegotiation/sync workarounds */
1495                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1496
1497                         /* TX ring control fixes */
1498                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1499
1500                         /* Multiple read bit is reversed polarity */
1501                         reg_tctl = E1000_READ_REG(hw, TCTL);
1502                         if (reg_tctl & E1000_TCTL_MULR)
1503                                 reg_tarc1 &= ~(1 << 28);
1504                         else
1505                                 reg_tarc1 |= (1 << 28);
1506
1507                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1508                         break;
1509                 case e1000_82573:
1510                 case e1000_82574:
1511                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1512                         reg_ctrl_ext &= ~(1 << 23);
1513                         reg_ctrl_ext |= (1 << 22);
1514
1515                         /* TX byte count fix */
1516                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1517                         reg_ctrl &= ~(1 << 29);
1518
1519                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1520                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1521                         break;
1522                 case e1000_80003es2lan:
1523         /* improve small packet performace for fiber/serdes */
1524                         if ((hw->media_type == e1000_media_type_fiber)
1525                         || (hw->media_type ==
1526                                 e1000_media_type_internal_serdes)) {
1527                                 reg_tarc0 &= ~(1 << 20);
1528                         }
1529
1530                 /* Multiple read bit is reversed polarity */
1531                         reg_tctl = E1000_READ_REG(hw, TCTL);
1532                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1533                         if (reg_tctl & E1000_TCTL_MULR)
1534                                 reg_tarc1 &= ~(1 << 28);
1535                         else
1536                                 reg_tarc1 |= (1 << 28);
1537
1538                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1539                         break;
1540                 case e1000_ich8lan:
1541                         /* Reduce concurrent DMA requests to 3 from 4 */
1542                         if ((hw->revision_id < 3) ||
1543                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1544                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1545                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1546
1547                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1548                         reg_ctrl_ext |= (1 << 22);
1549                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1550
1551                         /* workaround TX hang with TSO=on */
1552                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1553
1554                         /* Multiple read bit is reversed polarity */
1555                         reg_tctl = E1000_READ_REG(hw, TCTL);
1556                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1557                         if (reg_tctl & E1000_TCTL_MULR)
1558                                 reg_tarc1 &= ~(1 << 28);
1559                         else
1560                                 reg_tarc1 |= (1 << 28);
1561
1562                         /* workaround TX hang with TSO=on */
1563                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1564
1565                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1566                         break;
1567                 default:
1568                         break;
1569                 }
1570
1571                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1572         }
1573 }
1574
1575 /******************************************************************************
1576  * Performs basic configuration of the adapter.
1577  *
1578  * hw - Struct containing variables accessed by shared code
1579  *
1580  * Assumes that the controller has previously been reset and is in a
1581  * post-reset uninitialized state. Initializes the receive address registers,
1582  * multicast table, and VLAN filter table. Calls routines to setup link
1583  * configuration and flow control settings. Clears all on-chip counters. Leaves
1584  * the transmit and receive units disabled and uninitialized.
1585  *****************************************************************************/
1586 static int
1587 e1000_init_hw(struct eth_device *nic)
1588 {
1589         struct e1000_hw *hw = nic->priv;
1590         uint32_t ctrl;
1591         uint32_t i;
1592         int32_t ret_val;
1593         uint16_t pcix_cmd_word;
1594         uint16_t pcix_stat_hi_word;
1595         uint16_t cmd_mmrbc;
1596         uint16_t stat_mmrbc;
1597         uint32_t mta_size;
1598         uint32_t reg_data;
1599         uint32_t ctrl_ext;
1600         DEBUGFUNC();
1601         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1602         if ((hw->mac_type == e1000_ich8lan) &&
1603                 ((hw->revision_id < 3) ||
1604                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1605                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1606                         reg_data = E1000_READ_REG(hw, STATUS);
1607                         reg_data &= ~0x80000000;
1608                         E1000_WRITE_REG(hw, STATUS, reg_data);
1609         }
1610         /* Do not need initialize Identification LED */
1611
1612         /* Set the media type and TBI compatibility */
1613         e1000_set_media_type(hw);
1614
1615         /* Must be called after e1000_set_media_type
1616          * because media_type is used */
1617         e1000_initialize_hardware_bits(hw);
1618
1619         /* Disabling VLAN filtering. */
1620         DEBUGOUT("Initializing the IEEE VLAN\n");
1621         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1622         if (hw->mac_type != e1000_ich8lan) {
1623                 if (hw->mac_type < e1000_82545_rev_3)
1624                         E1000_WRITE_REG(hw, VET, 0);
1625                 e1000_clear_vfta(hw);
1626         }
1627
1628         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1629         if (hw->mac_type == e1000_82542_rev2_0) {
1630                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1631                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1632                                       hw->
1633                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1634                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1635                 E1000_WRITE_FLUSH(hw);
1636                 mdelay(5);
1637         }
1638
1639         /* Setup the receive address. This involves initializing all of the Receive
1640          * Address Registers (RARs 0 - 15).
1641          */
1642         e1000_init_rx_addrs(nic);
1643
1644         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1645         if (hw->mac_type == e1000_82542_rev2_0) {
1646                 E1000_WRITE_REG(hw, RCTL, 0);
1647                 E1000_WRITE_FLUSH(hw);
1648                 mdelay(1);
1649                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1650         }
1651
1652         /* Zero out the Multicast HASH table */
1653         DEBUGOUT("Zeroing the MTA\n");
1654         mta_size = E1000_MC_TBL_SIZE;
1655         if (hw->mac_type == e1000_ich8lan)
1656                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1657         for (i = 0; i < mta_size; i++) {
1658                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1659                 /* use write flush to prevent Memory Write Block (MWB) from
1660                  * occuring when accessing our register space */
1661                 E1000_WRITE_FLUSH(hw);
1662         }
1663 #if 0
1664         /* Set the PCI priority bit correctly in the CTRL register.  This
1665          * determines if the adapter gives priority to receives, or if it
1666          * gives equal priority to transmits and receives.  Valid only on
1667          * 82542 and 82543 silicon.
1668          */
1669         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1670                 ctrl = E1000_READ_REG(hw, CTRL);
1671                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1672         }
1673 #endif
1674         switch (hw->mac_type) {
1675         case e1000_82545_rev_3:
1676         case e1000_82546_rev_3:
1677                 break;
1678         default:
1679         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1680         if (hw->bus_type == e1000_bus_type_pcix) {
1681                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1682                                      &pcix_cmd_word);
1683                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1684                                      &pcix_stat_hi_word);
1685                 cmd_mmrbc =
1686                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1687                     PCIX_COMMAND_MMRBC_SHIFT;
1688                 stat_mmrbc =
1689                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1690                     PCIX_STATUS_HI_MMRBC_SHIFT;
1691                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1692                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1693                 if (cmd_mmrbc > stat_mmrbc) {
1694                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1695                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1696                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1697                                               pcix_cmd_word);
1698                 }
1699         }
1700                 break;
1701         }
1702
1703         /* More time needed for PHY to initialize */
1704         if (hw->mac_type == e1000_ich8lan)
1705                 mdelay(15);
1706
1707         /* Call a subroutine to configure the link and setup flow control. */
1708         ret_val = e1000_setup_link(nic);
1709
1710         /* Set the transmit descriptor write-back policy */
1711         if (hw->mac_type > e1000_82544) {
1712                 ctrl = E1000_READ_REG(hw, TXDCTL);
1713                 ctrl =
1714                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1715                     E1000_TXDCTL_FULL_TX_DESC_WB;
1716                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1717         }
1718
1719         switch (hw->mac_type) {
1720         default:
1721                 break;
1722         case e1000_80003es2lan:
1723                 /* Enable retransmit on late collisions */
1724                 reg_data = E1000_READ_REG(hw, TCTL);
1725                 reg_data |= E1000_TCTL_RTLC;
1726                 E1000_WRITE_REG(hw, TCTL, reg_data);
1727
1728                 /* Configure Gigabit Carry Extend Padding */
1729                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1730                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1731                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1732                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1733
1734                 /* Configure Transmit Inter-Packet Gap */
1735                 reg_data = E1000_READ_REG(hw, TIPG);
1736                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1737                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1738                 E1000_WRITE_REG(hw, TIPG, reg_data);
1739
1740                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1741                 reg_data &= ~0x00100000;
1742                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1743                 /* Fall through */
1744         case e1000_82571:
1745         case e1000_82572:
1746         case e1000_ich8lan:
1747                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1748                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1749                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1750                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1751                 break;
1752         case e1000_82573:
1753         case e1000_82574:
1754                 reg_data = E1000_READ_REG(hw, GCR);
1755                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1756                 E1000_WRITE_REG(hw, GCR, reg_data);
1757         }
1758
1759 #if 0
1760         /* Clear all of the statistics registers (clear on read).  It is
1761          * important that we do this after we have tried to establish link
1762          * because the symbol error count will increment wildly if there
1763          * is no link.
1764          */
1765         e1000_clear_hw_cntrs(hw);
1766
1767         /* ICH8 No-snoop bits are opposite polarity.
1768          * Set to snoop by default after reset. */
1769         if (hw->mac_type == e1000_ich8lan)
1770                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1771 #endif
1772
1773         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1774                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1775                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1776                 /* Relaxed ordering must be disabled to avoid a parity
1777                  * error crash in a PCI slot. */
1778                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1779                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1780         }
1781
1782         return ret_val;
1783 }
1784
1785 /******************************************************************************
1786  * Configures flow control and link settings.
1787  *
1788  * hw - Struct containing variables accessed by shared code
1789  *
1790  * Determines which flow control settings to use. Calls the apropriate media-
1791  * specific link configuration function. Configures the flow control settings.
1792  * Assuming the adapter has a valid link partner, a valid link should be
1793  * established. Assumes the hardware has previously been reset and the
1794  * transmitter and receiver are not enabled.
1795  *****************************************************************************/
1796 static int
1797 e1000_setup_link(struct eth_device *nic)
1798 {
1799         struct e1000_hw *hw = nic->priv;
1800         uint32_t ctrl_ext;
1801         int32_t ret_val;
1802         uint16_t eeprom_data;
1803
1804         DEBUGFUNC();
1805
1806         /* In the case of the phy reset being blocked, we already have a link.
1807          * We do not have to set it up again. */
1808         if (e1000_check_phy_reset_block(hw))
1809                 return E1000_SUCCESS;
1810
1811 #ifndef CONFIG_AP1000
1812         /* Read and store word 0x0F of the EEPROM. This word contains bits
1813          * that determine the hardware's default PAUSE (flow control) mode,
1814          * a bit that determines whether the HW defaults to enabling or
1815          * disabling auto-negotiation, and the direction of the
1816          * SW defined pins. If there is no SW over-ride of the flow
1817          * control setting, then the variable hw->fc will
1818          * be initialized based on a value in the EEPROM.
1819          */
1820         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1821                                 &eeprom_data) < 0) {
1822                 DEBUGOUT("EEPROM Read Error\n");
1823                 return -E1000_ERR_EEPROM;
1824         }
1825 #else
1826         /* we have to hardcode the proper value for our hardware. */
1827         /* this value is for the 82540EM pci card used for prototyping, and it works. */
1828         eeprom_data = 0xb220;
1829 #endif
1830
1831         if (hw->fc == e1000_fc_default) {
1832                 switch (hw->mac_type) {
1833                 case e1000_ich8lan:
1834                 case e1000_82573:
1835                 case e1000_82574:
1836                         hw->fc = e1000_fc_full;
1837                         break;
1838                 default:
1839 #ifndef CONFIG_AP1000
1840                         ret_val = e1000_read_eeprom(hw,
1841                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1842                         if (ret_val) {
1843                                 DEBUGOUT("EEPROM Read Error\n");
1844                                 return -E1000_ERR_EEPROM;
1845                         }
1846 #else
1847                         eeprom_data = 0xb220;
1848 #endif
1849                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1850                                 hw->fc = e1000_fc_none;
1851                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1852                                     EEPROM_WORD0F_ASM_DIR)
1853                                 hw->fc = e1000_fc_tx_pause;
1854                         else
1855                                 hw->fc = e1000_fc_full;
1856                         break;
1857                 }
1858         }
1859
1860         /* We want to save off the original Flow Control configuration just
1861          * in case we get disconnected and then reconnected into a different
1862          * hub or switch with different Flow Control capabilities.
1863          */
1864         if (hw->mac_type == e1000_82542_rev2_0)
1865                 hw->fc &= (~e1000_fc_tx_pause);
1866
1867         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1868                 hw->fc &= (~e1000_fc_rx_pause);
1869
1870         hw->original_fc = hw->fc;
1871
1872         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1873
1874         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1875          * polarity value for the SW controlled pins, and setup the
1876          * Extended Device Control reg with that info.
1877          * This is needed because one of the SW controlled pins is used for
1878          * signal detection.  So this should be done before e1000_setup_pcs_link()
1879          * or e1000_phy_setup() is called.
1880          */
1881         if (hw->mac_type == e1000_82543) {
1882                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1883                             SWDPIO__EXT_SHIFT);
1884                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1885         }
1886
1887         /* Call the necessary subroutine to configure the link. */
1888         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1889             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1890         if (ret_val < 0) {
1891                 return ret_val;
1892         }
1893
1894         /* Initialize the flow control address, type, and PAUSE timer
1895          * registers to their default values.  This is done even if flow
1896          * control is disabled, because it does not hurt anything to
1897          * initialize these registers.
1898          */
1899         DEBUGOUT("Initializing the Flow Control address, type"
1900                         "and timer regs\n");
1901
1902         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1903         if (hw->mac_type != e1000_ich8lan) {
1904                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1905                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1906                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1907         }
1908
1909         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1910
1911         /* Set the flow control receive threshold registers.  Normally,
1912          * these registers will be set to a default threshold that may be
1913          * adjusted later by the driver's runtime code.  However, if the
1914          * ability to transmit pause frames in not enabled, then these
1915          * registers will be set to 0.
1916          */
1917         if (!(hw->fc & e1000_fc_tx_pause)) {
1918                 E1000_WRITE_REG(hw, FCRTL, 0);
1919                 E1000_WRITE_REG(hw, FCRTH, 0);
1920         } else {
1921                 /* We need to set up the Receive Threshold high and low water marks
1922                  * as well as (optionally) enabling the transmission of XON frames.
1923                  */
1924                 if (hw->fc_send_xon) {
1925                         E1000_WRITE_REG(hw, FCRTL,
1926                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1927                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1928                 } else {
1929                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1930                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1931                 }
1932         }
1933         return ret_val;
1934 }
1935
1936 /******************************************************************************
1937  * Sets up link for a fiber based adapter
1938  *
1939  * hw - Struct containing variables accessed by shared code
1940  *
1941  * Manipulates Physical Coding Sublayer functions in order to configure
1942  * link. Assumes the hardware has been previously reset and the transmitter
1943  * and receiver are not enabled.
1944  *****************************************************************************/
1945 static int
1946 e1000_setup_fiber_link(struct eth_device *nic)
1947 {
1948         struct e1000_hw *hw = nic->priv;
1949         uint32_t ctrl;
1950         uint32_t status;
1951         uint32_t txcw = 0;
1952         uint32_t i;
1953         uint32_t signal;
1954         int32_t ret_val;
1955
1956         DEBUGFUNC();
1957         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1958          * set when the optics detect a signal. On older adapters, it will be
1959          * cleared when there is a signal
1960          */
1961         ctrl = E1000_READ_REG(hw, CTRL);
1962         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1963                 signal = E1000_CTRL_SWDPIN1;
1964         else
1965                 signal = 0;
1966
1967         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1968                ctrl);
1969         /* Take the link out of reset */
1970         ctrl &= ~(E1000_CTRL_LRST);
1971
1972         e1000_config_collision_dist(hw);
1973
1974         /* Check for a software override of the flow control settings, and setup
1975          * the device accordingly.  If auto-negotiation is enabled, then software
1976          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1977          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1978          * auto-negotiation is disabled, then software will have to manually
1979          * configure the two flow control enable bits in the CTRL register.
1980          *
1981          * The possible values of the "fc" parameter are:
1982          *      0:  Flow control is completely disabled
1983          *      1:  Rx flow control is enabled (we can receive pause frames, but
1984          *          not send pause frames).
1985          *      2:  Tx flow control is enabled (we can send pause frames but we do
1986          *          not support receiving pause frames).
1987          *      3:  Both Rx and TX flow control (symmetric) are enabled.
1988          */
1989         switch (hw->fc) {
1990         case e1000_fc_none:
1991                 /* Flow control is completely disabled by a software over-ride. */
1992                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1993                 break;
1994         case e1000_fc_rx_pause:
1995                 /* RX Flow control is enabled and TX Flow control is disabled by a
1996                  * software over-ride. Since there really isn't a way to advertise
1997                  * that we are capable of RX Pause ONLY, we will advertise that we
1998                  * support both symmetric and asymmetric RX PAUSE. Later, we will
1999                  *  disable the adapter's ability to send PAUSE frames.
2000                  */
2001                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2002                 break;
2003         case e1000_fc_tx_pause:
2004                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2005                  * software over-ride.
2006                  */
2007                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2008                 break;
2009         case e1000_fc_full:
2010                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2011                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2012                 break;
2013         default:
2014                 DEBUGOUT("Flow control param set incorrectly\n");
2015                 return -E1000_ERR_CONFIG;
2016                 break;
2017         }
2018
2019         /* Since auto-negotiation is enabled, take the link out of reset (the link
2020          * will be in reset, because we previously reset the chip). This will
2021          * restart auto-negotiation.  If auto-neogtiation is successful then the
2022          * link-up status bit will be set and the flow control enable bits (RFCE
2023          * and TFCE) will be set according to their negotiated value.
2024          */
2025         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2026
2027         E1000_WRITE_REG(hw, TXCW, txcw);
2028         E1000_WRITE_REG(hw, CTRL, ctrl);
2029         E1000_WRITE_FLUSH(hw);
2030
2031         hw->txcw = txcw;
2032         mdelay(1);
2033
2034         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2035          * indication in the Device Status Register.  Time-out if a link isn't
2036          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2037          * less than 500 milliseconds even if the other end is doing it in SW).
2038          */
2039         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2040                 DEBUGOUT("Looking for Link\n");
2041                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2042                         mdelay(10);
2043                         status = E1000_READ_REG(hw, STATUS);
2044                         if (status & E1000_STATUS_LU)
2045                                 break;
2046                 }
2047                 if (i == (LINK_UP_TIMEOUT / 10)) {
2048                         /* AutoNeg failed to achieve a link, so we'll call
2049                          * e1000_check_for_link. This routine will force the link up if we
2050                          * detect a signal. This will allow us to communicate with
2051                          * non-autonegotiating link partners.
2052                          */
2053                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2054                         hw->autoneg_failed = 1;
2055                         ret_val = e1000_check_for_link(nic);
2056                         if (ret_val < 0) {
2057                                 DEBUGOUT("Error while checking for link\n");
2058                                 return ret_val;
2059                         }
2060                         hw->autoneg_failed = 0;
2061                 } else {
2062                         hw->autoneg_failed = 0;
2063                         DEBUGOUT("Valid Link Found\n");
2064                 }
2065         } else {
2066                 DEBUGOUT("No Signal Detected\n");
2067                 return -E1000_ERR_NOLINK;
2068         }
2069         return 0;
2070 }
2071
2072 /******************************************************************************
2073 * Make sure we have a valid PHY and change PHY mode before link setup.
2074 *
2075 * hw - Struct containing variables accessed by shared code
2076 ******************************************************************************/
2077 static int32_t
2078 e1000_copper_link_preconfig(struct e1000_hw *hw)
2079 {
2080         uint32_t ctrl;
2081         int32_t ret_val;
2082         uint16_t phy_data;
2083
2084         DEBUGFUNC();
2085
2086         ctrl = E1000_READ_REG(hw, CTRL);
2087         /* With 82543, we need to force speed and duplex on the MAC equal to what
2088          * the PHY speed and duplex configuration is. In addition, we need to
2089          * perform a hardware reset on the PHY to take it out of reset.
2090          */
2091         if (hw->mac_type > e1000_82543) {
2092                 ctrl |= E1000_CTRL_SLU;
2093                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2094                 E1000_WRITE_REG(hw, CTRL, ctrl);
2095         } else {
2096                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2097                                 | E1000_CTRL_SLU);
2098                 E1000_WRITE_REG(hw, CTRL, ctrl);
2099                 ret_val = e1000_phy_hw_reset(hw);
2100                 if (ret_val)
2101                         return ret_val;
2102         }
2103
2104         /* Make sure we have a valid PHY */
2105         ret_val = e1000_detect_gig_phy(hw);
2106         if (ret_val) {
2107                 DEBUGOUT("Error, did not detect valid phy.\n");
2108                 return ret_val;
2109         }
2110         DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2111
2112 #ifndef CONFIG_AP1000
2113         /* Set PHY to class A mode (if necessary) */
2114         ret_val = e1000_set_phy_mode(hw);
2115         if (ret_val)
2116                 return ret_val;
2117 #endif
2118         if ((hw->mac_type == e1000_82545_rev_3) ||
2119                 (hw->mac_type == e1000_82546_rev_3)) {
2120                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2121                                 &phy_data);
2122                 phy_data |= 0x00000008;
2123                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2124                                 phy_data);
2125         }
2126
2127         if (hw->mac_type <= e1000_82543 ||
2128                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2129                 hw->mac_type == e1000_82541_rev_2
2130                 || hw->mac_type == e1000_82547_rev_2)
2131                         hw->phy_reset_disable = FALSE;
2132
2133         return E1000_SUCCESS;
2134 }
2135
2136 /*****************************************************************************
2137  *
2138  * This function sets the lplu state according to the active flag.  When
2139  * activating lplu this function also disables smart speed and vise versa.
2140  * lplu will not be activated unless the device autonegotiation advertisment
2141  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2142  * hw: Struct containing variables accessed by shared code
2143  * active - true to enable lplu false to disable lplu.
2144  *
2145  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2146  *            E1000_SUCCESS at any other case.
2147  *
2148  ****************************************************************************/
2149
2150 static int32_t
2151 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2152 {
2153         uint32_t phy_ctrl = 0;
2154         int32_t ret_val;
2155         uint16_t phy_data;
2156         DEBUGFUNC();
2157
2158         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2159             && hw->phy_type != e1000_phy_igp_3)
2160                 return E1000_SUCCESS;
2161
2162         /* During driver activity LPLU should not be used or it will attain link
2163          * from the lowest speeds starting from 10Mbps. The capability is used
2164          * for Dx transitions and states */
2165         if (hw->mac_type == e1000_82541_rev_2
2166                         || hw->mac_type == e1000_82547_rev_2) {
2167                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2168                                 &phy_data);
2169                 if (ret_val)
2170                         return ret_val;
2171         } else if (hw->mac_type == e1000_ich8lan) {
2172                 /* MAC writes into PHY register based on the state transition
2173                  * and start auto-negotiation. SW driver can overwrite the
2174                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2175                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2176         } else {
2177                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2178                                 &phy_data);
2179                 if (ret_val)
2180                         return ret_val;
2181         }
2182
2183         if (!active) {
2184                 if (hw->mac_type == e1000_82541_rev_2 ||
2185                         hw->mac_type == e1000_82547_rev_2) {
2186                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2187                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2188                                         phy_data);
2189                         if (ret_val)
2190                                 return ret_val;
2191                 } else {
2192                         if (hw->mac_type == e1000_ich8lan) {
2193                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2194                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2195                         } else {
2196                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2197                                 ret_val = e1000_write_phy_reg(hw,
2198                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2199                                 if (ret_val)
2200                                         return ret_val;
2201                         }
2202                 }
2203
2204         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2205          * Dx states where the power conservation is most important.  During
2206          * driver activity we should enable SmartSpeed, so performance is
2207          * maintained. */
2208                 if (hw->smart_speed == e1000_smart_speed_on) {
2209                         ret_val = e1000_read_phy_reg(hw,
2210                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2211                         if (ret_val)
2212                                 return ret_val;
2213
2214                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2215                         ret_val = e1000_write_phy_reg(hw,
2216                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2217                         if (ret_val)
2218                                 return ret_val;
2219                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2220                         ret_val = e1000_read_phy_reg(hw,
2221                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2222                         if (ret_val)
2223                                 return ret_val;
2224
2225                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2226                         ret_val = e1000_write_phy_reg(hw,
2227                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2228                         if (ret_val)
2229                                 return ret_val;
2230                 }
2231
2232         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2233                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2234                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2235
2236                 if (hw->mac_type == e1000_82541_rev_2 ||
2237                     hw->mac_type == e1000_82547_rev_2) {
2238                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2239                         ret_val = e1000_write_phy_reg(hw,
2240                                         IGP01E1000_GMII_FIFO, phy_data);
2241                         if (ret_val)
2242                                 return ret_val;
2243                 } else {
2244                         if (hw->mac_type == e1000_ich8lan) {
2245                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2246                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2247                         } else {
2248                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2249                                 ret_val = e1000_write_phy_reg(hw,
2250                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2251                                 if (ret_val)
2252                                         return ret_val;
2253                         }
2254                 }
2255
2256                 /* When LPLU is enabled we should disable SmartSpeed */
2257                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2258                                 &phy_data);
2259                 if (ret_val)
2260                         return ret_val;
2261
2262                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2263                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2264                                 phy_data);
2265                 if (ret_val)
2266                         return ret_val;
2267         }
2268         return E1000_SUCCESS;
2269 }
2270
2271 /*****************************************************************************
2272  *
2273  * This function sets the lplu d0 state according to the active flag.  When
2274  * activating lplu this function also disables smart speed and vise versa.
2275  * lplu will not be activated unless the device autonegotiation advertisment
2276  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2277  * hw: Struct containing variables accessed by shared code
2278  * active - true to enable lplu false to disable lplu.
2279  *
2280  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2281  *            E1000_SUCCESS at any other case.
2282  *
2283  ****************************************************************************/
2284
2285 static int32_t
2286 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2287 {
2288         uint32_t phy_ctrl = 0;
2289         int32_t ret_val;
2290         uint16_t phy_data;
2291         DEBUGFUNC();
2292
2293         if (hw->mac_type <= e1000_82547_rev_2)
2294                 return E1000_SUCCESS;
2295
2296         if (hw->mac_type == e1000_ich8lan) {
2297                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2298         } else {
2299                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2300                                 &phy_data);
2301                 if (ret_val)
2302                         return ret_val;
2303         }
2304
2305         if (!active) {
2306                 if (hw->mac_type == e1000_ich8lan) {
2307                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2308                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2309                 } else {
2310                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2311                         ret_val = e1000_write_phy_reg(hw,
2312                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2313                         if (ret_val)
2314                                 return ret_val;
2315                 }
2316
2317         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2318          * Dx states where the power conservation is most important.  During
2319          * driver activity we should enable SmartSpeed, so performance is
2320          * maintained. */
2321                 if (hw->smart_speed == e1000_smart_speed_on) {
2322                         ret_val = e1000_read_phy_reg(hw,
2323                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2324                         if (ret_val)
2325                                 return ret_val;
2326
2327                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2328                         ret_val = e1000_write_phy_reg(hw,
2329                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2330                         if (ret_val)
2331                                 return ret_val;
2332                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2333                         ret_val = e1000_read_phy_reg(hw,
2334                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2335                         if (ret_val)
2336                                 return ret_val;
2337
2338                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2339                         ret_val = e1000_write_phy_reg(hw,
2340                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2341                         if (ret_val)
2342                                 return ret_val;
2343                 }
2344
2345
2346         } else {
2347
2348                 if (hw->mac_type == e1000_ich8lan) {
2349                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2350                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2351                 } else {
2352                         phy_data |= IGP02E1000_PM_D0_LPLU;
2353                         ret_val = e1000_write_phy_reg(hw,
2354                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2355                         if (ret_val)
2356                                 return ret_val;
2357                 }
2358
2359                 /* When LPLU is enabled we should disable SmartSpeed */
2360                 ret_val = e1000_read_phy_reg(hw,
2361                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2362                 if (ret_val)
2363                         return ret_val;
2364
2365                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2366                 ret_val = e1000_write_phy_reg(hw,
2367                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2368                 if (ret_val)
2369                         return ret_val;
2370
2371         }
2372         return E1000_SUCCESS;
2373 }
2374
2375 /********************************************************************
2376 * Copper link setup for e1000_phy_igp series.
2377 *
2378 * hw - Struct containing variables accessed by shared code
2379 *********************************************************************/
2380 static int32_t
2381 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2382 {
2383         uint32_t led_ctrl;
2384         int32_t ret_val;
2385         uint16_t phy_data;
2386
2387         DEBUGFUNC();
2388
2389         if (hw->phy_reset_disable)
2390                 return E1000_SUCCESS;
2391
2392         ret_val = e1000_phy_reset(hw);
2393         if (ret_val) {
2394                 DEBUGOUT("Error Resetting the PHY\n");
2395                 return ret_val;
2396         }
2397
2398         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2399         mdelay(15);
2400         if (hw->mac_type != e1000_ich8lan) {
2401                 /* Configure activity LED after PHY reset */
2402                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2403                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2404                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2405                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2406         }
2407
2408         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2409         if (hw->phy_type == e1000_phy_igp) {
2410                 /* disable lplu d3 during driver init */
2411                 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2412                 if (ret_val) {
2413                         DEBUGOUT("Error Disabling LPLU D3\n");
2414                         return ret_val;
2415                 }
2416         }
2417
2418         /* disable lplu d0 during driver init */
2419         ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2420         if (ret_val) {
2421                 DEBUGOUT("Error Disabling LPLU D0\n");
2422                 return ret_val;
2423         }
2424         /* Configure mdi-mdix settings */
2425         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2426         if (ret_val)
2427                 return ret_val;
2428
2429         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2430                 hw->dsp_config_state = e1000_dsp_config_disabled;
2431                 /* Force MDI for earlier revs of the IGP PHY */
2432                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2433                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2434                 hw->mdix = 1;
2435
2436         } else {
2437                 hw->dsp_config_state = e1000_dsp_config_enabled;
2438                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2439
2440                 switch (hw->mdix) {
2441                 case 1:
2442                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2443                         break;
2444                 case 2:
2445                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2446                         break;
2447                 case 0:
2448                 default:
2449                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2450                         break;
2451                 }
2452         }
2453         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2454         if (ret_val)
2455                 return ret_val;
2456
2457         /* set auto-master slave resolution settings */
2458         if (hw->autoneg) {
2459                 e1000_ms_type phy_ms_setting = hw->master_slave;
2460
2461                 if (hw->ffe_config_state == e1000_ffe_config_active)
2462                         hw->ffe_config_state = e1000_ffe_config_enabled;
2463
2464                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2465                         hw->dsp_config_state = e1000_dsp_config_enabled;
2466
2467                 /* when autonegotiation advertisment is only 1000Mbps then we
2468                   * should disable SmartSpeed and enable Auto MasterSlave
2469                   * resolution as hardware default. */
2470                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2471                         /* Disable SmartSpeed */
2472                         ret_val = e1000_read_phy_reg(hw,
2473                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2474                         if (ret_val)
2475                                 return ret_val;
2476                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2477                         ret_val = e1000_write_phy_reg(hw,
2478                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479                         if (ret_val)
2480                                 return ret_val;
2481                         /* Set auto Master/Slave resolution process */
2482                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2483                                         &phy_data);
2484                         if (ret_val)
2485                                 return ret_val;
2486                         phy_data &= ~CR_1000T_MS_ENABLE;
2487                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2488                                         phy_data);
2489                         if (ret_val)
2490                                 return ret_val;
2491                 }
2492
2493                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2494                 if (ret_val)
2495                         return ret_val;
2496
2497                 /* load defaults for future use */
2498                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2499                                 ((phy_data & CR_1000T_MS_VALUE) ?
2500                                 e1000_ms_force_master :
2501                                 e1000_ms_force_slave) :
2502                                 e1000_ms_auto;
2503
2504                 switch (phy_ms_setting) {
2505                 case e1000_ms_force_master:
2506                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2507                         break;
2508                 case e1000_ms_force_slave:
2509                         phy_data |= CR_1000T_MS_ENABLE;
2510                         phy_data &= ~(CR_1000T_MS_VALUE);
2511                         break;
2512                 case e1000_ms_auto:
2513                         phy_data &= ~CR_1000T_MS_ENABLE;
2514                 default:
2515                         break;
2516                 }
2517                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2518                 if (ret_val)
2519                         return ret_val;
2520         }
2521
2522         return E1000_SUCCESS;
2523 }
2524
2525 /*****************************************************************************
2526  * This function checks the mode of the firmware.
2527  *
2528  * returns  - TRUE when the mode is IAMT or FALSE.
2529  ****************************************************************************/
2530 boolean_t
2531 e1000_check_mng_mode(struct e1000_hw *hw)
2532 {
2533         uint32_t fwsm;
2534         DEBUGFUNC();
2535
2536         fwsm = E1000_READ_REG(hw, FWSM);
2537
2538         if (hw->mac_type == e1000_ich8lan) {
2539                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2540                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2541                         return TRUE;
2542         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2543                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2544                         return TRUE;
2545
2546         return FALSE;
2547 }
2548
2549 static int32_t
2550 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2551 {
2552         uint16_t swfw = E1000_SWFW_PHY0_SM;
2553         uint32_t reg_val;
2554         DEBUGFUNC();
2555
2556         if (e1000_is_second_port(hw))
2557                 swfw = E1000_SWFW_PHY1_SM;
2558
2559         if (e1000_swfw_sync_acquire(hw, swfw))
2560                 return -E1000_ERR_SWFW_SYNC;
2561
2562         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2563                         & E1000_KUMCTRLSTA_OFFSET) | data;
2564         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2565         udelay(2);
2566
2567         return E1000_SUCCESS;
2568 }
2569
2570 static int32_t
2571 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2572 {
2573         uint16_t swfw = E1000_SWFW_PHY0_SM;
2574         uint32_t reg_val;
2575         DEBUGFUNC();
2576
2577         if (e1000_is_second_port(hw))
2578                 swfw = E1000_SWFW_PHY1_SM;
2579
2580         if (e1000_swfw_sync_acquire(hw, swfw))
2581                 return -E1000_ERR_SWFW_SYNC;
2582
2583         /* Write register address */
2584         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2585                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2586         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2587         udelay(2);
2588
2589         /* Read the data returned */
2590         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2591         *data = (uint16_t)reg_val;
2592
2593         return E1000_SUCCESS;
2594 }
2595
2596 /********************************************************************
2597 * Copper link setup for e1000_phy_gg82563 series.
2598 *
2599 * hw - Struct containing variables accessed by shared code
2600 *********************************************************************/
2601 static int32_t
2602 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2603 {
2604         int32_t ret_val;
2605         uint16_t phy_data;
2606         uint32_t reg_data;
2607
2608         DEBUGFUNC();
2609
2610         if (!hw->phy_reset_disable) {
2611                 /* Enable CRS on TX for half-duplex operation. */
2612                 ret_val = e1000_read_phy_reg(hw,
2613                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2614                 if (ret_val)
2615                         return ret_val;
2616
2617                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2618                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2619                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2620
2621                 ret_val = e1000_write_phy_reg(hw,
2622                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2623                 if (ret_val)
2624                         return ret_val;
2625
2626                 /* Options:
2627                  *   MDI/MDI-X = 0 (default)
2628                  *   0 - Auto for all speeds
2629                  *   1 - MDI mode
2630                  *   2 - MDI-X mode
2631                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2632                  */
2633                 ret_val = e1000_read_phy_reg(hw,
2634                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2635                 if (ret_val)
2636                         return ret_val;
2637
2638                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2639
2640                 switch (hw->mdix) {
2641                 case 1:
2642                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2643                         break;
2644                 case 2:
2645                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2646                         break;
2647                 case 0:
2648                 default:
2649                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2650                         break;
2651                 }
2652
2653                 /* Options:
2654                  *   disable_polarity_correction = 0 (default)
2655                  *       Automatic Correction for Reversed Cable Polarity
2656                  *   0 - Disabled
2657                  *   1 - Enabled
2658                  */
2659                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2660                 ret_val = e1000_write_phy_reg(hw,
2661                                 GG82563_PHY_SPEC_CTRL, phy_data);
2662
2663                 if (ret_val)
2664                         return ret_val;
2665
2666                 /* SW Reset the PHY so all changes take effect */
2667                 ret_val = e1000_phy_reset(hw);
2668                 if (ret_val) {
2669                         DEBUGOUT("Error Resetting the PHY\n");
2670                         return ret_val;
2671                 }
2672         } /* phy_reset_disable */
2673
2674         if (hw->mac_type == e1000_80003es2lan) {
2675                 /* Bypass RX and TX FIFO's */
2676                 ret_val = e1000_write_kmrn_reg(hw,
2677                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2678                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2679                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2680                 if (ret_val)
2681                         return ret_val;
2682
2683                 ret_val = e1000_read_phy_reg(hw,
2684                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2685                 if (ret_val)
2686                         return ret_val;
2687
2688                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2689                 ret_val = e1000_write_phy_reg(hw,
2690                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2691
2692                 if (ret_val)
2693                         return ret_val;
2694
2695                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2696                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2697                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2698
2699                 ret_val = e1000_read_phy_reg(hw,
2700                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2701                 if (ret_val)
2702                         return ret_val;
2703
2704         /* Do not init these registers when the HW is in IAMT mode, since the
2705          * firmware will have already initialized them.  We only initialize
2706          * them if the HW is not in IAMT mode.
2707          */
2708                 if (e1000_check_mng_mode(hw) == FALSE) {
2709                         /* Enable Electrical Idle on the PHY */
2710                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2711                         ret_val = e1000_write_phy_reg(hw,
2712                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2713                         if (ret_val)
2714                                 return ret_val;
2715
2716                         ret_val = e1000_read_phy_reg(hw,
2717                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2718                         if (ret_val)
2719                                 return ret_val;
2720
2721                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2722                         ret_val = e1000_write_phy_reg(hw,
2723                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2724
2725                         if (ret_val)
2726                                 return ret_val;
2727                 }
2728
2729                 /* Workaround: Disable padding in Kumeran interface in the MAC
2730                  * and in the PHY to avoid CRC errors.
2731                  */
2732                 ret_val = e1000_read_phy_reg(hw,
2733                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2734                 if (ret_val)
2735                         return ret_val;
2736                 phy_data |= GG82563_ICR_DIS_PADDING;
2737                 ret_val = e1000_write_phy_reg(hw,
2738                                 GG82563_PHY_INBAND_CTRL, phy_data);
2739                 if (ret_val)
2740                         return ret_val;
2741         }
2742         return E1000_SUCCESS;
2743 }
2744
2745 /********************************************************************
2746 * Copper link setup for e1000_phy_m88 series.
2747 *
2748 * hw - Struct containing variables accessed by shared code
2749 *********************************************************************/
2750 static int32_t
2751 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2752 {
2753         int32_t ret_val;
2754         uint16_t phy_data;
2755
2756         DEBUGFUNC();
2757
2758         if (hw->phy_reset_disable)
2759                 return E1000_SUCCESS;
2760
2761         /* Enable CRS on TX. This must be set for half-duplex operation. */
2762         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2763         if (ret_val)
2764                 return ret_val;
2765
2766         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2767
2768         /* Options:
2769          *   MDI/MDI-X = 0 (default)
2770          *   0 - Auto for all speeds
2771          *   1 - MDI mode
2772          *   2 - MDI-X mode
2773          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2774          */
2775         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2776
2777         switch (hw->mdix) {
2778         case 1:
2779                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2780                 break;
2781         case 2:
2782                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2783                 break;
2784         case 3:
2785                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2786                 break;
2787         case 0:
2788         default:
2789                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2790                 break;
2791         }
2792
2793         /* Options:
2794          *   disable_polarity_correction = 0 (default)
2795          *       Automatic Correction for Reversed Cable Polarity
2796          *   0 - Disabled
2797          *   1 - Enabled
2798          */
2799         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2800         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2801         if (ret_val)
2802                 return ret_val;
2803
2804         if (hw->phy_revision < M88E1011_I_REV_4) {
2805                 /* Force TX_CLK in the Extended PHY Specific Control Register
2806                  * to 25MHz clock.
2807                  */
2808                 ret_val = e1000_read_phy_reg(hw,
2809                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2810                 if (ret_val)
2811                         return ret_val;
2812
2813                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2814
2815                 if ((hw->phy_revision == E1000_REVISION_2) &&
2816                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2817                         /* Vidalia Phy, set the downshift counter to 5x */
2818                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2819                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2820                         ret_val = e1000_write_phy_reg(hw,
2821                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2822                         if (ret_val)
2823                                 return ret_val;
2824                 } else {
2825                         /* Configure Master and Slave downshift values */
2826                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2827                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2828                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2829                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2830                         ret_val = e1000_write_phy_reg(hw,
2831                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2832                         if (ret_val)
2833                                 return ret_val;
2834                 }
2835         }
2836
2837         /* SW Reset the PHY so all changes take effect */
2838         ret_val = e1000_phy_reset(hw);
2839         if (ret_val) {
2840                 DEBUGOUT("Error Resetting the PHY\n");
2841                 return ret_val;
2842         }
2843
2844         return E1000_SUCCESS;
2845 }
2846
2847 /********************************************************************
2848 * Setup auto-negotiation and flow control advertisements,
2849 * and then perform auto-negotiation.
2850 *
2851 * hw - Struct containing variables accessed by shared code
2852 *********************************************************************/
2853 static int32_t
2854 e1000_copper_link_autoneg(struct e1000_hw *hw)
2855 {
2856         int32_t ret_val;
2857         uint16_t phy_data;
2858
2859         DEBUGFUNC();
2860
2861         /* Perform some bounds checking on the hw->autoneg_advertised
2862          * parameter.  If this variable is zero, then set it to the default.
2863          */
2864         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2865
2866         /* If autoneg_advertised is zero, we assume it was not defaulted
2867          * by the calling code so we set to advertise full capability.
2868          */
2869         if (hw->autoneg_advertised == 0)
2870                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2871
2872         /* IFE phy only supports 10/100 */
2873         if (hw->phy_type == e1000_phy_ife)
2874                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2875
2876         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2877         ret_val = e1000_phy_setup_autoneg(hw);
2878         if (ret_val) {
2879                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2880                 return ret_val;
2881         }
2882         DEBUGOUT("Restarting Auto-Neg\n");
2883
2884         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2885          * the Auto Neg Restart bit in the PHY control register.
2886          */
2887         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2888         if (ret_val)
2889                 return ret_val;
2890
2891         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2892         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2893         if (ret_val)
2894                 return ret_val;
2895
2896         /* Does the user want to wait for Auto-Neg to complete here, or
2897          * check at a later time (for example, callback routine).
2898          */
2899         /* If we do not wait for autonegtation to complete I
2900          * do not see a valid link status.
2901          * wait_autoneg_complete = 1 .
2902          */
2903         if (hw->wait_autoneg_complete) {
2904                 ret_val = e1000_wait_autoneg(hw);
2905                 if (ret_val) {
2906                         DEBUGOUT("Error while waiting for autoneg"
2907                                         "to complete\n");
2908                         return ret_val;
2909                 }
2910         }
2911
2912         hw->get_link_status = TRUE;
2913
2914         return E1000_SUCCESS;
2915 }
2916
2917 /******************************************************************************
2918 * Config the MAC and the PHY after link is up.
2919 *   1) Set up the MAC to the current PHY speed/duplex
2920 *      if we are on 82543.  If we
2921 *      are on newer silicon, we only need to configure
2922 *      collision distance in the Transmit Control Register.
2923 *   2) Set up flow control on the MAC to that established with
2924 *      the link partner.
2925 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2926 *
2927 * hw - Struct containing variables accessed by shared code
2928 ******************************************************************************/
2929 static int32_t
2930 e1000_copper_link_postconfig(struct e1000_hw *hw)
2931 {
2932         int32_t ret_val;
2933         DEBUGFUNC();
2934
2935         if (hw->mac_type >= e1000_82544) {
2936                 e1000_config_collision_dist(hw);
2937         } else {
2938                 ret_val = e1000_config_mac_to_phy(hw);
2939                 if (ret_val) {
2940                         DEBUGOUT("Error configuring MAC to PHY settings\n");
2941                         return ret_val;
2942                 }
2943         }
2944         ret_val = e1000_config_fc_after_link_up(hw);
2945         if (ret_val) {
2946                 DEBUGOUT("Error Configuring Flow Control\n");
2947                 return ret_val;
2948         }
2949         return E1000_SUCCESS;
2950 }
2951
2952 /******************************************************************************
2953 * Detects which PHY is present and setup the speed and duplex
2954 *
2955 * hw - Struct containing variables accessed by shared code
2956 ******************************************************************************/
2957 static int
2958 e1000_setup_copper_link(struct eth_device *nic)
2959 {
2960         struct e1000_hw *hw = nic->priv;
2961         int32_t ret_val;
2962         uint16_t i;
2963         uint16_t phy_data;
2964         uint16_t reg_data;
2965
2966         DEBUGFUNC();
2967
2968         switch (hw->mac_type) {
2969         case e1000_80003es2lan:
2970         case e1000_ich8lan:
2971                 /* Set the mac to wait the maximum time between each
2972                  * iteration and increase the max iterations when
2973                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2974                 ret_val = e1000_write_kmrn_reg(hw,
2975                                 GG82563_REG(0x34, 4), 0xFFFF);
2976                 if (ret_val)
2977                         return ret_val;
2978                 ret_val = e1000_read_kmrn_reg(hw,
2979                                 GG82563_REG(0x34, 9), &reg_data);
2980                 if (ret_val)
2981                         return ret_val;
2982                 reg_data |= 0x3F;
2983                 ret_val = e1000_write_kmrn_reg(hw,
2984                                 GG82563_REG(0x34, 9), reg_data);
2985                 if (ret_val)
2986                         return ret_val;
2987         default:
2988                 break;
2989         }
2990
2991         /* Check if it is a valid PHY and set PHY mode if necessary. */
2992         ret_val = e1000_copper_link_preconfig(hw);
2993         if (ret_val)
2994                 return ret_val;
2995         switch (hw->mac_type) {
2996         case e1000_80003es2lan:
2997                 /* Kumeran registers are written-only */
2998                 reg_data =
2999                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3000                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3001                 ret_val = e1000_write_kmrn_reg(hw,
3002                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3003                 if (ret_val)
3004                         return ret_val;
3005                 break;
3006         default:
3007                 break;
3008         }
3009
3010         if (hw->phy_type == e1000_phy_igp ||
3011                 hw->phy_type == e1000_phy_igp_3 ||
3012                 hw->phy_type == e1000_phy_igp_2) {
3013                 ret_val = e1000_copper_link_igp_setup(hw);
3014                 if (ret_val)
3015                         return ret_val;
3016         } else if (hw->phy_type == e1000_phy_m88) {
3017                 ret_val = e1000_copper_link_mgp_setup(hw);
3018                 if (ret_val)
3019                         return ret_val;
3020         } else if (hw->phy_type == e1000_phy_gg82563) {
3021                 ret_val = e1000_copper_link_ggp_setup(hw);
3022                 if (ret_val)
3023                         return ret_val;
3024         }
3025
3026         /* always auto */
3027         /* Setup autoneg and flow control advertisement
3028           * and perform autonegotiation */
3029         ret_val = e1000_copper_link_autoneg(hw);
3030         if (ret_val)
3031                 return ret_val;
3032
3033         /* Check link status. Wait up to 100 microseconds for link to become
3034          * valid.
3035          */
3036         for (i = 0; i < 10; i++) {
3037                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3038                 if (ret_val)
3039                         return ret_val;
3040                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3041                 if (ret_val)
3042                         return ret_val;
3043
3044                 if (phy_data & MII_SR_LINK_STATUS) {
3045                         /* Config the MAC and PHY after link is up */
3046                         ret_val = e1000_copper_link_postconfig(hw);
3047                         if (ret_val)
3048                                 return ret_val;
3049
3050                         DEBUGOUT("Valid link established!!!\n");
3051                         return E1000_SUCCESS;
3052                 }
3053                 udelay(10);
3054         }
3055
3056         DEBUGOUT("Unable to establish link!!!\n");
3057         return E1000_SUCCESS;
3058 }
3059
3060 /******************************************************************************
3061 * Configures PHY autoneg and flow control advertisement settings
3062 *
3063 * hw - Struct containing variables accessed by shared code
3064 ******************************************************************************/
3065 int32_t
3066 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3067 {
3068         int32_t ret_val;
3069         uint16_t mii_autoneg_adv_reg;
3070         uint16_t mii_1000t_ctrl_reg;
3071
3072         DEBUGFUNC();
3073
3074         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3075         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3076         if (ret_val)
3077                 return ret_val;
3078
3079         if (hw->phy_type != e1000_phy_ife) {
3080                 /* Read the MII 1000Base-T Control Register (Address 9). */
3081                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3082                                 &mii_1000t_ctrl_reg);
3083                 if (ret_val)
3084                         return ret_val;
3085         } else
3086                 mii_1000t_ctrl_reg = 0;
3087
3088         /* Need to parse both autoneg_advertised and fc and set up
3089          * the appropriate PHY registers.  First we will parse for
3090          * autoneg_advertised software override.  Since we can advertise
3091          * a plethora of combinations, we need to check each bit
3092          * individually.
3093          */
3094
3095         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3096          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3097          * the  1000Base-T Control Register (Address 9).
3098          */
3099         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3100         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3101
3102         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3103
3104         /* Do we want to advertise 10 Mb Half Duplex? */
3105         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3106                 DEBUGOUT("Advertise 10mb Half duplex\n");
3107                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3108         }
3109
3110         /* Do we want to advertise 10 Mb Full Duplex? */
3111         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3112                 DEBUGOUT("Advertise 10mb Full duplex\n");
3113                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3114         }
3115
3116         /* Do we want to advertise 100 Mb Half Duplex? */
3117         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3118                 DEBUGOUT("Advertise 100mb Half duplex\n");
3119                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3120         }
3121
3122         /* Do we want to advertise 100 Mb Full Duplex? */
3123         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3124                 DEBUGOUT("Advertise 100mb Full duplex\n");
3125                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3126         }
3127
3128         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3129         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3130                 DEBUGOUT
3131                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3132         }
3133
3134         /* Do we want to advertise 1000 Mb Full Duplex? */
3135         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3136                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3137                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3138         }
3139
3140         /* Check for a software override of the flow control settings, and
3141          * setup the PHY advertisement registers accordingly.  If
3142          * auto-negotiation is enabled, then software will have to set the
3143          * "PAUSE" bits to the correct value in the Auto-Negotiation
3144          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3145          *
3146          * The possible values of the "fc" parameter are:
3147          *      0:  Flow control is completely disabled
3148          *      1:  Rx flow control is enabled (we can receive pause frames
3149          *          but not send pause frames).
3150          *      2:  Tx flow control is enabled (we can send pause frames
3151          *          but we do not support receiving pause frames).
3152          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3153          *  other:  No software override.  The flow control configuration
3154          *          in the EEPROM is used.
3155          */
3156         switch (hw->fc) {
3157         case e1000_fc_none:     /* 0 */
3158                 /* Flow control (RX & TX) is completely disabled by a
3159                  * software over-ride.
3160                  */
3161                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3162                 break;
3163         case e1000_fc_rx_pause: /* 1 */
3164                 /* RX Flow control is enabled, and TX Flow control is
3165                  * disabled, by a software over-ride.
3166                  */
3167                 /* Since there really isn't a way to advertise that we are
3168                  * capable of RX Pause ONLY, we will advertise that we
3169                  * support both symmetric and asymmetric RX PAUSE.  Later
3170                  * (in e1000_config_fc_after_link_up) we will disable the
3171                  *hw's ability to send PAUSE frames.
3172                  */
3173                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3174                 break;
3175         case e1000_fc_tx_pause: /* 2 */
3176                 /* TX Flow control is enabled, and RX Flow control is
3177                  * disabled, by a software over-ride.
3178                  */
3179                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3180                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3181                 break;
3182         case e1000_fc_full:     /* 3 */
3183                 /* Flow control (both RX and TX) is enabled by a software
3184                  * over-ride.
3185                  */
3186                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3187                 break;
3188         default:
3189                 DEBUGOUT("Flow control param set incorrectly\n");
3190                 return -E1000_ERR_CONFIG;
3191         }
3192
3193         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3194         if (ret_val)
3195                 return ret_val;
3196
3197         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3198
3199         if (hw->phy_type != e1000_phy_ife) {
3200                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3201                                 mii_1000t_ctrl_reg);
3202                 if (ret_val)
3203                         return ret_val;
3204         }
3205
3206         return E1000_SUCCESS;
3207 }
3208
3209 /******************************************************************************
3210 * Sets the collision distance in the Transmit Control register
3211 *
3212 * hw - Struct containing variables accessed by shared code
3213 *
3214 * Link should have been established previously. Reads the speed and duplex
3215 * information from the Device Status register.
3216 ******************************************************************************/
3217 static void
3218 e1000_config_collision_dist(struct e1000_hw *hw)
3219 {
3220         uint32_t tctl, coll_dist;
3221
3222         DEBUGFUNC();
3223
3224         if (hw->mac_type < e1000_82543)
3225                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3226         else
3227                 coll_dist = E1000_COLLISION_DISTANCE;
3228
3229         tctl = E1000_READ_REG(hw, TCTL);
3230
3231         tctl &= ~E1000_TCTL_COLD;
3232         tctl |= coll_dist << E1000_COLD_SHIFT;
3233
3234         E1000_WRITE_REG(hw, TCTL, tctl);
3235         E1000_WRITE_FLUSH(hw);
3236 }
3237
3238 /******************************************************************************
3239 * Sets MAC speed and duplex settings to reflect the those in the PHY
3240 *
3241 * hw - Struct containing variables accessed by shared code
3242 * mii_reg - data to write to the MII control register
3243 *
3244 * The contents of the PHY register containing the needed information need to
3245 * be passed in.
3246 ******************************************************************************/
3247 static int
3248 e1000_config_mac_to_phy(struct e1000_hw *hw)
3249 {
3250         uint32_t ctrl;
3251         uint16_t phy_data;
3252
3253         DEBUGFUNC();
3254
3255         /* Read the Device Control Register and set the bits to Force Speed
3256          * and Duplex.
3257          */
3258         ctrl = E1000_READ_REG(hw, CTRL);
3259         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3260         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3261
3262         /* Set up duplex in the Device Control and Transmit Control
3263          * registers depending on negotiated values.
3264          */
3265         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3266                 DEBUGOUT("PHY Read Error\n");
3267                 return -E1000_ERR_PHY;
3268         }
3269         if (phy_data & M88E1000_PSSR_DPLX)
3270                 ctrl |= E1000_CTRL_FD;
3271         else
3272                 ctrl &= ~E1000_CTRL_FD;
3273
3274         e1000_config_collision_dist(hw);
3275
3276         /* Set up speed in the Device Control register depending on
3277          * negotiated values.
3278          */
3279         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3280                 ctrl |= E1000_CTRL_SPD_1000;
3281         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3282                 ctrl |= E1000_CTRL_SPD_100;
3283         /* Write the configured values back to the Device Control Reg. */
3284         E1000_WRITE_REG(hw, CTRL, ctrl);
3285         return 0;
3286 }
3287
3288 /******************************************************************************
3289  * Forces the MAC's flow control settings.
3290  *
3291  * hw - Struct containing variables accessed by shared code
3292  *
3293  * Sets the TFCE and RFCE bits in the device control register to reflect
3294  * the adapter settings. TFCE and RFCE need to be explicitly set by
3295  * software when a Copper PHY is used because autonegotiation is managed
3296  * by the PHY rather than the MAC. Software must also configure these
3297  * bits when link is forced on a fiber connection.
3298  *****************************************************************************/
3299 static int
3300 e1000_force_mac_fc(struct e1000_hw *hw)
3301 {
3302         uint32_t ctrl;
3303
3304         DEBUGFUNC();
3305
3306         /* Get the current configuration of the Device Control Register */
3307         ctrl = E1000_READ_REG(hw, CTRL);
3308
3309         /* Because we didn't get link via the internal auto-negotiation
3310          * mechanism (we either forced link or we got link via PHY
3311          * auto-neg), we have to manually enable/disable transmit an
3312          * receive flow control.
3313          *
3314          * The "Case" statement below enables/disable flow control
3315          * according to the "hw->fc" parameter.
3316          *
3317          * The possible values of the "fc" parameter are:
3318          *      0:  Flow control is completely disabled
3319          *      1:  Rx flow control is enabled (we can receive pause
3320          *          frames but not send pause frames).
3321          *      2:  Tx flow control is enabled (we can send pause frames
3322          *          frames but we do not receive pause frames).
3323          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3324          *  other:  No other values should be possible at this point.
3325          */
3326
3327         switch (hw->fc) {
3328         case e1000_fc_none:
3329                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3330                 break;
3331         case e1000_fc_rx_pause:
3332                 ctrl &= (~E1000_CTRL_TFCE);
3333                 ctrl |= E1000_CTRL_RFCE;
3334                 break;
3335         case e1000_fc_tx_pause:
3336                 ctrl &= (~E1000_CTRL_RFCE);
3337                 ctrl |= E1000_CTRL_TFCE;
3338                 break;
3339         case e1000_fc_full:
3340                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3341                 break;
3342         default:
3343                 DEBUGOUT("Flow control param set incorrectly\n");
3344                 return -E1000_ERR_CONFIG;
3345         }
3346
3347         /* Disable TX Flow Control for 82542 (rev 2.0) */
3348         if (hw->mac_type == e1000_82542_rev2_0)
3349                 ctrl &= (~E1000_CTRL_TFCE);
3350
3351         E1000_WRITE_REG(hw, CTRL, ctrl);
3352         return 0;
3353 }
3354
3355 /******************************************************************************
3356  * Configures flow control settings after link is established
3357  *
3358  * hw - Struct containing variables accessed by shared code
3359  *
3360  * Should be called immediately after a valid link has been established.
3361  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3362  * and autonegotiation is enabled, the MAC flow control settings will be set
3363  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3364  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3365  *****************************************************************************/
3366 static int32_t
3367 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3368 {
3369         int32_t ret_val;
3370         uint16_t mii_status_reg;
3371         uint16_t mii_nway_adv_reg;
3372         uint16_t mii_nway_lp_ability_reg;
3373         uint16_t speed;
3374         uint16_t duplex;
3375
3376         DEBUGFUNC();
3377
3378         /* Check for the case where we have fiber media and auto-neg failed
3379          * so we had to force link.  In this case, we need to force the
3380          * configuration of the MAC to match the "fc" parameter.
3381          */
3382         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3383                 || ((hw->media_type == e1000_media_type_internal_serdes)
3384                 && (hw->autoneg_failed))
3385                 || ((hw->media_type == e1000_media_type_copper)
3386                 && (!hw->autoneg))) {
3387                 ret_val = e1000_force_mac_fc(hw);
3388                 if (ret_val < 0) {
3389                         DEBUGOUT("Error forcing flow control settings\n");
3390                         return ret_val;
3391                 }
3392         }
3393
3394         /* Check for the case where we have copper media and auto-neg is
3395          * enabled.  In this case, we need to check and see if Auto-Neg
3396          * has completed, and if so, how the PHY and link partner has
3397          * flow control configured.
3398          */
3399         if (hw->media_type == e1000_media_type_copper) {
3400                 /* Read the MII Status Register and check to see if AutoNeg
3401                  * has completed.  We read this twice because this reg has
3402                  * some "sticky" (latched) bits.
3403                  */
3404                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3405                         DEBUGOUT("PHY Read Error \n");
3406                         return -E1000_ERR_PHY;
3407                 }
3408                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3409                         DEBUGOUT("PHY Read Error \n");
3410                         return -E1000_ERR_PHY;
3411                 }
3412
3413                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3414                         /* The AutoNeg process has completed, so we now need to
3415                          * read both the Auto Negotiation Advertisement Register
3416                          * (Address 4) and the Auto_Negotiation Base Page Ability
3417                          * Register (Address 5) to determine how flow control was
3418                          * negotiated.
3419                          */
3420                         if (e1000_read_phy_reg
3421                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3422                                 DEBUGOUT("PHY Read Error\n");
3423                                 return -E1000_ERR_PHY;
3424                         }
3425                         if (e1000_read_phy_reg
3426                             (hw, PHY_LP_ABILITY,
3427                              &mii_nway_lp_ability_reg) < 0) {
3428                                 DEBUGOUT("PHY Read Error\n");
3429                                 return -E1000_ERR_PHY;
3430                         }
3431
3432                         /* Two bits in the Auto Negotiation Advertisement Register
3433                          * (Address 4) and two bits in the Auto Negotiation Base
3434                          * Page Ability Register (Address 5) determine flow control
3435                          * for both the PHY and the link partner.  The following
3436                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3437                          * 1999, describes these PAUSE resolution bits and how flow
3438                          * control is determined based upon these settings.
3439                          * NOTE:  DC = Don't Care
3440                          *
3441                          *   LOCAL DEVICE  |   LINK PARTNER
3442                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3443                          *-------|---------|-------|---------|--------------------
3444                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3445                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3446                          *   0   |    1    |   1   |    0    | e1000_fc_none
3447                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3448                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3449                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3450                          *   1   |    1    |   0   |    0    | e1000_fc_none
3451                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3452                          *
3453                          */
3454                         /* Are both PAUSE bits set to 1?  If so, this implies
3455                          * Symmetric Flow Control is enabled at both ends.  The
3456                          * ASM_DIR bits are irrelevant per the spec.
3457                          *
3458                          * For Symmetric Flow Control:
3459                          *
3460                          *   LOCAL DEVICE  |   LINK PARTNER
3461                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3462                          *-------|---------|-------|---------|--------------------
3463                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3464                          *
3465                          */
3466                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3467                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3468                                 /* Now we need to check if the user selected RX ONLY
3469                                  * of pause frames.  In this case, we had to advertise
3470                                  * FULL flow control because we could not advertise RX
3471                                  * ONLY. Hence, we must now check to see if we need to
3472                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3473                                  */
3474                                 if (hw->original_fc == e1000_fc_full) {
3475                                         hw->fc = e1000_fc_full;
3476                                         DEBUGOUT("Flow Control = FULL.\r\n");
3477                                 } else {
3478                                         hw->fc = e1000_fc_rx_pause;
3479                                         DEBUGOUT
3480                                             ("Flow Control = RX PAUSE frames only.\r\n");
3481                                 }
3482                         }
3483                         /* For receiving PAUSE frames ONLY.
3484                          *
3485                          *   LOCAL DEVICE  |   LINK PARTNER
3486                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3487                          *-------|---------|-------|---------|--------------------
3488                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3489                          *
3490                          */
3491                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3492                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3493                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3494                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3495                         {
3496                                 hw->fc = e1000_fc_tx_pause;
3497                                 DEBUGOUT
3498                                     ("Flow Control = TX PAUSE frames only.\r\n");
3499                         }
3500                         /* For transmitting PAUSE frames ONLY.
3501                          *
3502                          *   LOCAL DEVICE  |   LINK PARTNER
3503                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3504                          *-------|---------|-------|---------|--------------------
3505                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3506                          *
3507                          */
3508                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3509                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3510                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3511                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3512                         {
3513                                 hw->fc = e1000_fc_rx_pause;
3514                                 DEBUGOUT
3515                                     ("Flow Control = RX PAUSE frames only.\r\n");
3516                         }
3517                         /* Per the IEEE spec, at this point flow control should be
3518                          * disabled.  However, we want to consider that we could
3519                          * be connected to a legacy switch that doesn't advertise
3520                          * desired flow control, but can be forced on the link
3521                          * partner.  So if we advertised no flow control, that is
3522                          * what we will resolve to.  If we advertised some kind of
3523                          * receive capability (Rx Pause Only or Full Flow Control)
3524                          * and the link partner advertised none, we will configure
3525                          * ourselves to enable Rx Flow Control only.  We can do
3526                          * this safely for two reasons:  If the link partner really
3527                          * didn't want flow control enabled, and we enable Rx, no
3528                          * harm done since we won't be receiving any PAUSE frames
3529                          * anyway.  If the intent on the link partner was to have
3530                          * flow control enabled, then by us enabling RX only, we
3531                          * can at least receive pause frames and process them.
3532                          * This is a good idea because in most cases, since we are
3533                          * predominantly a server NIC, more times than not we will
3534                          * be asked to delay transmission of packets than asking
3535                          * our link partner to pause transmission of frames.
3536                          */
3537                         else if (hw->original_fc == e1000_fc_none ||
3538                                  hw->original_fc == e1000_fc_tx_pause) {
3539                                 hw->fc = e1000_fc_none;
3540                                 DEBUGOUT("Flow Control = NONE.\r\n");
3541                         } else {
3542                                 hw->fc = e1000_fc_rx_pause;
3543                                 DEBUGOUT
3544                                     ("Flow Control = RX PAUSE frames only.\r\n");
3545                         }
3546
3547                         /* Now we need to do one last check...  If we auto-
3548                          * negotiated to HALF DUPLEX, flow control should not be
3549                          * enabled per IEEE 802.3 spec.
3550                          */
3551                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3552
3553                         if (duplex == HALF_DUPLEX)
3554                                 hw->fc = e1000_fc_none;
3555
3556                         /* Now we call a subroutine to actually force the MAC
3557                          * controller to use the correct flow control settings.
3558                          */
3559                         ret_val = e1000_force_mac_fc(hw);
3560                         if (ret_val < 0) {
3561                                 DEBUGOUT
3562                                     ("Error forcing flow control settings\n");
3563                                 return ret_val;
3564                         }
3565                 } else {
3566                         DEBUGOUT
3567                             ("Copper PHY and Auto Neg has not completed.\r\n");
3568                 }
3569         }
3570         return E1000_SUCCESS;
3571 }
3572
3573 /******************************************************************************
3574  * Checks to see if the link status of the hardware has changed.
3575  *
3576  * hw - Struct containing variables accessed by shared code
3577  *
3578  * Called by any function that needs to check the link status of the adapter.
3579  *****************************************************************************/
3580 static int
3581 e1000_check_for_link(struct eth_device *nic)
3582 {
3583         struct e1000_hw *hw = nic->priv;
3584         uint32_t rxcw;
3585         uint32_t ctrl;
3586         uint32_t status;
3587         uint32_t rctl;
3588         uint32_t signal;
3589         int32_t ret_val;
3590         uint16_t phy_data;
3591         uint16_t lp_capability;
3592
3593         DEBUGFUNC();
3594
3595         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3596          * set when the optics detect a signal. On older adapters, it will be
3597          * cleared when there is a signal
3598          */
3599         ctrl = E1000_READ_REG(hw, CTRL);
3600         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3601                 signal = E1000_CTRL_SWDPIN1;
3602         else
3603                 signal = 0;
3604
3605         status = E1000_READ_REG(hw, STATUS);
3606         rxcw = E1000_READ_REG(hw, RXCW);
3607         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3608
3609         /* If we have a copper PHY then we only want to go out to the PHY
3610          * registers to see if Auto-Neg has completed and/or if our link
3611          * status has changed.  The get_link_status flag will be set if we
3612          * receive a Link Status Change interrupt or we have Rx Sequence
3613          * Errors.
3614          */
3615         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3616                 /* First we want to see if the MII Status Register reports
3617                  * link.  If so, then we want to get the current speed/duplex
3618                  * of the PHY.
3619                  * Read the register twice since the link bit is sticky.
3620                  */
3621                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3622                         DEBUGOUT("PHY Read Error\n");
3623                         return -E1000_ERR_PHY;
3624                 }
3625                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3626                         DEBUGOUT("PHY Read Error\n");
3627                         return -E1000_ERR_PHY;
3628                 }
3629
3630                 if (phy_data & MII_SR_LINK_STATUS) {
3631                         hw->get_link_status = FALSE;
3632                 } else {
3633                         /* No link detected */
3634                         return -E1000_ERR_NOLINK;
3635                 }
3636
3637                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3638                  * have Si on board that is 82544 or newer, Auto
3639                  * Speed Detection takes care of MAC speed/duplex
3640                  * configuration.  So we only need to configure Collision
3641                  * Distance in the MAC.  Otherwise, we need to force
3642                  * speed/duplex on the MAC to the current PHY speed/duplex
3643                  * settings.
3644                  */
3645                 if (hw->mac_type >= e1000_82544)
3646                         e1000_config_collision_dist(hw);
3647                 else {
3648                         ret_val = e1000_config_mac_to_phy(hw);
3649                         if (ret_val < 0) {
3650                                 DEBUGOUT
3651                                     ("Error configuring MAC to PHY settings\n");
3652                                 return ret_val;
3653                         }
3654                 }
3655
3656                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3657                  * need to restore the desired flow control settings because we may
3658                  * have had to re-autoneg with a different link partner.
3659                  */
3660                 ret_val = e1000_config_fc_after_link_up(hw);
3661                 if (ret_val < 0) {
3662                         DEBUGOUT("Error configuring flow control\n");
3663                         return ret_val;
3664                 }
3665
3666                 /* At this point we know that we are on copper and we have
3667                  * auto-negotiated link.  These are conditions for checking the link
3668                  * parter capability register.  We use the link partner capability to
3669                  * determine if TBI Compatibility needs to be turned on or off.  If
3670                  * the link partner advertises any speed in addition to Gigabit, then
3671                  * we assume that they are GMII-based, and TBI compatibility is not
3672                  * needed. If no other speeds are advertised, we assume the link
3673                  * partner is TBI-based, and we turn on TBI Compatibility.
3674                  */
3675                 if (hw->tbi_compatibility_en) {
3676                         if (e1000_read_phy_reg
3677                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3678                                 DEBUGOUT("PHY Read Error\n");
3679                                 return -E1000_ERR_PHY;
3680                         }
3681                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3682                                              NWAY_LPAR_10T_FD_CAPS |
3683                                              NWAY_LPAR_100TX_HD_CAPS |
3684                                              NWAY_LPAR_100TX_FD_CAPS |
3685                                              NWAY_LPAR_100T4_CAPS)) {
3686                                 /* If our link partner advertises anything in addition to
3687                                  * gigabit, we do not need to enable TBI compatibility.
3688                                  */
3689                                 if (hw->tbi_compatibility_on) {
3690                                         /* If we previously were in the mode, turn it off. */
3691                                         rctl = E1000_READ_REG(hw, RCTL);
3692                                         rctl &= ~E1000_RCTL_SBP;
3693                                         E1000_WRITE_REG(hw, RCTL, rctl);
3694                                         hw->tbi_compatibility_on = FALSE;
3695                                 }
3696                         } else {
3697                                 /* If TBI compatibility is was previously off, turn it on. For
3698                                  * compatibility with a TBI link partner, we will store bad
3699                                  * packets. Some frames have an additional byte on the end and
3700                                  * will look like CRC errors to to the hardware.
3701                                  */
3702                                 if (!hw->tbi_compatibility_on) {
3703                                         hw->tbi_compatibility_on = TRUE;
3704                                         rctl = E1000_READ_REG(hw, RCTL);
3705                                         rctl |= E1000_RCTL_SBP;
3706                                         E1000_WRITE_REG(hw, RCTL, rctl);
3707                                 }
3708                         }
3709                 }
3710         }
3711         /* If we don't have link (auto-negotiation failed or link partner cannot
3712          * auto-negotiate), the cable is plugged in (we have signal), and our
3713          * link partner is not trying to auto-negotiate with us (we are receiving
3714          * idles or data), we need to force link up. We also need to give
3715          * auto-negotiation time to complete, in case the cable was just plugged
3716          * in. The autoneg_failed flag does this.
3717          */
3718         else if ((hw->media_type == e1000_media_type_fiber) &&
3719                  (!(status & E1000_STATUS_LU)) &&
3720                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3721                  (!(rxcw & E1000_RXCW_C))) {
3722                 if (hw->autoneg_failed == 0) {
3723                         hw->autoneg_failed = 1;
3724                         return 0;
3725                 }
3726                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3727
3728                 /* Disable auto-negotiation in the TXCW register */
3729                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3730
3731                 /* Force link-up and also force full-duplex. */
3732                 ctrl = E1000_READ_REG(hw, CTRL);
3733                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3734                 E1000_WRITE_REG(hw, CTRL, ctrl);
3735
3736                 /* Configure Flow Control after forcing link up. */
3737                 ret_val = e1000_config_fc_after_link_up(hw);
3738                 if (ret_val < 0) {
3739                         DEBUGOUT("Error configuring flow control\n");
3740                         return ret_val;
3741                 }
3742         }
3743         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3744          * auto-negotiation in the TXCW register and disable forced link in the
3745          * Device Control register in an attempt to auto-negotiate with our link
3746          * partner.
3747          */
3748         else if ((hw->media_type == e1000_media_type_fiber) &&
3749                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3750                 DEBUGOUT
3751                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3752                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3753                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3754         }
3755         return 0;
3756 }
3757
3758 /******************************************************************************
3759 * Configure the MAC-to-PHY interface for 10/100Mbps
3760 *
3761 * hw - Struct containing variables accessed by shared code
3762 ******************************************************************************/
3763 static int32_t
3764 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3765 {
3766         int32_t ret_val = E1000_SUCCESS;
3767         uint32_t tipg;
3768         uint16_t reg_data;
3769
3770         DEBUGFUNC();
3771
3772         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3773         ret_val = e1000_write_kmrn_reg(hw,
3774                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3775         if (ret_val)
3776                 return ret_val;
3777
3778         /* Configure Transmit Inter-Packet Gap */
3779         tipg = E1000_READ_REG(hw, TIPG);
3780         tipg &= ~E1000_TIPG_IPGT_MASK;
3781         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3782         E1000_WRITE_REG(hw, TIPG, tipg);
3783
3784         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3785
3786         if (ret_val)
3787                 return ret_val;
3788
3789         if (duplex == HALF_DUPLEX)
3790                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3791         else
3792                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3793
3794         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3795
3796         return ret_val;
3797 }
3798
3799 static int32_t
3800 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3801 {
3802         int32_t ret_val = E1000_SUCCESS;
3803         uint16_t reg_data;
3804         uint32_t tipg;
3805
3806         DEBUGFUNC();
3807
3808         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3809         ret_val = e1000_write_kmrn_reg(hw,
3810                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3811         if (ret_val)
3812                 return ret_val;
3813
3814         /* Configure Transmit Inter-Packet Gap */
3815         tipg = E1000_READ_REG(hw, TIPG);
3816         tipg &= ~E1000_TIPG_IPGT_MASK;
3817         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3818         E1000_WRITE_REG(hw, TIPG, tipg);
3819
3820         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3821
3822         if (ret_val)
3823                 return ret_val;
3824
3825         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3826         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3827
3828         return ret_val;
3829 }
3830
3831 /******************************************************************************
3832  * Detects the current speed and duplex settings of the hardware.
3833  *
3834  * hw - Struct containing variables accessed by shared code
3835  * speed - Speed of the connection
3836  * duplex - Duplex setting of the connection
3837  *****************************************************************************/
3838 static int
3839 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3840                 uint16_t *duplex)
3841 {
3842         uint32_t status;
3843         int32_t ret_val;
3844         uint16_t phy_data;
3845
3846         DEBUGFUNC();
3847
3848         if (hw->mac_type >= e1000_82543) {
3849                 status = E1000_READ_REG(hw, STATUS);
3850                 if (status & E1000_STATUS_SPEED_1000) {
3851                         *speed = SPEED_1000;
3852                         DEBUGOUT("1000 Mbs, ");
3853                 } else if (status & E1000_STATUS_SPEED_100) {
3854                         *speed = SPEED_100;
3855                         DEBUGOUT("100 Mbs, ");
3856                 } else {
3857                         *speed = SPEED_10;
3858                         DEBUGOUT("10 Mbs, ");
3859                 }
3860
3861                 if (status & E1000_STATUS_FD) {
3862                         *duplex = FULL_DUPLEX;
3863                         DEBUGOUT("Full Duplex\r\n");
3864                 } else {
3865                         *duplex = HALF_DUPLEX;
3866                         DEBUGOUT(" Half Duplex\r\n");
3867                 }
3868         } else {
3869                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3870                 *speed = SPEED_1000;
3871                 *duplex = FULL_DUPLEX;
3872         }
3873
3874         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3875          * even if it is operating at half duplex.  Here we set the duplex
3876          * settings to match the duplex in the link partner's capabilities.
3877          */
3878         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3879                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3880                 if (ret_val)
3881                         return ret_val;
3882
3883                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3884                         *duplex = HALF_DUPLEX;
3885                 else {
3886                         ret_val = e1000_read_phy_reg(hw,
3887                                         PHY_LP_ABILITY, &phy_data);
3888                         if (ret_val)
3889                                 return ret_val;
3890                         if ((*speed == SPEED_100 &&
3891                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3892                                 || (*speed == SPEED_10
3893                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3894                                 *duplex = HALF_DUPLEX;
3895                 }
3896         }
3897
3898         if ((hw->mac_type == e1000_80003es2lan) &&
3899                 (hw->media_type == e1000_media_type_copper)) {
3900                 if (*speed == SPEED_1000)
3901                         ret_val = e1000_configure_kmrn_for_1000(hw);
3902                 else
3903                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3904                 if (ret_val)
3905                         return ret_val;
3906         }
3907         return E1000_SUCCESS;
3908 }
3909
3910 /******************************************************************************
3911 * Blocks until autoneg completes or times out (~4.5 seconds)
3912 *
3913 * hw - Struct containing variables accessed by shared code
3914 ******************************************************************************/
3915 static int
3916 e1000_wait_autoneg(struct e1000_hw *hw)
3917 {
3918         uint16_t i;
3919         uint16_t phy_data;
3920
3921         DEBUGFUNC();
3922         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3923
3924         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3925         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3926                 /* Read the MII Status Register and wait for Auto-Neg
3927                  * Complete bit to be set.
3928                  */
3929                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3930                         DEBUGOUT("PHY Read Error\n");
3931                         return -E1000_ERR_PHY;
3932                 }
3933                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3934                         DEBUGOUT("PHY Read Error\n");
3935                         return -E1000_ERR_PHY;
3936                 }
3937                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3938                         DEBUGOUT("Auto-Neg complete.\n");
3939                         return 0;
3940                 }
3941                 mdelay(100);
3942         }
3943         DEBUGOUT("Auto-Neg timedout.\n");
3944         return -E1000_ERR_TIMEOUT;
3945 }
3946
3947 /******************************************************************************
3948 * Raises the Management Data Clock
3949 *
3950 * hw - Struct containing variables accessed by shared code
3951 * ctrl - Device control register's current value
3952 ******************************************************************************/
3953 static void
3954 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3955 {
3956         /* Raise the clock input to the Management Data Clock (by setting the MDC
3957          * bit), and then delay 2 microseconds.
3958          */
3959         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3960         E1000_WRITE_FLUSH(hw);
3961         udelay(2);
3962 }
3963
3964 /******************************************************************************
3965 * Lowers the Management Data Clock
3966 *
3967 * hw - Struct containing variables accessed by shared code
3968 * ctrl - Device control register's current value
3969 ******************************************************************************/
3970 static void
3971 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3972 {
3973         /* Lower the clock input to the Management Data Clock (by clearing the MDC
3974          * bit), and then delay 2 microseconds.
3975          */
3976         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3977         E1000_WRITE_FLUSH(hw);
3978         udelay(2);
3979 }
3980
3981 /******************************************************************************
3982 * Shifts data bits out to the PHY
3983 *
3984 * hw - Struct containing variables accessed by shared code
3985 * data - Data to send out to the PHY
3986 * count - Number of bits to shift out
3987 *
3988 * Bits are shifted out in MSB to LSB order.
3989 ******************************************************************************/
3990 static void
3991 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3992 {
3993         uint32_t ctrl;
3994         uint32_t mask;
3995
3996         /* We need to shift "count" number of bits out to the PHY. So, the value
3997          * in the "data" parameter will be shifted out to the PHY one bit at a
3998          * time. In order to do this, "data" must be broken down into bits.
3999          */
4000         mask = 0x01;
4001         mask <<= (count - 1);
4002
4003         ctrl = E1000_READ_REG(hw, CTRL);
4004
4005         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4006         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4007
4008         while (mask) {
4009                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4010                  * then raising and lowering the Management Data Clock. A "0" is
4011                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4012                  * raising and lowering the clock.
4013                  */
4014                 if (data & mask)
4015                         ctrl |= E1000_CTRL_MDIO;
4016                 else
4017                         ctrl &= ~E1000_CTRL_MDIO;
4018
4019                 E1000_WRITE_REG(hw, CTRL, ctrl);
4020                 E1000_WRITE_FLUSH(hw);
4021
4022                 udelay(2);
4023
4024                 e1000_raise_mdi_clk(hw, &ctrl);
4025                 e1000_lower_mdi_clk(hw, &ctrl);
4026
4027                 mask = mask >> 1;
4028         }
4029 }
4030
4031 /******************************************************************************
4032 * Shifts data bits in from the PHY
4033 *
4034 * hw - Struct containing variables accessed by shared code
4035 *
4036 * Bits are shifted in in MSB to LSB order.
4037 ******************************************************************************/
4038 static uint16_t
4039 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4040 {
4041         uint32_t ctrl;
4042         uint16_t data = 0;
4043         uint8_t i;
4044
4045         /* In order to read a register from the PHY, we need to shift in a total
4046          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4047          * to avoid contention on the MDIO pin when a read operation is performed.
4048          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4049          * by raising the input to the Management Data Clock (setting the MDC bit),
4050          * and then reading the value of the MDIO bit.
4051          */
4052         ctrl = E1000_READ_REG(hw, CTRL);
4053
4054         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4055         ctrl &= ~E1000_CTRL_MDIO_DIR;
4056         ctrl &= ~E1000_CTRL_MDIO;
4057
4058         E1000_WRITE_REG(hw, CTRL, ctrl);
4059         E1000_WRITE_FLUSH(hw);
4060
4061         /* Raise and Lower the clock before reading in the data. This accounts for
4062          * the turnaround bits. The first clock occurred when we clocked out the
4063          * last bit of the Register Address.
4064          */
4065         e1000_raise_mdi_clk(hw, &ctrl);
4066         e1000_lower_mdi_clk(hw, &ctrl);
4067
4068         for (data = 0, i = 0; i < 16; i++) {
4069                 data = data << 1;
4070                 e1000_raise_mdi_clk(hw, &ctrl);
4071                 ctrl = E1000_READ_REG(hw, CTRL);
4072                 /* Check to see if we shifted in a "1". */
4073                 if (ctrl & E1000_CTRL_MDIO)
4074                         data |= 1;
4075                 e1000_lower_mdi_clk(hw, &ctrl);
4076         }
4077
4078         e1000_raise_mdi_clk(hw, &ctrl);
4079         e1000_lower_mdi_clk(hw, &ctrl);
4080
4081         return data;
4082 }
4083
4084 /*****************************************************************************
4085 * Reads the value from a PHY register
4086 *
4087 * hw - Struct containing variables accessed by shared code
4088 * reg_addr - address of the PHY register to read
4089 ******************************************************************************/
4090 static int
4091 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4092 {
4093         uint32_t i;
4094         uint32_t mdic = 0;
4095         const uint32_t phy_addr = 1;
4096
4097         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4098                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4099                 return -E1000_ERR_PARAM;
4100         }
4101
4102         if (hw->mac_type > e1000_82543) {
4103                 /* Set up Op-code, Phy Address, and register address in the MDI
4104                  * Control register.  The MAC will take care of interfacing with the
4105                  * PHY to retrieve the desired data.
4106                  */
4107                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4108                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4109                         (E1000_MDIC_OP_READ));
4110
4111                 E1000_WRITE_REG(hw, MDIC, mdic);
4112
4113                 /* Poll the ready bit to see if the MDI read completed */
4114                 for (i = 0; i < 64; i++) {
4115                         udelay(10);
4116                         mdic = E1000_READ_REG(hw, MDIC);
4117                         if (mdic & E1000_MDIC_READY)
4118                                 break;
4119                 }
4120                 if (!(mdic & E1000_MDIC_READY)) {
4121                         DEBUGOUT("MDI Read did not complete\n");
4122                         return -E1000_ERR_PHY;
4123                 }
4124                 if (mdic & E1000_MDIC_ERROR) {
4125                         DEBUGOUT("MDI Error\n");
4126                         return -E1000_ERR_PHY;
4127                 }
4128                 *phy_data = (uint16_t) mdic;
4129         } else {
4130                 /* We must first send a preamble through the MDIO pin to signal the
4131                  * beginning of an MII instruction.  This is done by sending 32
4132                  * consecutive "1" bits.
4133                  */
4134                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4135
4136                 /* Now combine the next few fields that are required for a read
4137                  * operation.  We use this method instead of calling the
4138                  * e1000_shift_out_mdi_bits routine five different times. The format of
4139                  * a MII read instruction consists of a shift out of 14 bits and is
4140                  * defined as follows:
4141                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4142                  * followed by a shift in of 18 bits.  This first two bits shifted in
4143                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4144                  * READ operation is performed.  These two bits are thrown away
4145                  * followed by a shift in of 16 bits which contains the desired data.
4146                  */
4147                 mdic = ((reg_addr) | (phy_addr << 5) |
4148                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4149
4150                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4151
4152                 /* Now that we've shifted out the read command to the MII, we need to
4153                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4154                  * register address.
4155                  */
4156                 *phy_data = e1000_shift_in_mdi_bits(hw);
4157         }
4158         return 0;
4159 }
4160
4161 /******************************************************************************
4162 * Writes a value to a PHY register
4163 *
4164 * hw - Struct containing variables accessed by shared code
4165 * reg_addr - address of the PHY register to write
4166 * data - data to write to the PHY
4167 ******************************************************************************/
4168 static int
4169 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4170 {
4171         uint32_t i;
4172         uint32_t mdic = 0;
4173         const uint32_t phy_addr = 1;
4174
4175         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4176                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4177                 return -E1000_ERR_PARAM;
4178         }
4179
4180         if (hw->mac_type > e1000_82543) {
4181                 /* Set up Op-code, Phy Address, register address, and data intended
4182                  * for the PHY register in the MDI Control register.  The MAC will take
4183                  * care of interfacing with the PHY to send the desired data.
4184                  */
4185                 mdic = (((uint32_t) phy_data) |
4186                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4187                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4188                         (E1000_MDIC_OP_WRITE));
4189
4190                 E1000_WRITE_REG(hw, MDIC, mdic);
4191
4192                 /* Poll the ready bit to see if the MDI read completed */
4193                 for (i = 0; i < 64; i++) {
4194                         udelay(10);
4195                         mdic = E1000_READ_REG(hw, MDIC);
4196                         if (mdic & E1000_MDIC_READY)
4197                                 break;
4198                 }
4199                 if (!(mdic & E1000_MDIC_READY)) {
4200                         DEBUGOUT("MDI Write did not complete\n");
4201                         return -E1000_ERR_PHY;
4202                 }
4203         } else {
4204                 /* We'll need to use the SW defined pins to shift the write command
4205                  * out to the PHY. We first send a preamble to the PHY to signal the
4206                  * beginning of the MII instruction.  This is done by sending 32
4207                  * consecutive "1" bits.
4208                  */
4209                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4210
4211                 /* Now combine the remaining required fields that will indicate a
4212                  * write operation. We use this method instead of calling the
4213                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4214                  * format of a MII write instruction is as follows:
4215                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4216                  */
4217                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4218                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4219                 mdic <<= 16;
4220                 mdic |= (uint32_t) phy_data;
4221
4222                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4223         }
4224         return 0;
4225 }
4226
4227 /******************************************************************************
4228  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4229  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4230  * the caller to figure out how to deal with it.
4231  *
4232  * hw - Struct containing variables accessed by shared code
4233  *
4234  * returns: - E1000_BLK_PHY_RESET
4235  *            E1000_SUCCESS
4236  *
4237  *****************************************************************************/
4238 int32_t
4239 e1000_check_phy_reset_block(struct e1000_hw *hw)
4240 {
4241         uint32_t manc = 0;
4242         uint32_t fwsm = 0;
4243
4244         if (hw->mac_type == e1000_ich8lan) {
4245                 fwsm = E1000_READ_REG(hw, FWSM);
4246                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4247                                                 : E1000_BLK_PHY_RESET;
4248         }
4249
4250         if (hw->mac_type > e1000_82547_rev_2)
4251                 manc = E1000_READ_REG(hw, MANC);
4252         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4253                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4254 }
4255
4256 /***************************************************************************
4257  * Checks if the PHY configuration is done
4258  *
4259  * hw: Struct containing variables accessed by shared code
4260  *
4261  * returns: - E1000_ERR_RESET if fail to reset MAC
4262  *            E1000_SUCCESS at any other case.
4263  *
4264  ***************************************************************************/
4265 static int32_t
4266 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4267 {
4268         int32_t timeout = PHY_CFG_TIMEOUT;
4269         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4270
4271         DEBUGFUNC();
4272
4273         switch (hw->mac_type) {
4274         default:
4275                 mdelay(10);
4276                 break;
4277
4278         case e1000_80003es2lan:
4279                 /* Separate *_CFG_DONE_* bit for each port */
4280                 if (e1000_is_second_port(hw))
4281                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4282                 /* Fall Through */
4283
4284         case e1000_82571:
4285         case e1000_82572:
4286                 while (timeout) {
4287                         if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4288                                 break;
4289                         else
4290                                 mdelay(1);
4291                         timeout--;
4292                 }
4293                 if (!timeout) {
4294                         DEBUGOUT("MNG configuration cycle has not "
4295                                         "completed.\n");
4296                         return -E1000_ERR_RESET;
4297                 }
4298                 break;
4299         }
4300
4301         return E1000_SUCCESS;
4302 }
4303
4304 /******************************************************************************
4305 * Returns the PHY to the power-on reset state
4306 *
4307 * hw - Struct containing variables accessed by shared code
4308 ******************************************************************************/
4309 int32_t
4310 e1000_phy_hw_reset(struct e1000_hw *hw)
4311 {
4312         uint16_t swfw = E1000_SWFW_PHY0_SM;
4313         uint32_t ctrl, ctrl_ext;
4314         uint32_t led_ctrl;
4315         int32_t ret_val;
4316
4317         DEBUGFUNC();
4318
4319         /* In the case of the phy reset being blocked, it's not an error, we
4320          * simply return success without performing the reset. */
4321         ret_val = e1000_check_phy_reset_block(hw);
4322         if (ret_val)
4323                 return E1000_SUCCESS;
4324
4325         DEBUGOUT("Resetting Phy...\n");
4326
4327         if (hw->mac_type > e1000_82543) {
4328                 if (e1000_is_second_port(hw))
4329                         swfw = E1000_SWFW_PHY1_SM;
4330
4331                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4332                         DEBUGOUT("Unable to acquire swfw sync\n");
4333                         return -E1000_ERR_SWFW_SYNC;
4334                 }
4335
4336                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4337                  * bit. Then, take it out of reset.
4338                  */
4339                 ctrl = E1000_READ_REG(hw, CTRL);
4340                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4341                 E1000_WRITE_FLUSH(hw);
4342
4343                 if (hw->mac_type < e1000_82571)
4344                         udelay(10);
4345                 else
4346                         udelay(100);
4347
4348                 E1000_WRITE_REG(hw, CTRL, ctrl);
4349                 E1000_WRITE_FLUSH(hw);
4350
4351                 if (hw->mac_type >= e1000_82571)
4352                         mdelay(10);
4353
4354         } else {
4355                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4356                  * bit to put the PHY into reset. Then, take it out of reset.
4357                  */
4358                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4359                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4360                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4361                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4362                 E1000_WRITE_FLUSH(hw);
4363                 mdelay(10);
4364                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4365                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4366                 E1000_WRITE_FLUSH(hw);
4367         }
4368         udelay(150);
4369
4370         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4371                 /* Configure activity LED after PHY reset */
4372                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4373                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4374                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4375                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4376         }
4377
4378         /* Wait for FW to finish PHY configuration. */
4379         ret_val = e1000_get_phy_cfg_done(hw);
4380         if (ret_val != E1000_SUCCESS)
4381                 return ret_val;
4382
4383         return ret_val;
4384 }
4385
4386 /******************************************************************************
4387  * IGP phy init script - initializes the GbE PHY
4388  *
4389  * hw - Struct containing variables accessed by shared code
4390  *****************************************************************************/
4391 static void
4392 e1000_phy_init_script(struct e1000_hw *hw)
4393 {
4394         uint32_t ret_val;
4395         uint16_t phy_saved_data;
4396         DEBUGFUNC();
4397
4398         if (hw->phy_init_script) {
4399                 mdelay(20);
4400
4401                 /* Save off the current value of register 0x2F5B to be
4402                  * restored at the end of this routine. */
4403                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4404
4405                 /* Disabled the PHY transmitter */
4406                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4407
4408                 mdelay(20);
4409
4410                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4411
4412                 mdelay(5);
4413
4414                 switch (hw->mac_type) {
4415                 case e1000_82541:
4416                 case e1000_82547:
4417                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4418
4419                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4420
4421                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4422
4423                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4424
4425                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4426
4427                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4428
4429                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4430
4431                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4432
4433                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4434                         break;
4435
4436                 case e1000_82541_rev_2:
4437                 case e1000_82547_rev_2:
4438                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4439                         break;
4440                 default:
4441                         break;
4442                 }
4443
4444                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4445
4446                 mdelay(20);
4447
4448                 /* Now enable the transmitter */
4449                 if (!ret_val)
4450                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4451
4452                 if (hw->mac_type == e1000_82547) {
4453                         uint16_t fused, fine, coarse;
4454
4455                         /* Move to analog registers page */
4456                         e1000_read_phy_reg(hw,
4457                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4458
4459                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4460                                 e1000_read_phy_reg(hw,
4461                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4462
4463                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4464                                 coarse = fused
4465                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4466
4467                                 if (coarse >
4468                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4469                                         coarse -=
4470                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4471                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4472                                 } else if (coarse
4473                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4474                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4475
4476                                 fused = (fused
4477                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4478                                         (fine
4479                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4480                                         (coarse
4481                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4482
4483                                 e1000_write_phy_reg(hw,
4484                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4485                                 e1000_write_phy_reg(hw,
4486                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4487                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4488                         }
4489                 }
4490         }
4491 }
4492
4493 /******************************************************************************
4494 * Resets the PHY
4495 *
4496 * hw - Struct containing variables accessed by shared code
4497 *
4498 * Sets bit 15 of the MII Control register
4499 ******************************************************************************/
4500 int32_t
4501 e1000_phy_reset(struct e1000_hw *hw)
4502 {
4503         int32_t ret_val;
4504         uint16_t phy_data;
4505
4506         DEBUGFUNC();
4507
4508         /* In the case of the phy reset being blocked, it's not an error, we
4509          * simply return success without performing the reset. */
4510         ret_val = e1000_check_phy_reset_block(hw);
4511         if (ret_val)
4512                 return E1000_SUCCESS;
4513
4514         switch (hw->phy_type) {
4515         case e1000_phy_igp:
4516         case e1000_phy_igp_2:
4517         case e1000_phy_igp_3:
4518         case e1000_phy_ife:
4519                 ret_val = e1000_phy_hw_reset(hw);
4520                 if (ret_val)
4521                         return ret_val;
4522                 break;
4523         default:
4524                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4525                 if (ret_val)
4526                         return ret_val;
4527
4528                 phy_data |= MII_CR_RESET;
4529                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4530                 if (ret_val)
4531                         return ret_val;
4532
4533                 udelay(1);
4534                 break;
4535         }
4536
4537         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4538                 e1000_phy_init_script(hw);
4539
4540         return E1000_SUCCESS;
4541 }
4542
4543 static int e1000_set_phy_type (struct e1000_hw *hw)
4544 {
4545         DEBUGFUNC ();
4546
4547         if (hw->mac_type == e1000_undefined)
4548                 return -E1000_ERR_PHY_TYPE;
4549
4550         switch (hw->phy_id) {
4551         case M88E1000_E_PHY_ID:
4552         case M88E1000_I_PHY_ID:
4553         case M88E1011_I_PHY_ID:
4554         case M88E1111_I_PHY_ID:
4555                 hw->phy_type = e1000_phy_m88;
4556                 break;
4557         case IGP01E1000_I_PHY_ID:
4558                 if (hw->mac_type == e1000_82541 ||
4559                         hw->mac_type == e1000_82541_rev_2 ||
4560                         hw->mac_type == e1000_82547 ||
4561                         hw->mac_type == e1000_82547_rev_2) {
4562                         hw->phy_type = e1000_phy_igp;
4563                         hw->phy_type = e1000_phy_igp;
4564                         break;
4565                 }
4566         case IGP03E1000_E_PHY_ID:
4567                 hw->phy_type = e1000_phy_igp_3;
4568                 break;
4569         case IFE_E_PHY_ID:
4570         case IFE_PLUS_E_PHY_ID:
4571         case IFE_C_E_PHY_ID:
4572                 hw->phy_type = e1000_phy_ife;
4573                 break;
4574         case GG82563_E_PHY_ID:
4575                 if (hw->mac_type == e1000_80003es2lan) {
4576                         hw->phy_type = e1000_phy_gg82563;
4577                         break;
4578                 }
4579         case BME1000_E_PHY_ID:
4580                 hw->phy_type = e1000_phy_bm;
4581                 break;
4582                 /* Fall Through */
4583         default:
4584                 /* Should never have loaded on this device */
4585                 hw->phy_type = e1000_phy_undefined;
4586                 return -E1000_ERR_PHY_TYPE;
4587         }
4588
4589         return E1000_SUCCESS;
4590 }
4591
4592 /******************************************************************************
4593 * Probes the expected PHY address for known PHY IDs
4594 *
4595 * hw - Struct containing variables accessed by shared code
4596 ******************************************************************************/
4597 static int32_t
4598 e1000_detect_gig_phy(struct e1000_hw *hw)
4599 {
4600         int32_t phy_init_status, ret_val;
4601         uint16_t phy_id_high, phy_id_low;
4602         boolean_t match = FALSE;
4603
4604         DEBUGFUNC();
4605
4606         /* The 82571 firmware may still be configuring the PHY.  In this
4607          * case, we cannot access the PHY until the configuration is done.  So
4608          * we explicitly set the PHY values. */
4609         if (hw->mac_type == e1000_82571 ||
4610                 hw->mac_type == e1000_82572) {
4611                 hw->phy_id = IGP01E1000_I_PHY_ID;
4612                 hw->phy_type = e1000_phy_igp_2;
4613                 return E1000_SUCCESS;
4614         }
4615
4616         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4617          * work- around that forces PHY page 0 to be set or the reads fail.
4618          * The rest of the code in this routine uses e1000_read_phy_reg to
4619          * read the PHY ID.  So for ESB-2 we need to have this set so our
4620          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4621          * the routines below will figure this out as well. */
4622         if (hw->mac_type == e1000_80003es2lan)
4623                 hw->phy_type = e1000_phy_gg82563;
4624
4625         /* Read the PHY ID Registers to identify which PHY is onboard. */
4626         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4627         if (ret_val)
4628                 return ret_val;
4629
4630         hw->phy_id = (uint32_t) (phy_id_high << 16);
4631         udelay(20);
4632         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4633         if (ret_val)
4634                 return ret_val;
4635
4636         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4637         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4638
4639         switch (hw->mac_type) {
4640         case e1000_82543:
4641                 if (hw->phy_id == M88E1000_E_PHY_ID)
4642                         match = TRUE;
4643                 break;
4644         case e1000_82544:
4645                 if (hw->phy_id == M88E1000_I_PHY_ID)
4646                         match = TRUE;
4647                 break;
4648         case e1000_82540:
4649         case e1000_82545:
4650         case e1000_82545_rev_3:
4651         case e1000_82546:
4652         case e1000_82546_rev_3:
4653                 if (hw->phy_id == M88E1011_I_PHY_ID)
4654                         match = TRUE;
4655                 break;
4656         case e1000_82541:
4657         case e1000_82541_rev_2:
4658         case e1000_82547:
4659         case e1000_82547_rev_2:
4660                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4661                         match = TRUE;
4662
4663                 break;
4664         case e1000_82573:
4665                 if (hw->phy_id == M88E1111_I_PHY_ID)
4666                         match = TRUE;
4667                 break;
4668         case e1000_82574:
4669                 if (hw->phy_id == BME1000_E_PHY_ID)
4670                         match = TRUE;
4671                 break;
4672         case e1000_80003es2lan:
4673                 if (hw->phy_id == GG82563_E_PHY_ID)
4674                         match = TRUE;
4675                 break;
4676         case e1000_ich8lan:
4677                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4678                         match = TRUE;
4679                 if (hw->phy_id == IFE_E_PHY_ID)
4680                         match = TRUE;
4681                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4682                         match = TRUE;
4683                 if (hw->phy_id == IFE_C_E_PHY_ID)
4684                         match = TRUE;
4685                 break;
4686         default:
4687                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4688                 return -E1000_ERR_CONFIG;
4689         }
4690
4691         phy_init_status = e1000_set_phy_type(hw);
4692
4693         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4694                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4695                 return 0;
4696         }
4697         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4698         return -E1000_ERR_PHY;
4699 }
4700
4701 /*****************************************************************************
4702  * Set media type and TBI compatibility.
4703  *
4704  * hw - Struct containing variables accessed by shared code
4705  * **************************************************************************/
4706 void
4707 e1000_set_media_type(struct e1000_hw *hw)
4708 {
4709         uint32_t status;
4710
4711         DEBUGFUNC();
4712
4713         if (hw->mac_type != e1000_82543) {
4714                 /* tbi_compatibility is only valid on 82543 */
4715                 hw->tbi_compatibility_en = FALSE;
4716         }
4717
4718         switch (hw->device_id) {
4719         case E1000_DEV_ID_82545GM_SERDES:
4720         case E1000_DEV_ID_82546GB_SERDES:
4721         case E1000_DEV_ID_82571EB_SERDES:
4722         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4723         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4724         case E1000_DEV_ID_82572EI_SERDES:
4725         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4726                 hw->media_type = e1000_media_type_internal_serdes;
4727                 break;
4728         default:
4729                 switch (hw->mac_type) {
4730                 case e1000_82542_rev2_0:
4731                 case e1000_82542_rev2_1:
4732                         hw->media_type = e1000_media_type_fiber;
4733                         break;
4734                 case e1000_ich8lan:
4735                 case e1000_82573:
4736                 case e1000_82574:
4737                         /* The STATUS_TBIMODE bit is reserved or reused
4738                          * for the this device.
4739                          */
4740                         hw->media_type = e1000_media_type_copper;
4741                         break;
4742                 default:
4743                         status = E1000_READ_REG(hw, STATUS);
4744                         if (status & E1000_STATUS_TBIMODE) {
4745                                 hw->media_type = e1000_media_type_fiber;
4746                                 /* tbi_compatibility not valid on fiber */
4747                                 hw->tbi_compatibility_en = FALSE;
4748                         } else {
4749                                 hw->media_type = e1000_media_type_copper;
4750                         }
4751                         break;
4752                 }
4753         }
4754 }
4755
4756 /**
4757  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4758  *
4759  * e1000_sw_init initializes the Adapter private data structure.
4760  * Fields are initialized based on PCI device information and
4761  * OS network device settings (MTU size).
4762  **/
4763
4764 static int
4765 e1000_sw_init(struct eth_device *nic)
4766 {
4767         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4768         int result;
4769
4770         /* PCI config space info */
4771         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4772         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4773         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4774                              &hw->subsystem_vendor_id);
4775         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4776
4777         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4778         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4779
4780         /* identify the MAC */
4781         result = e1000_set_mac_type(hw);
4782         if (result) {
4783                 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4784                 return result;
4785         }
4786
4787         switch (hw->mac_type) {
4788         default:
4789                 break;
4790         case e1000_82541:
4791         case e1000_82547:
4792         case e1000_82541_rev_2:
4793         case e1000_82547_rev_2:
4794                 hw->phy_init_script = 1;
4795                 break;
4796         }
4797
4798         /* flow control settings */
4799         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4800         hw->fc_low_water = E1000_FC_LOW_THRESH;
4801         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4802         hw->fc_send_xon = 1;
4803
4804         /* Media type - copper or fiber */
4805         e1000_set_media_type(hw);
4806
4807         if (hw->mac_type >= e1000_82543) {
4808                 uint32_t status = E1000_READ_REG(hw, STATUS);
4809
4810                 if (status & E1000_STATUS_TBIMODE) {
4811                         DEBUGOUT("fiber interface\n");
4812                         hw->media_type = e1000_media_type_fiber;
4813                 } else {
4814                         DEBUGOUT("copper interface\n");
4815                         hw->media_type = e1000_media_type_copper;
4816                 }
4817         } else {
4818                 hw->media_type = e1000_media_type_fiber;
4819         }
4820
4821         hw->tbi_compatibility_en = TRUE;
4822         hw->wait_autoneg_complete = TRUE;
4823         if (hw->mac_type < e1000_82543)
4824                 hw->report_tx_early = 0;
4825         else
4826                 hw->report_tx_early = 1;
4827
4828         return E1000_SUCCESS;
4829 }
4830
4831 void
4832 fill_rx(struct e1000_hw *hw)
4833 {
4834         struct e1000_rx_desc *rd;
4835
4836         rx_last = rx_tail;
4837         rd = rx_base + rx_tail;
4838         rx_tail = (rx_tail + 1) % 8;
4839         memset(rd, 0, 16);
4840         rd->buffer_addr = cpu_to_le64((u32) & packet);
4841         E1000_WRITE_REG(hw, RDT, rx_tail);
4842 }
4843
4844 /**
4845  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4846  * @adapter: board private structure
4847  *
4848  * Configure the Tx unit of the MAC after a reset.
4849  **/
4850
4851 static void
4852 e1000_configure_tx(struct e1000_hw *hw)
4853 {
4854         unsigned long ptr;
4855         unsigned long tctl;
4856         unsigned long tipg, tarc;
4857         uint32_t ipgr1, ipgr2;
4858
4859         ptr = (u32) tx_pool;
4860         if (ptr & 0xf)
4861                 ptr = (ptr + 0x10) & (~0xf);
4862
4863         tx_base = (typeof(tx_base)) ptr;
4864
4865         E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4866         E1000_WRITE_REG(hw, TDBAH, 0);
4867
4868         E1000_WRITE_REG(hw, TDLEN, 128);
4869
4870         /* Setup the HW Tx Head and Tail descriptor pointers */
4871         E1000_WRITE_REG(hw, TDH, 0);
4872         E1000_WRITE_REG(hw, TDT, 0);
4873         tx_tail = 0;
4874
4875         /* Set the default values for the Tx Inter Packet Gap timer */
4876         if (hw->mac_type <= e1000_82547_rev_2 &&
4877             (hw->media_type == e1000_media_type_fiber ||
4878              hw->media_type == e1000_media_type_internal_serdes))
4879                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4880         else
4881                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4882
4883         /* Set the default values for the Tx Inter Packet Gap timer */
4884         switch (hw->mac_type) {
4885         case e1000_82542_rev2_0:
4886         case e1000_82542_rev2_1:
4887                 tipg = DEFAULT_82542_TIPG_IPGT;
4888                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4889                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4890                 break;
4891         case e1000_80003es2lan:
4892                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4893                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4894                 break;
4895         default:
4896                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4897                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4898                 break;
4899         }
4900         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4901         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4902         E1000_WRITE_REG(hw, TIPG, tipg);
4903         /* Program the Transmit Control Register */
4904         tctl = E1000_READ_REG(hw, TCTL);
4905         tctl &= ~E1000_TCTL_CT;
4906         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4907             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4908
4909         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4910                 tarc = E1000_READ_REG(hw, TARC0);
4911                 /* set the speed mode bit, we'll clear it if we're not at
4912                  * gigabit link later */
4913                 /* git bit can be set to 1*/
4914         } else if (hw->mac_type == e1000_80003es2lan) {
4915                 tarc = E1000_READ_REG(hw, TARC0);
4916                 tarc |= 1;
4917                 E1000_WRITE_REG(hw, TARC0, tarc);
4918                 tarc = E1000_READ_REG(hw, TARC1);
4919                 tarc |= 1;
4920                 E1000_WRITE_REG(hw, TARC1, tarc);
4921         }
4922
4923
4924         e1000_config_collision_dist(hw);
4925         /* Setup Transmit Descriptor Settings for eop descriptor */
4926         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4927
4928         /* Need to set up RS bit */
4929         if (hw->mac_type < e1000_82543)
4930                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4931         else
4932                 hw->txd_cmd |= E1000_TXD_CMD_RS;
4933         E1000_WRITE_REG(hw, TCTL, tctl);
4934 }
4935
4936 /**
4937  * e1000_setup_rctl - configure the receive control register
4938  * @adapter: Board private structure
4939  **/
4940 static void
4941 e1000_setup_rctl(struct e1000_hw *hw)
4942 {
4943         uint32_t rctl;
4944
4945         rctl = E1000_READ_REG(hw, RCTL);
4946
4947         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4948
4949         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4950                 | E1000_RCTL_RDMTS_HALF;        /* |
4951                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4952
4953         if (hw->tbi_compatibility_on == 1)
4954                 rctl |= E1000_RCTL_SBP;
4955         else
4956                 rctl &= ~E1000_RCTL_SBP;
4957
4958         rctl &= ~(E1000_RCTL_SZ_4096);
4959                 rctl |= E1000_RCTL_SZ_2048;
4960                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4961         E1000_WRITE_REG(hw, RCTL, rctl);
4962 }
4963
4964 /**
4965  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4966  * @adapter: board private structure
4967  *
4968  * Configure the Rx unit of the MAC after a reset.
4969  **/
4970 static void
4971 e1000_configure_rx(struct e1000_hw *hw)
4972 {
4973         unsigned long ptr;
4974         unsigned long rctl, ctrl_ext;
4975         rx_tail = 0;
4976         /* make sure receives are disabled while setting up the descriptors */
4977         rctl = E1000_READ_REG(hw, RCTL);
4978         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4979         if (hw->mac_type >= e1000_82540) {
4980                 /* Set the interrupt throttling rate.  Value is calculated
4981                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4982 #define MAX_INTS_PER_SEC        8000
4983 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4984                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4985         }
4986
4987         if (hw->mac_type >= e1000_82571) {
4988                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4989                 /* Reset delay timers after every interrupt */
4990                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4991                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4992                 E1000_WRITE_FLUSH(hw);
4993         }
4994         /* Setup the Base and Length of the Rx Descriptor Ring */
4995         ptr = (u32) rx_pool;
4996         if (ptr & 0xf)
4997                 ptr = (ptr + 0x10) & (~0xf);
4998         rx_base = (typeof(rx_base)) ptr;
4999         E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5000         E1000_WRITE_REG(hw, RDBAH, 0);
5001
5002         E1000_WRITE_REG(hw, RDLEN, 128);
5003
5004         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5005         E1000_WRITE_REG(hw, RDH, 0);
5006         E1000_WRITE_REG(hw, RDT, 0);
5007         /* Enable Receives */
5008
5009         E1000_WRITE_REG(hw, RCTL, rctl);
5010         fill_rx(hw);
5011 }
5012
5013 /**************************************************************************
5014 POLL - Wait for a frame
5015 ***************************************************************************/
5016 static int
5017 e1000_poll(struct eth_device *nic)
5018 {
5019         struct e1000_hw *hw = nic->priv;
5020         struct e1000_rx_desc *rd;
5021         /* return true if there's an ethernet packet ready to read */
5022         rd = rx_base + rx_last;
5023         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5024                 return 0;
5025         /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5026         NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5027         fill_rx(hw);
5028         return 1;
5029 }
5030
5031 /**************************************************************************
5032 TRANSMIT - Transmit a frame
5033 ***************************************************************************/
5034 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
5035 {
5036         void *nv_packet = (void *)packet;
5037         struct e1000_hw *hw = nic->priv;
5038         struct e1000_tx_desc *txp;
5039         int i = 0;
5040
5041         txp = tx_base + tx_tail;
5042         tx_tail = (tx_tail + 1) % 8;
5043
5044         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5045         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5046         txp->upper.data = 0;
5047         E1000_WRITE_REG(hw, TDT, tx_tail);
5048
5049         E1000_WRITE_FLUSH(hw);
5050         while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5051                 if (i++ > TOUT_LOOP) {
5052                         DEBUGOUT("e1000: tx timeout\n");
5053                         return 0;
5054                 }
5055                 udelay(10);     /* give the nic a chance to write to the register */
5056         }
5057         return 1;
5058 }
5059
5060 /*reset function*/
5061 static inline int
5062 e1000_reset(struct eth_device *nic)
5063 {
5064         struct e1000_hw *hw = nic->priv;
5065
5066         e1000_reset_hw(hw);
5067         if (hw->mac_type >= e1000_82544) {
5068                 E1000_WRITE_REG(hw, WUC, 0);
5069         }
5070         return e1000_init_hw(nic);
5071 }
5072
5073 /**************************************************************************
5074 DISABLE - Turn off ethernet interface
5075 ***************************************************************************/
5076 static void
5077 e1000_disable(struct eth_device *nic)
5078 {
5079         struct e1000_hw *hw = nic->priv;
5080
5081         /* Turn off the ethernet interface */
5082         E1000_WRITE_REG(hw, RCTL, 0);
5083         E1000_WRITE_REG(hw, TCTL, 0);
5084
5085         /* Clear the transmit ring */
5086         E1000_WRITE_REG(hw, TDH, 0);
5087         E1000_WRITE_REG(hw, TDT, 0);
5088
5089         /* Clear the receive ring */
5090         E1000_WRITE_REG(hw, RDH, 0);
5091         E1000_WRITE_REG(hw, RDT, 0);
5092
5093         /* put the card in its initial state */
5094 #if 0
5095         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5096 #endif
5097         mdelay(10);
5098
5099 }
5100
5101 /**************************************************************************
5102 INIT - set up ethernet interface(s)
5103 ***************************************************************************/
5104 static int
5105 e1000_init(struct eth_device *nic, bd_t * bis)
5106 {
5107         struct e1000_hw *hw = nic->priv;
5108         int ret_val = 0;
5109
5110         ret_val = e1000_reset(nic);
5111         if (ret_val < 0) {
5112                 if ((ret_val == -E1000_ERR_NOLINK) ||
5113                     (ret_val == -E1000_ERR_TIMEOUT)) {
5114                         E1000_ERR(hw->nic, "Valid Link not detected\n");
5115                 } else {
5116                         E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5117                 }
5118                 return 0;
5119         }
5120         e1000_configure_tx(hw);
5121         e1000_setup_rctl(hw);
5122         e1000_configure_rx(hw);
5123         return 1;
5124 }
5125
5126 /******************************************************************************
5127  * Gets the current PCI bus type of hardware
5128  *
5129  * hw - Struct containing variables accessed by shared code
5130  *****************************************************************************/
5131 void e1000_get_bus_type(struct e1000_hw *hw)
5132 {
5133         uint32_t status;
5134
5135         switch (hw->mac_type) {
5136         case e1000_82542_rev2_0:
5137         case e1000_82542_rev2_1:
5138                 hw->bus_type = e1000_bus_type_pci;
5139                 break;
5140         case e1000_82571:
5141         case e1000_82572:
5142         case e1000_82573:
5143         case e1000_82574:
5144         case e1000_80003es2lan:
5145                 hw->bus_type = e1000_bus_type_pci_express;
5146                 break;
5147         case e1000_ich8lan:
5148                 hw->bus_type = e1000_bus_type_pci_express;
5149                 break;
5150         default:
5151                 status = E1000_READ_REG(hw, STATUS);
5152                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5153                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5154                 break;
5155         }
5156 }
5157
5158 /* A list of all registered e1000 devices */
5159 static LIST_HEAD(e1000_hw_list);
5160
5161 /**************************************************************************
5162 PROBE - Look for an adapter, this routine's visible to the outside
5163 You should omit the last argument struct pci_device * for a non-PCI NIC
5164 ***************************************************************************/
5165 int
5166 e1000_initialize(bd_t * bis)
5167 {
5168         unsigned int i;
5169         pci_dev_t devno;
5170
5171         DEBUGFUNC();
5172
5173         /* Find and probe all the matching PCI devices */
5174         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5175                 u32 val;
5176
5177                 /*
5178                  * These will never get freed due to errors, this allows us to
5179                  * perform SPI EEPROM programming from U-boot, for example.
5180                  */
5181                 struct eth_device *nic = malloc(sizeof(*nic));
5182                 struct e1000_hw *hw = malloc(sizeof(*hw));
5183                 if (!nic || !hw) {
5184                         printf("e1000#%u: Out of Memory!\n", i);
5185                         free(nic);
5186                         free(hw);
5187                         continue;
5188                 }
5189
5190                 /* Make sure all of the fields are initially zeroed */
5191                 memset(nic, 0, sizeof(*nic));
5192                 memset(hw, 0, sizeof(*hw));
5193
5194                 /* Assign the passed-in values */
5195                 hw->cardnum = i;
5196                 hw->pdev = devno;
5197                 hw->nic = nic;
5198                 nic->priv = hw;
5199
5200                 /* Generate a card name */
5201                 sprintf(nic->name, "e1000#%u", hw->cardnum);
5202
5203                 /* Print a debug message with the IO base address */
5204                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5205                 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5206
5207                 /* Try to enable I/O accesses and bus-mastering */
5208                 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5209                 pci_write_config_dword(devno, PCI_COMMAND, val);
5210
5211                 /* Make sure it worked */
5212                 pci_read_config_dword(devno, PCI_COMMAND, &val);
5213                 if (!(val & PCI_COMMAND_MEMORY)) {
5214                         E1000_ERR(nic, "Can't enable I/O memory\n");
5215                         continue;
5216                 }
5217                 if (!(val & PCI_COMMAND_MASTER)) {
5218                         E1000_ERR(nic, "Can't enable bus-mastering\n");
5219                         continue;
5220                 }
5221
5222                 /* Are these variables needed? */
5223                 hw->fc = e1000_fc_default;
5224                 hw->original_fc = e1000_fc_default;
5225                 hw->autoneg_failed = 0;
5226                 hw->autoneg = 1;
5227                 hw->get_link_status = TRUE;
5228                 hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5229                                                         PCI_REGION_MEM);
5230                 hw->mac_type = e1000_undefined;
5231
5232                 /* MAC and Phy settings */
5233                 if (e1000_sw_init(nic) < 0) {
5234                         E1000_ERR(nic, "Software init failed\n");
5235                         continue;
5236                 }
5237                 if (e1000_check_phy_reset_block(hw))
5238                         E1000_ERR(nic, "PHY Reset is blocked!\n");
5239
5240                 /* Basic init was OK, reset the hardware and allow SPI access */
5241                 e1000_reset_hw(hw);
5242                 list_add_tail(&hw->list_node, &e1000_hw_list);
5243
5244                 /* Validate the EEPROM and get chipset information */
5245 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5246                 if (e1000_init_eeprom_params(hw)) {
5247                         E1000_ERR(nic, "EEPROM is invalid!\n");
5248                         continue;
5249                 }
5250                 if (e1000_validate_eeprom_checksum(hw))
5251                         continue;
5252 #endif
5253                 e1000_read_mac_addr(nic);
5254                 e1000_get_bus_type(hw);
5255
5256                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5257                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5258                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5259
5260                 /* Set up the function pointers and register the device */
5261                 nic->init = e1000_init;
5262                 nic->recv = e1000_poll;
5263                 nic->send = e1000_transmit;
5264                 nic->halt = e1000_disable;
5265                 eth_register(nic);
5266         }
5267
5268         return i;
5269 }
5270
5271 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5272 {
5273         struct e1000_hw *hw;
5274
5275         list_for_each_entry(hw, &e1000_hw_list, list_node)
5276                 if (hw->cardnum == cardnum)
5277                         return hw;
5278
5279         return NULL;
5280 }
5281
5282 #ifdef CONFIG_CMD_E1000
5283 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5284                 int argc, char * const argv[])
5285 {
5286         struct e1000_hw *hw;
5287
5288         if (argc < 3) {
5289                 cmd_usage(cmdtp);
5290                 return 1;
5291         }
5292
5293         /* Make sure we can find the requested e1000 card */
5294         hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5295         if (!hw) {
5296                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5297                 return 1;
5298         }
5299
5300         if (!strcmp(argv[2], "print-mac-address")) {
5301                 unsigned char *mac = hw->nic->enetaddr;
5302                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5303                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5304                 return 0;
5305         }
5306
5307 #ifdef CONFIG_E1000_SPI
5308         /* Handle the "SPI" subcommand */
5309         if (!strcmp(argv[2], "spi"))
5310                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5311 #endif
5312
5313         cmd_usage(cmdtp);
5314         return 1;
5315 }
5316
5317 U_BOOT_CMD(
5318         e1000, 7, 0, do_e1000,
5319         "Intel e1000 controller management",
5320         /*  */"<card#> print-mac-address\n"
5321 #ifdef CONFIG_E1000_SPI
5322         "e1000 <card#> spi show [<offset> [<length>]]\n"
5323         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5324         "e1000 <card#> spi program <addr> <offset> <length>\n"
5325         "e1000 <card#> spi checksum [update]\n"
5326 #endif
5327         "       - Manage the Intel E1000 PCI device"
5328 );
5329 #endif /* not CONFIG_CMD_E1000 */