]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
Merge tag 'nfs-rdma-for-4.3-2' of git://git.linux-nfs.org/projects/anna/nfs-rdma
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
57         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
58         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
59         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
61         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
63         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
66         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
67         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
70         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75         union intel_x86_pebs_dse dse;
76         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78         dse.val = status;
79
80         /*
81          * bit 4: TLB access
82          * 1 = stored missed 2nd level TLB
83          *
84          * so it either hit the walker or the OS
85          * otherwise hit 2nd level TLB
86          */
87         if (dse.st_stlb_miss)
88                 val |= P(TLB, MISS);
89         else
90                 val |= P(TLB, HIT);
91
92         /*
93          * bit 0: hit L1 data cache
94          * if not set, then all we know is that
95          * it missed L1D
96          */
97         if (dse.st_l1d_hit)
98                 val |= P(LVL, HIT);
99         else
100                 val |= P(LVL, MISS);
101
102         /*
103          * bit 5: Locked prefix
104          */
105         if (dse.st_locked)
106                 val |= P(LOCK, LOCKED);
107
108         return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113         union perf_mem_data_src dse;
114
115         dse.val = PERF_MEM_NA;
116
117         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118                 dse.mem_op = PERF_MEM_OP_STORE;
119         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120                 dse.mem_op = PERF_MEM_OP_LOAD;
121
122         /*
123          * L1 info only valid for following events:
124          *
125          * MEM_UOPS_RETIRED.STLB_MISS_STORES
126          * MEM_UOPS_RETIRED.LOCK_STORES
127          * MEM_UOPS_RETIRED.SPLIT_STORES
128          * MEM_UOPS_RETIRED.ALL_STORES
129          */
130         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131                 if (status & 1)
132                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133                 else
134                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135         }
136         return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141         union intel_x86_pebs_dse dse;
142         u64 val;
143         int model = boot_cpu_data.x86_model;
144         int fam = boot_cpu_data.x86;
145
146         dse.val = status;
147
148         /*
149          * use the mapping table for bit 0-3
150          */
151         val = pebs_data_source[dse.ld_dse];
152
153         /*
154          * Nehalem models do not support TLB, Lock infos
155          */
156         if (fam == 0x6 && (model == 26 || model == 30
157             || model == 31 || model == 46)) {
158                 val |= P(TLB, NA) | P(LOCK, NA);
159                 return val;
160         }
161         /*
162          * bit 4: TLB access
163          * 0 = did not miss 2nd level TLB
164          * 1 = missed 2nd level TLB
165          */
166         if (dse.ld_stlb_miss)
167                 val |= P(TLB, MISS) | P(TLB, L2);
168         else
169                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171         /*
172          * bit 5: locked prefix
173          */
174         if (dse.ld_locked)
175                 val |= P(LOCK, LOCKED);
176
177         return val;
178 }
179
180 struct pebs_record_core {
181         u64 flags, ip;
182         u64 ax, bx, cx, dx;
183         u64 si, di, bp, sp;
184         u64 r8,  r9,  r10, r11;
185         u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189         u64 flags, ip;
190         u64 ax, bx, cx, dx;
191         u64 si, di, bp, sp;
192         u64 r8,  r9,  r10, r11;
193         u64 r12, r13, r14, r15;
194         u64 status, dla, dse, lat;
195 };
196
197 /*
198  * Same as pebs_record_nhm, with two additional fields.
199  */
200 struct pebs_record_hsw {
201         u64 flags, ip;
202         u64 ax, bx, cx, dx;
203         u64 si, di, bp, sp;
204         u64 r8,  r9,  r10, r11;
205         u64 r12, r13, r14, r15;
206         u64 status, dla, dse, lat;
207         u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211         struct {
212                 u32 cycles_last_block     : 32,
213                     hle_abort             : 1,
214                     rtm_abort             : 1,
215                     instruction_abort     : 1,
216                     non_instruction_abort : 1,
217                     retry                 : 1,
218                     data_conflict         : 1,
219                     capacity_writes       : 1,
220                     capacity_reads        : 1;
221         };
222         u64         value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
226
227 /* Same as HSW, plus TSC */
228
229 struct pebs_record_skl {
230         u64 flags, ip;
231         u64 ax, bx, cx, dx;
232         u64 si, di, bp, sp;
233         u64 r8,  r9,  r10, r11;
234         u64 r12, r13, r14, r15;
235         u64 status, dla, dse, lat;
236         u64 real_ip, tsx_tuning;
237         u64 tsc;
238 };
239
240 void init_debug_store_on_cpu(int cpu)
241 {
242         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
243
244         if (!ds)
245                 return;
246
247         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
248                      (u32)((u64)(unsigned long)ds),
249                      (u32)((u64)(unsigned long)ds >> 32));
250 }
251
252 void fini_debug_store_on_cpu(int cpu)
253 {
254         if (!per_cpu(cpu_hw_events, cpu).ds)
255                 return;
256
257         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
258 }
259
260 static DEFINE_PER_CPU(void *, insn_buffer);
261
262 static int alloc_pebs_buffer(int cpu)
263 {
264         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265         int node = cpu_to_node(cpu);
266         int max;
267         void *buffer, *ibuffer;
268
269         if (!x86_pmu.pebs)
270                 return 0;
271
272         buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273         if (unlikely(!buffer))
274                 return -ENOMEM;
275
276         /*
277          * HSW+ already provides us the eventing ip; no need to allocate this
278          * buffer then.
279          */
280         if (x86_pmu.intel_cap.pebs_format < 2) {
281                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
282                 if (!ibuffer) {
283                         kfree(buffer);
284                         return -ENOMEM;
285                 }
286                 per_cpu(insn_buffer, cpu) = ibuffer;
287         }
288
289         max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
290
291         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
292         ds->pebs_index = ds->pebs_buffer_base;
293         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
294                 max * x86_pmu.pebs_record_size;
295
296         return 0;
297 }
298
299 static void release_pebs_buffer(int cpu)
300 {
301         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
302
303         if (!ds || !x86_pmu.pebs)
304                 return;
305
306         kfree(per_cpu(insn_buffer, cpu));
307         per_cpu(insn_buffer, cpu) = NULL;
308
309         kfree((void *)(unsigned long)ds->pebs_buffer_base);
310         ds->pebs_buffer_base = 0;
311 }
312
313 static int alloc_bts_buffer(int cpu)
314 {
315         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316         int node = cpu_to_node(cpu);
317         int max, thresh;
318         void *buffer;
319
320         if (!x86_pmu.bts)
321                 return 0;
322
323         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
324         if (unlikely(!buffer)) {
325                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326                 return -ENOMEM;
327         }
328
329         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
330         thresh = max / 16;
331
332         ds->bts_buffer_base = (u64)(unsigned long)buffer;
333         ds->bts_index = ds->bts_buffer_base;
334         ds->bts_absolute_maximum = ds->bts_buffer_base +
335                 max * BTS_RECORD_SIZE;
336         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
337                 thresh * BTS_RECORD_SIZE;
338
339         return 0;
340 }
341
342 static void release_bts_buffer(int cpu)
343 {
344         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
345
346         if (!ds || !x86_pmu.bts)
347                 return;
348
349         kfree((void *)(unsigned long)ds->bts_buffer_base);
350         ds->bts_buffer_base = 0;
351 }
352
353 static int alloc_ds_buffer(int cpu)
354 {
355         int node = cpu_to_node(cpu);
356         struct debug_store *ds;
357
358         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359         if (unlikely(!ds))
360                 return -ENOMEM;
361
362         per_cpu(cpu_hw_events, cpu).ds = ds;
363
364         return 0;
365 }
366
367 static void release_ds_buffer(int cpu)
368 {
369         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
370
371         if (!ds)
372                 return;
373
374         per_cpu(cpu_hw_events, cpu).ds = NULL;
375         kfree(ds);
376 }
377
378 void release_ds_buffers(void)
379 {
380         int cpu;
381
382         if (!x86_pmu.bts && !x86_pmu.pebs)
383                 return;
384
385         get_online_cpus();
386         for_each_online_cpu(cpu)
387                 fini_debug_store_on_cpu(cpu);
388
389         for_each_possible_cpu(cpu) {
390                 release_pebs_buffer(cpu);
391                 release_bts_buffer(cpu);
392                 release_ds_buffer(cpu);
393         }
394         put_online_cpus();
395 }
396
397 void reserve_ds_buffers(void)
398 {
399         int bts_err = 0, pebs_err = 0;
400         int cpu;
401
402         x86_pmu.bts_active = 0;
403         x86_pmu.pebs_active = 0;
404
405         if (!x86_pmu.bts && !x86_pmu.pebs)
406                 return;
407
408         if (!x86_pmu.bts)
409                 bts_err = 1;
410
411         if (!x86_pmu.pebs)
412                 pebs_err = 1;
413
414         get_online_cpus();
415
416         for_each_possible_cpu(cpu) {
417                 if (alloc_ds_buffer(cpu)) {
418                         bts_err = 1;
419                         pebs_err = 1;
420                 }
421
422                 if (!bts_err && alloc_bts_buffer(cpu))
423                         bts_err = 1;
424
425                 if (!pebs_err && alloc_pebs_buffer(cpu))
426                         pebs_err = 1;
427
428                 if (bts_err && pebs_err)
429                         break;
430         }
431
432         if (bts_err) {
433                 for_each_possible_cpu(cpu)
434                         release_bts_buffer(cpu);
435         }
436
437         if (pebs_err) {
438                 for_each_possible_cpu(cpu)
439                         release_pebs_buffer(cpu);
440         }
441
442         if (bts_err && pebs_err) {
443                 for_each_possible_cpu(cpu)
444                         release_ds_buffer(cpu);
445         } else {
446                 if (x86_pmu.bts && !bts_err)
447                         x86_pmu.bts_active = 1;
448
449                 if (x86_pmu.pebs && !pebs_err)
450                         x86_pmu.pebs_active = 1;
451
452                 for_each_online_cpu(cpu)
453                         init_debug_store_on_cpu(cpu);
454         }
455
456         put_online_cpus();
457 }
458
459 /*
460  * BTS
461  */
462
463 struct event_constraint bts_constraint =
464         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465
466 void intel_pmu_enable_bts(u64 config)
467 {
468         unsigned long debugctlmsr;
469
470         debugctlmsr = get_debugctlmsr();
471
472         debugctlmsr |= DEBUGCTLMSR_TR;
473         debugctlmsr |= DEBUGCTLMSR_BTS;
474         if (config & ARCH_PERFMON_EVENTSEL_INT)
475                 debugctlmsr |= DEBUGCTLMSR_BTINT;
476
477         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479
480         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482
483         update_debugctlmsr(debugctlmsr);
484 }
485
486 void intel_pmu_disable_bts(void)
487 {
488         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489         unsigned long debugctlmsr;
490
491         if (!cpuc->ds)
492                 return;
493
494         debugctlmsr = get_debugctlmsr();
495
496         debugctlmsr &=
497                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
498                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499
500         update_debugctlmsr(debugctlmsr);
501 }
502
503 int intel_pmu_drain_bts_buffer(void)
504 {
505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506         struct debug_store *ds = cpuc->ds;
507         struct bts_record {
508                 u64     from;
509                 u64     to;
510                 u64     flags;
511         };
512         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513         struct bts_record *at, *top;
514         struct perf_output_handle handle;
515         struct perf_event_header header;
516         struct perf_sample_data data;
517         struct pt_regs regs;
518
519         if (!event)
520                 return 0;
521
522         if (!x86_pmu.bts_active)
523                 return 0;
524
525         at  = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
526         top = (struct bts_record *)(unsigned long)ds->bts_index;
527
528         if (top <= at)
529                 return 0;
530
531         memset(&regs, 0, sizeof(regs));
532
533         ds->bts_index = ds->bts_buffer_base;
534
535         perf_sample_data_init(&data, 0, event->hw.last_period);
536
537         /*
538          * Prepare a generic sample, i.e. fill in the invariant fields.
539          * We will overwrite the from and to address before we output
540          * the sample.
541          */
542         perf_prepare_sample(&header, &data, event, &regs);
543
544         if (perf_output_begin(&handle, event, header.size * (top - at)))
545                 return 1;
546
547         for (; at < top; at++) {
548                 data.ip         = at->from;
549                 data.addr       = at->to;
550
551                 perf_output_sample(&handle, &header, &data, event);
552         }
553
554         perf_output_end(&handle);
555
556         /* There's new data available. */
557         event->hw.interrupts++;
558         event->pending_kill = POLL_IN;
559         return 1;
560 }
561
562 static inline void intel_pmu_drain_pebs_buffer(void)
563 {
564         struct pt_regs regs;
565
566         x86_pmu.drain_pebs(&regs);
567 }
568
569 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
570 {
571         if (!sched_in)
572                 intel_pmu_drain_pebs_buffer();
573 }
574
575 /*
576  * PEBS
577  */
578 struct event_constraint intel_core2_pebs_event_constraints[] = {
579         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
580         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
581         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
582         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
583         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
584         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
585         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
586         EVENT_CONSTRAINT_END
587 };
588
589 struct event_constraint intel_atom_pebs_event_constraints[] = {
590         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
591         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
592         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
593         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
594         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
595         EVENT_CONSTRAINT_END
596 };
597
598 struct event_constraint intel_slm_pebs_event_constraints[] = {
599         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
600         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
601         /* Allow all events as PEBS with no flags */
602         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
603         EVENT_CONSTRAINT_END
604 };
605
606 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
607         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
608         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
609         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
610         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
611         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
612         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
613         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
614         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
615         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
616         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
617         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
618         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
619         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
620         EVENT_CONSTRAINT_END
621 };
622
623 struct event_constraint intel_westmere_pebs_event_constraints[] = {
624         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
625         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
626         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
627         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
628         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
629         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
630         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
631         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
632         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
633         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
634         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
635         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
636         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
637         EVENT_CONSTRAINT_END
638 };
639
640 struct event_constraint intel_snb_pebs_event_constraints[] = {
641         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
642         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
643         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
644         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
645         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
646         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
647         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
648         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
649         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
650         /* Allow all events as PEBS with no flags */
651         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
652         EVENT_CONSTRAINT_END
653 };
654
655 struct event_constraint intel_ivb_pebs_event_constraints[] = {
656         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
657         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
658         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
659         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
660         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
661         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
662         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
663         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
664         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
665         /* Allow all events as PEBS with no flags */
666         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
667         EVENT_CONSTRAINT_END
668 };
669
670 struct event_constraint intel_hsw_pebs_event_constraints[] = {
671         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
672         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
673         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
674         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
675         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
676         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
677         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
678         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
679         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
680         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
681         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
682         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
683         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
684         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
685         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
686         /* Allow all events as PEBS with no flags */
687         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
688         EVENT_CONSTRAINT_END
689 };
690
691 struct event_constraint intel_skl_pebs_event_constraints[] = {
692         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
693         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
694         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
695         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
696         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
697         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
698         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
699         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
700         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
701         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
702         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
703         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
704         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
705         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
706         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
707         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
708         /* Allow all events as PEBS with no flags */
709         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
710         EVENT_CONSTRAINT_END
711 };
712
713 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
714 {
715         struct event_constraint *c;
716
717         if (!event->attr.precise_ip)
718                 return NULL;
719
720         if (x86_pmu.pebs_constraints) {
721                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
722                         if ((event->hw.config & c->cmask) == c->code) {
723                                 event->hw.flags |= c->flags;
724                                 return c;
725                         }
726                 }
727         }
728
729         return &emptyconstraint;
730 }
731
732 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
733 {
734         return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
735 }
736
737 void intel_pmu_pebs_enable(struct perf_event *event)
738 {
739         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
740         struct hw_perf_event *hwc = &event->hw;
741         struct debug_store *ds = cpuc->ds;
742         bool first_pebs;
743         u64 threshold;
744
745         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
746
747         first_pebs = !pebs_is_enabled(cpuc);
748         cpuc->pebs_enabled |= 1ULL << hwc->idx;
749
750         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
751                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
752         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
753                 cpuc->pebs_enabled |= 1ULL << 63;
754
755         /*
756          * When the event is constrained enough we can use a larger
757          * threshold and run the event with less frequent PMI.
758          */
759         if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
760                 threshold = ds->pebs_absolute_maximum -
761                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
762
763                 if (first_pebs)
764                         perf_sched_cb_inc(event->ctx->pmu);
765         } else {
766                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
767
768                 /*
769                  * If not all events can use larger buffer,
770                  * roll back to threshold = 1
771                  */
772                 if (!first_pebs &&
773                     (ds->pebs_interrupt_threshold > threshold))
774                         perf_sched_cb_dec(event->ctx->pmu);
775         }
776
777         /* Use auto-reload if possible to save a MSR write in the PMI */
778         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
779                 ds->pebs_event_reset[hwc->idx] =
780                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
781         }
782
783         if (first_pebs || ds->pebs_interrupt_threshold > threshold)
784                 ds->pebs_interrupt_threshold = threshold;
785 }
786
787 void intel_pmu_pebs_disable(struct perf_event *event)
788 {
789         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
790         struct hw_perf_event *hwc = &event->hw;
791         struct debug_store *ds = cpuc->ds;
792         bool large_pebs = ds->pebs_interrupt_threshold >
793                 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
794
795         if (large_pebs)
796                 intel_pmu_drain_pebs_buffer();
797
798         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
799
800         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
801                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
802         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
803                 cpuc->pebs_enabled &= ~(1ULL << 63);
804
805         if (large_pebs && !pebs_is_enabled(cpuc))
806                 perf_sched_cb_dec(event->ctx->pmu);
807
808         if (cpuc->enabled)
809                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
810
811         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
812 }
813
814 void intel_pmu_pebs_enable_all(void)
815 {
816         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
817
818         if (cpuc->pebs_enabled)
819                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
820 }
821
822 void intel_pmu_pebs_disable_all(void)
823 {
824         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
825
826         if (cpuc->pebs_enabled)
827                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
828 }
829
830 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
831 {
832         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
833         unsigned long from = cpuc->lbr_entries[0].from;
834         unsigned long old_to, to = cpuc->lbr_entries[0].to;
835         unsigned long ip = regs->ip;
836         int is_64bit = 0;
837         void *kaddr;
838         int size;
839
840         /*
841          * We don't need to fixup if the PEBS assist is fault like
842          */
843         if (!x86_pmu.intel_cap.pebs_trap)
844                 return 1;
845
846         /*
847          * No LBR entry, no basic block, no rewinding
848          */
849         if (!cpuc->lbr_stack.nr || !from || !to)
850                 return 0;
851
852         /*
853          * Basic blocks should never cross user/kernel boundaries
854          */
855         if (kernel_ip(ip) != kernel_ip(to))
856                 return 0;
857
858         /*
859          * unsigned math, either ip is before the start (impossible) or
860          * the basic block is larger than 1 page (sanity)
861          */
862         if ((ip - to) > PEBS_FIXUP_SIZE)
863                 return 0;
864
865         /*
866          * We sampled a branch insn, rewind using the LBR stack
867          */
868         if (ip == to) {
869                 set_linear_ip(regs, from);
870                 return 1;
871         }
872
873         size = ip - to;
874         if (!kernel_ip(ip)) {
875                 int bytes;
876                 u8 *buf = this_cpu_read(insn_buffer);
877
878                 /* 'size' must fit our buffer, see above */
879                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
880                 if (bytes != 0)
881                         return 0;
882
883                 kaddr = buf;
884         } else {
885                 kaddr = (void *)to;
886         }
887
888         do {
889                 struct insn insn;
890
891                 old_to = to;
892
893 #ifdef CONFIG_X86_64
894                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
895 #endif
896                 insn_init(&insn, kaddr, size, is_64bit);
897                 insn_get_length(&insn);
898                 /*
899                  * Make sure there was not a problem decoding the
900                  * instruction and getting the length.  This is
901                  * doubly important because we have an infinite
902                  * loop if insn.length=0.
903                  */
904                 if (!insn.length)
905                         break;
906
907                 to += insn.length;
908                 kaddr += insn.length;
909                 size -= insn.length;
910         } while (to < ip);
911
912         if (to == ip) {
913                 set_linear_ip(regs, old_to);
914                 return 1;
915         }
916
917         /*
918          * Even though we decoded the basic block, the instruction stream
919          * never matched the given IP, either the TO or the IP got corrupted.
920          */
921         return 0;
922 }
923
924 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
925 {
926         if (pebs->tsx_tuning) {
927                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
928                 return tsx.cycles_last_block;
929         }
930         return 0;
931 }
932
933 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
934 {
935         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
936
937         /* For RTM XABORTs also log the abort code from AX */
938         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
939                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
940         return txn;
941 }
942
943 static void setup_pebs_sample_data(struct perf_event *event,
944                                    struct pt_regs *iregs, void *__pebs,
945                                    struct perf_sample_data *data,
946                                    struct pt_regs *regs)
947 {
948 #define PERF_X86_EVENT_PEBS_HSW_PREC \
949                 (PERF_X86_EVENT_PEBS_ST_HSW | \
950                  PERF_X86_EVENT_PEBS_LD_HSW | \
951                  PERF_X86_EVENT_PEBS_NA_HSW)
952         /*
953          * We cast to the biggest pebs_record but are careful not to
954          * unconditionally access the 'extra' entries.
955          */
956         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
957         struct pebs_record_skl *pebs = __pebs;
958         u64 sample_type;
959         int fll, fst, dsrc;
960         int fl = event->hw.flags;
961
962         if (pebs == NULL)
963                 return;
964
965         sample_type = event->attr.sample_type;
966         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
967
968         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
969         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
970
971         perf_sample_data_init(data, 0, event->hw.last_period);
972
973         data->period = event->hw.last_period;
974
975         /*
976          * Use latency for weight (only avail with PEBS-LL)
977          */
978         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
979                 data->weight = pebs->lat;
980
981         /*
982          * data.data_src encodes the data source
983          */
984         if (dsrc) {
985                 u64 val = PERF_MEM_NA;
986                 if (fll)
987                         val = load_latency_data(pebs->dse);
988                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
989                         val = precise_datala_hsw(event, pebs->dse);
990                 else if (fst)
991                         val = precise_store_data(pebs->dse);
992                 data->data_src.val = val;
993         }
994
995         /*
996          * We use the interrupt regs as a base because the PEBS record
997          * does not contain a full regs set, specifically it seems to
998          * lack segment descriptors, which get used by things like
999          * user_mode().
1000          *
1001          * In the simple case fix up only the IP and BP,SP regs, for
1002          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1003          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1004          */
1005         *regs = *iregs;
1006         regs->flags = pebs->flags;
1007         set_linear_ip(regs, pebs->ip);
1008         regs->bp = pebs->bp;
1009         regs->sp = pebs->sp;
1010
1011         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1012                 regs->ax = pebs->ax;
1013                 regs->bx = pebs->bx;
1014                 regs->cx = pebs->cx;
1015                 regs->dx = pebs->dx;
1016                 regs->si = pebs->si;
1017                 regs->di = pebs->di;
1018                 regs->bp = pebs->bp;
1019                 regs->sp = pebs->sp;
1020
1021                 regs->flags = pebs->flags;
1022 #ifndef CONFIG_X86_32
1023                 regs->r8 = pebs->r8;
1024                 regs->r9 = pebs->r9;
1025                 regs->r10 = pebs->r10;
1026                 regs->r11 = pebs->r11;
1027                 regs->r12 = pebs->r12;
1028                 regs->r13 = pebs->r13;
1029                 regs->r14 = pebs->r14;
1030                 regs->r15 = pebs->r15;
1031 #endif
1032         }
1033
1034         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1035                 regs->ip = pebs->real_ip;
1036                 regs->flags |= PERF_EFLAGS_EXACT;
1037         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1038                 regs->flags |= PERF_EFLAGS_EXACT;
1039         else
1040                 regs->flags &= ~PERF_EFLAGS_EXACT;
1041
1042         if ((sample_type & PERF_SAMPLE_ADDR) &&
1043             x86_pmu.intel_cap.pebs_format >= 1)
1044                 data->addr = pebs->dla;
1045
1046         if (x86_pmu.intel_cap.pebs_format >= 2) {
1047                 /* Only set the TSX weight when no memory weight. */
1048                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1049                         data->weight = intel_hsw_weight(pebs);
1050
1051                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1052                         data->txn = intel_hsw_transaction(pebs);
1053         }
1054
1055         /*
1056          * v3 supplies an accurate time stamp, so we use that
1057          * for the time stamp.
1058          *
1059          * We can only do this for the default trace clock.
1060          */
1061         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1062                 event->attr.use_clockid == 0)
1063                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1064
1065         if (has_branch_stack(event))
1066                 data->br_stack = &cpuc->lbr_stack;
1067 }
1068
1069 static inline void *
1070 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1071 {
1072         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1073         void *at;
1074         u64 pebs_status;
1075
1076         if (base == NULL)
1077                 return NULL;
1078
1079         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1080                 struct pebs_record_nhm *p = at;
1081
1082                 if (test_bit(bit, (unsigned long *)&p->status)) {
1083                         /* PEBS v3 has accurate status bits */
1084                         if (x86_pmu.intel_cap.pebs_format >= 3)
1085                                 return at;
1086
1087                         if (p->status == (1 << bit))
1088                                 return at;
1089
1090                         /* clear non-PEBS bit and re-check */
1091                         pebs_status = p->status & cpuc->pebs_enabled;
1092                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1093                         if (pebs_status == (1 << bit))
1094                                 return at;
1095                 }
1096         }
1097         return NULL;
1098 }
1099
1100 static void __intel_pmu_pebs_event(struct perf_event *event,
1101                                    struct pt_regs *iregs,
1102                                    void *base, void *top,
1103                                    int bit, int count)
1104 {
1105         struct perf_sample_data data;
1106         struct pt_regs regs;
1107         void *at = get_next_pebs_record_by_bit(base, top, bit);
1108
1109         if (!intel_pmu_save_and_restart(event) &&
1110             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1111                 return;
1112
1113         while (count > 1) {
1114                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1115                 perf_event_output(event, &data, &regs);
1116                 at += x86_pmu.pebs_record_size;
1117                 at = get_next_pebs_record_by_bit(at, top, bit);
1118                 count--;
1119         }
1120
1121         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1122
1123         /*
1124          * All but the last records are processed.
1125          * The last one is left to be able to call the overflow handler.
1126          */
1127         if (perf_event_overflow(event, &data, &regs)) {
1128                 x86_pmu_stop(event, 0);
1129                 return;
1130         }
1131
1132 }
1133
1134 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1135 {
1136         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137         struct debug_store *ds = cpuc->ds;
1138         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1139         struct pebs_record_core *at, *top;
1140         int n;
1141
1142         if (!x86_pmu.pebs_active)
1143                 return;
1144
1145         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1146         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1147
1148         /*
1149          * Whatever else happens, drain the thing
1150          */
1151         ds->pebs_index = ds->pebs_buffer_base;
1152
1153         if (!test_bit(0, cpuc->active_mask))
1154                 return;
1155
1156         WARN_ON_ONCE(!event);
1157
1158         if (!event->attr.precise_ip)
1159                 return;
1160
1161         n = (top - at) / x86_pmu.pebs_record_size;
1162         if (n <= 0)
1163                 return;
1164
1165         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1166 }
1167
1168 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1169 {
1170         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1171         struct debug_store *ds = cpuc->ds;
1172         struct perf_event *event;
1173         void *base, *at, *top;
1174         short counts[MAX_PEBS_EVENTS] = {};
1175         short error[MAX_PEBS_EVENTS] = {};
1176         int bit, i;
1177
1178         if (!x86_pmu.pebs_active)
1179                 return;
1180
1181         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1182         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1183
1184         ds->pebs_index = ds->pebs_buffer_base;
1185
1186         if (unlikely(base >= top))
1187                 return;
1188
1189         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1190                 struct pebs_record_nhm *p = at;
1191                 u64 pebs_status;
1192
1193                 /* PEBS v3 has accurate status bits */
1194                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1195                         for_each_set_bit(bit, (unsigned long *)&p->status,
1196                                          MAX_PEBS_EVENTS)
1197                                 counts[bit]++;
1198
1199                         continue;
1200                 }
1201
1202                 pebs_status = p->status & cpuc->pebs_enabled;
1203                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1204
1205                 bit = find_first_bit((unsigned long *)&pebs_status,
1206                                         x86_pmu.max_pebs_events);
1207                 if (WARN(bit >= x86_pmu.max_pebs_events,
1208                          "PEBS record without PEBS event! status=%Lx pebs_enabled=%Lx active_mask=%Lx",
1209                          (unsigned long long)p->status, (unsigned long long)cpuc->pebs_enabled,
1210                          *(unsigned long long *)cpuc->active_mask))
1211                         continue;
1212
1213                 /*
1214                  * The PEBS hardware does not deal well with the situation
1215                  * when events happen near to each other and multiple bits
1216                  * are set. But it should happen rarely.
1217                  *
1218                  * If these events include one PEBS and multiple non-PEBS
1219                  * events, it doesn't impact PEBS record. The record will
1220                  * be handled normally. (slow path)
1221                  *
1222                  * If these events include two or more PEBS events, the
1223                  * records for the events can be collapsed into a single
1224                  * one, and it's not possible to reconstruct all events
1225                  * that caused the PEBS record. It's called collision.
1226                  * If collision happened, the record will be dropped.
1227                  */
1228                 if (p->status != (1ULL << bit)) {
1229                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1230                                          x86_pmu.max_pebs_events)
1231                                 error[i]++;
1232                         continue;
1233                 }
1234
1235                 counts[bit]++;
1236         }
1237
1238         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1239                 if ((counts[bit] == 0) && (error[bit] == 0))
1240                         continue;
1241
1242                 event = cpuc->events[bit];
1243                 WARN_ON_ONCE(!event);
1244                 WARN_ON_ONCE(!event->attr.precise_ip);
1245
1246                 /* log dropped samples number */
1247                 if (error[bit])
1248                         perf_log_lost_samples(event, error[bit]);
1249
1250                 if (counts[bit]) {
1251                         __intel_pmu_pebs_event(event, iregs, base,
1252                                                top, bit, counts[bit]);
1253                 }
1254         }
1255 }
1256
1257 /*
1258  * BTS, PEBS probe and setup
1259  */
1260
1261 void __init intel_ds_init(void)
1262 {
1263         /*
1264          * No support for 32bit formats
1265          */
1266         if (!boot_cpu_has(X86_FEATURE_DTES64))
1267                 return;
1268
1269         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1270         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1271         if (x86_pmu.pebs) {
1272                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1273                 int format = x86_pmu.intel_cap.pebs_format;
1274
1275                 switch (format) {
1276                 case 0:
1277                         printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1278                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1279                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1280                         break;
1281
1282                 case 1:
1283                         printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1284                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1285                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1286                         break;
1287
1288                 case 2:
1289                         pr_cont("PEBS fmt2%c, ", pebs_type);
1290                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1291                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1292                         break;
1293
1294                 case 3:
1295                         pr_cont("PEBS fmt3%c, ", pebs_type);
1296                         x86_pmu.pebs_record_size =
1297                                                 sizeof(struct pebs_record_skl);
1298                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1299                         x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1300                         break;
1301
1302                 default:
1303                         printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1304                         x86_pmu.pebs = 0;
1305                 }
1306         }
1307 }
1308
1309 void perf_restore_debug_store(void)
1310 {
1311         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1312
1313         if (!x86_pmu.bts && !x86_pmu.pebs)
1314                 return;
1315
1316         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1317 }