]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
perf/x86/intel/pebs: Add PEBSv3 decoding
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
57         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
58         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
59         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
61         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
63         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
66         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
67         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
70         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75         union intel_x86_pebs_dse dse;
76         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78         dse.val = status;
79
80         /*
81          * bit 4: TLB access
82          * 1 = stored missed 2nd level TLB
83          *
84          * so it either hit the walker or the OS
85          * otherwise hit 2nd level TLB
86          */
87         if (dse.st_stlb_miss)
88                 val |= P(TLB, MISS);
89         else
90                 val |= P(TLB, HIT);
91
92         /*
93          * bit 0: hit L1 data cache
94          * if not set, then all we know is that
95          * it missed L1D
96          */
97         if (dse.st_l1d_hit)
98                 val |= P(LVL, HIT);
99         else
100                 val |= P(LVL, MISS);
101
102         /*
103          * bit 5: Locked prefix
104          */
105         if (dse.st_locked)
106                 val |= P(LOCK, LOCKED);
107
108         return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113         union perf_mem_data_src dse;
114
115         dse.val = PERF_MEM_NA;
116
117         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118                 dse.mem_op = PERF_MEM_OP_STORE;
119         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120                 dse.mem_op = PERF_MEM_OP_LOAD;
121
122         /*
123          * L1 info only valid for following events:
124          *
125          * MEM_UOPS_RETIRED.STLB_MISS_STORES
126          * MEM_UOPS_RETIRED.LOCK_STORES
127          * MEM_UOPS_RETIRED.SPLIT_STORES
128          * MEM_UOPS_RETIRED.ALL_STORES
129          */
130         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131                 if (status & 1)
132                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133                 else
134                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135         }
136         return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141         union intel_x86_pebs_dse dse;
142         u64 val;
143         int model = boot_cpu_data.x86_model;
144         int fam = boot_cpu_data.x86;
145
146         dse.val = status;
147
148         /*
149          * use the mapping table for bit 0-3
150          */
151         val = pebs_data_source[dse.ld_dse];
152
153         /*
154          * Nehalem models do not support TLB, Lock infos
155          */
156         if (fam == 0x6 && (model == 26 || model == 30
157             || model == 31 || model == 46)) {
158                 val |= P(TLB, NA) | P(LOCK, NA);
159                 return val;
160         }
161         /*
162          * bit 4: TLB access
163          * 0 = did not miss 2nd level TLB
164          * 1 = missed 2nd level TLB
165          */
166         if (dse.ld_stlb_miss)
167                 val |= P(TLB, MISS) | P(TLB, L2);
168         else
169                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171         /*
172          * bit 5: locked prefix
173          */
174         if (dse.ld_locked)
175                 val |= P(LOCK, LOCKED);
176
177         return val;
178 }
179
180 struct pebs_record_core {
181         u64 flags, ip;
182         u64 ax, bx, cx, dx;
183         u64 si, di, bp, sp;
184         u64 r8,  r9,  r10, r11;
185         u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189         u64 flags, ip;
190         u64 ax, bx, cx, dx;
191         u64 si, di, bp, sp;
192         u64 r8,  r9,  r10, r11;
193         u64 r12, r13, r14, r15;
194         u64 status, dla, dse, lat;
195 };
196
197 /*
198  * Same as pebs_record_nhm, with two additional fields.
199  */
200 struct pebs_record_hsw {
201         u64 flags, ip;
202         u64 ax, bx, cx, dx;
203         u64 si, di, bp, sp;
204         u64 r8,  r9,  r10, r11;
205         u64 r12, r13, r14, r15;
206         u64 status, dla, dse, lat;
207         u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211         struct {
212                 u32 cycles_last_block     : 32,
213                     hle_abort             : 1,
214                     rtm_abort             : 1,
215                     instruction_abort     : 1,
216                     non_instruction_abort : 1,
217                     retry                 : 1,
218                     data_conflict         : 1,
219                     capacity_writes       : 1,
220                     capacity_reads        : 1;
221         };
222         u64         value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
226
227 void init_debug_store_on_cpu(int cpu)
228 {
229         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
230
231         if (!ds)
232                 return;
233
234         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
235                      (u32)((u64)(unsigned long)ds),
236                      (u32)((u64)(unsigned long)ds >> 32));
237 }
238
239 void fini_debug_store_on_cpu(int cpu)
240 {
241         if (!per_cpu(cpu_hw_events, cpu).ds)
242                 return;
243
244         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
245 }
246
247 static DEFINE_PER_CPU(void *, insn_buffer);
248
249 static int alloc_pebs_buffer(int cpu)
250 {
251         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252         int node = cpu_to_node(cpu);
253         int max;
254         void *buffer, *ibuffer;
255
256         if (!x86_pmu.pebs)
257                 return 0;
258
259         buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
260         if (unlikely(!buffer))
261                 return -ENOMEM;
262
263         /*
264          * HSW+ already provides us the eventing ip; no need to allocate this
265          * buffer then.
266          */
267         if (x86_pmu.intel_cap.pebs_format < 2) {
268                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
269                 if (!ibuffer) {
270                         kfree(buffer);
271                         return -ENOMEM;
272                 }
273                 per_cpu(insn_buffer, cpu) = ibuffer;
274         }
275
276         max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
277
278         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
279         ds->pebs_index = ds->pebs_buffer_base;
280         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
281                 max * x86_pmu.pebs_record_size;
282
283         return 0;
284 }
285
286 static void release_pebs_buffer(int cpu)
287 {
288         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
289
290         if (!ds || !x86_pmu.pebs)
291                 return;
292
293         kfree(per_cpu(insn_buffer, cpu));
294         per_cpu(insn_buffer, cpu) = NULL;
295
296         kfree((void *)(unsigned long)ds->pebs_buffer_base);
297         ds->pebs_buffer_base = 0;
298 }
299
300 static int alloc_bts_buffer(int cpu)
301 {
302         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
303         int node = cpu_to_node(cpu);
304         int max, thresh;
305         void *buffer;
306
307         if (!x86_pmu.bts)
308                 return 0;
309
310         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
311         if (unlikely(!buffer)) {
312                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
313                 return -ENOMEM;
314         }
315
316         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
317         thresh = max / 16;
318
319         ds->bts_buffer_base = (u64)(unsigned long)buffer;
320         ds->bts_index = ds->bts_buffer_base;
321         ds->bts_absolute_maximum = ds->bts_buffer_base +
322                 max * BTS_RECORD_SIZE;
323         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
324                 thresh * BTS_RECORD_SIZE;
325
326         return 0;
327 }
328
329 static void release_bts_buffer(int cpu)
330 {
331         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
332
333         if (!ds || !x86_pmu.bts)
334                 return;
335
336         kfree((void *)(unsigned long)ds->bts_buffer_base);
337         ds->bts_buffer_base = 0;
338 }
339
340 static int alloc_ds_buffer(int cpu)
341 {
342         int node = cpu_to_node(cpu);
343         struct debug_store *ds;
344
345         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
346         if (unlikely(!ds))
347                 return -ENOMEM;
348
349         per_cpu(cpu_hw_events, cpu).ds = ds;
350
351         return 0;
352 }
353
354 static void release_ds_buffer(int cpu)
355 {
356         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
357
358         if (!ds)
359                 return;
360
361         per_cpu(cpu_hw_events, cpu).ds = NULL;
362         kfree(ds);
363 }
364
365 void release_ds_buffers(void)
366 {
367         int cpu;
368
369         if (!x86_pmu.bts && !x86_pmu.pebs)
370                 return;
371
372         get_online_cpus();
373         for_each_online_cpu(cpu)
374                 fini_debug_store_on_cpu(cpu);
375
376         for_each_possible_cpu(cpu) {
377                 release_pebs_buffer(cpu);
378                 release_bts_buffer(cpu);
379                 release_ds_buffer(cpu);
380         }
381         put_online_cpus();
382 }
383
384 void reserve_ds_buffers(void)
385 {
386         int bts_err = 0, pebs_err = 0;
387         int cpu;
388
389         x86_pmu.bts_active = 0;
390         x86_pmu.pebs_active = 0;
391
392         if (!x86_pmu.bts && !x86_pmu.pebs)
393                 return;
394
395         if (!x86_pmu.bts)
396                 bts_err = 1;
397
398         if (!x86_pmu.pebs)
399                 pebs_err = 1;
400
401         get_online_cpus();
402
403         for_each_possible_cpu(cpu) {
404                 if (alloc_ds_buffer(cpu)) {
405                         bts_err = 1;
406                         pebs_err = 1;
407                 }
408
409                 if (!bts_err && alloc_bts_buffer(cpu))
410                         bts_err = 1;
411
412                 if (!pebs_err && alloc_pebs_buffer(cpu))
413                         pebs_err = 1;
414
415                 if (bts_err && pebs_err)
416                         break;
417         }
418
419         if (bts_err) {
420                 for_each_possible_cpu(cpu)
421                         release_bts_buffer(cpu);
422         }
423
424         if (pebs_err) {
425                 for_each_possible_cpu(cpu)
426                         release_pebs_buffer(cpu);
427         }
428
429         if (bts_err && pebs_err) {
430                 for_each_possible_cpu(cpu)
431                         release_ds_buffer(cpu);
432         } else {
433                 if (x86_pmu.bts && !bts_err)
434                         x86_pmu.bts_active = 1;
435
436                 if (x86_pmu.pebs && !pebs_err)
437                         x86_pmu.pebs_active = 1;
438
439                 for_each_online_cpu(cpu)
440                         init_debug_store_on_cpu(cpu);
441         }
442
443         put_online_cpus();
444 }
445
446 /*
447  * BTS
448  */
449
450 struct event_constraint bts_constraint =
451         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
452
453 void intel_pmu_enable_bts(u64 config)
454 {
455         unsigned long debugctlmsr;
456
457         debugctlmsr = get_debugctlmsr();
458
459         debugctlmsr |= DEBUGCTLMSR_TR;
460         debugctlmsr |= DEBUGCTLMSR_BTS;
461         if (config & ARCH_PERFMON_EVENTSEL_INT)
462                 debugctlmsr |= DEBUGCTLMSR_BTINT;
463
464         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
465                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
466
467         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
468                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
469
470         update_debugctlmsr(debugctlmsr);
471 }
472
473 void intel_pmu_disable_bts(void)
474 {
475         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
476         unsigned long debugctlmsr;
477
478         if (!cpuc->ds)
479                 return;
480
481         debugctlmsr = get_debugctlmsr();
482
483         debugctlmsr &=
484                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
485                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
486
487         update_debugctlmsr(debugctlmsr);
488 }
489
490 int intel_pmu_drain_bts_buffer(void)
491 {
492         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
493         struct debug_store *ds = cpuc->ds;
494         struct bts_record {
495                 u64     from;
496                 u64     to;
497                 u64     flags;
498         };
499         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
500         struct bts_record *at, *top;
501         struct perf_output_handle handle;
502         struct perf_event_header header;
503         struct perf_sample_data data;
504         struct pt_regs regs;
505
506         if (!event)
507                 return 0;
508
509         if (!x86_pmu.bts_active)
510                 return 0;
511
512         at  = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
513         top = (struct bts_record *)(unsigned long)ds->bts_index;
514
515         if (top <= at)
516                 return 0;
517
518         memset(&regs, 0, sizeof(regs));
519
520         ds->bts_index = ds->bts_buffer_base;
521
522         perf_sample_data_init(&data, 0, event->hw.last_period);
523
524         /*
525          * Prepare a generic sample, i.e. fill in the invariant fields.
526          * We will overwrite the from and to address before we output
527          * the sample.
528          */
529         perf_prepare_sample(&header, &data, event, &regs);
530
531         if (perf_output_begin(&handle, event, header.size * (top - at)))
532                 return 1;
533
534         for (; at < top; at++) {
535                 data.ip         = at->from;
536                 data.addr       = at->to;
537
538                 perf_output_sample(&handle, &header, &data, event);
539         }
540
541         perf_output_end(&handle);
542
543         /* There's new data available. */
544         event->hw.interrupts++;
545         event->pending_kill = POLL_IN;
546         return 1;
547 }
548
549 static inline void intel_pmu_drain_pebs_buffer(void)
550 {
551         struct pt_regs regs;
552
553         x86_pmu.drain_pebs(&regs);
554 }
555
556 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
557 {
558         if (!sched_in)
559                 intel_pmu_drain_pebs_buffer();
560 }
561
562 /*
563  * PEBS
564  */
565 struct event_constraint intel_core2_pebs_event_constraints[] = {
566         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
567         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
568         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
569         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
570         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
571         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
572         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
573         EVENT_CONSTRAINT_END
574 };
575
576 struct event_constraint intel_atom_pebs_event_constraints[] = {
577         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
578         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
579         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
580         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
581         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
582         EVENT_CONSTRAINT_END
583 };
584
585 struct event_constraint intel_slm_pebs_event_constraints[] = {
586         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
587         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
588         /* Allow all events as PEBS with no flags */
589         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
590         EVENT_CONSTRAINT_END
591 };
592
593 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
594         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
595         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
596         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
597         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
598         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
599         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
600         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
601         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
602         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
603         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
604         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
605         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
606         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
607         EVENT_CONSTRAINT_END
608 };
609
610 struct event_constraint intel_westmere_pebs_event_constraints[] = {
611         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
612         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
613         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
614         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
615         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
616         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
617         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
618         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
619         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
620         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
621         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
622         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
623         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
624         EVENT_CONSTRAINT_END
625 };
626
627 struct event_constraint intel_snb_pebs_event_constraints[] = {
628         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
629         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
630         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
631         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
632         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
633         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
634         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
635         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
636         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
637         /* Allow all events as PEBS with no flags */
638         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
639         EVENT_CONSTRAINT_END
640 };
641
642 struct event_constraint intel_ivb_pebs_event_constraints[] = {
643         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
644         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
645         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
646         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
647         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
648         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
649         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
650         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
651         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
652         /* Allow all events as PEBS with no flags */
653         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
654         EVENT_CONSTRAINT_END
655 };
656
657 struct event_constraint intel_hsw_pebs_event_constraints[] = {
658         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
659         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
660         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
661         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
662         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
663         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
664         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
665         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
666         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
667         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
668         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
669         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
670         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
671         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
672         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
673         /* Allow all events as PEBS with no flags */
674         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
675         EVENT_CONSTRAINT_END
676 };
677
678 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
679 {
680         struct event_constraint *c;
681
682         if (!event->attr.precise_ip)
683                 return NULL;
684
685         if (x86_pmu.pebs_constraints) {
686                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
687                         if ((event->hw.config & c->cmask) == c->code) {
688                                 event->hw.flags |= c->flags;
689                                 return c;
690                         }
691                 }
692         }
693
694         return &emptyconstraint;
695 }
696
697 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
698 {
699         return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
700 }
701
702 void intel_pmu_pebs_enable(struct perf_event *event)
703 {
704         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
705         struct hw_perf_event *hwc = &event->hw;
706         struct debug_store *ds = cpuc->ds;
707         bool first_pebs;
708         u64 threshold;
709
710         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
711
712         first_pebs = !pebs_is_enabled(cpuc);
713         cpuc->pebs_enabled |= 1ULL << hwc->idx;
714
715         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
716                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
717         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
718                 cpuc->pebs_enabled |= 1ULL << 63;
719
720         /*
721          * When the event is constrained enough we can use a larger
722          * threshold and run the event with less frequent PMI.
723          */
724         if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
725                 threshold = ds->pebs_absolute_maximum -
726                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
727
728                 if (first_pebs)
729                         perf_sched_cb_inc(event->ctx->pmu);
730         } else {
731                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
732
733                 /*
734                  * If not all events can use larger buffer,
735                  * roll back to threshold = 1
736                  */
737                 if (!first_pebs &&
738                     (ds->pebs_interrupt_threshold > threshold))
739                         perf_sched_cb_dec(event->ctx->pmu);
740         }
741
742         /* Use auto-reload if possible to save a MSR write in the PMI */
743         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
744                 ds->pebs_event_reset[hwc->idx] =
745                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
746         }
747
748         if (first_pebs || ds->pebs_interrupt_threshold > threshold)
749                 ds->pebs_interrupt_threshold = threshold;
750 }
751
752 void intel_pmu_pebs_disable(struct perf_event *event)
753 {
754         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
755         struct hw_perf_event *hwc = &event->hw;
756         struct debug_store *ds = cpuc->ds;
757
758         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
759
760         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
761                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
762         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
763                 cpuc->pebs_enabled &= ~(1ULL << 63);
764
765         if (ds->pebs_interrupt_threshold >
766             ds->pebs_buffer_base + x86_pmu.pebs_record_size) {
767                 intel_pmu_drain_pebs_buffer();
768                 if (!pebs_is_enabled(cpuc))
769                         perf_sched_cb_dec(event->ctx->pmu);
770         }
771
772         if (cpuc->enabled)
773                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
774
775         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
776 }
777
778 void intel_pmu_pebs_enable_all(void)
779 {
780         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
781
782         if (cpuc->pebs_enabled)
783                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
784 }
785
786 void intel_pmu_pebs_disable_all(void)
787 {
788         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
789
790         if (cpuc->pebs_enabled)
791                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
792 }
793
794 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
795 {
796         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
797         unsigned long from = cpuc->lbr_entries[0].from;
798         unsigned long old_to, to = cpuc->lbr_entries[0].to;
799         unsigned long ip = regs->ip;
800         int is_64bit = 0;
801         void *kaddr;
802         int size;
803
804         /*
805          * We don't need to fixup if the PEBS assist is fault like
806          */
807         if (!x86_pmu.intel_cap.pebs_trap)
808                 return 1;
809
810         /*
811          * No LBR entry, no basic block, no rewinding
812          */
813         if (!cpuc->lbr_stack.nr || !from || !to)
814                 return 0;
815
816         /*
817          * Basic blocks should never cross user/kernel boundaries
818          */
819         if (kernel_ip(ip) != kernel_ip(to))
820                 return 0;
821
822         /*
823          * unsigned math, either ip is before the start (impossible) or
824          * the basic block is larger than 1 page (sanity)
825          */
826         if ((ip - to) > PEBS_FIXUP_SIZE)
827                 return 0;
828
829         /*
830          * We sampled a branch insn, rewind using the LBR stack
831          */
832         if (ip == to) {
833                 set_linear_ip(regs, from);
834                 return 1;
835         }
836
837         size = ip - to;
838         if (!kernel_ip(ip)) {
839                 int bytes;
840                 u8 *buf = this_cpu_read(insn_buffer);
841
842                 /* 'size' must fit our buffer, see above */
843                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
844                 if (bytes != 0)
845                         return 0;
846
847                 kaddr = buf;
848         } else {
849                 kaddr = (void *)to;
850         }
851
852         do {
853                 struct insn insn;
854
855                 old_to = to;
856
857 #ifdef CONFIG_X86_64
858                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
859 #endif
860                 insn_init(&insn, kaddr, size, is_64bit);
861                 insn_get_length(&insn);
862                 /*
863                  * Make sure there was not a problem decoding the
864                  * instruction and getting the length.  This is
865                  * doubly important because we have an infinite
866                  * loop if insn.length=0.
867                  */
868                 if (!insn.length)
869                         break;
870
871                 to += insn.length;
872                 kaddr += insn.length;
873                 size -= insn.length;
874         } while (to < ip);
875
876         if (to == ip) {
877                 set_linear_ip(regs, old_to);
878                 return 1;
879         }
880
881         /*
882          * Even though we decoded the basic block, the instruction stream
883          * never matched the given IP, either the TO or the IP got corrupted.
884          */
885         return 0;
886 }
887
888 static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
889 {
890         if (pebs->tsx_tuning) {
891                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
892                 return tsx.cycles_last_block;
893         }
894         return 0;
895 }
896
897 static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
898 {
899         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
900
901         /* For RTM XABORTs also log the abort code from AX */
902         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
903                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
904         return txn;
905 }
906
907 static void setup_pebs_sample_data(struct perf_event *event,
908                                    struct pt_regs *iregs, void *__pebs,
909                                    struct perf_sample_data *data,
910                                    struct pt_regs *regs)
911 {
912 #define PERF_X86_EVENT_PEBS_HSW_PREC \
913                 (PERF_X86_EVENT_PEBS_ST_HSW | \
914                  PERF_X86_EVENT_PEBS_LD_HSW | \
915                  PERF_X86_EVENT_PEBS_NA_HSW)
916         /*
917          * We cast to the biggest pebs_record but are careful not to
918          * unconditionally access the 'extra' entries.
919          */
920         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
921         struct pebs_record_hsw *pebs = __pebs;
922         u64 sample_type;
923         int fll, fst, dsrc;
924         int fl = event->hw.flags;
925
926         if (pebs == NULL)
927                 return;
928
929         sample_type = event->attr.sample_type;
930         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
931
932         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
933         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
934
935         perf_sample_data_init(data, 0, event->hw.last_period);
936
937         data->period = event->hw.last_period;
938
939         /*
940          * Use latency for weight (only avail with PEBS-LL)
941          */
942         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
943                 data->weight = pebs->lat;
944
945         /*
946          * data.data_src encodes the data source
947          */
948         if (dsrc) {
949                 u64 val = PERF_MEM_NA;
950                 if (fll)
951                         val = load_latency_data(pebs->dse);
952                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
953                         val = precise_datala_hsw(event, pebs->dse);
954                 else if (fst)
955                         val = precise_store_data(pebs->dse);
956                 data->data_src.val = val;
957         }
958
959         /*
960          * We use the interrupt regs as a base because the PEBS record
961          * does not contain a full regs set, specifically it seems to
962          * lack segment descriptors, which get used by things like
963          * user_mode().
964          *
965          * In the simple case fix up only the IP and BP,SP regs, for
966          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
967          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
968          */
969         *regs = *iregs;
970         regs->flags = pebs->flags;
971         set_linear_ip(regs, pebs->ip);
972         regs->bp = pebs->bp;
973         regs->sp = pebs->sp;
974
975         if (sample_type & PERF_SAMPLE_REGS_INTR) {
976                 regs->ax = pebs->ax;
977                 regs->bx = pebs->bx;
978                 regs->cx = pebs->cx;
979                 regs->dx = pebs->dx;
980                 regs->si = pebs->si;
981                 regs->di = pebs->di;
982                 regs->bp = pebs->bp;
983                 regs->sp = pebs->sp;
984
985                 regs->flags = pebs->flags;
986 #ifndef CONFIG_X86_32
987                 regs->r8 = pebs->r8;
988                 regs->r9 = pebs->r9;
989                 regs->r10 = pebs->r10;
990                 regs->r11 = pebs->r11;
991                 regs->r12 = pebs->r12;
992                 regs->r13 = pebs->r13;
993                 regs->r14 = pebs->r14;
994                 regs->r15 = pebs->r15;
995 #endif
996         }
997
998         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
999                 regs->ip = pebs->real_ip;
1000                 regs->flags |= PERF_EFLAGS_EXACT;
1001         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1002                 regs->flags |= PERF_EFLAGS_EXACT;
1003         else
1004                 regs->flags &= ~PERF_EFLAGS_EXACT;
1005
1006         if ((sample_type & PERF_SAMPLE_ADDR) &&
1007             x86_pmu.intel_cap.pebs_format >= 1)
1008                 data->addr = pebs->dla;
1009
1010         if (x86_pmu.intel_cap.pebs_format >= 2) {
1011                 /* Only set the TSX weight when no memory weight. */
1012                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1013                         data->weight = intel_hsw_weight(pebs);
1014
1015                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1016                         data->txn = intel_hsw_transaction(pebs);
1017         }
1018
1019         if (has_branch_stack(event))
1020                 data->br_stack = &cpuc->lbr_stack;
1021 }
1022
1023 static inline void *
1024 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1025 {
1026         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1027         void *at;
1028         u64 pebs_status;
1029
1030         if (base == NULL)
1031                 return NULL;
1032
1033         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1034                 struct pebs_record_nhm *p = at;
1035
1036                 if (test_bit(bit, (unsigned long *)&p->status)) {
1037                         /* PEBS v3 has accurate status bits */
1038                         if (x86_pmu.intel_cap.pebs_format >= 3)
1039                                 return at;
1040
1041                         if (p->status == (1 << bit))
1042                                 return at;
1043
1044                         /* clear non-PEBS bit and re-check */
1045                         pebs_status = p->status & cpuc->pebs_enabled;
1046                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1047                         if (pebs_status == (1 << bit))
1048                                 return at;
1049                 }
1050         }
1051         return NULL;
1052 }
1053
1054 static void __intel_pmu_pebs_event(struct perf_event *event,
1055                                    struct pt_regs *iregs,
1056                                    void *base, void *top,
1057                                    int bit, int count)
1058 {
1059         struct perf_sample_data data;
1060         struct pt_regs regs;
1061         void *at = get_next_pebs_record_by_bit(base, top, bit);
1062
1063         if (!intel_pmu_save_and_restart(event) &&
1064             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1065                 return;
1066
1067         while (count > 1) {
1068                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1069                 perf_event_output(event, &data, &regs);
1070                 at += x86_pmu.pebs_record_size;
1071                 at = get_next_pebs_record_by_bit(at, top, bit);
1072                 count--;
1073         }
1074
1075         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1076
1077         /*
1078          * All but the last records are processed.
1079          * The last one is left to be able to call the overflow handler.
1080          */
1081         if (perf_event_overflow(event, &data, &regs)) {
1082                 x86_pmu_stop(event, 0);
1083                 return;
1084         }
1085
1086 }
1087
1088 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1089 {
1090         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1091         struct debug_store *ds = cpuc->ds;
1092         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1093         struct pebs_record_core *at, *top;
1094         int n;
1095
1096         if (!x86_pmu.pebs_active)
1097                 return;
1098
1099         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1100         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1101
1102         /*
1103          * Whatever else happens, drain the thing
1104          */
1105         ds->pebs_index = ds->pebs_buffer_base;
1106
1107         if (!test_bit(0, cpuc->active_mask))
1108                 return;
1109
1110         WARN_ON_ONCE(!event);
1111
1112         if (!event->attr.precise_ip)
1113                 return;
1114
1115         n = (top - at) / x86_pmu.pebs_record_size;
1116         if (n <= 0)
1117                 return;
1118
1119         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1120 }
1121
1122 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1123 {
1124         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1125         struct debug_store *ds = cpuc->ds;
1126         struct perf_event *event;
1127         void *base, *at, *top;
1128         short counts[MAX_PEBS_EVENTS] = {};
1129         short error[MAX_PEBS_EVENTS] = {};
1130         int bit, i;
1131
1132         if (!x86_pmu.pebs_active)
1133                 return;
1134
1135         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1136         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1137
1138         ds->pebs_index = ds->pebs_buffer_base;
1139
1140         if (unlikely(base >= top))
1141                 return;
1142
1143         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1144                 struct pebs_record_nhm *p = at;
1145
1146                 /* PEBS v3 has accurate status bits */
1147                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1148                         for_each_set_bit(bit, (unsigned long *)&p->status,
1149                                          MAX_PEBS_EVENTS)
1150                                 counts[bit]++;
1151
1152                         continue;
1153                 }
1154
1155                 bit = find_first_bit((unsigned long *)&p->status,
1156                                         x86_pmu.max_pebs_events);
1157                 if (bit >= x86_pmu.max_pebs_events)
1158                         continue;
1159                 if (!test_bit(bit, cpuc->active_mask))
1160                         continue;
1161                 /*
1162                  * The PEBS hardware does not deal well with the situation
1163                  * when events happen near to each other and multiple bits
1164                  * are set. But it should happen rarely.
1165                  *
1166                  * If these events include one PEBS and multiple non-PEBS
1167                  * events, it doesn't impact PEBS record. The record will
1168                  * be handled normally. (slow path)
1169                  *
1170                  * If these events include two or more PEBS events, the
1171                  * records for the events can be collapsed into a single
1172                  * one, and it's not possible to reconstruct all events
1173                  * that caused the PEBS record. It's called collision.
1174                  * If collision happened, the record will be dropped.
1175                  *
1176                  */
1177                 if (p->status != (1 << bit)) {
1178                         u64 pebs_status;
1179
1180                         /* slow path */
1181                         pebs_status = p->status & cpuc->pebs_enabled;
1182                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1183                         if (pebs_status != (1 << bit)) {
1184                                 for_each_set_bit(i, (unsigned long *)&pebs_status,
1185                                                  MAX_PEBS_EVENTS)
1186                                         error[i]++;
1187                                 continue;
1188                         }
1189                 }
1190                 counts[bit]++;
1191         }
1192
1193         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1194                 if ((counts[bit] == 0) && (error[bit] == 0))
1195                         continue;
1196                 event = cpuc->events[bit];
1197                 WARN_ON_ONCE(!event);
1198                 WARN_ON_ONCE(!event->attr.precise_ip);
1199
1200                 /* log dropped samples number */
1201                 if (error[bit])
1202                         perf_log_lost_samples(event, error[bit]);
1203
1204                 if (counts[bit]) {
1205                         __intel_pmu_pebs_event(event, iregs, base,
1206                                                top, bit, counts[bit]);
1207                 }
1208         }
1209 }
1210
1211 /*
1212  * BTS, PEBS probe and setup
1213  */
1214
1215 void __init intel_ds_init(void)
1216 {
1217         /*
1218          * No support for 32bit formats
1219          */
1220         if (!boot_cpu_has(X86_FEATURE_DTES64))
1221                 return;
1222
1223         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1224         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1225         if (x86_pmu.pebs) {
1226                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1227                 int format = x86_pmu.intel_cap.pebs_format;
1228
1229                 switch (format) {
1230                 case 0:
1231                         printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1232                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1233                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1234                         break;
1235
1236                 case 1:
1237                         printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1238                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1239                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1240                         break;
1241
1242                 case 2:
1243                         pr_cont("PEBS fmt2%c, ", pebs_type);
1244                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1245                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1246                         break;
1247
1248                 default:
1249                         printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1250                         x86_pmu.pebs = 0;
1251                 }
1252         }
1253 }
1254
1255 void perf_restore_debug_store(void)
1256 {
1257         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1258
1259         if (!x86_pmu.bts && !x86_pmu.pebs)
1260                 return;
1261
1262         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1263 }