]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge tag 'drm-intel-next-2013-06-18' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62 };
63
64 /* FDI */
65 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
66
67 int
68 intel_pch_rawclk(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         WARN_ON(!HAS_PCH_SPLIT(dev));
73
74         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
75 }
76
77 static inline u32 /* units of 100MHz */
78 intel_fdi_link_freq(struct drm_device *dev)
79 {
80         if (IS_GEN5(dev)) {
81                 struct drm_i915_private *dev_priv = dev->dev_private;
82                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
83         } else
84                 return 27;
85 }
86
87 static const intel_limit_t intel_limits_i8xx_dvo = {
88         .dot = { .min = 25000, .max = 350000 },
89         .vco = { .min = 930000, .max = 1400000 },
90         .n = { .min = 3, .max = 16 },
91         .m = { .min = 96, .max = 140 },
92         .m1 = { .min = 18, .max = 26 },
93         .m2 = { .min = 6, .max = 16 },
94         .p = { .min = 4, .max = 128 },
95         .p1 = { .min = 2, .max = 33 },
96         .p2 = { .dot_limit = 165000,
97                 .p2_slow = 4, .p2_fast = 2 },
98 };
99
100 static const intel_limit_t intel_limits_i8xx_lvds = {
101         .dot = { .min = 25000, .max = 350000 },
102         .vco = { .min = 930000, .max = 1400000 },
103         .n = { .min = 3, .max = 16 },
104         .m = { .min = 96, .max = 140 },
105         .m1 = { .min = 18, .max = 26 },
106         .m2 = { .min = 6, .max = 16 },
107         .p = { .min = 4, .max = 128 },
108         .p1 = { .min = 1, .max = 6 },
109         .p2 = { .dot_limit = 165000,
110                 .p2_slow = 14, .p2_fast = 7 },
111 };
112
113 static const intel_limit_t intel_limits_i9xx_sdvo = {
114         .dot = { .min = 20000, .max = 400000 },
115         .vco = { .min = 1400000, .max = 2800000 },
116         .n = { .min = 1, .max = 6 },
117         .m = { .min = 70, .max = 120 },
118         .m1 = { .min = 8, .max = 18 },
119         .m2 = { .min = 3, .max = 7 },
120         .p = { .min = 5, .max = 80 },
121         .p1 = { .min = 1, .max = 8 },
122         .p2 = { .dot_limit = 200000,
123                 .p2_slow = 10, .p2_fast = 5 },
124 };
125
126 static const intel_limit_t intel_limits_i9xx_lvds = {
127         .dot = { .min = 20000, .max = 400000 },
128         .vco = { .min = 1400000, .max = 2800000 },
129         .n = { .min = 1, .max = 6 },
130         .m = { .min = 70, .max = 120 },
131         .m1 = { .min = 8, .max = 18 },
132         .m2 = { .min = 3, .max = 7 },
133         .p = { .min = 7, .max = 98 },
134         .p1 = { .min = 1, .max = 8 },
135         .p2 = { .dot_limit = 112000,
136                 .p2_slow = 14, .p2_fast = 7 },
137 };
138
139
140 static const intel_limit_t intel_limits_g4x_sdvo = {
141         .dot = { .min = 25000, .max = 270000 },
142         .vco = { .min = 1750000, .max = 3500000},
143         .n = { .min = 1, .max = 4 },
144         .m = { .min = 104, .max = 138 },
145         .m1 = { .min = 17, .max = 23 },
146         .m2 = { .min = 5, .max = 11 },
147         .p = { .min = 10, .max = 30 },
148         .p1 = { .min = 1, .max = 3},
149         .p2 = { .dot_limit = 270000,
150                 .p2_slow = 10,
151                 .p2_fast = 10
152         },
153 };
154
155 static const intel_limit_t intel_limits_g4x_hdmi = {
156         .dot = { .min = 22000, .max = 400000 },
157         .vco = { .min = 1750000, .max = 3500000},
158         .n = { .min = 1, .max = 4 },
159         .m = { .min = 104, .max = 138 },
160         .m1 = { .min = 16, .max = 23 },
161         .m2 = { .min = 5, .max = 11 },
162         .p = { .min = 5, .max = 80 },
163         .p1 = { .min = 1, .max = 8},
164         .p2 = { .dot_limit = 165000,
165                 .p2_slow = 10, .p2_fast = 5 },
166 };
167
168 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
169         .dot = { .min = 20000, .max = 115000 },
170         .vco = { .min = 1750000, .max = 3500000 },
171         .n = { .min = 1, .max = 3 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 28, .max = 112 },
176         .p1 = { .min = 2, .max = 8 },
177         .p2 = { .dot_limit = 0,
178                 .p2_slow = 14, .p2_fast = 14
179         },
180 };
181
182 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
183         .dot = { .min = 80000, .max = 224000 },
184         .vco = { .min = 1750000, .max = 3500000 },
185         .n = { .min = 1, .max = 3 },
186         .m = { .min = 104, .max = 138 },
187         .m1 = { .min = 17, .max = 23 },
188         .m2 = { .min = 5, .max = 11 },
189         .p = { .min = 14, .max = 42 },
190         .p1 = { .min = 2, .max = 6 },
191         .p2 = { .dot_limit = 0,
192                 .p2_slow = 7, .p2_fast = 7
193         },
194 };
195
196 static const intel_limit_t intel_limits_pineview_sdvo = {
197         .dot = { .min = 20000, .max = 400000},
198         .vco = { .min = 1700000, .max = 3500000 },
199         /* Pineview's Ncounter is a ring counter */
200         .n = { .min = 3, .max = 6 },
201         .m = { .min = 2, .max = 256 },
202         /* Pineview only has one combined m divider, which we treat as m2. */
203         .m1 = { .min = 0, .max = 0 },
204         .m2 = { .min = 0, .max = 254 },
205         .p = { .min = 5, .max = 80 },
206         .p1 = { .min = 1, .max = 8 },
207         .p2 = { .dot_limit = 200000,
208                 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_pineview_lvds = {
212         .dot = { .min = 20000, .max = 400000 },
213         .vco = { .min = 1700000, .max = 3500000 },
214         .n = { .min = 3, .max = 6 },
215         .m = { .min = 2, .max = 256 },
216         .m1 = { .min = 0, .max = 0 },
217         .m2 = { .min = 0, .max = 254 },
218         .p = { .min = 7, .max = 112 },
219         .p1 = { .min = 1, .max = 8 },
220         .p2 = { .dot_limit = 112000,
221                 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 /* Ironlake / Sandybridge
225  *
226  * We calculate clock using (register_value + 2) for N/M1/M2, so here
227  * the range value for them is (actual_value - 2).
228  */
229 static const intel_limit_t intel_limits_ironlake_dac = {
230         .dot = { .min = 25000, .max = 350000 },
231         .vco = { .min = 1760000, .max = 3510000 },
232         .n = { .min = 1, .max = 5 },
233         .m = { .min = 79, .max = 127 },
234         .m1 = { .min = 12, .max = 22 },
235         .m2 = { .min = 5, .max = 9 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 225000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_ironlake_single_lvds = {
243         .dot = { .min = 25000, .max = 350000 },
244         .vco = { .min = 1760000, .max = 3510000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 79, .max = 118 },
247         .m1 = { .min = 12, .max = 22 },
248         .m2 = { .min = 5, .max = 9 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 225000,
252                 .p2_slow = 14, .p2_fast = 14 },
253 };
254
255 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
256         .dot = { .min = 25000, .max = 350000 },
257         .vco = { .min = 1760000, .max = 3510000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 79, .max = 127 },
260         .m1 = { .min = 12, .max = 22 },
261         .m2 = { .min = 5, .max = 9 },
262         .p = { .min = 14, .max = 56 },
263         .p1 = { .min = 2, .max = 8 },
264         .p2 = { .dot_limit = 225000,
265                 .p2_slow = 7, .p2_fast = 7 },
266 };
267
268 /* LVDS 100mhz refclk limits. */
269 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
270         .dot = { .min = 25000, .max = 350000 },
271         .vco = { .min = 1760000, .max = 3510000 },
272         .n = { .min = 1, .max = 2 },
273         .m = { .min = 79, .max = 126 },
274         .m1 = { .min = 12, .max = 22 },
275         .m2 = { .min = 5, .max = 9 },
276         .p = { .min = 28, .max = 112 },
277         .p1 = { .min = 2, .max = 8 },
278         .p2 = { .dot_limit = 225000,
279                 .p2_slow = 14, .p2_fast = 14 },
280 };
281
282 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 3 },
286         .m = { .min = 79, .max = 126 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 14, .max = 42 },
290         .p1 = { .min = 2, .max = 6 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 7, .p2_fast = 7 },
293 };
294
295 static const intel_limit_t intel_limits_vlv_dac = {
296         .dot = { .min = 25000, .max = 270000 },
297         .vco = { .min = 4000000, .max = 6000000 },
298         .n = { .min = 1, .max = 7 },
299         .m = { .min = 22, .max = 450 }, /* guess */
300         .m1 = { .min = 2, .max = 3 },
301         .m2 = { .min = 11, .max = 156 },
302         .p = { .min = 10, .max = 30 },
303         .p1 = { .min = 1, .max = 3 },
304         .p2 = { .dot_limit = 270000,
305                 .p2_slow = 2, .p2_fast = 20 },
306 };
307
308 static const intel_limit_t intel_limits_vlv_hdmi = {
309         .dot = { .min = 25000, .max = 270000 },
310         .vco = { .min = 4000000, .max = 6000000 },
311         .n = { .min = 1, .max = 7 },
312         .m = { .min = 60, .max = 300 }, /* guess */
313         .m1 = { .min = 2, .max = 3 },
314         .m2 = { .min = 11, .max = 156 },
315         .p = { .min = 10, .max = 30 },
316         .p1 = { .min = 2, .max = 3 },
317         .p2 = { .dot_limit = 270000,
318                 .p2_slow = 2, .p2_fast = 20 },
319 };
320
321 static const intel_limit_t intel_limits_vlv_dp = {
322         .dot = { .min = 25000, .max = 270000 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m = { .min = 22, .max = 450 },
326         .m1 = { .min = 2, .max = 3 },
327         .m2 = { .min = 11, .max = 156 },
328         .p = { .min = 10, .max = 30 },
329         .p1 = { .min = 1, .max = 3 },
330         .p2 = { .dot_limit = 270000,
331                 .p2_slow = 2, .p2_fast = 20 },
332 };
333
334 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
335                                                 int refclk)
336 {
337         struct drm_device *dev = crtc->dev;
338         const intel_limit_t *limit;
339
340         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
341                 if (intel_is_dual_link_lvds(dev)) {
342                         if (refclk == 100000)
343                                 limit = &intel_limits_ironlake_dual_lvds_100m;
344                         else
345                                 limit = &intel_limits_ironlake_dual_lvds;
346                 } else {
347                         if (refclk == 100000)
348                                 limit = &intel_limits_ironlake_single_lvds_100m;
349                         else
350                                 limit = &intel_limits_ironlake_single_lvds;
351                 }
352         } else
353                 limit = &intel_limits_ironlake_dac;
354
355         return limit;
356 }
357
358 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
359 {
360         struct drm_device *dev = crtc->dev;
361         const intel_limit_t *limit;
362
363         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
364                 if (intel_is_dual_link_lvds(dev))
365                         limit = &intel_limits_g4x_dual_channel_lvds;
366                 else
367                         limit = &intel_limits_g4x_single_channel_lvds;
368         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
369                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
370                 limit = &intel_limits_g4x_hdmi;
371         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
372                 limit = &intel_limits_g4x_sdvo;
373         } else /* The option is for other outputs */
374                 limit = &intel_limits_i9xx_sdvo;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (HAS_PCH_SPLIT(dev))
385                 limit = intel_ironlake_limit(crtc, refclk);
386         else if (IS_G4X(dev)) {
387                 limit = intel_g4x_limit(crtc);
388         } else if (IS_PINEVIEW(dev)) {
389                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
390                         limit = &intel_limits_pineview_lvds;
391                 else
392                         limit = &intel_limits_pineview_sdvo;
393         } else if (IS_VALLEYVIEW(dev)) {
394                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
395                         limit = &intel_limits_vlv_dac;
396                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
397                         limit = &intel_limits_vlv_hdmi;
398                 else
399                         limit = &intel_limits_vlv_dp;
400         } else if (!IS_GEN2(dev)) {
401                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
402                         limit = &intel_limits_i9xx_lvds;
403                 else
404                         limit = &intel_limits_i9xx_sdvo;
405         } else {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_i8xx_lvds;
408                 else
409                         limit = &intel_limits_i8xx_dvo;
410         }
411         return limit;
412 }
413
414 /* m1 is reserved as 0 in Pineview, n is a ring counter */
415 static void pineview_clock(int refclk, intel_clock_t *clock)
416 {
417         clock->m = clock->m2 + 2;
418         clock->p = clock->p1 * clock->p2;
419         clock->vco = refclk * clock->m / clock->n;
420         clock->dot = clock->vco / clock->p;
421 }
422
423 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
424 {
425         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
426 }
427
428 static void i9xx_clock(int refclk, intel_clock_t *clock)
429 {
430         clock->m = i9xx_dpll_compute_m(clock);
431         clock->p = clock->p1 * clock->p2;
432         clock->vco = refclk * clock->m / (clock->n + 2);
433         clock->dot = clock->vco / clock->p;
434 }
435
436 /**
437  * Returns whether any output on the specified pipe is of the specified type
438  */
439 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
440 {
441         struct drm_device *dev = crtc->dev;
442         struct intel_encoder *encoder;
443
444         for_each_encoder_on_crtc(dev, crtc, encoder)
445                 if (encoder->type == type)
446                         return true;
447
448         return false;
449 }
450
451 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
452 /**
453  * Returns whether the given set of divisors are valid for a given refclk with
454  * the given connectors.
455  */
456
457 static bool intel_PLL_is_valid(struct drm_device *dev,
458                                const intel_limit_t *limit,
459                                const intel_clock_t *clock)
460 {
461         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
462                 INTELPllInvalid("p1 out of range\n");
463         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
464                 INTELPllInvalid("p out of range\n");
465         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
466                 INTELPllInvalid("m2 out of range\n");
467         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
468                 INTELPllInvalid("m1 out of range\n");
469         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
470                 INTELPllInvalid("m1 <= m2\n");
471         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
472                 INTELPllInvalid("m out of range\n");
473         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
474                 INTELPllInvalid("n out of range\n");
475         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
476                 INTELPllInvalid("vco out of range\n");
477         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
478          * connector, etc., rather than just a single range.
479          */
480         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
481                 INTELPllInvalid("dot out of range\n");
482
483         return true;
484 }
485
486 static bool
487 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
488                     int target, int refclk, intel_clock_t *match_clock,
489                     intel_clock_t *best_clock)
490 {
491         struct drm_device *dev = crtc->dev;
492         intel_clock_t clock;
493         int err = target;
494
495         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496                 /*
497                  * For LVDS just rely on its current settings for dual-channel.
498                  * We haven't figured out how to reliably set up different
499                  * single/dual channel state, if we even can.
500                  */
501                 if (intel_is_dual_link_lvds(dev))
502                         clock.p2 = limit->p2.p2_fast;
503                 else
504                         clock.p2 = limit->p2.p2_slow;
505         } else {
506                 if (target < limit->p2.dot_limit)
507                         clock.p2 = limit->p2.p2_slow;
508                 else
509                         clock.p2 = limit->p2.p2_fast;
510         }
511
512         memset(best_clock, 0, sizeof(*best_clock));
513
514         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
515              clock.m1++) {
516                 for (clock.m2 = limit->m2.min;
517                      clock.m2 <= limit->m2.max; clock.m2++) {
518                         if (clock.m2 >= clock.m1)
519                                 break;
520                         for (clock.n = limit->n.min;
521                              clock.n <= limit->n.max; clock.n++) {
522                                 for (clock.p1 = limit->p1.min;
523                                         clock.p1 <= limit->p1.max; clock.p1++) {
524                                         int this_err;
525
526                                         i9xx_clock(refclk, &clock);
527                                         if (!intel_PLL_is_valid(dev, limit,
528                                                                 &clock))
529                                                 continue;
530                                         if (match_clock &&
531                                             clock.p != match_clock->p)
532                                                 continue;
533
534                                         this_err = abs(clock.dot - target);
535                                         if (this_err < err) {
536                                                 *best_clock = clock;
537                                                 err = this_err;
538                                         }
539                                 }
540                         }
541                 }
542         }
543
544         return (err != target);
545 }
546
547 static bool
548 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
549                    int target, int refclk, intel_clock_t *match_clock,
550                    intel_clock_t *best_clock)
551 {
552         struct drm_device *dev = crtc->dev;
553         intel_clock_t clock;
554         int err = target;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 /*
558                  * For LVDS just rely on its current settings for dual-channel.
559                  * We haven't figured out how to reliably set up different
560                  * single/dual channel state, if we even can.
561                  */
562                 if (intel_is_dual_link_lvds(dev))
563                         clock.p2 = limit->p2.p2_fast;
564                 else
565                         clock.p2 = limit->p2.p2_slow;
566         } else {
567                 if (target < limit->p2.dot_limit)
568                         clock.p2 = limit->p2.p2_slow;
569                 else
570                         clock.p2 = limit->p2.p2_fast;
571         }
572
573         memset(best_clock, 0, sizeof(*best_clock));
574
575         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
576              clock.m1++) {
577                 for (clock.m2 = limit->m2.min;
578                      clock.m2 <= limit->m2.max; clock.m2++) {
579                         for (clock.n = limit->n.min;
580                              clock.n <= limit->n.max; clock.n++) {
581                                 for (clock.p1 = limit->p1.min;
582                                         clock.p1 <= limit->p1.max; clock.p1++) {
583                                         int this_err;
584
585                                         pineview_clock(refclk, &clock);
586                                         if (!intel_PLL_is_valid(dev, limit,
587                                                                 &clock))
588                                                 continue;
589                                         if (match_clock &&
590                                             clock.p != match_clock->p)
591                                                 continue;
592
593                                         this_err = abs(clock.dot - target);
594                                         if (this_err < err) {
595                                                 *best_clock = clock;
596                                                 err = this_err;
597                                         }
598                                 }
599                         }
600                 }
601         }
602
603         return (err != target);
604 }
605
606 static bool
607 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
608                    int target, int refclk, intel_clock_t *match_clock,
609                    intel_clock_t *best_clock)
610 {
611         struct drm_device *dev = crtc->dev;
612         intel_clock_t clock;
613         int max_n;
614         bool found;
615         /* approximately equals target * 0.00585 */
616         int err_most = (target >> 8) + (target >> 9);
617         found = false;
618
619         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
620                 if (intel_is_dual_link_lvds(dev))
621                         clock.p2 = limit->p2.p2_fast;
622                 else
623                         clock.p2 = limit->p2.p2_slow;
624         } else {
625                 if (target < limit->p2.dot_limit)
626                         clock.p2 = limit->p2.p2_slow;
627                 else
628                         clock.p2 = limit->p2.p2_fast;
629         }
630
631         memset(best_clock, 0, sizeof(*best_clock));
632         max_n = limit->n.max;
633         /* based on hardware requirement, prefer smaller n to precision */
634         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
635                 /* based on hardware requirement, prefere larger m1,m2 */
636                 for (clock.m1 = limit->m1.max;
637                      clock.m1 >= limit->m1.min; clock.m1--) {
638                         for (clock.m2 = limit->m2.max;
639                              clock.m2 >= limit->m2.min; clock.m2--) {
640                                 for (clock.p1 = limit->p1.max;
641                                      clock.p1 >= limit->p1.min; clock.p1--) {
642                                         int this_err;
643
644                                         i9xx_clock(refclk, &clock);
645                                         if (!intel_PLL_is_valid(dev, limit,
646                                                                 &clock))
647                                                 continue;
648
649                                         this_err = abs(clock.dot - target);
650                                         if (this_err < err_most) {
651                                                 *best_clock = clock;
652                                                 err_most = this_err;
653                                                 max_n = clock.n;
654                                                 found = true;
655                                         }
656                                 }
657                         }
658                 }
659         }
660         return found;
661 }
662
663 static bool
664 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
665                    int target, int refclk, intel_clock_t *match_clock,
666                    intel_clock_t *best_clock)
667 {
668         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
669         u32 m, n, fastclk;
670         u32 updrate, minupdate, fracbits, p;
671         unsigned long bestppm, ppm, absppm;
672         int dotclk, flag;
673
674         flag = 0;
675         dotclk = target * 1000;
676         bestppm = 1000000;
677         ppm = absppm = 0;
678         fastclk = dotclk / (2*100);
679         updrate = 0;
680         minupdate = 19200;
681         fracbits = 1;
682         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
683         bestm1 = bestm2 = bestp1 = bestp2 = 0;
684
685         /* based on hardware requirement, prefer smaller n to precision */
686         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
687                 updrate = refclk / n;
688                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
689                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
690                                 if (p2 > 10)
691                                         p2 = p2 - 1;
692                                 p = p1 * p2;
693                                 /* based on hardware requirement, prefer bigger m1,m2 values */
694                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
695                                         m2 = (((2*(fastclk * p * n / m1 )) +
696                                                refclk) / (2*refclk));
697                                         m = m1 * m2;
698                                         vco = updrate * m;
699                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
700                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
701                                                 absppm = (ppm > 0) ? ppm : (-ppm);
702                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
703                                                         bestppm = 0;
704                                                         flag = 1;
705                                                 }
706                                                 if (absppm < bestppm - 10) {
707                                                         bestppm = absppm;
708                                                         flag = 1;
709                                                 }
710                                                 if (flag) {
711                                                         bestn = n;
712                                                         bestm1 = m1;
713                                                         bestm2 = m2;
714                                                         bestp1 = p1;
715                                                         bestp2 = p2;
716                                                         flag = 0;
717                                                 }
718                                         }
719                                 }
720                         }
721                 }
722         }
723         best_clock->n = bestn;
724         best_clock->m1 = bestm1;
725         best_clock->m2 = bestm2;
726         best_clock->p1 = bestp1;
727         best_clock->p2 = bestp2;
728
729         return true;
730 }
731
732 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
733                                              enum pipe pipe)
734 {
735         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         return intel_crtc->config.cpu_transcoder;
739 }
740
741 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
742 {
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         u32 frame, frame_reg = PIPEFRAME(pipe);
745
746         frame = I915_READ(frame_reg);
747
748         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
749                 DRM_DEBUG_KMS("vblank wait timed out\n");
750 }
751
752 /**
753  * intel_wait_for_vblank - wait for vblank on a given pipe
754  * @dev: drm device
755  * @pipe: pipe to wait for
756  *
757  * Wait for vblank to occur on a given pipe.  Needed for various bits of
758  * mode setting code.
759  */
760 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         int pipestat_reg = PIPESTAT(pipe);
764
765         if (INTEL_INFO(dev)->gen >= 5) {
766                 ironlake_wait_for_vblank(dev, pipe);
767                 return;
768         }
769
770         /* Clear existing vblank status. Note this will clear any other
771          * sticky status fields as well.
772          *
773          * This races with i915_driver_irq_handler() with the result
774          * that either function could miss a vblank event.  Here it is not
775          * fatal, as we will either wait upon the next vblank interrupt or
776          * timeout.  Generally speaking intel_wait_for_vblank() is only
777          * called during modeset at which time the GPU should be idle and
778          * should *not* be performing page flips and thus not waiting on
779          * vblanks...
780          * Currently, the result of us stealing a vblank from the irq
781          * handler is that a single frame will be skipped during swapbuffers.
782          */
783         I915_WRITE(pipestat_reg,
784                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
785
786         /* Wait for vblank interrupt bit to set */
787         if (wait_for(I915_READ(pipestat_reg) &
788                      PIPE_VBLANK_INTERRUPT_STATUS,
789                      50))
790                 DRM_DEBUG_KMS("vblank wait timed out\n");
791 }
792
793 /*
794  * intel_wait_for_pipe_off - wait for pipe to turn off
795  * @dev: drm device
796  * @pipe: pipe to wait for
797  *
798  * After disabling a pipe, we can't wait for vblank in the usual way,
799  * spinning on the vblank interrupt status bit, since we won't actually
800  * see an interrupt when the pipe is disabled.
801  *
802  * On Gen4 and above:
803  *   wait for the pipe register state bit to turn off
804  *
805  * Otherwise:
806  *   wait for the display line value to settle (it usually
807  *   ends up stopping at the start of the next frame).
808  *
809  */
810 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
811 {
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
814                                                                       pipe);
815
816         if (INTEL_INFO(dev)->gen >= 4) {
817                 int reg = PIPECONF(cpu_transcoder);
818
819                 /* Wait for the Pipe State to go off */
820                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
821                              100))
822                         WARN(1, "pipe_off wait timed out\n");
823         } else {
824                 u32 last_line, line_mask;
825                 int reg = PIPEDSL(pipe);
826                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
827
828                 if (IS_GEN2(dev))
829                         line_mask = DSL_LINEMASK_GEN2;
830                 else
831                         line_mask = DSL_LINEMASK_GEN3;
832
833                 /* Wait for the display line to settle */
834                 do {
835                         last_line = I915_READ(reg) & line_mask;
836                         mdelay(5);
837                 } while (((I915_READ(reg) & line_mask) != last_line) &&
838                          time_after(timeout, jiffies));
839                 if (time_after(jiffies, timeout))
840                         WARN(1, "pipe_off wait timed out\n");
841         }
842 }
843
844 /*
845  * ibx_digital_port_connected - is the specified port connected?
846  * @dev_priv: i915 private structure
847  * @port: the port to test
848  *
849  * Returns true if @port is connected, false otherwise.
850  */
851 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
852                                 struct intel_digital_port *port)
853 {
854         u32 bit;
855
856         if (HAS_PCH_IBX(dev_priv->dev)) {
857                 switch(port->port) {
858                 case PORT_B:
859                         bit = SDE_PORTB_HOTPLUG;
860                         break;
861                 case PORT_C:
862                         bit = SDE_PORTC_HOTPLUG;
863                         break;
864                 case PORT_D:
865                         bit = SDE_PORTD_HOTPLUG;
866                         break;
867                 default:
868                         return true;
869                 }
870         } else {
871                 switch(port->port) {
872                 case PORT_B:
873                         bit = SDE_PORTB_HOTPLUG_CPT;
874                         break;
875                 case PORT_C:
876                         bit = SDE_PORTC_HOTPLUG_CPT;
877                         break;
878                 case PORT_D:
879                         bit = SDE_PORTD_HOTPLUG_CPT;
880                         break;
881                 default:
882                         return true;
883                 }
884         }
885
886         return I915_READ(SDEISR) & bit;
887 }
888
889 static const char *state_string(bool enabled)
890 {
891         return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 static void assert_pll(struct drm_i915_private *dev_priv,
896                        enum pipe pipe, bool state)
897 {
898         int reg;
899         u32 val;
900         bool cur_state;
901
902         reg = DPLL(pipe);
903         val = I915_READ(reg);
904         cur_state = !!(val & DPLL_VCO_ENABLE);
905         WARN(cur_state != state,
906              "PLL state assertion failure (expected %s, current %s)\n",
907              state_string(state), state_string(cur_state));
908 }
909 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
910 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
911
912 static struct intel_shared_dpll *
913 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
914 {
915         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
916
917         if (crtc->config.shared_dpll < 0)
918                 return NULL;
919
920         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
921 }
922
923 /* For ILK+ */
924 static void assert_shared_dpll(struct drm_i915_private *dev_priv,
925                                struct intel_shared_dpll *pll,
926                                bool state)
927 {
928         bool cur_state;
929         struct intel_dpll_hw_state hw_state;
930
931         if (HAS_PCH_LPT(dev_priv->dev)) {
932                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
933                 return;
934         }
935
936         if (WARN (!pll,
937                   "asserting DPLL %s with no DPLL\n", state_string(state)))
938                 return;
939
940         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
941         WARN(cur_state != state,
942              "%s assertion failure (expected %s, current %s)\n",
943              pll->name, state_string(state), state_string(cur_state));
944 }
945 #define assert_shared_dpll_enabled(d, p) assert_shared_dpll(d, p, true)
946 #define assert_shared_dpll_disabled(d, p) assert_shared_dpll(d, p, false)
947
948 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
949                           enum pipe pipe, bool state)
950 {
951         int reg;
952         u32 val;
953         bool cur_state;
954         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
955                                                                       pipe);
956
957         if (HAS_DDI(dev_priv->dev)) {
958                 /* DDI does not have a specific FDI_TX register */
959                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
960                 val = I915_READ(reg);
961                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
962         } else {
963                 reg = FDI_TX_CTL(pipe);
964                 val = I915_READ(reg);
965                 cur_state = !!(val & FDI_TX_ENABLE);
966         }
967         WARN(cur_state != state,
968              "FDI TX state assertion failure (expected %s, current %s)\n",
969              state_string(state), state_string(cur_state));
970 }
971 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
972 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
973
974 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
975                           enum pipe pipe, bool state)
976 {
977         int reg;
978         u32 val;
979         bool cur_state;
980
981         reg = FDI_RX_CTL(pipe);
982         val = I915_READ(reg);
983         cur_state = !!(val & FDI_RX_ENABLE);
984         WARN(cur_state != state,
985              "FDI RX state assertion failure (expected %s, current %s)\n",
986              state_string(state), state_string(cur_state));
987 }
988 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
989 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
990
991 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
992                                       enum pipe pipe)
993 {
994         int reg;
995         u32 val;
996
997         /* ILK FDI PLL is always enabled */
998         if (dev_priv->info->gen == 5)
999                 return;
1000
1001         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1002         if (HAS_DDI(dev_priv->dev))
1003                 return;
1004
1005         reg = FDI_TX_CTL(pipe);
1006         val = I915_READ(reg);
1007         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1008 }
1009
1010 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1011                                       enum pipe pipe)
1012 {
1013         int reg;
1014         u32 val;
1015
1016         reg = FDI_RX_CTL(pipe);
1017         val = I915_READ(reg);
1018         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1019 }
1020
1021 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1022                                   enum pipe pipe)
1023 {
1024         int pp_reg, lvds_reg;
1025         u32 val;
1026         enum pipe panel_pipe = PIPE_A;
1027         bool locked = true;
1028
1029         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1030                 pp_reg = PCH_PP_CONTROL;
1031                 lvds_reg = PCH_LVDS;
1032         } else {
1033                 pp_reg = PP_CONTROL;
1034                 lvds_reg = LVDS;
1035         }
1036
1037         val = I915_READ(pp_reg);
1038         if (!(val & PANEL_POWER_ON) ||
1039             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1040                 locked = false;
1041
1042         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1043                 panel_pipe = PIPE_B;
1044
1045         WARN(panel_pipe == pipe && locked,
1046              "panel assertion failure, pipe %c regs locked\n",
1047              pipe_name(pipe));
1048 }
1049
1050 void assert_pipe(struct drm_i915_private *dev_priv,
1051                  enum pipe pipe, bool state)
1052 {
1053         int reg;
1054         u32 val;
1055         bool cur_state;
1056         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1057                                                                       pipe);
1058
1059         /* if we need the pipe A quirk it must be always on */
1060         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1061                 state = true;
1062
1063         if (!intel_display_power_enabled(dev_priv->dev,
1064                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1065                 cur_state = false;
1066         } else {
1067                 reg = PIPECONF(cpu_transcoder);
1068                 val = I915_READ(reg);
1069                 cur_state = !!(val & PIPECONF_ENABLE);
1070         }
1071
1072         WARN(cur_state != state,
1073              "pipe %c assertion failure (expected %s, current %s)\n",
1074              pipe_name(pipe), state_string(state), state_string(cur_state));
1075 }
1076
1077 static void assert_plane(struct drm_i915_private *dev_priv,
1078                          enum plane plane, bool state)
1079 {
1080         int reg;
1081         u32 val;
1082         bool cur_state;
1083
1084         reg = DSPCNTR(plane);
1085         val = I915_READ(reg);
1086         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1087         WARN(cur_state != state,
1088              "plane %c assertion failure (expected %s, current %s)\n",
1089              plane_name(plane), state_string(state), state_string(cur_state));
1090 }
1091
1092 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1093 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1094
1095 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1096                                    enum pipe pipe)
1097 {
1098         struct drm_device *dev = dev_priv->dev;
1099         int reg, i;
1100         u32 val;
1101         int cur_pipe;
1102
1103         /* Primary planes are fixed to pipes on gen4+ */
1104         if (INTEL_INFO(dev)->gen >= 4) {
1105                 reg = DSPCNTR(pipe);
1106                 val = I915_READ(reg);
1107                 WARN((val & DISPLAY_PLANE_ENABLE),
1108                      "plane %c assertion failure, should be disabled but not\n",
1109                      plane_name(pipe));
1110                 return;
1111         }
1112
1113         /* Need to check both planes against the pipe */
1114         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
1115                 reg = DSPCNTR(i);
1116                 val = I915_READ(reg);
1117                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1118                         DISPPLANE_SEL_PIPE_SHIFT;
1119                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1120                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1121                      plane_name(i), pipe_name(pipe));
1122         }
1123 }
1124
1125 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1126                                     enum pipe pipe)
1127 {
1128         struct drm_device *dev = dev_priv->dev;
1129         int reg, i;
1130         u32 val;
1131
1132         if (IS_VALLEYVIEW(dev)) {
1133                 for (i = 0; i < dev_priv->num_plane; i++) {
1134                         reg = SPCNTR(pipe, i);
1135                         val = I915_READ(reg);
1136                         WARN((val & SP_ENABLE),
1137                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1138                              sprite_name(pipe, i), pipe_name(pipe));
1139                 }
1140         } else if (INTEL_INFO(dev)->gen >= 7) {
1141                 reg = SPRCTL(pipe);
1142                 val = I915_READ(reg);
1143                 WARN((val & SPRITE_ENABLE),
1144                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1145                      plane_name(pipe), pipe_name(pipe));
1146         } else if (INTEL_INFO(dev)->gen >= 5) {
1147                 reg = DVSCNTR(pipe);
1148                 val = I915_READ(reg);
1149                 WARN((val & DVS_ENABLE),
1150                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1151                      plane_name(pipe), pipe_name(pipe));
1152         }
1153 }
1154
1155 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1156 {
1157         u32 val;
1158         bool enabled;
1159
1160         if (HAS_PCH_LPT(dev_priv->dev)) {
1161                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1162                 return;
1163         }
1164
1165         val = I915_READ(PCH_DREF_CONTROL);
1166         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1167                             DREF_SUPERSPREAD_SOURCE_MASK));
1168         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1169 }
1170
1171 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1172                                            enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176         bool enabled;
1177
1178         reg = PCH_TRANSCONF(pipe);
1179         val = I915_READ(reg);
1180         enabled = !!(val & TRANS_ENABLE);
1181         WARN(enabled,
1182              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1183              pipe_name(pipe));
1184 }
1185
1186 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1187                             enum pipe pipe, u32 port_sel, u32 val)
1188 {
1189         if ((val & DP_PORT_EN) == 0)
1190                 return false;
1191
1192         if (HAS_PCH_CPT(dev_priv->dev)) {
1193                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1194                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1195                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1196                         return false;
1197         } else {
1198                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1199                         return false;
1200         }
1201         return true;
1202 }
1203
1204 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1205                               enum pipe pipe, u32 val)
1206 {
1207         if ((val & SDVO_ENABLE) == 0)
1208                 return false;
1209
1210         if (HAS_PCH_CPT(dev_priv->dev)) {
1211                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1212                         return false;
1213         } else {
1214                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1215                         return false;
1216         }
1217         return true;
1218 }
1219
1220 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1221                               enum pipe pipe, u32 val)
1222 {
1223         if ((val & LVDS_PORT_EN) == 0)
1224                 return false;
1225
1226         if (HAS_PCH_CPT(dev_priv->dev)) {
1227                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1228                         return false;
1229         } else {
1230                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1231                         return false;
1232         }
1233         return true;
1234 }
1235
1236 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1237                               enum pipe pipe, u32 val)
1238 {
1239         if ((val & ADPA_DAC_ENABLE) == 0)
1240                 return false;
1241         if (HAS_PCH_CPT(dev_priv->dev)) {
1242                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1243                         return false;
1244         } else {
1245                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1246                         return false;
1247         }
1248         return true;
1249 }
1250
1251 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1252                                    enum pipe pipe, int reg, u32 port_sel)
1253 {
1254         u32 val = I915_READ(reg);
1255         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1256              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1257              reg, pipe_name(pipe));
1258
1259         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1260              && (val & DP_PIPEB_SELECT),
1261              "IBX PCH dp port still using transcoder B\n");
1262 }
1263
1264 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1265                                      enum pipe pipe, int reg)
1266 {
1267         u32 val = I915_READ(reg);
1268         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1269              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1270              reg, pipe_name(pipe));
1271
1272         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1273              && (val & SDVO_PIPE_B_SELECT),
1274              "IBX PCH hdmi port still using transcoder B\n");
1275 }
1276
1277 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1278                                       enum pipe pipe)
1279 {
1280         int reg;
1281         u32 val;
1282
1283         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1284         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1285         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1286
1287         reg = PCH_ADPA;
1288         val = I915_READ(reg);
1289         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1290              "PCH VGA enabled on transcoder %c, should be disabled\n",
1291              pipe_name(pipe));
1292
1293         reg = PCH_LVDS;
1294         val = I915_READ(reg);
1295         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1296              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1297              pipe_name(pipe));
1298
1299         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1300         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1301         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1302 }
1303
1304 /**
1305  * intel_enable_pll - enable a PLL
1306  * @dev_priv: i915 private structure
1307  * @pipe: pipe PLL to enable
1308  *
1309  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1310  * make sure the PLL reg is writable first though, since the panel write
1311  * protect mechanism may be enabled.
1312  *
1313  * Note!  This is for pre-ILK only.
1314  *
1315  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1316  */
1317 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321
1322         assert_pipe_disabled(dev_priv, pipe);
1323
1324         /* No really, not for ILK+ */
1325         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1326
1327         /* PLL is protected by panel, make sure we can write it */
1328         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1329                 assert_panel_unlocked(dev_priv, pipe);
1330
1331         reg = DPLL(pipe);
1332         val = I915_READ(reg);
1333         val |= DPLL_VCO_ENABLE;
1334
1335         /* We do this three times for luck */
1336         I915_WRITE(reg, val);
1337         POSTING_READ(reg);
1338         udelay(150); /* wait for warmup */
1339         I915_WRITE(reg, val);
1340         POSTING_READ(reg);
1341         udelay(150); /* wait for warmup */
1342         I915_WRITE(reg, val);
1343         POSTING_READ(reg);
1344         udelay(150); /* wait for warmup */
1345 }
1346
1347 /**
1348  * intel_disable_pll - disable a PLL
1349  * @dev_priv: i915 private structure
1350  * @pipe: pipe PLL to disable
1351  *
1352  * Disable the PLL for @pipe, making sure the pipe is off first.
1353  *
1354  * Note!  This is for pre-ILK only.
1355  */
1356 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1357 {
1358         int reg;
1359         u32 val;
1360
1361         /* Don't disable pipe A or pipe A PLLs if needed */
1362         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1363                 return;
1364
1365         /* Make sure the pipe isn't still relying on us */
1366         assert_pipe_disabled(dev_priv, pipe);
1367
1368         reg = DPLL(pipe);
1369         val = I915_READ(reg);
1370         val &= ~DPLL_VCO_ENABLE;
1371         I915_WRITE(reg, val);
1372         POSTING_READ(reg);
1373 }
1374
1375 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1376 {
1377         u32 port_mask;
1378
1379         if (!port)
1380                 port_mask = DPLL_PORTB_READY_MASK;
1381         else
1382                 port_mask = DPLL_PORTC_READY_MASK;
1383
1384         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1385                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1386                      'B' + port, I915_READ(DPLL(0)));
1387 }
1388
1389 /**
1390  * ironlake_enable_shared_dpll - enable PCH PLL
1391  * @dev_priv: i915 private structure
1392  * @pipe: pipe PLL to enable
1393  *
1394  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1395  * drives the transcoder clock.
1396  */
1397 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1398 {
1399         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1400         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1401
1402         /* PCH PLLs only available on ILK, SNB and IVB */
1403         BUG_ON(dev_priv->info->gen < 5);
1404         if (WARN_ON(pll == NULL))
1405                 return;
1406
1407         if (WARN_ON(pll->refcount == 0))
1408                 return;
1409
1410         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1411                       pll->name, pll->active, pll->on,
1412                       crtc->base.base.id);
1413
1414         if (pll->active++) {
1415                 WARN_ON(!pll->on);
1416                 assert_shared_dpll_enabled(dev_priv, pll);
1417                 return;
1418         }
1419         WARN_ON(pll->on);
1420
1421         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1422         pll->enable(dev_priv, pll);
1423         pll->on = true;
1424 }
1425
1426 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1427 {
1428         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1429         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1430
1431         /* PCH only available on ILK+ */
1432         BUG_ON(dev_priv->info->gen < 5);
1433         if (WARN_ON(pll == NULL))
1434                return;
1435
1436         if (WARN_ON(pll->refcount == 0))
1437                 return;
1438
1439         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1440                       pll->name, pll->active, pll->on,
1441                       crtc->base.base.id);
1442
1443         if (WARN_ON(pll->active == 0)) {
1444                 assert_shared_dpll_disabled(dev_priv, pll);
1445                 return;
1446         }
1447
1448         assert_shared_dpll_enabled(dev_priv, pll);
1449         WARN_ON(!pll->on);
1450         if (--pll->active)
1451                 return;
1452
1453         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1454         pll->disable(dev_priv, pll);
1455         pll->on = false;
1456 }
1457
1458 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1459                                            enum pipe pipe)
1460 {
1461         struct drm_device *dev = dev_priv->dev;
1462         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1464         uint32_t reg, val, pipeconf_val;
1465
1466         /* PCH only available on ILK+ */
1467         BUG_ON(dev_priv->info->gen < 5);
1468
1469         /* Make sure PCH DPLL is enabled */
1470         assert_shared_dpll_enabled(dev_priv,
1471                                    intel_crtc_to_shared_dpll(intel_crtc));
1472
1473         /* FDI must be feeding us bits for PCH ports */
1474         assert_fdi_tx_enabled(dev_priv, pipe);
1475         assert_fdi_rx_enabled(dev_priv, pipe);
1476
1477         if (HAS_PCH_CPT(dev)) {
1478                 /* Workaround: Set the timing override bit before enabling the
1479                  * pch transcoder. */
1480                 reg = TRANS_CHICKEN2(pipe);
1481                 val = I915_READ(reg);
1482                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1483                 I915_WRITE(reg, val);
1484         }
1485
1486         reg = PCH_TRANSCONF(pipe);
1487         val = I915_READ(reg);
1488         pipeconf_val = I915_READ(PIPECONF(pipe));
1489
1490         if (HAS_PCH_IBX(dev_priv->dev)) {
1491                 /*
1492                  * make the BPC in transcoder be consistent with
1493                  * that in pipeconf reg.
1494                  */
1495                 val &= ~PIPECONF_BPC_MASK;
1496                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1497         }
1498
1499         val &= ~TRANS_INTERLACE_MASK;
1500         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1501                 if (HAS_PCH_IBX(dev_priv->dev) &&
1502                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1503                         val |= TRANS_LEGACY_INTERLACED_ILK;
1504                 else
1505                         val |= TRANS_INTERLACED;
1506         else
1507                 val |= TRANS_PROGRESSIVE;
1508
1509         I915_WRITE(reg, val | TRANS_ENABLE);
1510         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1511                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1512 }
1513
1514 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1515                                       enum transcoder cpu_transcoder)
1516 {
1517         u32 val, pipeconf_val;
1518
1519         /* PCH only available on ILK+ */
1520         BUG_ON(dev_priv->info->gen < 5);
1521
1522         /* FDI must be feeding us bits for PCH ports */
1523         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1524         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1525
1526         /* Workaround: set timing override bit. */
1527         val = I915_READ(_TRANSA_CHICKEN2);
1528         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1529         I915_WRITE(_TRANSA_CHICKEN2, val);
1530
1531         val = TRANS_ENABLE;
1532         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1533
1534         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1535             PIPECONF_INTERLACED_ILK)
1536                 val |= TRANS_INTERLACED;
1537         else
1538                 val |= TRANS_PROGRESSIVE;
1539
1540         I915_WRITE(LPT_TRANSCONF, val);
1541         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1542                 DRM_ERROR("Failed to enable PCH transcoder\n");
1543 }
1544
1545 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1546                                             enum pipe pipe)
1547 {
1548         struct drm_device *dev = dev_priv->dev;
1549         uint32_t reg, val;
1550
1551         /* FDI relies on the transcoder */
1552         assert_fdi_tx_disabled(dev_priv, pipe);
1553         assert_fdi_rx_disabled(dev_priv, pipe);
1554
1555         /* Ports must be off as well */
1556         assert_pch_ports_disabled(dev_priv, pipe);
1557
1558         reg = PCH_TRANSCONF(pipe);
1559         val = I915_READ(reg);
1560         val &= ~TRANS_ENABLE;
1561         I915_WRITE(reg, val);
1562         /* wait for PCH transcoder off, transcoder state */
1563         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1564                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1565
1566         if (!HAS_PCH_IBX(dev)) {
1567                 /* Workaround: Clear the timing override chicken bit again. */
1568                 reg = TRANS_CHICKEN2(pipe);
1569                 val = I915_READ(reg);
1570                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1571                 I915_WRITE(reg, val);
1572         }
1573 }
1574
1575 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1576 {
1577         u32 val;
1578
1579         val = I915_READ(LPT_TRANSCONF);
1580         val &= ~TRANS_ENABLE;
1581         I915_WRITE(LPT_TRANSCONF, val);
1582         /* wait for PCH transcoder off, transcoder state */
1583         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1584                 DRM_ERROR("Failed to disable PCH transcoder\n");
1585
1586         /* Workaround: clear timing override bit. */
1587         val = I915_READ(_TRANSA_CHICKEN2);
1588         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1589         I915_WRITE(_TRANSA_CHICKEN2, val);
1590 }
1591
1592 /**
1593  * intel_enable_pipe - enable a pipe, asserting requirements
1594  * @dev_priv: i915 private structure
1595  * @pipe: pipe to enable
1596  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1597  *
1598  * Enable @pipe, making sure that various hardware specific requirements
1599  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1600  *
1601  * @pipe should be %PIPE_A or %PIPE_B.
1602  *
1603  * Will wait until the pipe is actually running (i.e. first vblank) before
1604  * returning.
1605  */
1606 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1607                               bool pch_port)
1608 {
1609         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1610                                                                       pipe);
1611         enum pipe pch_transcoder;
1612         int reg;
1613         u32 val;
1614
1615         assert_planes_disabled(dev_priv, pipe);
1616         assert_sprites_disabled(dev_priv, pipe);
1617
1618         if (HAS_PCH_LPT(dev_priv->dev))
1619                 pch_transcoder = TRANSCODER_A;
1620         else
1621                 pch_transcoder = pipe;
1622
1623         /*
1624          * A pipe without a PLL won't actually be able to drive bits from
1625          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1626          * need the check.
1627          */
1628         if (!HAS_PCH_SPLIT(dev_priv->dev))
1629                 assert_pll_enabled(dev_priv, pipe);
1630         else {
1631                 if (pch_port) {
1632                         /* if driving the PCH, we need FDI enabled */
1633                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1634                         assert_fdi_tx_pll_enabled(dev_priv,
1635                                                   (enum pipe) cpu_transcoder);
1636                 }
1637                 /* FIXME: assert CPU port conditions for SNB+ */
1638         }
1639
1640         reg = PIPECONF(cpu_transcoder);
1641         val = I915_READ(reg);
1642         if (val & PIPECONF_ENABLE)
1643                 return;
1644
1645         I915_WRITE(reg, val | PIPECONF_ENABLE);
1646         intel_wait_for_vblank(dev_priv->dev, pipe);
1647 }
1648
1649 /**
1650  * intel_disable_pipe - disable a pipe, asserting requirements
1651  * @dev_priv: i915 private structure
1652  * @pipe: pipe to disable
1653  *
1654  * Disable @pipe, making sure that various hardware specific requirements
1655  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1656  *
1657  * @pipe should be %PIPE_A or %PIPE_B.
1658  *
1659  * Will wait until the pipe has shut down before returning.
1660  */
1661 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1662                                enum pipe pipe)
1663 {
1664         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1665                                                                       pipe);
1666         int reg;
1667         u32 val;
1668
1669         /*
1670          * Make sure planes won't keep trying to pump pixels to us,
1671          * or we might hang the display.
1672          */
1673         assert_planes_disabled(dev_priv, pipe);
1674         assert_sprites_disabled(dev_priv, pipe);
1675
1676         /* Don't disable pipe A or pipe A PLLs if needed */
1677         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1678                 return;
1679
1680         reg = PIPECONF(cpu_transcoder);
1681         val = I915_READ(reg);
1682         if ((val & PIPECONF_ENABLE) == 0)
1683                 return;
1684
1685         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1686         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1687 }
1688
1689 /*
1690  * Plane regs are double buffered, going from enabled->disabled needs a
1691  * trigger in order to latch.  The display address reg provides this.
1692  */
1693 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1694                                       enum plane plane)
1695 {
1696         if (dev_priv->info->gen >= 4)
1697                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1698         else
1699                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1700 }
1701
1702 /**
1703  * intel_enable_plane - enable a display plane on a given pipe
1704  * @dev_priv: i915 private structure
1705  * @plane: plane to enable
1706  * @pipe: pipe being fed
1707  *
1708  * Enable @plane on @pipe, making sure that @pipe is running first.
1709  */
1710 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1711                                enum plane plane, enum pipe pipe)
1712 {
1713         int reg;
1714         u32 val;
1715
1716         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1717         assert_pipe_enabled(dev_priv, pipe);
1718
1719         reg = DSPCNTR(plane);
1720         val = I915_READ(reg);
1721         if (val & DISPLAY_PLANE_ENABLE)
1722                 return;
1723
1724         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1725         intel_flush_display_plane(dev_priv, plane);
1726         intel_wait_for_vblank(dev_priv->dev, pipe);
1727 }
1728
1729 /**
1730  * intel_disable_plane - disable a display plane
1731  * @dev_priv: i915 private structure
1732  * @plane: plane to disable
1733  * @pipe: pipe consuming the data
1734  *
1735  * Disable @plane; should be an independent operation.
1736  */
1737 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1738                                 enum plane plane, enum pipe pipe)
1739 {
1740         int reg;
1741         u32 val;
1742
1743         reg = DSPCNTR(plane);
1744         val = I915_READ(reg);
1745         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1746                 return;
1747
1748         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1749         intel_flush_display_plane(dev_priv, plane);
1750         intel_wait_for_vblank(dev_priv->dev, pipe);
1751 }
1752
1753 static bool need_vtd_wa(struct drm_device *dev)
1754 {
1755 #ifdef CONFIG_INTEL_IOMMU
1756         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1757                 return true;
1758 #endif
1759         return false;
1760 }
1761
1762 int
1763 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1764                            struct drm_i915_gem_object *obj,
1765                            struct intel_ring_buffer *pipelined)
1766 {
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         u32 alignment;
1769         int ret;
1770
1771         switch (obj->tiling_mode) {
1772         case I915_TILING_NONE:
1773                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1774                         alignment = 128 * 1024;
1775                 else if (INTEL_INFO(dev)->gen >= 4)
1776                         alignment = 4 * 1024;
1777                 else
1778                         alignment = 64 * 1024;
1779                 break;
1780         case I915_TILING_X:
1781                 /* pin() will align the object as required by fence */
1782                 alignment = 0;
1783                 break;
1784         case I915_TILING_Y:
1785                 /* Despite that we check this in framebuffer_init userspace can
1786                  * screw us over and change the tiling after the fact. Only
1787                  * pinned buffers can't change their tiling. */
1788                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1789                 return -EINVAL;
1790         default:
1791                 BUG();
1792         }
1793
1794         /* Note that the w/a also requires 64 PTE of padding following the
1795          * bo. We currently fill all unused PTE with the shadow page and so
1796          * we should always have valid PTE following the scanout preventing
1797          * the VT-d warning.
1798          */
1799         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1800                 alignment = 256 * 1024;
1801
1802         dev_priv->mm.interruptible = false;
1803         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1804         if (ret)
1805                 goto err_interruptible;
1806
1807         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1808          * fence, whereas 965+ only requires a fence if using
1809          * framebuffer compression.  For simplicity, we always install
1810          * a fence as the cost is not that onerous.
1811          */
1812         ret = i915_gem_object_get_fence(obj);
1813         if (ret)
1814                 goto err_unpin;
1815
1816         i915_gem_object_pin_fence(obj);
1817
1818         dev_priv->mm.interruptible = true;
1819         return 0;
1820
1821 err_unpin:
1822         i915_gem_object_unpin(obj);
1823 err_interruptible:
1824         dev_priv->mm.interruptible = true;
1825         return ret;
1826 }
1827
1828 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1829 {
1830         i915_gem_object_unpin_fence(obj);
1831         i915_gem_object_unpin(obj);
1832 }
1833
1834 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1835  * is assumed to be a power-of-two. */
1836 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1837                                              unsigned int tiling_mode,
1838                                              unsigned int cpp,
1839                                              unsigned int pitch)
1840 {
1841         if (tiling_mode != I915_TILING_NONE) {
1842                 unsigned int tile_rows, tiles;
1843
1844                 tile_rows = *y / 8;
1845                 *y %= 8;
1846
1847                 tiles = *x / (512/cpp);
1848                 *x %= 512/cpp;
1849
1850                 return tile_rows * pitch * 8 + tiles * 4096;
1851         } else {
1852                 unsigned int offset;
1853
1854                 offset = *y * pitch + *x * cpp;
1855                 *y = 0;
1856                 *x = (offset & 4095) / cpp;
1857                 return offset & -4096;
1858         }
1859 }
1860
1861 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1862                              int x, int y)
1863 {
1864         struct drm_device *dev = crtc->dev;
1865         struct drm_i915_private *dev_priv = dev->dev_private;
1866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1867         struct intel_framebuffer *intel_fb;
1868         struct drm_i915_gem_object *obj;
1869         int plane = intel_crtc->plane;
1870         unsigned long linear_offset;
1871         u32 dspcntr;
1872         u32 reg;
1873
1874         switch (plane) {
1875         case 0:
1876         case 1:
1877                 break;
1878         default:
1879                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1880                 return -EINVAL;
1881         }
1882
1883         intel_fb = to_intel_framebuffer(fb);
1884         obj = intel_fb->obj;
1885
1886         reg = DSPCNTR(plane);
1887         dspcntr = I915_READ(reg);
1888         /* Mask out pixel format bits in case we change it */
1889         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1890         switch (fb->pixel_format) {
1891         case DRM_FORMAT_C8:
1892                 dspcntr |= DISPPLANE_8BPP;
1893                 break;
1894         case DRM_FORMAT_XRGB1555:
1895         case DRM_FORMAT_ARGB1555:
1896                 dspcntr |= DISPPLANE_BGRX555;
1897                 break;
1898         case DRM_FORMAT_RGB565:
1899                 dspcntr |= DISPPLANE_BGRX565;
1900                 break;
1901         case DRM_FORMAT_XRGB8888:
1902         case DRM_FORMAT_ARGB8888:
1903                 dspcntr |= DISPPLANE_BGRX888;
1904                 break;
1905         case DRM_FORMAT_XBGR8888:
1906         case DRM_FORMAT_ABGR8888:
1907                 dspcntr |= DISPPLANE_RGBX888;
1908                 break;
1909         case DRM_FORMAT_XRGB2101010:
1910         case DRM_FORMAT_ARGB2101010:
1911                 dspcntr |= DISPPLANE_BGRX101010;
1912                 break;
1913         case DRM_FORMAT_XBGR2101010:
1914         case DRM_FORMAT_ABGR2101010:
1915                 dspcntr |= DISPPLANE_RGBX101010;
1916                 break;
1917         default:
1918                 BUG();
1919         }
1920
1921         if (INTEL_INFO(dev)->gen >= 4) {
1922                 if (obj->tiling_mode != I915_TILING_NONE)
1923                         dspcntr |= DISPPLANE_TILED;
1924                 else
1925                         dspcntr &= ~DISPPLANE_TILED;
1926         }
1927
1928         if (IS_G4X(dev))
1929                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1930
1931         I915_WRITE(reg, dspcntr);
1932
1933         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1934
1935         if (INTEL_INFO(dev)->gen >= 4) {
1936                 intel_crtc->dspaddr_offset =
1937                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1938                                                        fb->bits_per_pixel / 8,
1939                                                        fb->pitches[0]);
1940                 linear_offset -= intel_crtc->dspaddr_offset;
1941         } else {
1942                 intel_crtc->dspaddr_offset = linear_offset;
1943         }
1944
1945         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1946                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1947         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1948         if (INTEL_INFO(dev)->gen >= 4) {
1949                 I915_MODIFY_DISPBASE(DSPSURF(plane),
1950                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
1951                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1952                 I915_WRITE(DSPLINOFF(plane), linear_offset);
1953         } else
1954                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1955         POSTING_READ(reg);
1956
1957         return 0;
1958 }
1959
1960 static int ironlake_update_plane(struct drm_crtc *crtc,
1961                                  struct drm_framebuffer *fb, int x, int y)
1962 {
1963         struct drm_device *dev = crtc->dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966         struct intel_framebuffer *intel_fb;
1967         struct drm_i915_gem_object *obj;
1968         int plane = intel_crtc->plane;
1969         unsigned long linear_offset;
1970         u32 dspcntr;
1971         u32 reg;
1972
1973         switch (plane) {
1974         case 0:
1975         case 1:
1976         case 2:
1977                 break;
1978         default:
1979                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1980                 return -EINVAL;
1981         }
1982
1983         intel_fb = to_intel_framebuffer(fb);
1984         obj = intel_fb->obj;
1985
1986         reg = DSPCNTR(plane);
1987         dspcntr = I915_READ(reg);
1988         /* Mask out pixel format bits in case we change it */
1989         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1990         switch (fb->pixel_format) {
1991         case DRM_FORMAT_C8:
1992                 dspcntr |= DISPPLANE_8BPP;
1993                 break;
1994         case DRM_FORMAT_RGB565:
1995                 dspcntr |= DISPPLANE_BGRX565;
1996                 break;
1997         case DRM_FORMAT_XRGB8888:
1998         case DRM_FORMAT_ARGB8888:
1999                 dspcntr |= DISPPLANE_BGRX888;
2000                 break;
2001         case DRM_FORMAT_XBGR8888:
2002         case DRM_FORMAT_ABGR8888:
2003                 dspcntr |= DISPPLANE_RGBX888;
2004                 break;
2005         case DRM_FORMAT_XRGB2101010:
2006         case DRM_FORMAT_ARGB2101010:
2007                 dspcntr |= DISPPLANE_BGRX101010;
2008                 break;
2009         case DRM_FORMAT_XBGR2101010:
2010         case DRM_FORMAT_ABGR2101010:
2011                 dspcntr |= DISPPLANE_RGBX101010;
2012                 break;
2013         default:
2014                 BUG();
2015         }
2016
2017         if (obj->tiling_mode != I915_TILING_NONE)
2018                 dspcntr |= DISPPLANE_TILED;
2019         else
2020                 dspcntr &= ~DISPPLANE_TILED;
2021
2022         /* must disable */
2023         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2024
2025         I915_WRITE(reg, dspcntr);
2026
2027         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2028         intel_crtc->dspaddr_offset =
2029                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2030                                                fb->bits_per_pixel / 8,
2031                                                fb->pitches[0]);
2032         linear_offset -= intel_crtc->dspaddr_offset;
2033
2034         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2035                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2036         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2037         I915_MODIFY_DISPBASE(DSPSURF(plane),
2038                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2039         if (IS_HASWELL(dev)) {
2040                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2041         } else {
2042                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2043                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2044         }
2045         POSTING_READ(reg);
2046
2047         return 0;
2048 }
2049
2050 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2051 static int
2052 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2053                            int x, int y, enum mode_set_atomic state)
2054 {
2055         struct drm_device *dev = crtc->dev;
2056         struct drm_i915_private *dev_priv = dev->dev_private;
2057
2058         if (dev_priv->display.disable_fbc)
2059                 dev_priv->display.disable_fbc(dev);
2060         intel_increase_pllclock(crtc);
2061
2062         return dev_priv->display.update_plane(crtc, fb, x, y);
2063 }
2064
2065 void intel_display_handle_reset(struct drm_device *dev)
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         struct drm_crtc *crtc;
2069
2070         /*
2071          * Flips in the rings have been nuked by the reset,
2072          * so complete all pending flips so that user space
2073          * will get its events and not get stuck.
2074          *
2075          * Also update the base address of all primary
2076          * planes to the the last fb to make sure we're
2077          * showing the correct fb after a reset.
2078          *
2079          * Need to make two loops over the crtcs so that we
2080          * don't try to grab a crtc mutex before the
2081          * pending_flip_queue really got woken up.
2082          */
2083
2084         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2085                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2086                 enum plane plane = intel_crtc->plane;
2087
2088                 intel_prepare_page_flip(dev, plane);
2089                 intel_finish_page_flip_plane(dev, plane);
2090         }
2091
2092         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2093                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2094
2095                 mutex_lock(&crtc->mutex);
2096                 if (intel_crtc->active)
2097                         dev_priv->display.update_plane(crtc, crtc->fb,
2098                                                        crtc->x, crtc->y);
2099                 mutex_unlock(&crtc->mutex);
2100         }
2101 }
2102
2103 static int
2104 intel_finish_fb(struct drm_framebuffer *old_fb)
2105 {
2106         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2107         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2108         bool was_interruptible = dev_priv->mm.interruptible;
2109         int ret;
2110
2111         /* Big Hammer, we also need to ensure that any pending
2112          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2113          * current scanout is retired before unpinning the old
2114          * framebuffer.
2115          *
2116          * This should only fail upon a hung GPU, in which case we
2117          * can safely continue.
2118          */
2119         dev_priv->mm.interruptible = false;
2120         ret = i915_gem_object_finish_gpu(obj);
2121         dev_priv->mm.interruptible = was_interruptible;
2122
2123         return ret;
2124 }
2125
2126 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2127 {
2128         struct drm_device *dev = crtc->dev;
2129         struct drm_i915_master_private *master_priv;
2130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2131
2132         if (!dev->primary->master)
2133                 return;
2134
2135         master_priv = dev->primary->master->driver_priv;
2136         if (!master_priv->sarea_priv)
2137                 return;
2138
2139         switch (intel_crtc->pipe) {
2140         case 0:
2141                 master_priv->sarea_priv->pipeA_x = x;
2142                 master_priv->sarea_priv->pipeA_y = y;
2143                 break;
2144         case 1:
2145                 master_priv->sarea_priv->pipeB_x = x;
2146                 master_priv->sarea_priv->pipeB_y = y;
2147                 break;
2148         default:
2149                 break;
2150         }
2151 }
2152
2153 static int
2154 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2155                     struct drm_framebuffer *fb)
2156 {
2157         struct drm_device *dev = crtc->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160         struct drm_framebuffer *old_fb;
2161         int ret;
2162
2163         /* no fb bound */
2164         if (!fb) {
2165                 DRM_ERROR("No FB bound\n");
2166                 return 0;
2167         }
2168
2169         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2170                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2171                           plane_name(intel_crtc->plane),
2172                           INTEL_INFO(dev)->num_pipes);
2173                 return -EINVAL;
2174         }
2175
2176         mutex_lock(&dev->struct_mutex);
2177         ret = intel_pin_and_fence_fb_obj(dev,
2178                                          to_intel_framebuffer(fb)->obj,
2179                                          NULL);
2180         if (ret != 0) {
2181                 mutex_unlock(&dev->struct_mutex);
2182                 DRM_ERROR("pin & fence failed\n");
2183                 return ret;
2184         }
2185
2186         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2187         if (ret) {
2188                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2189                 mutex_unlock(&dev->struct_mutex);
2190                 DRM_ERROR("failed to update base address\n");
2191                 return ret;
2192         }
2193
2194         old_fb = crtc->fb;
2195         crtc->fb = fb;
2196         crtc->x = x;
2197         crtc->y = y;
2198
2199         if (old_fb) {
2200                 if (intel_crtc->active && old_fb != fb)
2201                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2202                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2203         }
2204
2205         intel_update_fbc(dev);
2206         mutex_unlock(&dev->struct_mutex);
2207
2208         intel_crtc_update_sarea_pos(crtc, x, y);
2209
2210         return 0;
2211 }
2212
2213 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2214 {
2215         struct drm_device *dev = crtc->dev;
2216         struct drm_i915_private *dev_priv = dev->dev_private;
2217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2218         int pipe = intel_crtc->pipe;
2219         u32 reg, temp;
2220
2221         /* enable normal train */
2222         reg = FDI_TX_CTL(pipe);
2223         temp = I915_READ(reg);
2224         if (IS_IVYBRIDGE(dev)) {
2225                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2226                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2227         } else {
2228                 temp &= ~FDI_LINK_TRAIN_NONE;
2229                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2230         }
2231         I915_WRITE(reg, temp);
2232
2233         reg = FDI_RX_CTL(pipe);
2234         temp = I915_READ(reg);
2235         if (HAS_PCH_CPT(dev)) {
2236                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2237                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2238         } else {
2239                 temp &= ~FDI_LINK_TRAIN_NONE;
2240                 temp |= FDI_LINK_TRAIN_NONE;
2241         }
2242         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2243
2244         /* wait one idle pattern time */
2245         POSTING_READ(reg);
2246         udelay(1000);
2247
2248         /* IVB wants error correction enabled */
2249         if (IS_IVYBRIDGE(dev))
2250                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2251                            FDI_FE_ERRC_ENABLE);
2252 }
2253
2254 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2255 {
2256         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2257 }
2258
2259 static void ivb_modeset_global_resources(struct drm_device *dev)
2260 {
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *pipe_B_crtc =
2263                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2264         struct intel_crtc *pipe_C_crtc =
2265                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2266         uint32_t temp;
2267
2268         /*
2269          * When everything is off disable fdi C so that we could enable fdi B
2270          * with all lanes. Note that we don't care about enabled pipes without
2271          * an enabled pch encoder.
2272          */
2273         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2274             !pipe_has_enabled_pch(pipe_C_crtc)) {
2275                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2276                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2277
2278                 temp = I915_READ(SOUTH_CHICKEN1);
2279                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2280                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2281                 I915_WRITE(SOUTH_CHICKEN1, temp);
2282         }
2283 }
2284
2285 /* The FDI link training functions for ILK/Ibexpeak. */
2286 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2287 {
2288         struct drm_device *dev = crtc->dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2291         int pipe = intel_crtc->pipe;
2292         int plane = intel_crtc->plane;
2293         u32 reg, temp, tries;
2294
2295         /* FDI needs bits from pipe & plane first */
2296         assert_pipe_enabled(dev_priv, pipe);
2297         assert_plane_enabled(dev_priv, plane);
2298
2299         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2300            for train result */
2301         reg = FDI_RX_IMR(pipe);
2302         temp = I915_READ(reg);
2303         temp &= ~FDI_RX_SYMBOL_LOCK;
2304         temp &= ~FDI_RX_BIT_LOCK;
2305         I915_WRITE(reg, temp);
2306         I915_READ(reg);
2307         udelay(150);
2308
2309         /* enable CPU FDI TX and PCH FDI RX */
2310         reg = FDI_TX_CTL(pipe);
2311         temp = I915_READ(reg);
2312         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2313         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2314         temp &= ~FDI_LINK_TRAIN_NONE;
2315         temp |= FDI_LINK_TRAIN_PATTERN_1;
2316         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2317
2318         reg = FDI_RX_CTL(pipe);
2319         temp = I915_READ(reg);
2320         temp &= ~FDI_LINK_TRAIN_NONE;
2321         temp |= FDI_LINK_TRAIN_PATTERN_1;
2322         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2323
2324         POSTING_READ(reg);
2325         udelay(150);
2326
2327         /* Ironlake workaround, enable clock pointer after FDI enable*/
2328         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2329         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2330                    FDI_RX_PHASE_SYNC_POINTER_EN);
2331
2332         reg = FDI_RX_IIR(pipe);
2333         for (tries = 0; tries < 5; tries++) {
2334                 temp = I915_READ(reg);
2335                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2336
2337                 if ((temp & FDI_RX_BIT_LOCK)) {
2338                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2339                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2340                         break;
2341                 }
2342         }
2343         if (tries == 5)
2344                 DRM_ERROR("FDI train 1 fail!\n");
2345
2346         /* Train 2 */
2347         reg = FDI_TX_CTL(pipe);
2348         temp = I915_READ(reg);
2349         temp &= ~FDI_LINK_TRAIN_NONE;
2350         temp |= FDI_LINK_TRAIN_PATTERN_2;
2351         I915_WRITE(reg, temp);
2352
2353         reg = FDI_RX_CTL(pipe);
2354         temp = I915_READ(reg);
2355         temp &= ~FDI_LINK_TRAIN_NONE;
2356         temp |= FDI_LINK_TRAIN_PATTERN_2;
2357         I915_WRITE(reg, temp);
2358
2359         POSTING_READ(reg);
2360         udelay(150);
2361
2362         reg = FDI_RX_IIR(pipe);
2363         for (tries = 0; tries < 5; tries++) {
2364                 temp = I915_READ(reg);
2365                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2366
2367                 if (temp & FDI_RX_SYMBOL_LOCK) {
2368                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2369                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2370                         break;
2371                 }
2372         }
2373         if (tries == 5)
2374                 DRM_ERROR("FDI train 2 fail!\n");
2375
2376         DRM_DEBUG_KMS("FDI train done\n");
2377
2378 }
2379
2380 static const int snb_b_fdi_train_param[] = {
2381         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2382         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2383         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2384         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2385 };
2386
2387 /* The FDI link training functions for SNB/Cougarpoint. */
2388 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2389 {
2390         struct drm_device *dev = crtc->dev;
2391         struct drm_i915_private *dev_priv = dev->dev_private;
2392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2393         int pipe = intel_crtc->pipe;
2394         u32 reg, temp, i, retry;
2395
2396         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2397            for train result */
2398         reg = FDI_RX_IMR(pipe);
2399         temp = I915_READ(reg);
2400         temp &= ~FDI_RX_SYMBOL_LOCK;
2401         temp &= ~FDI_RX_BIT_LOCK;
2402         I915_WRITE(reg, temp);
2403
2404         POSTING_READ(reg);
2405         udelay(150);
2406
2407         /* enable CPU FDI TX and PCH FDI RX */
2408         reg = FDI_TX_CTL(pipe);
2409         temp = I915_READ(reg);
2410         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2411         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2412         temp &= ~FDI_LINK_TRAIN_NONE;
2413         temp |= FDI_LINK_TRAIN_PATTERN_1;
2414         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2415         /* SNB-B */
2416         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2417         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2418
2419         I915_WRITE(FDI_RX_MISC(pipe),
2420                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2421
2422         reg = FDI_RX_CTL(pipe);
2423         temp = I915_READ(reg);
2424         if (HAS_PCH_CPT(dev)) {
2425                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2426                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2427         } else {
2428                 temp &= ~FDI_LINK_TRAIN_NONE;
2429                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2430         }
2431         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2432
2433         POSTING_READ(reg);
2434         udelay(150);
2435
2436         for (i = 0; i < 4; i++) {
2437                 reg = FDI_TX_CTL(pipe);
2438                 temp = I915_READ(reg);
2439                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2440                 temp |= snb_b_fdi_train_param[i];
2441                 I915_WRITE(reg, temp);
2442
2443                 POSTING_READ(reg);
2444                 udelay(500);
2445
2446                 for (retry = 0; retry < 5; retry++) {
2447                         reg = FDI_RX_IIR(pipe);
2448                         temp = I915_READ(reg);
2449                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2450                         if (temp & FDI_RX_BIT_LOCK) {
2451                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2452                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2453                                 break;
2454                         }
2455                         udelay(50);
2456                 }
2457                 if (retry < 5)
2458                         break;
2459         }
2460         if (i == 4)
2461                 DRM_ERROR("FDI train 1 fail!\n");
2462
2463         /* Train 2 */
2464         reg = FDI_TX_CTL(pipe);
2465         temp = I915_READ(reg);
2466         temp &= ~FDI_LINK_TRAIN_NONE;
2467         temp |= FDI_LINK_TRAIN_PATTERN_2;
2468         if (IS_GEN6(dev)) {
2469                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2470                 /* SNB-B */
2471                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2472         }
2473         I915_WRITE(reg, temp);
2474
2475         reg = FDI_RX_CTL(pipe);
2476         temp = I915_READ(reg);
2477         if (HAS_PCH_CPT(dev)) {
2478                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2479                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2480         } else {
2481                 temp &= ~FDI_LINK_TRAIN_NONE;
2482                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2483         }
2484         I915_WRITE(reg, temp);
2485
2486         POSTING_READ(reg);
2487         udelay(150);
2488
2489         for (i = 0; i < 4; i++) {
2490                 reg = FDI_TX_CTL(pipe);
2491                 temp = I915_READ(reg);
2492                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2493                 temp |= snb_b_fdi_train_param[i];
2494                 I915_WRITE(reg, temp);
2495
2496                 POSTING_READ(reg);
2497                 udelay(500);
2498
2499                 for (retry = 0; retry < 5; retry++) {
2500                         reg = FDI_RX_IIR(pipe);
2501                         temp = I915_READ(reg);
2502                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2503                         if (temp & FDI_RX_SYMBOL_LOCK) {
2504                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2505                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2506                                 break;
2507                         }
2508                         udelay(50);
2509                 }
2510                 if (retry < 5)
2511                         break;
2512         }
2513         if (i == 4)
2514                 DRM_ERROR("FDI train 2 fail!\n");
2515
2516         DRM_DEBUG_KMS("FDI train done.\n");
2517 }
2518
2519 /* Manual link training for Ivy Bridge A0 parts */
2520 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2521 {
2522         struct drm_device *dev = crtc->dev;
2523         struct drm_i915_private *dev_priv = dev->dev_private;
2524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2525         int pipe = intel_crtc->pipe;
2526         u32 reg, temp, i;
2527
2528         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2529            for train result */
2530         reg = FDI_RX_IMR(pipe);
2531         temp = I915_READ(reg);
2532         temp &= ~FDI_RX_SYMBOL_LOCK;
2533         temp &= ~FDI_RX_BIT_LOCK;
2534         I915_WRITE(reg, temp);
2535
2536         POSTING_READ(reg);
2537         udelay(150);
2538
2539         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2540                       I915_READ(FDI_RX_IIR(pipe)));
2541
2542         /* enable CPU FDI TX and PCH FDI RX */
2543         reg = FDI_TX_CTL(pipe);
2544         temp = I915_READ(reg);
2545         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2546         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2547         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2548         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2549         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2550         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2551         temp |= FDI_COMPOSITE_SYNC;
2552         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2553
2554         I915_WRITE(FDI_RX_MISC(pipe),
2555                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2556
2557         reg = FDI_RX_CTL(pipe);
2558         temp = I915_READ(reg);
2559         temp &= ~FDI_LINK_TRAIN_AUTO;
2560         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2561         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2562         temp |= FDI_COMPOSITE_SYNC;
2563         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2564
2565         POSTING_READ(reg);
2566         udelay(150);
2567
2568         for (i = 0; i < 4; i++) {
2569                 reg = FDI_TX_CTL(pipe);
2570                 temp = I915_READ(reg);
2571                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2572                 temp |= snb_b_fdi_train_param[i];
2573                 I915_WRITE(reg, temp);
2574
2575                 POSTING_READ(reg);
2576                 udelay(500);
2577
2578                 reg = FDI_RX_IIR(pipe);
2579                 temp = I915_READ(reg);
2580                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2581
2582                 if (temp & FDI_RX_BIT_LOCK ||
2583                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2584                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2585                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2586                         break;
2587                 }
2588         }
2589         if (i == 4)
2590                 DRM_ERROR("FDI train 1 fail!\n");
2591
2592         /* Train 2 */
2593         reg = FDI_TX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2596         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2597         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2598         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2604         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2605         I915_WRITE(reg, temp);
2606
2607         POSTING_READ(reg);
2608         udelay(150);
2609
2610         for (i = 0; i < 4; i++) {
2611                 reg = FDI_TX_CTL(pipe);
2612                 temp = I915_READ(reg);
2613                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2614                 temp |= snb_b_fdi_train_param[i];
2615                 I915_WRITE(reg, temp);
2616
2617                 POSTING_READ(reg);
2618                 udelay(500);
2619
2620                 reg = FDI_RX_IIR(pipe);
2621                 temp = I915_READ(reg);
2622                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2623
2624                 if (temp & FDI_RX_SYMBOL_LOCK) {
2625                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2626                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2627                         break;
2628                 }
2629         }
2630         if (i == 4)
2631                 DRM_ERROR("FDI train 2 fail!\n");
2632
2633         DRM_DEBUG_KMS("FDI train done.\n");
2634 }
2635
2636 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2637 {
2638         struct drm_device *dev = intel_crtc->base.dev;
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         int pipe = intel_crtc->pipe;
2641         u32 reg, temp;
2642
2643
2644         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2645         reg = FDI_RX_CTL(pipe);
2646         temp = I915_READ(reg);
2647         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2648         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2649         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2650         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2651
2652         POSTING_READ(reg);
2653         udelay(200);
2654
2655         /* Switch from Rawclk to PCDclk */
2656         temp = I915_READ(reg);
2657         I915_WRITE(reg, temp | FDI_PCDCLK);
2658
2659         POSTING_READ(reg);
2660         udelay(200);
2661
2662         /* Enable CPU FDI TX PLL, always on for Ironlake */
2663         reg = FDI_TX_CTL(pipe);
2664         temp = I915_READ(reg);
2665         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2666                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2667
2668                 POSTING_READ(reg);
2669                 udelay(100);
2670         }
2671 }
2672
2673 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2674 {
2675         struct drm_device *dev = intel_crtc->base.dev;
2676         struct drm_i915_private *dev_priv = dev->dev_private;
2677         int pipe = intel_crtc->pipe;
2678         u32 reg, temp;
2679
2680         /* Switch from PCDclk to Rawclk */
2681         reg = FDI_RX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2684
2685         /* Disable CPU FDI TX PLL */
2686         reg = FDI_TX_CTL(pipe);
2687         temp = I915_READ(reg);
2688         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2689
2690         POSTING_READ(reg);
2691         udelay(100);
2692
2693         reg = FDI_RX_CTL(pipe);
2694         temp = I915_READ(reg);
2695         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2696
2697         /* Wait for the clocks to turn off. */
2698         POSTING_READ(reg);
2699         udelay(100);
2700 }
2701
2702 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2703 {
2704         struct drm_device *dev = crtc->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707         int pipe = intel_crtc->pipe;
2708         u32 reg, temp;
2709
2710         /* disable CPU FDI tx and PCH FDI rx */
2711         reg = FDI_TX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2714         POSTING_READ(reg);
2715
2716         reg = FDI_RX_CTL(pipe);
2717         temp = I915_READ(reg);
2718         temp &= ~(0x7 << 16);
2719         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2720         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2721
2722         POSTING_READ(reg);
2723         udelay(100);
2724
2725         /* Ironlake workaround, disable clock pointer after downing FDI */
2726         if (HAS_PCH_IBX(dev)) {
2727                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2728         }
2729
2730         /* still set train pattern 1 */
2731         reg = FDI_TX_CTL(pipe);
2732         temp = I915_READ(reg);
2733         temp &= ~FDI_LINK_TRAIN_NONE;
2734         temp |= FDI_LINK_TRAIN_PATTERN_1;
2735         I915_WRITE(reg, temp);
2736
2737         reg = FDI_RX_CTL(pipe);
2738         temp = I915_READ(reg);
2739         if (HAS_PCH_CPT(dev)) {
2740                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2741                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2742         } else {
2743                 temp &= ~FDI_LINK_TRAIN_NONE;
2744                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2745         }
2746         /* BPC in FDI rx is consistent with that in PIPECONF */
2747         temp &= ~(0x07 << 16);
2748         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2749         I915_WRITE(reg, temp);
2750
2751         POSTING_READ(reg);
2752         udelay(100);
2753 }
2754
2755 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2760         unsigned long flags;
2761         bool pending;
2762
2763         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2764             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2765                 return false;
2766
2767         spin_lock_irqsave(&dev->event_lock, flags);
2768         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2769         spin_unlock_irqrestore(&dev->event_lock, flags);
2770
2771         return pending;
2772 }
2773
2774 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2775 {
2776         struct drm_device *dev = crtc->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778
2779         if (crtc->fb == NULL)
2780                 return;
2781
2782         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2783
2784         wait_event(dev_priv->pending_flip_queue,
2785                    !intel_crtc_has_pending_flip(crtc));
2786
2787         mutex_lock(&dev->struct_mutex);
2788         intel_finish_fb(crtc->fb);
2789         mutex_unlock(&dev->struct_mutex);
2790 }
2791
2792 /* Program iCLKIP clock to the desired frequency */
2793 static void lpt_program_iclkip(struct drm_crtc *crtc)
2794 {
2795         struct drm_device *dev = crtc->dev;
2796         struct drm_i915_private *dev_priv = dev->dev_private;
2797         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2798         u32 temp;
2799
2800         mutex_lock(&dev_priv->dpio_lock);
2801
2802         /* It is necessary to ungate the pixclk gate prior to programming
2803          * the divisors, and gate it back when it is done.
2804          */
2805         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2806
2807         /* Disable SSCCTL */
2808         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2809                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2810                                 SBI_SSCCTL_DISABLE,
2811                         SBI_ICLK);
2812
2813         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2814         if (crtc->mode.clock == 20000) {
2815                 auxdiv = 1;
2816                 divsel = 0x41;
2817                 phaseinc = 0x20;
2818         } else {
2819                 /* The iCLK virtual clock root frequency is in MHz,
2820                  * but the crtc->mode.clock in in KHz. To get the divisors,
2821                  * it is necessary to divide one by another, so we
2822                  * convert the virtual clock precision to KHz here for higher
2823                  * precision.
2824                  */
2825                 u32 iclk_virtual_root_freq = 172800 * 1000;
2826                 u32 iclk_pi_range = 64;
2827                 u32 desired_divisor, msb_divisor_value, pi_value;
2828
2829                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2830                 msb_divisor_value = desired_divisor / iclk_pi_range;
2831                 pi_value = desired_divisor % iclk_pi_range;
2832
2833                 auxdiv = 0;
2834                 divsel = msb_divisor_value - 2;
2835                 phaseinc = pi_value;
2836         }
2837
2838         /* This should not happen with any sane values */
2839         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2840                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2841         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2842                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2843
2844         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2845                         crtc->mode.clock,
2846                         auxdiv,
2847                         divsel,
2848                         phasedir,
2849                         phaseinc);
2850
2851         /* Program SSCDIVINTPHASE6 */
2852         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2853         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2854         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2855         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2856         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2857         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2858         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2859         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2860
2861         /* Program SSCAUXDIV */
2862         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2863         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2864         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2865         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2866
2867         /* Enable modulator and associated divider */
2868         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2869         temp &= ~SBI_SSCCTL_DISABLE;
2870         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2871
2872         /* Wait for initialization time */
2873         udelay(24);
2874
2875         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2876
2877         mutex_unlock(&dev_priv->dpio_lock);
2878 }
2879
2880 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2881                                                 enum pipe pch_transcoder)
2882 {
2883         struct drm_device *dev = crtc->base.dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2886
2887         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2888                    I915_READ(HTOTAL(cpu_transcoder)));
2889         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2890                    I915_READ(HBLANK(cpu_transcoder)));
2891         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2892                    I915_READ(HSYNC(cpu_transcoder)));
2893
2894         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2895                    I915_READ(VTOTAL(cpu_transcoder)));
2896         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2897                    I915_READ(VBLANK(cpu_transcoder)));
2898         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2899                    I915_READ(VSYNC(cpu_transcoder)));
2900         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2901                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2902 }
2903
2904 /*
2905  * Enable PCH resources required for PCH ports:
2906  *   - PCH PLLs
2907  *   - FDI training & RX/TX
2908  *   - update transcoder timings
2909  *   - DP transcoding bits
2910  *   - transcoder
2911  */
2912 static void ironlake_pch_enable(struct drm_crtc *crtc)
2913 {
2914         struct drm_device *dev = crtc->dev;
2915         struct drm_i915_private *dev_priv = dev->dev_private;
2916         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2917         int pipe = intel_crtc->pipe;
2918         u32 reg, temp;
2919
2920         assert_pch_transcoder_disabled(dev_priv, pipe);
2921
2922         /* Write the TU size bits before fdi link training, so that error
2923          * detection works. */
2924         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2925                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2926
2927         /* For PCH output, training FDI link */
2928         dev_priv->display.fdi_link_train(crtc);
2929
2930         /* XXX: pch pll's can be enabled any time before we enable the PCH
2931          * transcoder, and we actually should do this to not upset any PCH
2932          * transcoder that already use the clock when we share it.
2933          *
2934          * Note that enable_shared_dpll tries to do the right thing, but
2935          * get_shared_dpll unconditionally resets the pll - we need that to have
2936          * the right LVDS enable sequence. */
2937         ironlake_enable_shared_dpll(intel_crtc);
2938
2939         if (HAS_PCH_CPT(dev)) {
2940                 u32 sel;
2941
2942                 temp = I915_READ(PCH_DPLL_SEL);
2943                 temp |= TRANS_DPLL_ENABLE(pipe);
2944                 sel = TRANS_DPLLB_SEL(pipe);
2945                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
2946                         temp |= sel;
2947                 else
2948                         temp &= ~sel;
2949                 I915_WRITE(PCH_DPLL_SEL, temp);
2950         }
2951
2952         /* set transcoder timing, panel must allow it */
2953         assert_panel_unlocked(dev_priv, pipe);
2954         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2955
2956         intel_fdi_normal_train(crtc);
2957
2958         /* For PCH DP, enable TRANS_DP_CTL */
2959         if (HAS_PCH_CPT(dev) &&
2960             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2961              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2962                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2963                 reg = TRANS_DP_CTL(pipe);
2964                 temp = I915_READ(reg);
2965                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2966                           TRANS_DP_SYNC_MASK |
2967                           TRANS_DP_BPC_MASK);
2968                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2969                          TRANS_DP_ENH_FRAMING);
2970                 temp |= bpc << 9; /* same format but at 11:9 */
2971
2972                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2973                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2974                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2975                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2976
2977                 switch (intel_trans_dp_port_sel(crtc)) {
2978                 case PCH_DP_B:
2979                         temp |= TRANS_DP_PORT_SEL_B;
2980                         break;
2981                 case PCH_DP_C:
2982                         temp |= TRANS_DP_PORT_SEL_C;
2983                         break;
2984                 case PCH_DP_D:
2985                         temp |= TRANS_DP_PORT_SEL_D;
2986                         break;
2987                 default:
2988                         BUG();
2989                 }
2990
2991                 I915_WRITE(reg, temp);
2992         }
2993
2994         ironlake_enable_pch_transcoder(dev_priv, pipe);
2995 }
2996
2997 static void lpt_pch_enable(struct drm_crtc *crtc)
2998 {
2999         struct drm_device *dev = crtc->dev;
3000         struct drm_i915_private *dev_priv = dev->dev_private;
3001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3002         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3003
3004         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3005
3006         lpt_program_iclkip(crtc);
3007
3008         /* Set transcoder timing. */
3009         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3010
3011         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3012 }
3013
3014 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3015 {
3016         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3017
3018         if (pll == NULL)
3019                 return;
3020
3021         if (pll->refcount == 0) {
3022                 WARN(1, "bad %s refcount\n", pll->name);
3023                 return;
3024         }
3025
3026         if (--pll->refcount == 0) {
3027                 WARN_ON(pll->on);
3028                 WARN_ON(pll->active);
3029         }
3030
3031         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3032 }
3033
3034 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc, u32 dpll, u32 fp)
3035 {
3036         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3037         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3038         enum intel_dpll_id i;
3039
3040         if (pll) {
3041                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3042                               crtc->base.base.id, pll->name);
3043                 intel_put_shared_dpll(crtc);
3044         }
3045
3046         if (HAS_PCH_IBX(dev_priv->dev)) {
3047                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3048                 i = crtc->pipe;
3049                 pll = &dev_priv->shared_dplls[i];
3050
3051                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3052                               crtc->base.base.id, pll->name);
3053
3054                 goto found;
3055         }
3056
3057         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3058                 pll = &dev_priv->shared_dplls[i];
3059
3060                 /* Only want to check enabled timings first */
3061                 if (pll->refcount == 0)
3062                         continue;
3063
3064                 if (dpll == (I915_READ(PCH_DPLL(pll->id)) & 0x7fffffff) &&
3065                     fp == I915_READ(PCH_FP0(pll->id))) {
3066                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3067                                       crtc->base.base.id,
3068                                       pll->name, pll->refcount, pll->active);
3069
3070                         goto found;
3071                 }
3072         }
3073
3074         /* Ok no matching timings, maybe there's a free one? */
3075         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3076                 pll = &dev_priv->shared_dplls[i];
3077                 if (pll->refcount == 0) {
3078                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3079                                       crtc->base.base.id, pll->name);
3080                         goto found;
3081                 }
3082         }
3083
3084         return NULL;
3085
3086 found:
3087         crtc->config.shared_dpll = i;
3088         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3089                          pipe_name(crtc->pipe));
3090
3091         if (pll->active == 0) {
3092                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3093                        sizeof(pll->hw_state));
3094
3095                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3096                 WARN_ON(pll->on);
3097                 assert_shared_dpll_disabled(dev_priv, pll);
3098
3099                 /* Wait for the clocks to stabilize before rewriting the regs */
3100                 I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
3101                 POSTING_READ(PCH_DPLL(pll->id));
3102                 udelay(150);
3103
3104                 I915_WRITE(PCH_FP0(pll->id), fp);
3105                 I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
3106         }
3107         pll->refcount++;
3108
3109         return pll;
3110 }
3111
3112 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3113 {
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         int dslreg = PIPEDSL(pipe);
3116         u32 temp;
3117
3118         temp = I915_READ(dslreg);
3119         udelay(500);
3120         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3121                 if (wait_for(I915_READ(dslreg) != temp, 5))
3122                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3123         }
3124 }
3125
3126 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3127 {
3128         struct drm_device *dev = crtc->base.dev;
3129         struct drm_i915_private *dev_priv = dev->dev_private;
3130         int pipe = crtc->pipe;
3131
3132         if (crtc->config.pch_pfit.size) {
3133                 /* Force use of hard-coded filter coefficients
3134                  * as some pre-programmed values are broken,
3135                  * e.g. x201.
3136                  */
3137                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3138                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3139                                                  PF_PIPE_SEL_IVB(pipe));
3140                 else
3141                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3142                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3143                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3144         }
3145 }
3146
3147 static void intel_enable_planes(struct drm_crtc *crtc)
3148 {
3149         struct drm_device *dev = crtc->dev;
3150         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3151         struct intel_plane *intel_plane;
3152
3153         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3154                 if (intel_plane->pipe == pipe)
3155                         intel_plane_restore(&intel_plane->base);
3156 }
3157
3158 static void intel_disable_planes(struct drm_crtc *crtc)
3159 {
3160         struct drm_device *dev = crtc->dev;
3161         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3162         struct intel_plane *intel_plane;
3163
3164         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3165                 if (intel_plane->pipe == pipe)
3166                         intel_plane_disable(&intel_plane->base);
3167 }
3168
3169 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3170 {
3171         struct drm_device *dev = crtc->dev;
3172         struct drm_i915_private *dev_priv = dev->dev_private;
3173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3174         struct intel_encoder *encoder;
3175         int pipe = intel_crtc->pipe;
3176         int plane = intel_crtc->plane;
3177         u32 temp;
3178
3179         WARN_ON(!crtc->enabled);
3180
3181         if (intel_crtc->active)
3182                 return;
3183
3184         intel_crtc->active = true;
3185
3186         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3187         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3188
3189         intel_update_watermarks(dev);
3190
3191         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3192                 temp = I915_READ(PCH_LVDS);
3193                 if ((temp & LVDS_PORT_EN) == 0)
3194                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3195         }
3196
3197
3198         if (intel_crtc->config.has_pch_encoder) {
3199                 /* Note: FDI PLL enabling _must_ be done before we enable the
3200                  * cpu pipes, hence this is separate from all the other fdi/pch
3201                  * enabling. */
3202                 ironlake_fdi_pll_enable(intel_crtc);
3203         } else {
3204                 assert_fdi_tx_disabled(dev_priv, pipe);
3205                 assert_fdi_rx_disabled(dev_priv, pipe);
3206         }
3207
3208         for_each_encoder_on_crtc(dev, crtc, encoder)
3209                 if (encoder->pre_enable)
3210                         encoder->pre_enable(encoder);
3211
3212         ironlake_pfit_enable(intel_crtc);
3213
3214         /*
3215          * On ILK+ LUT must be loaded before the pipe is running but with
3216          * clocks enabled
3217          */
3218         intel_crtc_load_lut(crtc);
3219
3220         intel_enable_pipe(dev_priv, pipe,
3221                           intel_crtc->config.has_pch_encoder);
3222         intel_enable_plane(dev_priv, plane, pipe);
3223         intel_enable_planes(crtc);
3224         intel_crtc_update_cursor(crtc, true);
3225
3226         if (intel_crtc->config.has_pch_encoder)
3227                 ironlake_pch_enable(crtc);
3228
3229         mutex_lock(&dev->struct_mutex);
3230         intel_update_fbc(dev);
3231         mutex_unlock(&dev->struct_mutex);
3232
3233         for_each_encoder_on_crtc(dev, crtc, encoder)
3234                 encoder->enable(encoder);
3235
3236         if (HAS_PCH_CPT(dev))
3237                 cpt_verify_modeset(dev, intel_crtc->pipe);
3238
3239         /*
3240          * There seems to be a race in PCH platform hw (at least on some
3241          * outputs) where an enabled pipe still completes any pageflip right
3242          * away (as if the pipe is off) instead of waiting for vblank. As soon
3243          * as the first vblank happend, everything works as expected. Hence just
3244          * wait for one vblank before returning to avoid strange things
3245          * happening.
3246          */
3247         intel_wait_for_vblank(dev, intel_crtc->pipe);
3248 }
3249
3250 /* IPS only exists on ULT machines and is tied to pipe A. */
3251 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3252 {
3253         return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
3254 }
3255
3256 static void hsw_enable_ips(struct intel_crtc *crtc)
3257 {
3258         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3259
3260         if (!crtc->config.ips_enabled)
3261                 return;
3262
3263         /* We can only enable IPS after we enable a plane and wait for a vblank.
3264          * We guarantee that the plane is enabled by calling intel_enable_ips
3265          * only after intel_enable_plane. And intel_enable_plane already waits
3266          * for a vblank, so all we need to do here is to enable the IPS bit. */
3267         assert_plane_enabled(dev_priv, crtc->plane);
3268         I915_WRITE(IPS_CTL, IPS_ENABLE);
3269 }
3270
3271 static void hsw_disable_ips(struct intel_crtc *crtc)
3272 {
3273         struct drm_device *dev = crtc->base.dev;
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276         if (!crtc->config.ips_enabled)
3277                 return;
3278
3279         assert_plane_enabled(dev_priv, crtc->plane);
3280         I915_WRITE(IPS_CTL, 0);
3281
3282         /* We need to wait for a vblank before we can disable the plane. */
3283         intel_wait_for_vblank(dev, crtc->pipe);
3284 }
3285
3286 static void haswell_crtc_enable(struct drm_crtc *crtc)
3287 {
3288         struct drm_device *dev = crtc->dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291         struct intel_encoder *encoder;
3292         int pipe = intel_crtc->pipe;
3293         int plane = intel_crtc->plane;
3294
3295         WARN_ON(!crtc->enabled);
3296
3297         if (intel_crtc->active)
3298                 return;
3299
3300         intel_crtc->active = true;
3301
3302         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303         if (intel_crtc->config.has_pch_encoder)
3304                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3305
3306         intel_update_watermarks(dev);
3307
3308         if (intel_crtc->config.has_pch_encoder)
3309                 dev_priv->display.fdi_link_train(crtc);
3310
3311         for_each_encoder_on_crtc(dev, crtc, encoder)
3312                 if (encoder->pre_enable)
3313                         encoder->pre_enable(encoder);
3314
3315         intel_ddi_enable_pipe_clock(intel_crtc);
3316
3317         ironlake_pfit_enable(intel_crtc);
3318
3319         /*
3320          * On ILK+ LUT must be loaded before the pipe is running but with
3321          * clocks enabled
3322          */
3323         intel_crtc_load_lut(crtc);
3324
3325         intel_ddi_set_pipe_settings(crtc);
3326         intel_ddi_enable_transcoder_func(crtc);
3327
3328         intel_enable_pipe(dev_priv, pipe,
3329                           intel_crtc->config.has_pch_encoder);
3330         intel_enable_plane(dev_priv, plane, pipe);
3331         intel_enable_planes(crtc);
3332         intel_crtc_update_cursor(crtc, true);
3333
3334         hsw_enable_ips(intel_crtc);
3335
3336         if (intel_crtc->config.has_pch_encoder)
3337                 lpt_pch_enable(crtc);
3338
3339         mutex_lock(&dev->struct_mutex);
3340         intel_update_fbc(dev);
3341         mutex_unlock(&dev->struct_mutex);
3342
3343         for_each_encoder_on_crtc(dev, crtc, encoder)
3344                 encoder->enable(encoder);
3345
3346         /*
3347          * There seems to be a race in PCH platform hw (at least on some
3348          * outputs) where an enabled pipe still completes any pageflip right
3349          * away (as if the pipe is off) instead of waiting for vblank. As soon
3350          * as the first vblank happend, everything works as expected. Hence just
3351          * wait for one vblank before returning to avoid strange things
3352          * happening.
3353          */
3354         intel_wait_for_vblank(dev, intel_crtc->pipe);
3355 }
3356
3357 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3358 {
3359         struct drm_device *dev = crtc->base.dev;
3360         struct drm_i915_private *dev_priv = dev->dev_private;
3361         int pipe = crtc->pipe;
3362
3363         /* To avoid upsetting the power well on haswell only disable the pfit if
3364          * it's in use. The hw state code will make sure we get this right. */
3365         if (crtc->config.pch_pfit.size) {
3366                 I915_WRITE(PF_CTL(pipe), 0);
3367                 I915_WRITE(PF_WIN_POS(pipe), 0);
3368                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3369         }
3370 }
3371
3372 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3373 {
3374         struct drm_device *dev = crtc->dev;
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377         struct intel_encoder *encoder;
3378         int pipe = intel_crtc->pipe;
3379         int plane = intel_crtc->plane;
3380         u32 reg, temp;
3381
3382
3383         if (!intel_crtc->active)
3384                 return;
3385
3386         for_each_encoder_on_crtc(dev, crtc, encoder)
3387                 encoder->disable(encoder);
3388
3389         intel_crtc_wait_for_pending_flips(crtc);
3390         drm_vblank_off(dev, pipe);
3391
3392         if (dev_priv->cfb_plane == plane)
3393                 intel_disable_fbc(dev);
3394
3395         intel_crtc_update_cursor(crtc, false);
3396         intel_disable_planes(crtc);
3397         intel_disable_plane(dev_priv, plane, pipe);
3398
3399         if (intel_crtc->config.has_pch_encoder)
3400                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3401
3402         intel_disable_pipe(dev_priv, pipe);
3403
3404         ironlake_pfit_disable(intel_crtc);
3405
3406         for_each_encoder_on_crtc(dev, crtc, encoder)
3407                 if (encoder->post_disable)
3408                         encoder->post_disable(encoder);
3409
3410         if (intel_crtc->config.has_pch_encoder) {
3411                 ironlake_fdi_disable(crtc);
3412
3413                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3414                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3415
3416                 if (HAS_PCH_CPT(dev)) {
3417                         /* disable TRANS_DP_CTL */
3418                         reg = TRANS_DP_CTL(pipe);
3419                         temp = I915_READ(reg);
3420                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3421                                   TRANS_DP_PORT_SEL_MASK);
3422                         temp |= TRANS_DP_PORT_SEL_NONE;
3423                         I915_WRITE(reg, temp);
3424
3425                         /* disable DPLL_SEL */
3426                         temp = I915_READ(PCH_DPLL_SEL);
3427                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3428                         I915_WRITE(PCH_DPLL_SEL, temp);
3429                 }
3430
3431                 /* disable PCH DPLL */
3432                 intel_disable_shared_dpll(intel_crtc);
3433
3434                 ironlake_fdi_pll_disable(intel_crtc);
3435         }
3436
3437         intel_crtc->active = false;
3438         intel_update_watermarks(dev);
3439
3440         mutex_lock(&dev->struct_mutex);
3441         intel_update_fbc(dev);
3442         mutex_unlock(&dev->struct_mutex);
3443 }
3444
3445 static void haswell_crtc_disable(struct drm_crtc *crtc)
3446 {
3447         struct drm_device *dev = crtc->dev;
3448         struct drm_i915_private *dev_priv = dev->dev_private;
3449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3450         struct intel_encoder *encoder;
3451         int pipe = intel_crtc->pipe;
3452         int plane = intel_crtc->plane;
3453         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3454
3455         if (!intel_crtc->active)
3456                 return;
3457
3458         for_each_encoder_on_crtc(dev, crtc, encoder)
3459                 encoder->disable(encoder);
3460
3461         intel_crtc_wait_for_pending_flips(crtc);
3462         drm_vblank_off(dev, pipe);
3463
3464         /* FBC must be disabled before disabling the plane on HSW. */
3465         if (dev_priv->cfb_plane == plane)
3466                 intel_disable_fbc(dev);
3467
3468         hsw_disable_ips(intel_crtc);
3469
3470         intel_crtc_update_cursor(crtc, false);
3471         intel_disable_planes(crtc);
3472         intel_disable_plane(dev_priv, plane, pipe);
3473
3474         if (intel_crtc->config.has_pch_encoder)
3475                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3476         intel_disable_pipe(dev_priv, pipe);
3477
3478         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3479
3480         ironlake_pfit_disable(intel_crtc);
3481
3482         intel_ddi_disable_pipe_clock(intel_crtc);
3483
3484         for_each_encoder_on_crtc(dev, crtc, encoder)
3485                 if (encoder->post_disable)
3486                         encoder->post_disable(encoder);
3487
3488         if (intel_crtc->config.has_pch_encoder) {
3489                 lpt_disable_pch_transcoder(dev_priv);
3490                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3491                 intel_ddi_fdi_disable(crtc);
3492         }
3493
3494         intel_crtc->active = false;
3495         intel_update_watermarks(dev);
3496
3497         mutex_lock(&dev->struct_mutex);
3498         intel_update_fbc(dev);
3499         mutex_unlock(&dev->struct_mutex);
3500 }
3501
3502 static void ironlake_crtc_off(struct drm_crtc *crtc)
3503 {
3504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3505         intel_put_shared_dpll(intel_crtc);
3506 }
3507
3508 static void haswell_crtc_off(struct drm_crtc *crtc)
3509 {
3510         intel_ddi_put_crtc_pll(crtc);
3511 }
3512
3513 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3514 {
3515         if (!enable && intel_crtc->overlay) {
3516                 struct drm_device *dev = intel_crtc->base.dev;
3517                 struct drm_i915_private *dev_priv = dev->dev_private;
3518
3519                 mutex_lock(&dev->struct_mutex);
3520                 dev_priv->mm.interruptible = false;
3521                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3522                 dev_priv->mm.interruptible = true;
3523                 mutex_unlock(&dev->struct_mutex);
3524         }
3525
3526         /* Let userspace switch the overlay on again. In most cases userspace
3527          * has to recompute where to put it anyway.
3528          */
3529 }
3530
3531 /**
3532  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3533  * cursor plane briefly if not already running after enabling the display
3534  * plane.
3535  * This workaround avoids occasional blank screens when self refresh is
3536  * enabled.
3537  */
3538 static void
3539 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3540 {
3541         u32 cntl = I915_READ(CURCNTR(pipe));
3542
3543         if ((cntl & CURSOR_MODE) == 0) {
3544                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3545
3546                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3547                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3548                 intel_wait_for_vblank(dev_priv->dev, pipe);
3549                 I915_WRITE(CURCNTR(pipe), cntl);
3550                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3551                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3552         }
3553 }
3554
3555 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3556 {
3557         struct drm_device *dev = crtc->base.dev;
3558         struct drm_i915_private *dev_priv = dev->dev_private;
3559         struct intel_crtc_config *pipe_config = &crtc->config;
3560
3561         if (!crtc->config.gmch_pfit.control)
3562                 return;
3563
3564         /*
3565          * The panel fitter should only be adjusted whilst the pipe is disabled,
3566          * according to register description and PRM.
3567          */
3568         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3569         assert_pipe_disabled(dev_priv, crtc->pipe);
3570
3571         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3572         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3573
3574         /* Border color in case we don't scale up to the full screen. Black by
3575          * default, change to something else for debugging. */
3576         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3577 }
3578
3579 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3580 {
3581         struct drm_device *dev = crtc->dev;
3582         struct drm_i915_private *dev_priv = dev->dev_private;
3583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3584         struct intel_encoder *encoder;
3585         int pipe = intel_crtc->pipe;
3586         int plane = intel_crtc->plane;
3587
3588         WARN_ON(!crtc->enabled);
3589
3590         if (intel_crtc->active)
3591                 return;
3592
3593         intel_crtc->active = true;
3594         intel_update_watermarks(dev);
3595
3596         mutex_lock(&dev_priv->dpio_lock);
3597
3598         for_each_encoder_on_crtc(dev, crtc, encoder)
3599                 if (encoder->pre_pll_enable)
3600                         encoder->pre_pll_enable(encoder);
3601
3602         intel_enable_pll(dev_priv, pipe);
3603
3604         for_each_encoder_on_crtc(dev, crtc, encoder)
3605                 if (encoder->pre_enable)
3606                         encoder->pre_enable(encoder);
3607
3608         /* VLV wants encoder enabling _before_ the pipe is up. */
3609         for_each_encoder_on_crtc(dev, crtc, encoder)
3610                 encoder->enable(encoder);
3611
3612         i9xx_pfit_enable(intel_crtc);
3613
3614         intel_crtc_load_lut(crtc);
3615
3616         intel_enable_pipe(dev_priv, pipe, false);
3617         intel_enable_plane(dev_priv, plane, pipe);
3618         intel_enable_planes(crtc);
3619         intel_crtc_update_cursor(crtc, true);
3620
3621         intel_update_fbc(dev);
3622
3623         mutex_unlock(&dev_priv->dpio_lock);
3624 }
3625
3626 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3627 {
3628         struct drm_device *dev = crtc->dev;
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631         struct intel_encoder *encoder;
3632         int pipe = intel_crtc->pipe;
3633         int plane = intel_crtc->plane;
3634
3635         WARN_ON(!crtc->enabled);
3636
3637         if (intel_crtc->active)
3638                 return;
3639
3640         intel_crtc->active = true;
3641         intel_update_watermarks(dev);
3642
3643         intel_enable_pll(dev_priv, pipe);
3644
3645         for_each_encoder_on_crtc(dev, crtc, encoder)
3646                 if (encoder->pre_enable)
3647                         encoder->pre_enable(encoder);
3648
3649         i9xx_pfit_enable(intel_crtc);
3650
3651         intel_crtc_load_lut(crtc);
3652
3653         intel_enable_pipe(dev_priv, pipe, false);
3654         intel_enable_plane(dev_priv, plane, pipe);
3655         intel_enable_planes(crtc);
3656         /* The fixup needs to happen before cursor is enabled */
3657         if (IS_G4X(dev))
3658                 g4x_fixup_plane(dev_priv, pipe);
3659         intel_crtc_update_cursor(crtc, true);
3660
3661         /* Give the overlay scaler a chance to enable if it's on this pipe */
3662         intel_crtc_dpms_overlay(intel_crtc, true);
3663
3664         intel_update_fbc(dev);
3665
3666         for_each_encoder_on_crtc(dev, crtc, encoder)
3667                 encoder->enable(encoder);
3668 }
3669
3670 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3671 {
3672         struct drm_device *dev = crtc->base.dev;
3673         struct drm_i915_private *dev_priv = dev->dev_private;
3674
3675         if (!crtc->config.gmch_pfit.control)
3676                 return;
3677
3678         assert_pipe_disabled(dev_priv, crtc->pipe);
3679
3680         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3681                          I915_READ(PFIT_CONTROL));
3682         I915_WRITE(PFIT_CONTROL, 0);
3683 }
3684
3685 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3686 {
3687         struct drm_device *dev = crtc->dev;
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3690         struct intel_encoder *encoder;
3691         int pipe = intel_crtc->pipe;
3692         int plane = intel_crtc->plane;
3693
3694         if (!intel_crtc->active)
3695                 return;
3696
3697         for_each_encoder_on_crtc(dev, crtc, encoder)
3698                 encoder->disable(encoder);
3699
3700         /* Give the overlay scaler a chance to disable if it's on this pipe */
3701         intel_crtc_wait_for_pending_flips(crtc);
3702         drm_vblank_off(dev, pipe);
3703
3704         if (dev_priv->cfb_plane == plane)
3705                 intel_disable_fbc(dev);
3706
3707         intel_crtc_dpms_overlay(intel_crtc, false);
3708         intel_crtc_update_cursor(crtc, false);
3709         intel_disable_planes(crtc);
3710         intel_disable_plane(dev_priv, plane, pipe);
3711
3712         intel_disable_pipe(dev_priv, pipe);
3713
3714         i9xx_pfit_disable(intel_crtc);
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 if (encoder->post_disable)
3718                         encoder->post_disable(encoder);
3719
3720         intel_disable_pll(dev_priv, pipe);
3721
3722         intel_crtc->active = false;
3723         intel_update_fbc(dev);
3724         intel_update_watermarks(dev);
3725 }
3726
3727 static void i9xx_crtc_off(struct drm_crtc *crtc)
3728 {
3729 }
3730
3731 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3732                                     bool enabled)
3733 {
3734         struct drm_device *dev = crtc->dev;
3735         struct drm_i915_master_private *master_priv;
3736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3737         int pipe = intel_crtc->pipe;
3738
3739         if (!dev->primary->master)
3740                 return;
3741
3742         master_priv = dev->primary->master->driver_priv;
3743         if (!master_priv->sarea_priv)
3744                 return;
3745
3746         switch (pipe) {
3747         case 0:
3748                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3749                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3750                 break;
3751         case 1:
3752                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3753                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3754                 break;
3755         default:
3756                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3757                 break;
3758         }
3759 }
3760
3761 /**
3762  * Sets the power management mode of the pipe and plane.
3763  */
3764 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3765 {
3766         struct drm_device *dev = crtc->dev;
3767         struct drm_i915_private *dev_priv = dev->dev_private;
3768         struct intel_encoder *intel_encoder;
3769         bool enable = false;
3770
3771         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3772                 enable |= intel_encoder->connectors_active;
3773
3774         if (enable)
3775                 dev_priv->display.crtc_enable(crtc);
3776         else
3777                 dev_priv->display.crtc_disable(crtc);
3778
3779         intel_crtc_update_sarea(crtc, enable);
3780 }
3781
3782 static void intel_crtc_disable(struct drm_crtc *crtc)
3783 {
3784         struct drm_device *dev = crtc->dev;
3785         struct drm_connector *connector;
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788
3789         /* crtc should still be enabled when we disable it. */
3790         WARN_ON(!crtc->enabled);
3791
3792         dev_priv->display.crtc_disable(crtc);
3793         intel_crtc->eld_vld = false;
3794         intel_crtc_update_sarea(crtc, false);
3795         dev_priv->display.off(crtc);
3796
3797         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3798         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3799
3800         if (crtc->fb) {
3801                 mutex_lock(&dev->struct_mutex);
3802                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3803                 mutex_unlock(&dev->struct_mutex);
3804                 crtc->fb = NULL;
3805         }
3806
3807         /* Update computed state. */
3808         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3809                 if (!connector->encoder || !connector->encoder->crtc)
3810                         continue;
3811
3812                 if (connector->encoder->crtc != crtc)
3813                         continue;
3814
3815                 connector->dpms = DRM_MODE_DPMS_OFF;
3816                 to_intel_encoder(connector->encoder)->connectors_active = false;
3817         }
3818 }
3819
3820 void intel_modeset_disable(struct drm_device *dev)
3821 {
3822         struct drm_crtc *crtc;
3823
3824         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3825                 if (crtc->enabled)
3826                         intel_crtc_disable(crtc);
3827         }
3828 }
3829
3830 void intel_encoder_destroy(struct drm_encoder *encoder)
3831 {
3832         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3833
3834         drm_encoder_cleanup(encoder);
3835         kfree(intel_encoder);
3836 }
3837
3838 /* Simple dpms helper for encodres with just one connector, no cloning and only
3839  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3840  * state of the entire output pipe. */
3841 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3842 {
3843         if (mode == DRM_MODE_DPMS_ON) {
3844                 encoder->connectors_active = true;
3845
3846                 intel_crtc_update_dpms(encoder->base.crtc);
3847         } else {
3848                 encoder->connectors_active = false;
3849
3850                 intel_crtc_update_dpms(encoder->base.crtc);
3851         }
3852 }
3853
3854 /* Cross check the actual hw state with our own modeset state tracking (and it's
3855  * internal consistency). */
3856 static void intel_connector_check_state(struct intel_connector *connector)
3857 {
3858         if (connector->get_hw_state(connector)) {
3859                 struct intel_encoder *encoder = connector->encoder;
3860                 struct drm_crtc *crtc;
3861                 bool encoder_enabled;
3862                 enum pipe pipe;
3863
3864                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3865                               connector->base.base.id,
3866                               drm_get_connector_name(&connector->base));
3867
3868                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3869                      "wrong connector dpms state\n");
3870                 WARN(connector->base.encoder != &encoder->base,
3871                      "active connector not linked to encoder\n");
3872                 WARN(!encoder->connectors_active,
3873                      "encoder->connectors_active not set\n");
3874
3875                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3876                 WARN(!encoder_enabled, "encoder not enabled\n");
3877                 if (WARN_ON(!encoder->base.crtc))
3878                         return;
3879
3880                 crtc = encoder->base.crtc;
3881
3882                 WARN(!crtc->enabled, "crtc not enabled\n");
3883                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3884                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3885                      "encoder active on the wrong pipe\n");
3886         }
3887 }
3888
3889 /* Even simpler default implementation, if there's really no special case to
3890  * consider. */
3891 void intel_connector_dpms(struct drm_connector *connector, int mode)
3892 {
3893         struct intel_encoder *encoder = intel_attached_encoder(connector);
3894
3895         /* All the simple cases only support two dpms states. */
3896         if (mode != DRM_MODE_DPMS_ON)
3897                 mode = DRM_MODE_DPMS_OFF;
3898
3899         if (mode == connector->dpms)
3900                 return;
3901
3902         connector->dpms = mode;
3903
3904         /* Only need to change hw state when actually enabled */
3905         if (encoder->base.crtc)
3906                 intel_encoder_dpms(encoder, mode);
3907         else
3908                 WARN_ON(encoder->connectors_active != false);
3909
3910         intel_modeset_check_state(connector->dev);
3911 }
3912
3913 /* Simple connector->get_hw_state implementation for encoders that support only
3914  * one connector and no cloning and hence the encoder state determines the state
3915  * of the connector. */
3916 bool intel_connector_get_hw_state(struct intel_connector *connector)
3917 {
3918         enum pipe pipe = 0;
3919         struct intel_encoder *encoder = connector->encoder;
3920
3921         return encoder->get_hw_state(encoder, &pipe);
3922 }
3923
3924 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3925                                      struct intel_crtc_config *pipe_config)
3926 {
3927         struct drm_i915_private *dev_priv = dev->dev_private;
3928         struct intel_crtc *pipe_B_crtc =
3929                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3930
3931         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3932                       pipe_name(pipe), pipe_config->fdi_lanes);
3933         if (pipe_config->fdi_lanes > 4) {
3934                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3935                               pipe_name(pipe), pipe_config->fdi_lanes);
3936                 return false;
3937         }
3938
3939         if (IS_HASWELL(dev)) {
3940                 if (pipe_config->fdi_lanes > 2) {
3941                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3942                                       pipe_config->fdi_lanes);
3943                         return false;
3944                 } else {
3945                         return true;
3946                 }
3947         }
3948
3949         if (INTEL_INFO(dev)->num_pipes == 2)
3950                 return true;
3951
3952         /* Ivybridge 3 pipe is really complicated */
3953         switch (pipe) {
3954         case PIPE_A:
3955                 return true;
3956         case PIPE_B:
3957                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3958                     pipe_config->fdi_lanes > 2) {
3959                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3960                                       pipe_name(pipe), pipe_config->fdi_lanes);
3961                         return false;
3962                 }
3963                 return true;
3964         case PIPE_C:
3965                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3966                     pipe_B_crtc->config.fdi_lanes <= 2) {
3967                         if (pipe_config->fdi_lanes > 2) {
3968                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3969                                               pipe_name(pipe), pipe_config->fdi_lanes);
3970                                 return false;
3971                         }
3972                 } else {
3973                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
3974                         return false;
3975                 }
3976                 return true;
3977         default:
3978                 BUG();
3979         }
3980 }
3981
3982 #define RETRY 1
3983 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3984                                        struct intel_crtc_config *pipe_config)
3985 {
3986         struct drm_device *dev = intel_crtc->base.dev;
3987         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3988         int lane, link_bw, fdi_dotclock;
3989         bool setup_ok, needs_recompute = false;
3990
3991 retry:
3992         /* FDI is a binary signal running at ~2.7GHz, encoding
3993          * each output octet as 10 bits. The actual frequency
3994          * is stored as a divider into a 100MHz clock, and the
3995          * mode pixel clock is stored in units of 1KHz.
3996          * Hence the bw of each lane in terms of the mode signal
3997          * is:
3998          */
3999         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4000
4001         fdi_dotclock = adjusted_mode->clock;
4002         fdi_dotclock /= pipe_config->pixel_multiplier;
4003
4004         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4005                                            pipe_config->pipe_bpp);
4006
4007         pipe_config->fdi_lanes = lane;
4008
4009         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4010                                link_bw, &pipe_config->fdi_m_n);
4011
4012         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4013                                             intel_crtc->pipe, pipe_config);
4014         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4015                 pipe_config->pipe_bpp -= 2*3;
4016                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4017                               pipe_config->pipe_bpp);
4018                 needs_recompute = true;
4019                 pipe_config->bw_constrained = true;
4020
4021                 goto retry;
4022         }
4023
4024         if (needs_recompute)
4025                 return RETRY;
4026
4027         return setup_ok ? 0 : -EINVAL;
4028 }
4029
4030 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4031                                    struct intel_crtc_config *pipe_config)
4032 {
4033         pipe_config->ips_enabled = i915_enable_ips &&
4034                                    hsw_crtc_supports_ips(crtc) &&
4035                                    pipe_config->pipe_bpp == 24;
4036 }
4037
4038 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4039                                      struct intel_crtc_config *pipe_config)
4040 {
4041         struct drm_device *dev = crtc->base.dev;
4042         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4043
4044         if (HAS_PCH_SPLIT(dev)) {
4045                 /* FDI link clock is fixed at 2.7G */
4046                 if (pipe_config->requested_mode.clock * 3
4047                     > IRONLAKE_FDI_FREQ * 4)
4048                         return -EINVAL;
4049         }
4050
4051         /* All interlaced capable intel hw wants timings in frames. Note though
4052          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4053          * timings, so we need to be careful not to clobber these.*/
4054         if (!pipe_config->timings_set)
4055                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4056
4057         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4058          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4059          */
4060         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4061                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4062                 return -EINVAL;
4063
4064         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4065                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4066         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4067                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4068                  * for lvds. */
4069                 pipe_config->pipe_bpp = 8*3;
4070         }
4071
4072         if (IS_HASWELL(dev))
4073                 hsw_compute_ips_config(crtc, pipe_config);
4074
4075         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4076          * clock survives for now. */
4077         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4078                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4079
4080         if (pipe_config->has_pch_encoder)
4081                 return ironlake_fdi_compute_config(crtc, pipe_config);
4082
4083         return 0;
4084 }
4085
4086 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4087 {
4088         return 400000; /* FIXME */
4089 }
4090
4091 static int i945_get_display_clock_speed(struct drm_device *dev)
4092 {
4093         return 400000;
4094 }
4095
4096 static int i915_get_display_clock_speed(struct drm_device *dev)
4097 {
4098         return 333000;
4099 }
4100
4101 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4102 {
4103         return 200000;
4104 }
4105
4106 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4107 {
4108         u16 gcfgc = 0;
4109
4110         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4111
4112         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4113                 return 133000;
4114         else {
4115                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4116                 case GC_DISPLAY_CLOCK_333_MHZ:
4117                         return 333000;
4118                 default:
4119                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4120                         return 190000;
4121                 }
4122         }
4123 }
4124
4125 static int i865_get_display_clock_speed(struct drm_device *dev)
4126 {
4127         return 266000;
4128 }
4129
4130 static int i855_get_display_clock_speed(struct drm_device *dev)
4131 {
4132         u16 hpllcc = 0;
4133         /* Assume that the hardware is in the high speed state.  This
4134          * should be the default.
4135          */
4136         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4137         case GC_CLOCK_133_200:
4138         case GC_CLOCK_100_200:
4139                 return 200000;
4140         case GC_CLOCK_166_250:
4141                 return 250000;
4142         case GC_CLOCK_100_133:
4143                 return 133000;
4144         }
4145
4146         /* Shouldn't happen */
4147         return 0;
4148 }
4149
4150 static int i830_get_display_clock_speed(struct drm_device *dev)
4151 {
4152         return 133000;
4153 }
4154
4155 static void
4156 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4157 {
4158         while (*num > DATA_LINK_M_N_MASK ||
4159                *den > DATA_LINK_M_N_MASK) {
4160                 *num >>= 1;
4161                 *den >>= 1;
4162         }
4163 }
4164
4165 static void compute_m_n(unsigned int m, unsigned int n,
4166                         uint32_t *ret_m, uint32_t *ret_n)
4167 {
4168         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4169         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4170         intel_reduce_m_n_ratio(ret_m, ret_n);
4171 }
4172
4173 void
4174 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4175                        int pixel_clock, int link_clock,
4176                        struct intel_link_m_n *m_n)
4177 {
4178         m_n->tu = 64;
4179
4180         compute_m_n(bits_per_pixel * pixel_clock,
4181                     link_clock * nlanes * 8,
4182                     &m_n->gmch_m, &m_n->gmch_n);
4183
4184         compute_m_n(pixel_clock, link_clock,
4185                     &m_n->link_m, &m_n->link_n);
4186 }
4187
4188 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4189 {
4190         if (i915_panel_use_ssc >= 0)
4191                 return i915_panel_use_ssc != 0;
4192         return dev_priv->vbt.lvds_use_ssc
4193                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4194 }
4195
4196 static int vlv_get_refclk(struct drm_crtc *crtc)
4197 {
4198         struct drm_device *dev = crtc->dev;
4199         struct drm_i915_private *dev_priv = dev->dev_private;
4200         int refclk = 27000; /* for DP & HDMI */
4201
4202         return 100000; /* only one validated so far */
4203
4204         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4205                 refclk = 96000;
4206         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4207                 if (intel_panel_use_ssc(dev_priv))
4208                         refclk = 100000;
4209                 else
4210                         refclk = 96000;
4211         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4212                 refclk = 100000;
4213         }
4214
4215         return refclk;
4216 }
4217
4218 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4219 {
4220         struct drm_device *dev = crtc->dev;
4221         struct drm_i915_private *dev_priv = dev->dev_private;
4222         int refclk;
4223
4224         if (IS_VALLEYVIEW(dev)) {
4225                 refclk = vlv_get_refclk(crtc);
4226         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4227             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4228                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4229                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4230                               refclk / 1000);
4231         } else if (!IS_GEN2(dev)) {
4232                 refclk = 96000;
4233         } else {
4234                 refclk = 48000;
4235         }
4236
4237         return refclk;
4238 }
4239
4240 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4241 {
4242         return (1 << dpll->n) << 16 | dpll->m2;
4243 }
4244
4245 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4246 {
4247         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4248 }
4249
4250 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4251                                      intel_clock_t *reduced_clock)
4252 {
4253         struct drm_device *dev = crtc->base.dev;
4254         struct drm_i915_private *dev_priv = dev->dev_private;
4255         int pipe = crtc->pipe;
4256         u32 fp, fp2 = 0;
4257
4258         if (IS_PINEVIEW(dev)) {
4259                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4260                 if (reduced_clock)
4261                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4262         } else {
4263                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4264                 if (reduced_clock)
4265                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4266         }
4267
4268         I915_WRITE(FP0(pipe), fp);
4269
4270         crtc->lowfreq_avail = false;
4271         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4272             reduced_clock && i915_powersave) {
4273                 I915_WRITE(FP1(pipe), fp2);
4274                 crtc->lowfreq_avail = true;
4275         } else {
4276                 I915_WRITE(FP1(pipe), fp);
4277         }
4278 }
4279
4280 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4281 {
4282         u32 reg_val;
4283
4284         /*
4285          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4286          * and set it to a reasonable value instead.
4287          */
4288         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4289         reg_val &= 0xffffff00;
4290         reg_val |= 0x00000030;
4291         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4292
4293         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4294         reg_val &= 0x8cffffff;
4295         reg_val = 0x8c000000;
4296         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4297
4298         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4299         reg_val &= 0xffffff00;
4300         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4301
4302         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4303         reg_val &= 0x00ffffff;
4304         reg_val |= 0xb0000000;
4305         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4306 }
4307
4308 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4309                                          struct intel_link_m_n *m_n)
4310 {
4311         struct drm_device *dev = crtc->base.dev;
4312         struct drm_i915_private *dev_priv = dev->dev_private;
4313         int pipe = crtc->pipe;
4314
4315         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4316         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4317         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4318         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4319 }
4320
4321 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4322                                          struct intel_link_m_n *m_n)
4323 {
4324         struct drm_device *dev = crtc->base.dev;
4325         struct drm_i915_private *dev_priv = dev->dev_private;
4326         int pipe = crtc->pipe;
4327         enum transcoder transcoder = crtc->config.cpu_transcoder;
4328
4329         if (INTEL_INFO(dev)->gen >= 5) {
4330                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4331                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4332                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4333                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4334         } else {
4335                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4336                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4337                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4338                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4339         }
4340 }
4341
4342 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4343 {
4344         if (crtc->config.has_pch_encoder)
4345                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4346         else
4347                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4348 }
4349
4350 static void vlv_update_pll(struct intel_crtc *crtc)
4351 {
4352         struct drm_device *dev = crtc->base.dev;
4353         struct drm_i915_private *dev_priv = dev->dev_private;
4354         struct intel_encoder *encoder;
4355         int pipe = crtc->pipe;
4356         u32 dpll, mdiv;
4357         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4358         bool is_hdmi;
4359         u32 coreclk, reg_val, dpll_md;
4360
4361         mutex_lock(&dev_priv->dpio_lock);
4362
4363         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4364
4365         bestn = crtc->config.dpll.n;
4366         bestm1 = crtc->config.dpll.m1;
4367         bestm2 = crtc->config.dpll.m2;
4368         bestp1 = crtc->config.dpll.p1;
4369         bestp2 = crtc->config.dpll.p2;
4370
4371         /* See eDP HDMI DPIO driver vbios notes doc */
4372
4373         /* PLL B needs special handling */
4374         if (pipe)
4375                 vlv_pllb_recal_opamp(dev_priv);
4376
4377         /* Set up Tx target for periodic Rcomp update */
4378         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4379
4380         /* Disable target IRef on PLL */
4381         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4382         reg_val &= 0x00ffffff;
4383         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4384
4385         /* Disable fast lock */
4386         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4387
4388         /* Set idtafcrecal before PLL is enabled */
4389         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4390         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4391         mdiv |= ((bestn << DPIO_N_SHIFT));
4392         mdiv |= (1 << DPIO_K_SHIFT);
4393
4394         /*
4395          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4396          * but we don't support that).
4397          * Note: don't use the DAC post divider as it seems unstable.
4398          */
4399         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4400         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4401
4402         mdiv |= DPIO_ENABLE_CALIBRATION;
4403         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4404
4405         /* Set HBR and RBR LPF coefficients */
4406         if (crtc->config.port_clock == 162000 ||
4407             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4408                 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4409                                  0x005f0021);
4410         else
4411                 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4412                                  0x00d0000f);
4413
4414         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4415             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4416                 /* Use SSC source */
4417                 if (!pipe)
4418                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4419                                          0x0df40000);
4420                 else
4421                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4422                                          0x0df70000);
4423         } else { /* HDMI or VGA */
4424                 /* Use bend source */
4425                 if (!pipe)
4426                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4427                                          0x0df70000);
4428                 else
4429                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4430                                          0x0df40000);
4431         }
4432
4433         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4434         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4435         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4436             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4437                 coreclk |= 0x01000000;
4438         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4439
4440         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4441
4442         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4443                 if (encoder->pre_pll_enable)
4444                         encoder->pre_pll_enable(encoder);
4445
4446         /* Enable DPIO clock input */
4447         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4448                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4449         if (pipe)
4450                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4451
4452         dpll |= DPLL_VCO_ENABLE;
4453         I915_WRITE(DPLL(pipe), dpll);
4454         POSTING_READ(DPLL(pipe));
4455         udelay(150);
4456
4457         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4458                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4459
4460         dpll_md = (crtc->config.pixel_multiplier - 1)
4461                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4462         I915_WRITE(DPLL_MD(pipe), dpll_md);
4463         POSTING_READ(DPLL_MD(pipe));
4464
4465         if (crtc->config.has_dp_encoder)
4466                 intel_dp_set_m_n(crtc);
4467
4468         mutex_unlock(&dev_priv->dpio_lock);
4469 }
4470
4471 static void i9xx_update_pll(struct intel_crtc *crtc,
4472                             intel_clock_t *reduced_clock,
4473                             int num_connectors)
4474 {
4475         struct drm_device *dev = crtc->base.dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         struct intel_encoder *encoder;
4478         int pipe = crtc->pipe;
4479         u32 dpll;
4480         bool is_sdvo;
4481         struct dpll *clock = &crtc->config.dpll;
4482
4483         i9xx_update_pll_dividers(crtc, reduced_clock);
4484
4485         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4486                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4487
4488         dpll = DPLL_VGA_MODE_DIS;
4489
4490         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4491                 dpll |= DPLLB_MODE_LVDS;
4492         else
4493                 dpll |= DPLLB_MODE_DAC_SERIAL;
4494
4495         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4496                 dpll |= (crtc->config.pixel_multiplier - 1)
4497                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4498         }
4499
4500         if (is_sdvo)
4501                 dpll |= DPLL_DVO_HIGH_SPEED;
4502
4503         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4504                 dpll |= DPLL_DVO_HIGH_SPEED;
4505
4506         /* compute bitmask from p1 value */
4507         if (IS_PINEVIEW(dev))
4508                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4509         else {
4510                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4511                 if (IS_G4X(dev) && reduced_clock)
4512                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4513         }
4514         switch (clock->p2) {
4515         case 5:
4516                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4517                 break;
4518         case 7:
4519                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4520                 break;
4521         case 10:
4522                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4523                 break;
4524         case 14:
4525                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4526                 break;
4527         }
4528         if (INTEL_INFO(dev)->gen >= 4)
4529                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4530
4531         if (crtc->config.sdvo_tv_clock)
4532                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4533         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4534                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4535                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4536         else
4537                 dpll |= PLL_REF_INPUT_DREFCLK;
4538
4539         dpll |= DPLL_VCO_ENABLE;
4540         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4541         POSTING_READ(DPLL(pipe));
4542         udelay(150);
4543
4544         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4545                 if (encoder->pre_pll_enable)
4546                         encoder->pre_pll_enable(encoder);
4547
4548         if (crtc->config.has_dp_encoder)
4549                 intel_dp_set_m_n(crtc);
4550
4551         I915_WRITE(DPLL(pipe), dpll);
4552
4553         /* Wait for the clocks to stabilize. */
4554         POSTING_READ(DPLL(pipe));
4555         udelay(150);
4556
4557         if (INTEL_INFO(dev)->gen >= 4) {
4558                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4559                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4560                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4561         } else {
4562                 /* The pixel multiplier can only be updated once the
4563                  * DPLL is enabled and the clocks are stable.
4564                  *
4565                  * So write it again.
4566                  */
4567                 I915_WRITE(DPLL(pipe), dpll);
4568         }
4569 }
4570
4571 static void i8xx_update_pll(struct intel_crtc *crtc,
4572                             intel_clock_t *reduced_clock,
4573                             int num_connectors)
4574 {
4575         struct drm_device *dev = crtc->base.dev;
4576         struct drm_i915_private *dev_priv = dev->dev_private;
4577         struct intel_encoder *encoder;
4578         int pipe = crtc->pipe;
4579         u32 dpll;
4580         struct dpll *clock = &crtc->config.dpll;
4581
4582         i9xx_update_pll_dividers(crtc, reduced_clock);
4583
4584         dpll = DPLL_VGA_MODE_DIS;
4585
4586         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4587                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4588         } else {
4589                 if (clock->p1 == 2)
4590                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4591                 else
4592                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4593                 if (clock->p2 == 4)
4594                         dpll |= PLL_P2_DIVIDE_BY_4;
4595         }
4596
4597         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4598                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4599                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4600         else
4601                 dpll |= PLL_REF_INPUT_DREFCLK;
4602
4603         dpll |= DPLL_VCO_ENABLE;
4604         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4605         POSTING_READ(DPLL(pipe));
4606         udelay(150);
4607
4608         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4609                 if (encoder->pre_pll_enable)
4610                         encoder->pre_pll_enable(encoder);
4611
4612         I915_WRITE(DPLL(pipe), dpll);
4613
4614         /* Wait for the clocks to stabilize. */
4615         POSTING_READ(DPLL(pipe));
4616         udelay(150);
4617
4618         /* The pixel multiplier can only be updated once the
4619          * DPLL is enabled and the clocks are stable.
4620          *
4621          * So write it again.
4622          */
4623         I915_WRITE(DPLL(pipe), dpll);
4624 }
4625
4626 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4627 {
4628         struct drm_device *dev = intel_crtc->base.dev;
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         enum pipe pipe = intel_crtc->pipe;
4631         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4632         struct drm_display_mode *adjusted_mode =
4633                 &intel_crtc->config.adjusted_mode;
4634         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4635         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4636
4637         /* We need to be careful not to changed the adjusted mode, for otherwise
4638          * the hw state checker will get angry at the mismatch. */
4639         crtc_vtotal = adjusted_mode->crtc_vtotal;
4640         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4641
4642         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4643                 /* the chip adds 2 halflines automatically */
4644                 crtc_vtotal -= 1;
4645                 crtc_vblank_end -= 1;
4646                 vsyncshift = adjusted_mode->crtc_hsync_start
4647                              - adjusted_mode->crtc_htotal / 2;
4648         } else {
4649                 vsyncshift = 0;
4650         }
4651
4652         if (INTEL_INFO(dev)->gen > 3)
4653                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4654
4655         I915_WRITE(HTOTAL(cpu_transcoder),
4656                    (adjusted_mode->crtc_hdisplay - 1) |
4657                    ((adjusted_mode->crtc_htotal - 1) << 16));
4658         I915_WRITE(HBLANK(cpu_transcoder),
4659                    (adjusted_mode->crtc_hblank_start - 1) |
4660                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4661         I915_WRITE(HSYNC(cpu_transcoder),
4662                    (adjusted_mode->crtc_hsync_start - 1) |
4663                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4664
4665         I915_WRITE(VTOTAL(cpu_transcoder),
4666                    (adjusted_mode->crtc_vdisplay - 1) |
4667                    ((crtc_vtotal - 1) << 16));
4668         I915_WRITE(VBLANK(cpu_transcoder),
4669                    (adjusted_mode->crtc_vblank_start - 1) |
4670                    ((crtc_vblank_end - 1) << 16));
4671         I915_WRITE(VSYNC(cpu_transcoder),
4672                    (adjusted_mode->crtc_vsync_start - 1) |
4673                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4674
4675         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4676          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4677          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4678          * bits. */
4679         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4680             (pipe == PIPE_B || pipe == PIPE_C))
4681                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4682
4683         /* pipesrc controls the size that is scaled from, which should
4684          * always be the user's requested size.
4685          */
4686         I915_WRITE(PIPESRC(pipe),
4687                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4688 }
4689
4690 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4691                                    struct intel_crtc_config *pipe_config)
4692 {
4693         struct drm_device *dev = crtc->base.dev;
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4696         uint32_t tmp;
4697
4698         tmp = I915_READ(HTOTAL(cpu_transcoder));
4699         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4700         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4701         tmp = I915_READ(HBLANK(cpu_transcoder));
4702         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4703         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4704         tmp = I915_READ(HSYNC(cpu_transcoder));
4705         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4706         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4707
4708         tmp = I915_READ(VTOTAL(cpu_transcoder));
4709         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4710         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4711         tmp = I915_READ(VBLANK(cpu_transcoder));
4712         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4713         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4714         tmp = I915_READ(VSYNC(cpu_transcoder));
4715         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4716         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4717
4718         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4719                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4720                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4721                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4722         }
4723
4724         tmp = I915_READ(PIPESRC(crtc->pipe));
4725         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4726         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4727 }
4728
4729 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4730 {
4731         struct drm_device *dev = intel_crtc->base.dev;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         uint32_t pipeconf;
4734
4735         pipeconf = 0;
4736
4737         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4738                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4739                  * core speed.
4740                  *
4741                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4742                  * pipe == 0 check?
4743                  */
4744                 if (intel_crtc->config.requested_mode.clock >
4745                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4746                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4747         }
4748
4749         /* only g4x and later have fancy bpc/dither controls */
4750         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4751                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4752                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4753                         pipeconf |= PIPECONF_DITHER_EN |
4754                                     PIPECONF_DITHER_TYPE_SP;
4755
4756                 switch (intel_crtc->config.pipe_bpp) {
4757                 case 18:
4758                         pipeconf |= PIPECONF_6BPC;
4759                         break;
4760                 case 24:
4761                         pipeconf |= PIPECONF_8BPC;
4762                         break;
4763                 case 30:
4764                         pipeconf |= PIPECONF_10BPC;
4765                         break;
4766                 default:
4767                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4768                         BUG();
4769                 }
4770         }
4771
4772         if (HAS_PIPE_CXSR(dev)) {
4773                 if (intel_crtc->lowfreq_avail) {
4774                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4775                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4776                 } else {
4777                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4778                 }
4779         }
4780
4781         if (!IS_GEN2(dev) &&
4782             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4783                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4784         else
4785                 pipeconf |= PIPECONF_PROGRESSIVE;
4786
4787         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4788                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4789
4790         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4791         POSTING_READ(PIPECONF(intel_crtc->pipe));
4792 }
4793
4794 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4795                               int x, int y,
4796                               struct drm_framebuffer *fb)
4797 {
4798         struct drm_device *dev = crtc->dev;
4799         struct drm_i915_private *dev_priv = dev->dev_private;
4800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4801         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4802         int pipe = intel_crtc->pipe;
4803         int plane = intel_crtc->plane;
4804         int refclk, num_connectors = 0;
4805         intel_clock_t clock, reduced_clock;
4806         u32 dspcntr;
4807         bool ok, has_reduced_clock = false;
4808         bool is_lvds = false;
4809         struct intel_encoder *encoder;
4810         const intel_limit_t *limit;
4811         int ret;
4812
4813         for_each_encoder_on_crtc(dev, crtc, encoder) {
4814                 switch (encoder->type) {
4815                 case INTEL_OUTPUT_LVDS:
4816                         is_lvds = true;
4817                         break;
4818                 }
4819
4820                 num_connectors++;
4821         }
4822
4823         refclk = i9xx_get_refclk(crtc, num_connectors);
4824
4825         /*
4826          * Returns a set of divisors for the desired target clock with the given
4827          * refclk, or FALSE.  The returned values represent the clock equation:
4828          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4829          */
4830         limit = intel_limit(crtc, refclk);
4831         ok = dev_priv->display.find_dpll(limit, crtc,
4832                                          intel_crtc->config.port_clock,
4833                                          refclk, NULL, &clock);
4834         if (!ok && !intel_crtc->config.clock_set) {
4835                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4836                 return -EINVAL;
4837         }
4838
4839         /* Ensure that the cursor is valid for the new mode before changing... */
4840         intel_crtc_update_cursor(crtc, true);
4841
4842         if (is_lvds && dev_priv->lvds_downclock_avail) {
4843                 /*
4844                  * Ensure we match the reduced clock's P to the target clock.
4845                  * If the clocks don't match, we can't switch the display clock
4846                  * by using the FP0/FP1. In such case we will disable the LVDS
4847                  * downclock feature.
4848                 */
4849                 has_reduced_clock =
4850                         dev_priv->display.find_dpll(limit, crtc,
4851                                                     dev_priv->lvds_downclock,
4852                                                     refclk, &clock,
4853                                                     &reduced_clock);
4854         }
4855         /* Compat-code for transition, will disappear. */
4856         if (!intel_crtc->config.clock_set) {
4857                 intel_crtc->config.dpll.n = clock.n;
4858                 intel_crtc->config.dpll.m1 = clock.m1;
4859                 intel_crtc->config.dpll.m2 = clock.m2;
4860                 intel_crtc->config.dpll.p1 = clock.p1;
4861                 intel_crtc->config.dpll.p2 = clock.p2;
4862         }
4863
4864         if (IS_GEN2(dev))
4865                 i8xx_update_pll(intel_crtc,
4866                                 has_reduced_clock ? &reduced_clock : NULL,
4867                                 num_connectors);
4868         else if (IS_VALLEYVIEW(dev))
4869                 vlv_update_pll(intel_crtc);
4870         else
4871                 i9xx_update_pll(intel_crtc,
4872                                 has_reduced_clock ? &reduced_clock : NULL,
4873                                 num_connectors);
4874
4875         /* Set up the display plane register */
4876         dspcntr = DISPPLANE_GAMMA_ENABLE;
4877
4878         if (!IS_VALLEYVIEW(dev)) {
4879                 if (pipe == 0)
4880                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4881                 else
4882                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4883         }
4884
4885         intel_set_pipe_timings(intel_crtc);
4886
4887         /* pipesrc and dspsize control the size that is scaled from,
4888          * which should always be the user's requested size.
4889          */
4890         I915_WRITE(DSPSIZE(plane),
4891                    ((mode->vdisplay - 1) << 16) |
4892                    (mode->hdisplay - 1));
4893         I915_WRITE(DSPPOS(plane), 0);
4894
4895         i9xx_set_pipeconf(intel_crtc);
4896
4897         I915_WRITE(DSPCNTR(plane), dspcntr);
4898         POSTING_READ(DSPCNTR(plane));
4899
4900         ret = intel_pipe_set_base(crtc, x, y, fb);
4901
4902         intel_update_watermarks(dev);
4903
4904         return ret;
4905 }
4906
4907 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4908                                  struct intel_crtc_config *pipe_config)
4909 {
4910         struct drm_device *dev = crtc->base.dev;
4911         struct drm_i915_private *dev_priv = dev->dev_private;
4912         uint32_t tmp;
4913
4914         tmp = I915_READ(PFIT_CONTROL);
4915
4916         if (INTEL_INFO(dev)->gen < 4) {
4917                 if (crtc->pipe != PIPE_B)
4918                         return;
4919
4920                 /* gen2/3 store dither state in pfit control, needs to match */
4921                 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4922         } else {
4923                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4924                         return;
4925         }
4926
4927         if (!(tmp & PFIT_ENABLE))
4928                 return;
4929
4930         pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4931         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4932         if (INTEL_INFO(dev)->gen < 5)
4933                 pipe_config->gmch_pfit.lvds_border_bits =
4934                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4935 }
4936
4937 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4938                                  struct intel_crtc_config *pipe_config)
4939 {
4940         struct drm_device *dev = crtc->base.dev;
4941         struct drm_i915_private *dev_priv = dev->dev_private;
4942         uint32_t tmp;
4943
4944         pipe_config->cpu_transcoder = crtc->pipe;
4945         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4946
4947         tmp = I915_READ(PIPECONF(crtc->pipe));
4948         if (!(tmp & PIPECONF_ENABLE))
4949                 return false;
4950
4951         intel_get_pipe_timings(crtc, pipe_config);
4952
4953         i9xx_get_pfit_config(crtc, pipe_config);
4954
4955         if (INTEL_INFO(dev)->gen >= 4) {
4956                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4957                 pipe_config->pixel_multiplier =
4958                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4959                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4960         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4961                 tmp = I915_READ(DPLL(crtc->pipe));
4962                 pipe_config->pixel_multiplier =
4963                         ((tmp & SDVO_MULTIPLIER_MASK)
4964                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4965         } else {
4966                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
4967                  * port and will be fixed up in the encoder->get_config
4968                  * function. */
4969                 pipe_config->pixel_multiplier = 1;
4970         }
4971
4972         return true;
4973 }
4974
4975 static void ironlake_init_pch_refclk(struct drm_device *dev)
4976 {
4977         struct drm_i915_private *dev_priv = dev->dev_private;
4978         struct drm_mode_config *mode_config = &dev->mode_config;
4979         struct intel_encoder *encoder;
4980         u32 val, final;
4981         bool has_lvds = false;
4982         bool has_cpu_edp = false;
4983         bool has_panel = false;
4984         bool has_ck505 = false;
4985         bool can_ssc = false;
4986
4987         /* We need to take the global config into account */
4988         list_for_each_entry(encoder, &mode_config->encoder_list,
4989                             base.head) {
4990                 switch (encoder->type) {
4991                 case INTEL_OUTPUT_LVDS:
4992                         has_panel = true;
4993                         has_lvds = true;
4994                         break;
4995                 case INTEL_OUTPUT_EDP:
4996                         has_panel = true;
4997                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
4998                                 has_cpu_edp = true;
4999                         break;
5000                 }
5001         }
5002
5003         if (HAS_PCH_IBX(dev)) {
5004                 has_ck505 = dev_priv->vbt.display_clock_mode;
5005                 can_ssc = has_ck505;
5006         } else {
5007                 has_ck505 = false;
5008                 can_ssc = true;
5009         }
5010
5011         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5012                       has_panel, has_lvds, has_ck505);
5013
5014         /* Ironlake: try to setup display ref clock before DPLL
5015          * enabling. This is only under driver's control after
5016          * PCH B stepping, previous chipset stepping should be
5017          * ignoring this setting.
5018          */
5019         val = I915_READ(PCH_DREF_CONTROL);
5020
5021         /* As we must carefully and slowly disable/enable each source in turn,
5022          * compute the final state we want first and check if we need to
5023          * make any changes at all.
5024          */
5025         final = val;
5026         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5027         if (has_ck505)
5028                 final |= DREF_NONSPREAD_CK505_ENABLE;
5029         else
5030                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5031
5032         final &= ~DREF_SSC_SOURCE_MASK;
5033         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5034         final &= ~DREF_SSC1_ENABLE;
5035
5036         if (has_panel) {
5037                 final |= DREF_SSC_SOURCE_ENABLE;
5038
5039                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5040                         final |= DREF_SSC1_ENABLE;
5041
5042                 if (has_cpu_edp) {
5043                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5044                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5045                         else
5046                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5047                 } else
5048                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5049         } else {
5050                 final |= DREF_SSC_SOURCE_DISABLE;
5051                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5052         }
5053
5054         if (final == val)
5055                 return;
5056
5057         /* Always enable nonspread source */
5058         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5059
5060         if (has_ck505)
5061                 val |= DREF_NONSPREAD_CK505_ENABLE;
5062         else
5063                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5064
5065         if (has_panel) {
5066                 val &= ~DREF_SSC_SOURCE_MASK;
5067                 val |= DREF_SSC_SOURCE_ENABLE;
5068
5069                 /* SSC must be turned on before enabling the CPU output  */
5070                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5071                         DRM_DEBUG_KMS("Using SSC on panel\n");
5072                         val |= DREF_SSC1_ENABLE;
5073                 } else
5074                         val &= ~DREF_SSC1_ENABLE;
5075
5076                 /* Get SSC going before enabling the outputs */
5077                 I915_WRITE(PCH_DREF_CONTROL, val);
5078                 POSTING_READ(PCH_DREF_CONTROL);
5079                 udelay(200);
5080
5081                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5082
5083                 /* Enable CPU source on CPU attached eDP */
5084                 if (has_cpu_edp) {
5085                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5086                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5087                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5088                         }
5089                         else
5090                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5091                 } else
5092                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5093
5094                 I915_WRITE(PCH_DREF_CONTROL, val);
5095                 POSTING_READ(PCH_DREF_CONTROL);
5096                 udelay(200);
5097         } else {
5098                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5099
5100                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5101
5102                 /* Turn off CPU output */
5103                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5104
5105                 I915_WRITE(PCH_DREF_CONTROL, val);
5106                 POSTING_READ(PCH_DREF_CONTROL);
5107                 udelay(200);
5108
5109                 /* Turn off the SSC source */
5110                 val &= ~DREF_SSC_SOURCE_MASK;
5111                 val |= DREF_SSC_SOURCE_DISABLE;
5112
5113                 /* Turn off SSC1 */
5114                 val &= ~DREF_SSC1_ENABLE;
5115
5116                 I915_WRITE(PCH_DREF_CONTROL, val);
5117                 POSTING_READ(PCH_DREF_CONTROL);
5118                 udelay(200);
5119         }
5120
5121         BUG_ON(val != final);
5122 }
5123
5124 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5125 static void lpt_init_pch_refclk(struct drm_device *dev)
5126 {
5127         struct drm_i915_private *dev_priv = dev->dev_private;
5128         struct drm_mode_config *mode_config = &dev->mode_config;
5129         struct intel_encoder *encoder;
5130         bool has_vga = false;
5131         bool is_sdv = false;
5132         u32 tmp;
5133
5134         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5135                 switch (encoder->type) {
5136                 case INTEL_OUTPUT_ANALOG:
5137                         has_vga = true;
5138                         break;
5139                 }
5140         }
5141
5142         if (!has_vga)
5143                 return;
5144
5145         mutex_lock(&dev_priv->dpio_lock);
5146
5147         /* XXX: Rip out SDV support once Haswell ships for real. */
5148         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5149                 is_sdv = true;
5150
5151         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5152         tmp &= ~SBI_SSCCTL_DISABLE;
5153         tmp |= SBI_SSCCTL_PATHALT;
5154         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5155
5156         udelay(24);
5157
5158         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5159         tmp &= ~SBI_SSCCTL_PATHALT;
5160         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5161
5162         if (!is_sdv) {
5163                 tmp = I915_READ(SOUTH_CHICKEN2);
5164                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5165                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5166
5167                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5168                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5169                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5170
5171                 tmp = I915_READ(SOUTH_CHICKEN2);
5172                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5173                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5174
5175                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5176                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5177                                        100))
5178                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5179         }
5180
5181         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5182         tmp &= ~(0xFF << 24);
5183         tmp |= (0x12 << 24);
5184         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5185
5186         if (is_sdv) {
5187                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5188                 tmp |= 0x7FFF;
5189                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5190         }
5191
5192         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5193         tmp |= (1 << 11);
5194         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5195
5196         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5197         tmp |= (1 << 11);
5198         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5199
5200         if (is_sdv) {
5201                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5202                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5203                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5204
5205                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5206                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5207                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5208
5209                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5210                 tmp |= (0x3F << 8);
5211                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5212
5213                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5214                 tmp |= (0x3F << 8);
5215                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5216         }
5217
5218         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5219         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5220         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5221
5222         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5223         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5224         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5225
5226         if (!is_sdv) {
5227                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5228                 tmp &= ~(7 << 13);
5229                 tmp |= (5 << 13);
5230                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5231
5232                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5233                 tmp &= ~(7 << 13);
5234                 tmp |= (5 << 13);
5235                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5236         }
5237
5238         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5239         tmp &= ~0xFF;
5240         tmp |= 0x1C;
5241         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5242
5243         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5244         tmp &= ~0xFF;
5245         tmp |= 0x1C;
5246         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5247
5248         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5249         tmp &= ~(0xFF << 16);
5250         tmp |= (0x1C << 16);
5251         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5252
5253         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5254         tmp &= ~(0xFF << 16);
5255         tmp |= (0x1C << 16);
5256         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5257
5258         if (!is_sdv) {
5259                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5260                 tmp |= (1 << 27);
5261                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5262
5263                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5264                 tmp |= (1 << 27);
5265                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5266
5267                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5268                 tmp &= ~(0xF << 28);
5269                 tmp |= (4 << 28);
5270                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5271
5272                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5273                 tmp &= ~(0xF << 28);
5274                 tmp |= (4 << 28);
5275                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5276         }
5277
5278         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5279         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5280         tmp |= SBI_DBUFF0_ENABLE;
5281         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5282
5283         mutex_unlock(&dev_priv->dpio_lock);
5284 }
5285
5286 /*
5287  * Initialize reference clocks when the driver loads
5288  */
5289 void intel_init_pch_refclk(struct drm_device *dev)
5290 {
5291         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5292                 ironlake_init_pch_refclk(dev);
5293         else if (HAS_PCH_LPT(dev))
5294                 lpt_init_pch_refclk(dev);
5295 }
5296
5297 static int ironlake_get_refclk(struct drm_crtc *crtc)
5298 {
5299         struct drm_device *dev = crtc->dev;
5300         struct drm_i915_private *dev_priv = dev->dev_private;
5301         struct intel_encoder *encoder;
5302         int num_connectors = 0;
5303         bool is_lvds = false;
5304
5305         for_each_encoder_on_crtc(dev, crtc, encoder) {
5306                 switch (encoder->type) {
5307                 case INTEL_OUTPUT_LVDS:
5308                         is_lvds = true;
5309                         break;
5310                 }
5311                 num_connectors++;
5312         }
5313
5314         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5315                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5316                               dev_priv->vbt.lvds_ssc_freq);
5317                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5318         }
5319
5320         return 120000;
5321 }
5322
5323 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5324 {
5325         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5327         int pipe = intel_crtc->pipe;
5328         uint32_t val;
5329
5330         val = 0;
5331
5332         switch (intel_crtc->config.pipe_bpp) {
5333         case 18:
5334                 val |= PIPECONF_6BPC;
5335                 break;
5336         case 24:
5337                 val |= PIPECONF_8BPC;
5338                 break;
5339         case 30:
5340                 val |= PIPECONF_10BPC;
5341                 break;
5342         case 36:
5343                 val |= PIPECONF_12BPC;
5344                 break;
5345         default:
5346                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5347                 BUG();
5348         }
5349
5350         if (intel_crtc->config.dither)
5351                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5352
5353         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5354                 val |= PIPECONF_INTERLACED_ILK;
5355         else
5356                 val |= PIPECONF_PROGRESSIVE;
5357
5358         if (intel_crtc->config.limited_color_range)
5359                 val |= PIPECONF_COLOR_RANGE_SELECT;
5360
5361         I915_WRITE(PIPECONF(pipe), val);
5362         POSTING_READ(PIPECONF(pipe));
5363 }
5364
5365 /*
5366  * Set up the pipe CSC unit.
5367  *
5368  * Currently only full range RGB to limited range RGB conversion
5369  * is supported, but eventually this should handle various
5370  * RGB<->YCbCr scenarios as well.
5371  */
5372 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5373 {
5374         struct drm_device *dev = crtc->dev;
5375         struct drm_i915_private *dev_priv = dev->dev_private;
5376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5377         int pipe = intel_crtc->pipe;
5378         uint16_t coeff = 0x7800; /* 1.0 */
5379
5380         /*
5381          * TODO: Check what kind of values actually come out of the pipe
5382          * with these coeff/postoff values and adjust to get the best
5383          * accuracy. Perhaps we even need to take the bpc value into
5384          * consideration.
5385          */
5386
5387         if (intel_crtc->config.limited_color_range)
5388                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5389
5390         /*
5391          * GY/GU and RY/RU should be the other way around according
5392          * to BSpec, but reality doesn't agree. Just set them up in
5393          * a way that results in the correct picture.
5394          */
5395         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5396         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5397
5398         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5399         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5400
5401         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5402         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5403
5404         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5405         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5406         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5407
5408         if (INTEL_INFO(dev)->gen > 6) {
5409                 uint16_t postoff = 0;
5410
5411                 if (intel_crtc->config.limited_color_range)
5412                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5413
5414                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5415                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5416                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5417
5418                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5419         } else {
5420                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5421
5422                 if (intel_crtc->config.limited_color_range)
5423                         mode |= CSC_BLACK_SCREEN_OFFSET;
5424
5425                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5426         }
5427 }
5428
5429 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5430 {
5431         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5433         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5434         uint32_t val;
5435
5436         val = 0;
5437
5438         if (intel_crtc->config.dither)
5439                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5440
5441         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5442                 val |= PIPECONF_INTERLACED_ILK;
5443         else
5444                 val |= PIPECONF_PROGRESSIVE;
5445
5446         I915_WRITE(PIPECONF(cpu_transcoder), val);
5447         POSTING_READ(PIPECONF(cpu_transcoder));
5448
5449         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5450         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5451 }
5452
5453 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5454                                     intel_clock_t *clock,
5455                                     bool *has_reduced_clock,
5456                                     intel_clock_t *reduced_clock)
5457 {
5458         struct drm_device *dev = crtc->dev;
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460         struct intel_encoder *intel_encoder;
5461         int refclk;
5462         const intel_limit_t *limit;
5463         bool ret, is_lvds = false;
5464
5465         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5466                 switch (intel_encoder->type) {
5467                 case INTEL_OUTPUT_LVDS:
5468                         is_lvds = true;
5469                         break;
5470                 }
5471         }
5472
5473         refclk = ironlake_get_refclk(crtc);
5474
5475         /*
5476          * Returns a set of divisors for the desired target clock with the given
5477          * refclk, or FALSE.  The returned values represent the clock equation:
5478          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5479          */
5480         limit = intel_limit(crtc, refclk);
5481         ret = dev_priv->display.find_dpll(limit, crtc,
5482                                           to_intel_crtc(crtc)->config.port_clock,
5483                                           refclk, NULL, clock);
5484         if (!ret)
5485                 return false;
5486
5487         if (is_lvds && dev_priv->lvds_downclock_avail) {
5488                 /*
5489                  * Ensure we match the reduced clock's P to the target clock.
5490                  * If the clocks don't match, we can't switch the display clock
5491                  * by using the FP0/FP1. In such case we will disable the LVDS
5492                  * downclock feature.
5493                 */
5494                 *has_reduced_clock =
5495                         dev_priv->display.find_dpll(limit, crtc,
5496                                                     dev_priv->lvds_downclock,
5497                                                     refclk, clock,
5498                                                     reduced_clock);
5499         }
5500
5501         return true;
5502 }
5503
5504 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5505 {
5506         struct drm_i915_private *dev_priv = dev->dev_private;
5507         uint32_t temp;
5508
5509         temp = I915_READ(SOUTH_CHICKEN1);
5510         if (temp & FDI_BC_BIFURCATION_SELECT)
5511                 return;
5512
5513         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5514         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5515
5516         temp |= FDI_BC_BIFURCATION_SELECT;
5517         DRM_DEBUG_KMS("enabling fdi C rx\n");
5518         I915_WRITE(SOUTH_CHICKEN1, temp);
5519         POSTING_READ(SOUTH_CHICKEN1);
5520 }
5521
5522 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5523 {
5524         struct drm_device *dev = intel_crtc->base.dev;
5525         struct drm_i915_private *dev_priv = dev->dev_private;
5526
5527         switch (intel_crtc->pipe) {
5528         case PIPE_A:
5529                 break;
5530         case PIPE_B:
5531                 if (intel_crtc->config.fdi_lanes > 2)
5532                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5533                 else
5534                         cpt_enable_fdi_bc_bifurcation(dev);
5535
5536                 break;
5537         case PIPE_C:
5538                 cpt_enable_fdi_bc_bifurcation(dev);
5539
5540                 break;
5541         default:
5542                 BUG();
5543         }
5544 }
5545
5546 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5547 {
5548         /*
5549          * Account for spread spectrum to avoid
5550          * oversubscribing the link. Max center spread
5551          * is 2.5%; use 5% for safety's sake.
5552          */
5553         u32 bps = target_clock * bpp * 21 / 20;
5554         return bps / (link_bw * 8) + 1;
5555 }
5556
5557 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5558 {
5559         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5560 }
5561
5562 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5563                                       u32 *fp,
5564                                       intel_clock_t *reduced_clock, u32 *fp2)
5565 {
5566         struct drm_crtc *crtc = &intel_crtc->base;
5567         struct drm_device *dev = crtc->dev;
5568         struct drm_i915_private *dev_priv = dev->dev_private;
5569         struct intel_encoder *intel_encoder;
5570         uint32_t dpll;
5571         int factor, num_connectors = 0;
5572         bool is_lvds = false, is_sdvo = false;
5573
5574         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5575                 switch (intel_encoder->type) {
5576                 case INTEL_OUTPUT_LVDS:
5577                         is_lvds = true;
5578                         break;
5579                 case INTEL_OUTPUT_SDVO:
5580                 case INTEL_OUTPUT_HDMI:
5581                         is_sdvo = true;
5582                         break;
5583                 }
5584
5585                 num_connectors++;
5586         }
5587
5588         /* Enable autotuning of the PLL clock (if permissible) */
5589         factor = 21;
5590         if (is_lvds) {
5591                 if ((intel_panel_use_ssc(dev_priv) &&
5592                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5593                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5594                         factor = 25;
5595         } else if (intel_crtc->config.sdvo_tv_clock)
5596                 factor = 20;
5597
5598         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5599                 *fp |= FP_CB_TUNE;
5600
5601         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5602                 *fp2 |= FP_CB_TUNE;
5603
5604         dpll = 0;
5605
5606         if (is_lvds)
5607                 dpll |= DPLLB_MODE_LVDS;
5608         else
5609                 dpll |= DPLLB_MODE_DAC_SERIAL;
5610
5611         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5612                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5613
5614         if (is_sdvo)
5615                 dpll |= DPLL_DVO_HIGH_SPEED;
5616         if (intel_crtc->config.has_dp_encoder)
5617                 dpll |= DPLL_DVO_HIGH_SPEED;
5618
5619         /* compute bitmask from p1 value */
5620         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5621         /* also FPA1 */
5622         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5623
5624         switch (intel_crtc->config.dpll.p2) {
5625         case 5:
5626                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5627                 break;
5628         case 7:
5629                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5630                 break;
5631         case 10:
5632                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5633                 break;
5634         case 14:
5635                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5636                 break;
5637         }
5638
5639         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5640                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5641         else
5642                 dpll |= PLL_REF_INPUT_DREFCLK;
5643
5644         return dpll | DPLL_VCO_ENABLE;
5645 }
5646
5647 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5648                                   int x, int y,
5649                                   struct drm_framebuffer *fb)
5650 {
5651         struct drm_device *dev = crtc->dev;
5652         struct drm_i915_private *dev_priv = dev->dev_private;
5653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5654         int pipe = intel_crtc->pipe;
5655         int plane = intel_crtc->plane;
5656         int num_connectors = 0;
5657         intel_clock_t clock, reduced_clock;
5658         u32 dpll = 0, fp = 0, fp2 = 0;
5659         bool ok, has_reduced_clock = false;
5660         bool is_lvds = false;
5661         struct intel_encoder *encoder;
5662         struct intel_shared_dpll *pll;
5663         int ret;
5664
5665         for_each_encoder_on_crtc(dev, crtc, encoder) {
5666                 switch (encoder->type) {
5667                 case INTEL_OUTPUT_LVDS:
5668                         is_lvds = true;
5669                         break;
5670                 }
5671
5672                 num_connectors++;
5673         }
5674
5675         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5676              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5677
5678         ok = ironlake_compute_clocks(crtc, &clock,
5679                                      &has_reduced_clock, &reduced_clock);
5680         if (!ok && !intel_crtc->config.clock_set) {
5681                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5682                 return -EINVAL;
5683         }
5684         /* Compat-code for transition, will disappear. */
5685         if (!intel_crtc->config.clock_set) {
5686                 intel_crtc->config.dpll.n = clock.n;
5687                 intel_crtc->config.dpll.m1 = clock.m1;
5688                 intel_crtc->config.dpll.m2 = clock.m2;
5689                 intel_crtc->config.dpll.p1 = clock.p1;
5690                 intel_crtc->config.dpll.p2 = clock.p2;
5691         }
5692
5693         /* Ensure that the cursor is valid for the new mode before changing... */
5694         intel_crtc_update_cursor(crtc, true);
5695
5696         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5697         if (intel_crtc->config.has_pch_encoder) {
5698                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5699                 if (has_reduced_clock)
5700                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5701
5702                 dpll = ironlake_compute_dpll(intel_crtc,
5703                                              &fp, &reduced_clock,
5704                                              has_reduced_clock ? &fp2 : NULL);
5705
5706                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5707                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5708                 if (has_reduced_clock)
5709                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5710                 else
5711                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5712
5713                 pll = intel_get_shared_dpll(intel_crtc, dpll, fp);
5714                 if (pll == NULL) {
5715                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5716                                          pipe_name(pipe));
5717                         return -EINVAL;
5718                 }
5719         } else
5720                 intel_put_shared_dpll(intel_crtc);
5721
5722         if (intel_crtc->config.has_dp_encoder)
5723                 intel_dp_set_m_n(intel_crtc);
5724
5725         for_each_encoder_on_crtc(dev, crtc, encoder)
5726                 if (encoder->pre_pll_enable)
5727                         encoder->pre_pll_enable(encoder);
5728
5729         if (is_lvds && has_reduced_clock && i915_powersave)
5730                 intel_crtc->lowfreq_avail = true;
5731         else
5732                 intel_crtc->lowfreq_avail = false;
5733
5734         if (intel_crtc->config.has_pch_encoder) {
5735                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5736
5737                 I915_WRITE(PCH_DPLL(pll->id), dpll);
5738
5739                 /* Wait for the clocks to stabilize. */
5740                 POSTING_READ(PCH_DPLL(pll->id));
5741                 udelay(150);
5742
5743                 /* The pixel multiplier can only be updated once the
5744                  * DPLL is enabled and the clocks are stable.
5745                  *
5746                  * So write it again.
5747                  */
5748                 I915_WRITE(PCH_DPLL(pll->id), dpll);
5749
5750                 if (has_reduced_clock)
5751                         I915_WRITE(PCH_FP1(pll->id), fp2);
5752                 else
5753                         I915_WRITE(PCH_FP1(pll->id), fp);
5754         }
5755
5756         intel_set_pipe_timings(intel_crtc);
5757
5758         if (intel_crtc->config.has_pch_encoder) {
5759                 intel_cpu_transcoder_set_m_n(intel_crtc,
5760                                              &intel_crtc->config.fdi_m_n);
5761         }
5762
5763         if (IS_IVYBRIDGE(dev))
5764                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5765
5766         ironlake_set_pipeconf(crtc);
5767
5768         /* Set up the display plane register */
5769         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5770         POSTING_READ(DSPCNTR(plane));
5771
5772         ret = intel_pipe_set_base(crtc, x, y, fb);
5773
5774         intel_update_watermarks(dev);
5775
5776         return ret;
5777 }
5778
5779 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5780                                         struct intel_crtc_config *pipe_config)
5781 {
5782         struct drm_device *dev = crtc->base.dev;
5783         struct drm_i915_private *dev_priv = dev->dev_private;
5784         enum transcoder transcoder = pipe_config->cpu_transcoder;
5785
5786         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5787         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5788         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5789                                         & ~TU_SIZE_MASK;
5790         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5791         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5792                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5793 }
5794
5795 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5796                                      struct intel_crtc_config *pipe_config)
5797 {
5798         struct drm_device *dev = crtc->base.dev;
5799         struct drm_i915_private *dev_priv = dev->dev_private;
5800         uint32_t tmp;
5801
5802         tmp = I915_READ(PF_CTL(crtc->pipe));
5803
5804         if (tmp & PF_ENABLE) {
5805                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5806                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5807
5808                 /* We currently do not free assignements of panel fitters on
5809                  * ivb/hsw (since we don't use the higher upscaling modes which
5810                  * differentiates them) so just WARN about this case for now. */
5811                 if (IS_GEN7(dev)) {
5812                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5813                                 PF_PIPE_SEL_IVB(crtc->pipe));
5814                 }
5815         }
5816 }
5817
5818 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5819                                      struct intel_crtc_config *pipe_config)
5820 {
5821         struct drm_device *dev = crtc->base.dev;
5822         struct drm_i915_private *dev_priv = dev->dev_private;
5823         uint32_t tmp;
5824
5825         pipe_config->cpu_transcoder = crtc->pipe;
5826         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5827
5828         tmp = I915_READ(PIPECONF(crtc->pipe));
5829         if (!(tmp & PIPECONF_ENABLE))
5830                 return false;
5831
5832         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5833                 struct intel_shared_dpll *pll;
5834
5835                 pipe_config->has_pch_encoder = true;
5836
5837                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5838                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5839                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5840
5841                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5842
5843                 /* XXX: Can't properly read out the pch dpll pixel multiplier
5844                  * since we don't have state tracking for pch clocks yet. */
5845                 pipe_config->pixel_multiplier = 1;
5846
5847                 if (HAS_PCH_IBX(dev_priv->dev)) {
5848                         pipe_config->shared_dpll = crtc->pipe;
5849                 } else {
5850                         tmp = I915_READ(PCH_DPLL_SEL);
5851                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5852                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5853                         else
5854                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5855                 }
5856
5857                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5858
5859                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5860                                            &pipe_config->dpll_hw_state));
5861         } else {
5862                 pipe_config->pixel_multiplier = 1;
5863         }
5864
5865         intel_get_pipe_timings(crtc, pipe_config);
5866
5867         ironlake_get_pfit_config(crtc, pipe_config);
5868
5869         return true;
5870 }
5871
5872 static void haswell_modeset_global_resources(struct drm_device *dev)
5873 {
5874         bool enable = false;
5875         struct intel_crtc *crtc;
5876
5877         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5878                 if (!crtc->base.enabled)
5879                         continue;
5880
5881                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5882                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
5883                         enable = true;
5884         }
5885
5886         intel_set_power_well(dev, enable);
5887 }
5888
5889 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5890                                  int x, int y,
5891                                  struct drm_framebuffer *fb)
5892 {
5893         struct drm_device *dev = crtc->dev;
5894         struct drm_i915_private *dev_priv = dev->dev_private;
5895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5896         int plane = intel_crtc->plane;
5897         int ret;
5898
5899         if (!intel_ddi_pll_mode_set(crtc))
5900                 return -EINVAL;
5901
5902         /* Ensure that the cursor is valid for the new mode before changing... */
5903         intel_crtc_update_cursor(crtc, true);
5904
5905         if (intel_crtc->config.has_dp_encoder)
5906                 intel_dp_set_m_n(intel_crtc);
5907
5908         intel_crtc->lowfreq_avail = false;
5909
5910         intel_set_pipe_timings(intel_crtc);
5911
5912         if (intel_crtc->config.has_pch_encoder) {
5913                 intel_cpu_transcoder_set_m_n(intel_crtc,
5914                                              &intel_crtc->config.fdi_m_n);
5915         }
5916
5917         haswell_set_pipeconf(crtc);
5918
5919         intel_set_pipe_csc(crtc);
5920
5921         /* Set up the display plane register */
5922         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5923         POSTING_READ(DSPCNTR(plane));
5924
5925         ret = intel_pipe_set_base(crtc, x, y, fb);
5926
5927         intel_update_watermarks(dev);
5928
5929         return ret;
5930 }
5931
5932 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5933                                     struct intel_crtc_config *pipe_config)
5934 {
5935         struct drm_device *dev = crtc->base.dev;
5936         struct drm_i915_private *dev_priv = dev->dev_private;
5937         enum intel_display_power_domain pfit_domain;
5938         uint32_t tmp;
5939
5940         pipe_config->cpu_transcoder = crtc->pipe;
5941         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5942
5943         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5944         if (tmp & TRANS_DDI_FUNC_ENABLE) {
5945                 enum pipe trans_edp_pipe;
5946                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5947                 default:
5948                         WARN(1, "unknown pipe linked to edp transcoder\n");
5949                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5950                 case TRANS_DDI_EDP_INPUT_A_ON:
5951                         trans_edp_pipe = PIPE_A;
5952                         break;
5953                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5954                         trans_edp_pipe = PIPE_B;
5955                         break;
5956                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5957                         trans_edp_pipe = PIPE_C;
5958                         break;
5959                 }
5960
5961                 if (trans_edp_pipe == crtc->pipe)
5962                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
5963         }
5964
5965         if (!intel_display_power_enabled(dev,
5966                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5967                 return false;
5968
5969         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5970         if (!(tmp & PIPECONF_ENABLE))
5971                 return false;
5972
5973         /*
5974          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5975          * DDI E. So just check whether this pipe is wired to DDI E and whether
5976          * the PCH transcoder is on.
5977          */
5978         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5979         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5980             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5981                 pipe_config->has_pch_encoder = true;
5982
5983                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5984                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5985                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5986
5987                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5988         }
5989
5990         intel_get_pipe_timings(crtc, pipe_config);
5991
5992         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5993         if (intel_display_power_enabled(dev, pfit_domain))
5994                 ironlake_get_pfit_config(crtc, pipe_config);
5995
5996         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5997                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
5998
5999         pipe_config->pixel_multiplier = 1;
6000
6001         return true;
6002 }
6003
6004 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6005                                int x, int y,
6006                                struct drm_framebuffer *fb)
6007 {
6008         struct drm_device *dev = crtc->dev;
6009         struct drm_i915_private *dev_priv = dev->dev_private;
6010         struct drm_encoder_helper_funcs *encoder_funcs;
6011         struct intel_encoder *encoder;
6012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6013         struct drm_display_mode *adjusted_mode =
6014                 &intel_crtc->config.adjusted_mode;
6015         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6016         int pipe = intel_crtc->pipe;
6017         int ret;
6018
6019         drm_vblank_pre_modeset(dev, pipe);
6020
6021         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6022
6023         drm_vblank_post_modeset(dev, pipe);
6024
6025         if (ret != 0)
6026                 return ret;
6027
6028         for_each_encoder_on_crtc(dev, crtc, encoder) {
6029                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6030                         encoder->base.base.id,
6031                         drm_get_encoder_name(&encoder->base),
6032                         mode->base.id, mode->name);
6033                 if (encoder->mode_set) {
6034                         encoder->mode_set(encoder);
6035                 } else {
6036                         encoder_funcs = encoder->base.helper_private;
6037                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6038                 }
6039         }
6040
6041         return 0;
6042 }
6043
6044 static bool intel_eld_uptodate(struct drm_connector *connector,
6045                                int reg_eldv, uint32_t bits_eldv,
6046                                int reg_elda, uint32_t bits_elda,
6047                                int reg_edid)
6048 {
6049         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6050         uint8_t *eld = connector->eld;
6051         uint32_t i;
6052
6053         i = I915_READ(reg_eldv);
6054         i &= bits_eldv;
6055
6056         if (!eld[0])
6057                 return !i;
6058
6059         if (!i)
6060                 return false;
6061
6062         i = I915_READ(reg_elda);
6063         i &= ~bits_elda;
6064         I915_WRITE(reg_elda, i);
6065
6066         for (i = 0; i < eld[2]; i++)
6067                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6068                         return false;
6069
6070         return true;
6071 }
6072
6073 static void g4x_write_eld(struct drm_connector *connector,
6074                           struct drm_crtc *crtc)
6075 {
6076         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6077         uint8_t *eld = connector->eld;
6078         uint32_t eldv;
6079         uint32_t len;
6080         uint32_t i;
6081
6082         i = I915_READ(G4X_AUD_VID_DID);
6083
6084         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6085                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6086         else
6087                 eldv = G4X_ELDV_DEVCTG;
6088
6089         if (intel_eld_uptodate(connector,
6090                                G4X_AUD_CNTL_ST, eldv,
6091                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6092                                G4X_HDMIW_HDMIEDID))
6093                 return;
6094
6095         i = I915_READ(G4X_AUD_CNTL_ST);
6096         i &= ~(eldv | G4X_ELD_ADDR);
6097         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6098         I915_WRITE(G4X_AUD_CNTL_ST, i);
6099
6100         if (!eld[0])
6101                 return;
6102
6103         len = min_t(uint8_t, eld[2], len);
6104         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6105         for (i = 0; i < len; i++)
6106                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6107
6108         i = I915_READ(G4X_AUD_CNTL_ST);
6109         i |= eldv;
6110         I915_WRITE(G4X_AUD_CNTL_ST, i);
6111 }
6112
6113 static void haswell_write_eld(struct drm_connector *connector,
6114                                      struct drm_crtc *crtc)
6115 {
6116         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6117         uint8_t *eld = connector->eld;
6118         struct drm_device *dev = crtc->dev;
6119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6120         uint32_t eldv;
6121         uint32_t i;
6122         int len;
6123         int pipe = to_intel_crtc(crtc)->pipe;
6124         int tmp;
6125
6126         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6127         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6128         int aud_config = HSW_AUD_CFG(pipe);
6129         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6130
6131
6132         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6133
6134         /* Audio output enable */
6135         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6136         tmp = I915_READ(aud_cntrl_st2);
6137         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6138         I915_WRITE(aud_cntrl_st2, tmp);
6139
6140         /* Wait for 1 vertical blank */
6141         intel_wait_for_vblank(dev, pipe);
6142
6143         /* Set ELD valid state */
6144         tmp = I915_READ(aud_cntrl_st2);
6145         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6146         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6147         I915_WRITE(aud_cntrl_st2, tmp);
6148         tmp = I915_READ(aud_cntrl_st2);
6149         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6150
6151         /* Enable HDMI mode */
6152         tmp = I915_READ(aud_config);
6153         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6154         /* clear N_programing_enable and N_value_index */
6155         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6156         I915_WRITE(aud_config, tmp);
6157
6158         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6159
6160         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6161         intel_crtc->eld_vld = true;
6162
6163         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6164                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6165                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6166                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6167         } else
6168                 I915_WRITE(aud_config, 0);
6169
6170         if (intel_eld_uptodate(connector,
6171                                aud_cntrl_st2, eldv,
6172                                aud_cntl_st, IBX_ELD_ADDRESS,
6173                                hdmiw_hdmiedid))
6174                 return;
6175
6176         i = I915_READ(aud_cntrl_st2);
6177         i &= ~eldv;
6178         I915_WRITE(aud_cntrl_st2, i);
6179
6180         if (!eld[0])
6181                 return;
6182
6183         i = I915_READ(aud_cntl_st);
6184         i &= ~IBX_ELD_ADDRESS;
6185         I915_WRITE(aud_cntl_st, i);
6186         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6187         DRM_DEBUG_DRIVER("port num:%d\n", i);
6188
6189         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6190         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6191         for (i = 0; i < len; i++)
6192                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6193
6194         i = I915_READ(aud_cntrl_st2);
6195         i |= eldv;
6196         I915_WRITE(aud_cntrl_st2, i);
6197
6198 }
6199
6200 static void ironlake_write_eld(struct drm_connector *connector,
6201                                      struct drm_crtc *crtc)
6202 {
6203         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6204         uint8_t *eld = connector->eld;
6205         uint32_t eldv;
6206         uint32_t i;
6207         int len;
6208         int hdmiw_hdmiedid;
6209         int aud_config;
6210         int aud_cntl_st;
6211         int aud_cntrl_st2;
6212         int pipe = to_intel_crtc(crtc)->pipe;
6213
6214         if (HAS_PCH_IBX(connector->dev)) {
6215                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6216                 aud_config = IBX_AUD_CFG(pipe);
6217                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6218                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6219         } else {
6220                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6221                 aud_config = CPT_AUD_CFG(pipe);
6222                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6223                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6224         }
6225
6226         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6227
6228         i = I915_READ(aud_cntl_st);
6229         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6230         if (!i) {
6231                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6232                 /* operate blindly on all ports */
6233                 eldv = IBX_ELD_VALIDB;
6234                 eldv |= IBX_ELD_VALIDB << 4;
6235                 eldv |= IBX_ELD_VALIDB << 8;
6236         } else {
6237                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6238                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6239         }
6240
6241         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6242                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6243                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6244                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6245         } else
6246                 I915_WRITE(aud_config, 0);
6247
6248         if (intel_eld_uptodate(connector,
6249                                aud_cntrl_st2, eldv,
6250                                aud_cntl_st, IBX_ELD_ADDRESS,
6251                                hdmiw_hdmiedid))
6252                 return;
6253
6254         i = I915_READ(aud_cntrl_st2);
6255         i &= ~eldv;
6256         I915_WRITE(aud_cntrl_st2, i);
6257
6258         if (!eld[0])
6259                 return;
6260
6261         i = I915_READ(aud_cntl_st);
6262         i &= ~IBX_ELD_ADDRESS;
6263         I915_WRITE(aud_cntl_st, i);
6264
6265         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6266         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6267         for (i = 0; i < len; i++)
6268                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6269
6270         i = I915_READ(aud_cntrl_st2);
6271         i |= eldv;
6272         I915_WRITE(aud_cntrl_st2, i);
6273 }
6274
6275 void intel_write_eld(struct drm_encoder *encoder,
6276                      struct drm_display_mode *mode)
6277 {
6278         struct drm_crtc *crtc = encoder->crtc;
6279         struct drm_connector *connector;
6280         struct drm_device *dev = encoder->dev;
6281         struct drm_i915_private *dev_priv = dev->dev_private;
6282
6283         connector = drm_select_eld(encoder, mode);
6284         if (!connector)
6285                 return;
6286
6287         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6288                          connector->base.id,
6289                          drm_get_connector_name(connector),
6290                          connector->encoder->base.id,
6291                          drm_get_encoder_name(connector->encoder));
6292
6293         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6294
6295         if (dev_priv->display.write_eld)
6296                 dev_priv->display.write_eld(connector, crtc);
6297 }
6298
6299 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6300 void intel_crtc_load_lut(struct drm_crtc *crtc)
6301 {
6302         struct drm_device *dev = crtc->dev;
6303         struct drm_i915_private *dev_priv = dev->dev_private;
6304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6305         enum pipe pipe = intel_crtc->pipe;
6306         int palreg = PALETTE(pipe);
6307         int i;
6308         bool reenable_ips = false;
6309
6310         /* The clocks have to be on to load the palette. */
6311         if (!crtc->enabled || !intel_crtc->active)
6312                 return;
6313
6314         if (!HAS_PCH_SPLIT(dev_priv->dev))
6315                 assert_pll_enabled(dev_priv, pipe);
6316
6317         /* use legacy palette for Ironlake */
6318         if (HAS_PCH_SPLIT(dev))
6319                 palreg = LGC_PALETTE(pipe);
6320
6321         /* Workaround : Do not read or write the pipe palette/gamma data while
6322          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6323          */
6324         if (intel_crtc->config.ips_enabled &&
6325             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6326              GAMMA_MODE_MODE_SPLIT)) {
6327                 hsw_disable_ips(intel_crtc);
6328                 reenable_ips = true;
6329         }
6330
6331         for (i = 0; i < 256; i++) {
6332                 I915_WRITE(palreg + 4 * i,
6333                            (intel_crtc->lut_r[i] << 16) |
6334                            (intel_crtc->lut_g[i] << 8) |
6335                            intel_crtc->lut_b[i]);
6336         }
6337
6338         if (reenable_ips)
6339                 hsw_enable_ips(intel_crtc);
6340 }
6341
6342 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6343 {
6344         struct drm_device *dev = crtc->dev;
6345         struct drm_i915_private *dev_priv = dev->dev_private;
6346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347         bool visible = base != 0;
6348         u32 cntl;
6349
6350         if (intel_crtc->cursor_visible == visible)
6351                 return;
6352
6353         cntl = I915_READ(_CURACNTR);
6354         if (visible) {
6355                 /* On these chipsets we can only modify the base whilst
6356                  * the cursor is disabled.
6357                  */
6358                 I915_WRITE(_CURABASE, base);
6359
6360                 cntl &= ~(CURSOR_FORMAT_MASK);
6361                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6362                 cntl |= CURSOR_ENABLE |
6363                         CURSOR_GAMMA_ENABLE |
6364                         CURSOR_FORMAT_ARGB;
6365         } else
6366                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6367         I915_WRITE(_CURACNTR, cntl);
6368
6369         intel_crtc->cursor_visible = visible;
6370 }
6371
6372 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6373 {
6374         struct drm_device *dev = crtc->dev;
6375         struct drm_i915_private *dev_priv = dev->dev_private;
6376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6377         int pipe = intel_crtc->pipe;
6378         bool visible = base != 0;
6379
6380         if (intel_crtc->cursor_visible != visible) {
6381                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6382                 if (base) {
6383                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6384                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6385                         cntl |= pipe << 28; /* Connect to correct pipe */
6386                 } else {
6387                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6388                         cntl |= CURSOR_MODE_DISABLE;
6389                 }
6390                 I915_WRITE(CURCNTR(pipe), cntl);
6391
6392                 intel_crtc->cursor_visible = visible;
6393         }
6394         /* and commit changes on next vblank */
6395         I915_WRITE(CURBASE(pipe), base);
6396 }
6397
6398 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6399 {
6400         struct drm_device *dev = crtc->dev;
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6403         int pipe = intel_crtc->pipe;
6404         bool visible = base != 0;
6405
6406         if (intel_crtc->cursor_visible != visible) {
6407                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6408                 if (base) {
6409                         cntl &= ~CURSOR_MODE;
6410                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6411                 } else {
6412                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6413                         cntl |= CURSOR_MODE_DISABLE;
6414                 }
6415                 if (IS_HASWELL(dev))
6416                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6417                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6418
6419                 intel_crtc->cursor_visible = visible;
6420         }
6421         /* and commit changes on next vblank */
6422         I915_WRITE(CURBASE_IVB(pipe), base);
6423 }
6424
6425 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6426 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6427                                      bool on)
6428 {
6429         struct drm_device *dev = crtc->dev;
6430         struct drm_i915_private *dev_priv = dev->dev_private;
6431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6432         int pipe = intel_crtc->pipe;
6433         int x = intel_crtc->cursor_x;
6434         int y = intel_crtc->cursor_y;
6435         u32 base, pos;
6436         bool visible;
6437
6438         pos = 0;
6439
6440         if (on && crtc->enabled && crtc->fb) {
6441                 base = intel_crtc->cursor_addr;
6442                 if (x > (int) crtc->fb->width)
6443                         base = 0;
6444
6445                 if (y > (int) crtc->fb->height)
6446                         base = 0;
6447         } else
6448                 base = 0;
6449
6450         if (x < 0) {
6451                 if (x + intel_crtc->cursor_width < 0)
6452                         base = 0;
6453
6454                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6455                 x = -x;
6456         }
6457         pos |= x << CURSOR_X_SHIFT;
6458
6459         if (y < 0) {
6460                 if (y + intel_crtc->cursor_height < 0)
6461                         base = 0;
6462
6463                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6464                 y = -y;
6465         }
6466         pos |= y << CURSOR_Y_SHIFT;
6467
6468         visible = base != 0;
6469         if (!visible && !intel_crtc->cursor_visible)
6470                 return;
6471
6472         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6473                 I915_WRITE(CURPOS_IVB(pipe), pos);
6474                 ivb_update_cursor(crtc, base);
6475         } else {
6476                 I915_WRITE(CURPOS(pipe), pos);
6477                 if (IS_845G(dev) || IS_I865G(dev))
6478                         i845_update_cursor(crtc, base);
6479                 else
6480                         i9xx_update_cursor(crtc, base);
6481         }
6482 }
6483
6484 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6485                                  struct drm_file *file,
6486                                  uint32_t handle,
6487                                  uint32_t width, uint32_t height)
6488 {
6489         struct drm_device *dev = crtc->dev;
6490         struct drm_i915_private *dev_priv = dev->dev_private;
6491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6492         struct drm_i915_gem_object *obj;
6493         uint32_t addr;
6494         int ret;
6495
6496         /* if we want to turn off the cursor ignore width and height */
6497         if (!handle) {
6498                 DRM_DEBUG_KMS("cursor off\n");
6499                 addr = 0;
6500                 obj = NULL;
6501                 mutex_lock(&dev->struct_mutex);
6502                 goto finish;
6503         }
6504
6505         /* Currently we only support 64x64 cursors */
6506         if (width != 64 || height != 64) {
6507                 DRM_ERROR("we currently only support 64x64 cursors\n");
6508                 return -EINVAL;
6509         }
6510
6511         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6512         if (&obj->base == NULL)
6513                 return -ENOENT;
6514
6515         if (obj->base.size < width * height * 4) {
6516                 DRM_ERROR("buffer is to small\n");
6517                 ret = -ENOMEM;
6518                 goto fail;
6519         }
6520
6521         /* we only need to pin inside GTT if cursor is non-phy */
6522         mutex_lock(&dev->struct_mutex);
6523         if (!dev_priv->info->cursor_needs_physical) {
6524                 unsigned alignment;
6525
6526                 if (obj->tiling_mode) {
6527                         DRM_ERROR("cursor cannot be tiled\n");
6528                         ret = -EINVAL;
6529                         goto fail_locked;
6530                 }
6531
6532                 /* Note that the w/a also requires 2 PTE of padding following
6533                  * the bo. We currently fill all unused PTE with the shadow
6534                  * page and so we should always have valid PTE following the
6535                  * cursor preventing the VT-d warning.
6536                  */
6537                 alignment = 0;
6538                 if (need_vtd_wa(dev))
6539                         alignment = 64*1024;
6540
6541                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6542                 if (ret) {
6543                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6544                         goto fail_locked;
6545                 }
6546
6547                 ret = i915_gem_object_put_fence(obj);
6548                 if (ret) {
6549                         DRM_ERROR("failed to release fence for cursor");
6550                         goto fail_unpin;
6551                 }
6552
6553                 addr = obj->gtt_offset;
6554         } else {
6555                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6556                 ret = i915_gem_attach_phys_object(dev, obj,
6557                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6558                                                   align);
6559                 if (ret) {
6560                         DRM_ERROR("failed to attach phys object\n");
6561                         goto fail_locked;
6562                 }
6563                 addr = obj->phys_obj->handle->busaddr;
6564         }
6565
6566         if (IS_GEN2(dev))
6567                 I915_WRITE(CURSIZE, (height << 12) | width);
6568
6569  finish:
6570         if (intel_crtc->cursor_bo) {
6571                 if (dev_priv->info->cursor_needs_physical) {
6572                         if (intel_crtc->cursor_bo != obj)
6573                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6574                 } else
6575                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6576                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6577         }
6578
6579         mutex_unlock(&dev->struct_mutex);
6580
6581         intel_crtc->cursor_addr = addr;
6582         intel_crtc->cursor_bo = obj;
6583         intel_crtc->cursor_width = width;
6584         intel_crtc->cursor_height = height;
6585
6586         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6587
6588         return 0;
6589 fail_unpin:
6590         i915_gem_object_unpin(obj);
6591 fail_locked:
6592         mutex_unlock(&dev->struct_mutex);
6593 fail:
6594         drm_gem_object_unreference_unlocked(&obj->base);
6595         return ret;
6596 }
6597
6598 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6599 {
6600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601
6602         intel_crtc->cursor_x = x;
6603         intel_crtc->cursor_y = y;
6604
6605         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6606
6607         return 0;
6608 }
6609
6610 /** Sets the color ramps on behalf of RandR */
6611 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6612                                  u16 blue, int regno)
6613 {
6614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6615
6616         intel_crtc->lut_r[regno] = red >> 8;
6617         intel_crtc->lut_g[regno] = green >> 8;
6618         intel_crtc->lut_b[regno] = blue >> 8;
6619 }
6620
6621 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6622                              u16 *blue, int regno)
6623 {
6624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6625
6626         *red = intel_crtc->lut_r[regno] << 8;
6627         *green = intel_crtc->lut_g[regno] << 8;
6628         *blue = intel_crtc->lut_b[regno] << 8;
6629 }
6630
6631 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6632                                  u16 *blue, uint32_t start, uint32_t size)
6633 {
6634         int end = (start + size > 256) ? 256 : start + size, i;
6635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6636
6637         for (i = start; i < end; i++) {
6638                 intel_crtc->lut_r[i] = red[i] >> 8;
6639                 intel_crtc->lut_g[i] = green[i] >> 8;
6640                 intel_crtc->lut_b[i] = blue[i] >> 8;
6641         }
6642
6643         intel_crtc_load_lut(crtc);
6644 }
6645
6646 /* VESA 640x480x72Hz mode to set on the pipe */
6647 static struct drm_display_mode load_detect_mode = {
6648         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6649                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6650 };
6651
6652 static struct drm_framebuffer *
6653 intel_framebuffer_create(struct drm_device *dev,
6654                          struct drm_mode_fb_cmd2 *mode_cmd,
6655                          struct drm_i915_gem_object *obj)
6656 {
6657         struct intel_framebuffer *intel_fb;
6658         int ret;
6659
6660         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6661         if (!intel_fb) {
6662                 drm_gem_object_unreference_unlocked(&obj->base);
6663                 return ERR_PTR(-ENOMEM);
6664         }
6665
6666         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6667         if (ret) {
6668                 drm_gem_object_unreference_unlocked(&obj->base);
6669                 kfree(intel_fb);
6670                 return ERR_PTR(ret);
6671         }
6672
6673         return &intel_fb->base;
6674 }
6675
6676 static u32
6677 intel_framebuffer_pitch_for_width(int width, int bpp)
6678 {
6679         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6680         return ALIGN(pitch, 64);
6681 }
6682
6683 static u32
6684 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6685 {
6686         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6687         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6688 }
6689
6690 static struct drm_framebuffer *
6691 intel_framebuffer_create_for_mode(struct drm_device *dev,
6692                                   struct drm_display_mode *mode,
6693                                   int depth, int bpp)
6694 {
6695         struct drm_i915_gem_object *obj;
6696         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6697
6698         obj = i915_gem_alloc_object(dev,
6699                                     intel_framebuffer_size_for_mode(mode, bpp));
6700         if (obj == NULL)
6701                 return ERR_PTR(-ENOMEM);
6702
6703         mode_cmd.width = mode->hdisplay;
6704         mode_cmd.height = mode->vdisplay;
6705         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6706                                                                 bpp);
6707         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6708
6709         return intel_framebuffer_create(dev, &mode_cmd, obj);
6710 }
6711
6712 static struct drm_framebuffer *
6713 mode_fits_in_fbdev(struct drm_device *dev,
6714                    struct drm_display_mode *mode)
6715 {
6716         struct drm_i915_private *dev_priv = dev->dev_private;
6717         struct drm_i915_gem_object *obj;
6718         struct drm_framebuffer *fb;
6719
6720         if (dev_priv->fbdev == NULL)
6721                 return NULL;
6722
6723         obj = dev_priv->fbdev->ifb.obj;
6724         if (obj == NULL)
6725                 return NULL;
6726
6727         fb = &dev_priv->fbdev->ifb.base;
6728         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6729                                                                fb->bits_per_pixel))
6730                 return NULL;
6731
6732         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6733                 return NULL;
6734
6735         return fb;
6736 }
6737
6738 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6739                                 struct drm_display_mode *mode,
6740                                 struct intel_load_detect_pipe *old)
6741 {
6742         struct intel_crtc *intel_crtc;
6743         struct intel_encoder *intel_encoder =
6744                 intel_attached_encoder(connector);
6745         struct drm_crtc *possible_crtc;
6746         struct drm_encoder *encoder = &intel_encoder->base;
6747         struct drm_crtc *crtc = NULL;
6748         struct drm_device *dev = encoder->dev;
6749         struct drm_framebuffer *fb;
6750         int i = -1;
6751
6752         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6753                       connector->base.id, drm_get_connector_name(connector),
6754                       encoder->base.id, drm_get_encoder_name(encoder));
6755
6756         /*
6757          * Algorithm gets a little messy:
6758          *
6759          *   - if the connector already has an assigned crtc, use it (but make
6760          *     sure it's on first)
6761          *
6762          *   - try to find the first unused crtc that can drive this connector,
6763          *     and use that if we find one
6764          */
6765
6766         /* See if we already have a CRTC for this connector */
6767         if (encoder->crtc) {
6768                 crtc = encoder->crtc;
6769
6770                 mutex_lock(&crtc->mutex);
6771
6772                 old->dpms_mode = connector->dpms;
6773                 old->load_detect_temp = false;
6774
6775                 /* Make sure the crtc and connector are running */
6776                 if (connector->dpms != DRM_MODE_DPMS_ON)
6777                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6778
6779                 return true;
6780         }
6781
6782         /* Find an unused one (if possible) */
6783         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6784                 i++;
6785                 if (!(encoder->possible_crtcs & (1 << i)))
6786                         continue;
6787                 if (!possible_crtc->enabled) {
6788                         crtc = possible_crtc;
6789                         break;
6790                 }
6791         }
6792
6793         /*
6794          * If we didn't find an unused CRTC, don't use any.
6795          */
6796         if (!crtc) {
6797                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6798                 return false;
6799         }
6800
6801         mutex_lock(&crtc->mutex);
6802         intel_encoder->new_crtc = to_intel_crtc(crtc);
6803         to_intel_connector(connector)->new_encoder = intel_encoder;
6804
6805         intel_crtc = to_intel_crtc(crtc);
6806         old->dpms_mode = connector->dpms;
6807         old->load_detect_temp = true;
6808         old->release_fb = NULL;
6809
6810         if (!mode)
6811                 mode = &load_detect_mode;
6812
6813         /* We need a framebuffer large enough to accommodate all accesses
6814          * that the plane may generate whilst we perform load detection.
6815          * We can not rely on the fbcon either being present (we get called
6816          * during its initialisation to detect all boot displays, or it may
6817          * not even exist) or that it is large enough to satisfy the
6818          * requested mode.
6819          */
6820         fb = mode_fits_in_fbdev(dev, mode);
6821         if (fb == NULL) {
6822                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6823                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6824                 old->release_fb = fb;
6825         } else
6826                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6827         if (IS_ERR(fb)) {
6828                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6829                 mutex_unlock(&crtc->mutex);
6830                 return false;
6831         }
6832
6833         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6834                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6835                 if (old->release_fb)
6836                         old->release_fb->funcs->destroy(old->release_fb);
6837                 mutex_unlock(&crtc->mutex);
6838                 return false;
6839         }
6840
6841         /* let the connector get through one full cycle before testing */
6842         intel_wait_for_vblank(dev, intel_crtc->pipe);
6843         return true;
6844 }
6845
6846 void intel_release_load_detect_pipe(struct drm_connector *connector,
6847                                     struct intel_load_detect_pipe *old)
6848 {
6849         struct intel_encoder *intel_encoder =
6850                 intel_attached_encoder(connector);
6851         struct drm_encoder *encoder = &intel_encoder->base;
6852         struct drm_crtc *crtc = encoder->crtc;
6853
6854         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6855                       connector->base.id, drm_get_connector_name(connector),
6856                       encoder->base.id, drm_get_encoder_name(encoder));
6857
6858         if (old->load_detect_temp) {
6859                 to_intel_connector(connector)->new_encoder = NULL;
6860                 intel_encoder->new_crtc = NULL;
6861                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6862
6863                 if (old->release_fb) {
6864                         drm_framebuffer_unregister_private(old->release_fb);
6865                         drm_framebuffer_unreference(old->release_fb);
6866                 }
6867
6868                 mutex_unlock(&crtc->mutex);
6869                 return;
6870         }
6871
6872         /* Switch crtc and encoder back off if necessary */
6873         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6874                 connector->funcs->dpms(connector, old->dpms_mode);
6875
6876         mutex_unlock(&crtc->mutex);
6877 }
6878
6879 /* Returns the clock of the currently programmed mode of the given pipe. */
6880 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6881 {
6882         struct drm_i915_private *dev_priv = dev->dev_private;
6883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6884         int pipe = intel_crtc->pipe;
6885         u32 dpll = I915_READ(DPLL(pipe));
6886         u32 fp;
6887         intel_clock_t clock;
6888
6889         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6890                 fp = I915_READ(FP0(pipe));
6891         else
6892                 fp = I915_READ(FP1(pipe));
6893
6894         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6895         if (IS_PINEVIEW(dev)) {
6896                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6897                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6898         } else {
6899                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6900                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6901         }
6902
6903         if (!IS_GEN2(dev)) {
6904                 if (IS_PINEVIEW(dev))
6905                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6906                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6907                 else
6908                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6909                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6910
6911                 switch (dpll & DPLL_MODE_MASK) {
6912                 case DPLLB_MODE_DAC_SERIAL:
6913                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6914                                 5 : 10;
6915                         break;
6916                 case DPLLB_MODE_LVDS:
6917                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6918                                 7 : 14;
6919                         break;
6920                 default:
6921                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6922                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6923                         return 0;
6924                 }
6925
6926                 if (IS_PINEVIEW(dev))
6927                         pineview_clock(96000, &clock);
6928                 else
6929                         i9xx_clock(96000, &clock);
6930         } else {
6931                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6932
6933                 if (is_lvds) {
6934                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6935                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6936                         clock.p2 = 14;
6937
6938                         if ((dpll & PLL_REF_INPUT_MASK) ==
6939                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6940                                 /* XXX: might not be 66MHz */
6941                                 i9xx_clock(66000, &clock);
6942                         } else
6943                                 i9xx_clock(48000, &clock);
6944                 } else {
6945                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6946                                 clock.p1 = 2;
6947                         else {
6948                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6949                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6950                         }
6951                         if (dpll & PLL_P2_DIVIDE_BY_4)
6952                                 clock.p2 = 4;
6953                         else
6954                                 clock.p2 = 2;
6955
6956                         i9xx_clock(48000, &clock);
6957                 }
6958         }
6959
6960         /* XXX: It would be nice to validate the clocks, but we can't reuse
6961          * i830PllIsValid() because it relies on the xf86_config connector
6962          * configuration being accurate, which it isn't necessarily.
6963          */
6964
6965         return clock.dot;
6966 }
6967
6968 /** Returns the currently programmed mode of the given pipe. */
6969 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6970                                              struct drm_crtc *crtc)
6971 {
6972         struct drm_i915_private *dev_priv = dev->dev_private;
6973         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6974         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6975         struct drm_display_mode *mode;
6976         int htot = I915_READ(HTOTAL(cpu_transcoder));
6977         int hsync = I915_READ(HSYNC(cpu_transcoder));
6978         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6979         int vsync = I915_READ(VSYNC(cpu_transcoder));
6980
6981         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6982         if (!mode)
6983                 return NULL;
6984
6985         mode->clock = intel_crtc_clock_get(dev, crtc);
6986         mode->hdisplay = (htot & 0xffff) + 1;
6987         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6988         mode->hsync_start = (hsync & 0xffff) + 1;
6989         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6990         mode->vdisplay = (vtot & 0xffff) + 1;
6991         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6992         mode->vsync_start = (vsync & 0xffff) + 1;
6993         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6994
6995         drm_mode_set_name(mode);
6996
6997         return mode;
6998 }
6999
7000 static void intel_increase_pllclock(struct drm_crtc *crtc)
7001 {
7002         struct drm_device *dev = crtc->dev;
7003         drm_i915_private_t *dev_priv = dev->dev_private;
7004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7005         int pipe = intel_crtc->pipe;
7006         int dpll_reg = DPLL(pipe);
7007         int dpll;
7008
7009         if (HAS_PCH_SPLIT(dev))
7010                 return;
7011
7012         if (!dev_priv->lvds_downclock_avail)
7013                 return;
7014
7015         dpll = I915_READ(dpll_reg);
7016         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7017                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7018
7019                 assert_panel_unlocked(dev_priv, pipe);
7020
7021                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7022                 I915_WRITE(dpll_reg, dpll);
7023                 intel_wait_for_vblank(dev, pipe);
7024
7025                 dpll = I915_READ(dpll_reg);
7026                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7027                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7028         }
7029 }
7030
7031 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7032 {
7033         struct drm_device *dev = crtc->dev;
7034         drm_i915_private_t *dev_priv = dev->dev_private;
7035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7036
7037         if (HAS_PCH_SPLIT(dev))
7038                 return;
7039
7040         if (!dev_priv->lvds_downclock_avail)
7041                 return;
7042
7043         /*
7044          * Since this is called by a timer, we should never get here in
7045          * the manual case.
7046          */
7047         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7048                 int pipe = intel_crtc->pipe;
7049                 int dpll_reg = DPLL(pipe);
7050                 int dpll;
7051
7052                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7053
7054                 assert_panel_unlocked(dev_priv, pipe);
7055
7056                 dpll = I915_READ(dpll_reg);
7057                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7058                 I915_WRITE(dpll_reg, dpll);
7059                 intel_wait_for_vblank(dev, pipe);
7060                 dpll = I915_READ(dpll_reg);
7061                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7062                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7063         }
7064
7065 }
7066
7067 void intel_mark_busy(struct drm_device *dev)
7068 {
7069         i915_update_gfx_val(dev->dev_private);
7070 }
7071
7072 void intel_mark_idle(struct drm_device *dev)
7073 {
7074         struct drm_crtc *crtc;
7075
7076         if (!i915_powersave)
7077                 return;
7078
7079         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7080                 if (!crtc->fb)
7081                         continue;
7082
7083                 intel_decrease_pllclock(crtc);
7084         }
7085 }
7086
7087 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7088                         struct intel_ring_buffer *ring)
7089 {
7090         struct drm_device *dev = obj->base.dev;
7091         struct drm_crtc *crtc;
7092
7093         if (!i915_powersave)
7094                 return;
7095
7096         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7097                 if (!crtc->fb)
7098                         continue;
7099
7100                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7101                         continue;
7102
7103                 intel_increase_pllclock(crtc);
7104                 if (ring && intel_fbc_enabled(dev))
7105                         ring->fbc_dirty = true;
7106         }
7107 }
7108
7109 static void intel_crtc_destroy(struct drm_crtc *crtc)
7110 {
7111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7112         struct drm_device *dev = crtc->dev;
7113         struct intel_unpin_work *work;
7114         unsigned long flags;
7115
7116         spin_lock_irqsave(&dev->event_lock, flags);
7117         work = intel_crtc->unpin_work;
7118         intel_crtc->unpin_work = NULL;
7119         spin_unlock_irqrestore(&dev->event_lock, flags);
7120
7121         if (work) {
7122                 cancel_work_sync(&work->work);
7123                 kfree(work);
7124         }
7125
7126         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7127
7128         drm_crtc_cleanup(crtc);
7129
7130         kfree(intel_crtc);
7131 }
7132
7133 static void intel_unpin_work_fn(struct work_struct *__work)
7134 {
7135         struct intel_unpin_work *work =
7136                 container_of(__work, struct intel_unpin_work, work);
7137         struct drm_device *dev = work->crtc->dev;
7138
7139         mutex_lock(&dev->struct_mutex);
7140         intel_unpin_fb_obj(work->old_fb_obj);
7141         drm_gem_object_unreference(&work->pending_flip_obj->base);
7142         drm_gem_object_unreference(&work->old_fb_obj->base);
7143
7144         intel_update_fbc(dev);
7145         mutex_unlock(&dev->struct_mutex);
7146
7147         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7148         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7149
7150         kfree(work);
7151 }
7152
7153 static void do_intel_finish_page_flip(struct drm_device *dev,
7154                                       struct drm_crtc *crtc)
7155 {
7156         drm_i915_private_t *dev_priv = dev->dev_private;
7157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7158         struct intel_unpin_work *work;
7159         unsigned long flags;
7160
7161         /* Ignore early vblank irqs */
7162         if (intel_crtc == NULL)
7163                 return;
7164
7165         spin_lock_irqsave(&dev->event_lock, flags);
7166         work = intel_crtc->unpin_work;
7167
7168         /* Ensure we don't miss a work->pending update ... */
7169         smp_rmb();
7170
7171         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7172                 spin_unlock_irqrestore(&dev->event_lock, flags);
7173                 return;
7174         }
7175
7176         /* and that the unpin work is consistent wrt ->pending. */
7177         smp_rmb();
7178
7179         intel_crtc->unpin_work = NULL;
7180
7181         if (work->event)
7182                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7183
7184         drm_vblank_put(dev, intel_crtc->pipe);
7185
7186         spin_unlock_irqrestore(&dev->event_lock, flags);
7187
7188         wake_up_all(&dev_priv->pending_flip_queue);
7189
7190         queue_work(dev_priv->wq, &work->work);
7191
7192         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7193 }
7194
7195 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7196 {
7197         drm_i915_private_t *dev_priv = dev->dev_private;
7198         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7199
7200         do_intel_finish_page_flip(dev, crtc);
7201 }
7202
7203 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7204 {
7205         drm_i915_private_t *dev_priv = dev->dev_private;
7206         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7207
7208         do_intel_finish_page_flip(dev, crtc);
7209 }
7210
7211 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7212 {
7213         drm_i915_private_t *dev_priv = dev->dev_private;
7214         struct intel_crtc *intel_crtc =
7215                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7216         unsigned long flags;
7217
7218         /* NB: An MMIO update of the plane base pointer will also
7219          * generate a page-flip completion irq, i.e. every modeset
7220          * is also accompanied by a spurious intel_prepare_page_flip().
7221          */
7222         spin_lock_irqsave(&dev->event_lock, flags);
7223         if (intel_crtc->unpin_work)
7224                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7225         spin_unlock_irqrestore(&dev->event_lock, flags);
7226 }
7227
7228 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7229 {
7230         /* Ensure that the work item is consistent when activating it ... */
7231         smp_wmb();
7232         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7233         /* and that it is marked active as soon as the irq could fire. */
7234         smp_wmb();
7235 }
7236
7237 static int intel_gen2_queue_flip(struct drm_device *dev,
7238                                  struct drm_crtc *crtc,
7239                                  struct drm_framebuffer *fb,
7240                                  struct drm_i915_gem_object *obj)
7241 {
7242         struct drm_i915_private *dev_priv = dev->dev_private;
7243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7244         u32 flip_mask;
7245         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7246         int ret;
7247
7248         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7249         if (ret)
7250                 goto err;
7251
7252         ret = intel_ring_begin(ring, 6);
7253         if (ret)
7254                 goto err_unpin;
7255
7256         /* Can't queue multiple flips, so wait for the previous
7257          * one to finish before executing the next.
7258          */
7259         if (intel_crtc->plane)
7260                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7261         else
7262                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7263         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7264         intel_ring_emit(ring, MI_NOOP);
7265         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7266                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7267         intel_ring_emit(ring, fb->pitches[0]);
7268         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7269         intel_ring_emit(ring, 0); /* aux display base address, unused */
7270
7271         intel_mark_page_flip_active(intel_crtc);
7272         intel_ring_advance(ring);
7273         return 0;
7274
7275 err_unpin:
7276         intel_unpin_fb_obj(obj);
7277 err:
7278         return ret;
7279 }
7280
7281 static int intel_gen3_queue_flip(struct drm_device *dev,
7282                                  struct drm_crtc *crtc,
7283                                  struct drm_framebuffer *fb,
7284                                  struct drm_i915_gem_object *obj)
7285 {
7286         struct drm_i915_private *dev_priv = dev->dev_private;
7287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288         u32 flip_mask;
7289         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7290         int ret;
7291
7292         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7293         if (ret)
7294                 goto err;
7295
7296         ret = intel_ring_begin(ring, 6);
7297         if (ret)
7298                 goto err_unpin;
7299
7300         if (intel_crtc->plane)
7301                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7302         else
7303                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7304         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7305         intel_ring_emit(ring, MI_NOOP);
7306         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7307                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7308         intel_ring_emit(ring, fb->pitches[0]);
7309         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7310         intel_ring_emit(ring, MI_NOOP);
7311
7312         intel_mark_page_flip_active(intel_crtc);
7313         intel_ring_advance(ring);
7314         return 0;
7315
7316 err_unpin:
7317         intel_unpin_fb_obj(obj);
7318 err:
7319         return ret;
7320 }
7321
7322 static int intel_gen4_queue_flip(struct drm_device *dev,
7323                                  struct drm_crtc *crtc,
7324                                  struct drm_framebuffer *fb,
7325                                  struct drm_i915_gem_object *obj)
7326 {
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7329         uint32_t pf, pipesrc;
7330         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7331         int ret;
7332
7333         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7334         if (ret)
7335                 goto err;
7336
7337         ret = intel_ring_begin(ring, 4);
7338         if (ret)
7339                 goto err_unpin;
7340
7341         /* i965+ uses the linear or tiled offsets from the
7342          * Display Registers (which do not change across a page-flip)
7343          * so we need only reprogram the base address.
7344          */
7345         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7346                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7347         intel_ring_emit(ring, fb->pitches[0]);
7348         intel_ring_emit(ring,
7349                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7350                         obj->tiling_mode);
7351
7352         /* XXX Enabling the panel-fitter across page-flip is so far
7353          * untested on non-native modes, so ignore it for now.
7354          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7355          */
7356         pf = 0;
7357         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7358         intel_ring_emit(ring, pf | pipesrc);
7359
7360         intel_mark_page_flip_active(intel_crtc);
7361         intel_ring_advance(ring);
7362         return 0;
7363
7364 err_unpin:
7365         intel_unpin_fb_obj(obj);
7366 err:
7367         return ret;
7368 }
7369
7370 static int intel_gen6_queue_flip(struct drm_device *dev,
7371                                  struct drm_crtc *crtc,
7372                                  struct drm_framebuffer *fb,
7373                                  struct drm_i915_gem_object *obj)
7374 {
7375         struct drm_i915_private *dev_priv = dev->dev_private;
7376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7377         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7378         uint32_t pf, pipesrc;
7379         int ret;
7380
7381         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7382         if (ret)
7383                 goto err;
7384
7385         ret = intel_ring_begin(ring, 4);
7386         if (ret)
7387                 goto err_unpin;
7388
7389         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7390                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7391         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7392         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7393
7394         /* Contrary to the suggestions in the documentation,
7395          * "Enable Panel Fitter" does not seem to be required when page
7396          * flipping with a non-native mode, and worse causes a normal
7397          * modeset to fail.
7398          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7399          */
7400         pf = 0;
7401         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7402         intel_ring_emit(ring, pf | pipesrc);
7403
7404         intel_mark_page_flip_active(intel_crtc);
7405         intel_ring_advance(ring);
7406         return 0;
7407
7408 err_unpin:
7409         intel_unpin_fb_obj(obj);
7410 err:
7411         return ret;
7412 }
7413
7414 /*
7415  * On gen7 we currently use the blit ring because (in early silicon at least)
7416  * the render ring doesn't give us interrpts for page flip completion, which
7417  * means clients will hang after the first flip is queued.  Fortunately the
7418  * blit ring generates interrupts properly, so use it instead.
7419  */
7420 static int intel_gen7_queue_flip(struct drm_device *dev,
7421                                  struct drm_crtc *crtc,
7422                                  struct drm_framebuffer *fb,
7423                                  struct drm_i915_gem_object *obj)
7424 {
7425         struct drm_i915_private *dev_priv = dev->dev_private;
7426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7427         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7428         uint32_t plane_bit = 0;
7429         int ret;
7430
7431         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7432         if (ret)
7433                 goto err;
7434
7435         switch(intel_crtc->plane) {
7436         case PLANE_A:
7437                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7438                 break;
7439         case PLANE_B:
7440                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7441                 break;
7442         case PLANE_C:
7443                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7444                 break;
7445         default:
7446                 WARN_ONCE(1, "unknown plane in flip command\n");
7447                 ret = -ENODEV;
7448                 goto err_unpin;
7449         }
7450
7451         ret = intel_ring_begin(ring, 4);
7452         if (ret)
7453                 goto err_unpin;
7454
7455         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7456         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7457         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7458         intel_ring_emit(ring, (MI_NOOP));
7459
7460         intel_mark_page_flip_active(intel_crtc);
7461         intel_ring_advance(ring);
7462         return 0;
7463
7464 err_unpin:
7465         intel_unpin_fb_obj(obj);
7466 err:
7467         return ret;
7468 }
7469
7470 static int intel_default_queue_flip(struct drm_device *dev,
7471                                     struct drm_crtc *crtc,
7472                                     struct drm_framebuffer *fb,
7473                                     struct drm_i915_gem_object *obj)
7474 {
7475         return -ENODEV;
7476 }
7477
7478 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7479                                 struct drm_framebuffer *fb,
7480                                 struct drm_pending_vblank_event *event)
7481 {
7482         struct drm_device *dev = crtc->dev;
7483         struct drm_i915_private *dev_priv = dev->dev_private;
7484         struct drm_framebuffer *old_fb = crtc->fb;
7485         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7487         struct intel_unpin_work *work;
7488         unsigned long flags;
7489         int ret;
7490
7491         /* Can't change pixel format via MI display flips. */
7492         if (fb->pixel_format != crtc->fb->pixel_format)
7493                 return -EINVAL;
7494
7495         /*
7496          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7497          * Note that pitch changes could also affect these register.
7498          */
7499         if (INTEL_INFO(dev)->gen > 3 &&
7500             (fb->offsets[0] != crtc->fb->offsets[0] ||
7501              fb->pitches[0] != crtc->fb->pitches[0]))
7502                 return -EINVAL;
7503
7504         work = kzalloc(sizeof *work, GFP_KERNEL);
7505         if (work == NULL)
7506                 return -ENOMEM;
7507
7508         work->event = event;
7509         work->crtc = crtc;
7510         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7511         INIT_WORK(&work->work, intel_unpin_work_fn);
7512
7513         ret = drm_vblank_get(dev, intel_crtc->pipe);
7514         if (ret)
7515                 goto free_work;
7516
7517         /* We borrow the event spin lock for protecting unpin_work */
7518         spin_lock_irqsave(&dev->event_lock, flags);
7519         if (intel_crtc->unpin_work) {
7520                 spin_unlock_irqrestore(&dev->event_lock, flags);
7521                 kfree(work);
7522                 drm_vblank_put(dev, intel_crtc->pipe);
7523
7524                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7525                 return -EBUSY;
7526         }
7527         intel_crtc->unpin_work = work;
7528         spin_unlock_irqrestore(&dev->event_lock, flags);
7529
7530         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7531                 flush_workqueue(dev_priv->wq);
7532
7533         ret = i915_mutex_lock_interruptible(dev);
7534         if (ret)
7535                 goto cleanup;
7536
7537         /* Reference the objects for the scheduled work. */
7538         drm_gem_object_reference(&work->old_fb_obj->base);
7539         drm_gem_object_reference(&obj->base);
7540
7541         crtc->fb = fb;
7542
7543         work->pending_flip_obj = obj;
7544
7545         work->enable_stall_check = true;
7546
7547         atomic_inc(&intel_crtc->unpin_work_count);
7548         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7549
7550         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7551         if (ret)
7552                 goto cleanup_pending;
7553
7554         intel_disable_fbc(dev);
7555         intel_mark_fb_busy(obj, NULL);
7556         mutex_unlock(&dev->struct_mutex);
7557
7558         trace_i915_flip_request(intel_crtc->plane, obj);
7559
7560         return 0;
7561
7562 cleanup_pending:
7563         atomic_dec(&intel_crtc->unpin_work_count);
7564         crtc->fb = old_fb;
7565         drm_gem_object_unreference(&work->old_fb_obj->base);
7566         drm_gem_object_unreference(&obj->base);
7567         mutex_unlock(&dev->struct_mutex);
7568
7569 cleanup:
7570         spin_lock_irqsave(&dev->event_lock, flags);
7571         intel_crtc->unpin_work = NULL;
7572         spin_unlock_irqrestore(&dev->event_lock, flags);
7573
7574         drm_vblank_put(dev, intel_crtc->pipe);
7575 free_work:
7576         kfree(work);
7577
7578         return ret;
7579 }
7580
7581 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7582         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7583         .load_lut = intel_crtc_load_lut,
7584 };
7585
7586 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7587                                   struct drm_crtc *crtc)
7588 {
7589         struct drm_device *dev;
7590         struct drm_crtc *tmp;
7591         int crtc_mask = 1;
7592
7593         WARN(!crtc, "checking null crtc?\n");
7594
7595         dev = crtc->dev;
7596
7597         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7598                 if (tmp == crtc)
7599                         break;
7600                 crtc_mask <<= 1;
7601         }
7602
7603         if (encoder->possible_crtcs & crtc_mask)
7604                 return true;
7605         return false;
7606 }
7607
7608 /**
7609  * intel_modeset_update_staged_output_state
7610  *
7611  * Updates the staged output configuration state, e.g. after we've read out the
7612  * current hw state.
7613  */
7614 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7615 {
7616         struct intel_encoder *encoder;
7617         struct intel_connector *connector;
7618
7619         list_for_each_entry(connector, &dev->mode_config.connector_list,
7620                             base.head) {
7621                 connector->new_encoder =
7622                         to_intel_encoder(connector->base.encoder);
7623         }
7624
7625         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7626                             base.head) {
7627                 encoder->new_crtc =
7628                         to_intel_crtc(encoder->base.crtc);
7629         }
7630 }
7631
7632 /**
7633  * intel_modeset_commit_output_state
7634  *
7635  * This function copies the stage display pipe configuration to the real one.
7636  */
7637 static void intel_modeset_commit_output_state(struct drm_device *dev)
7638 {
7639         struct intel_encoder *encoder;
7640         struct intel_connector *connector;
7641
7642         list_for_each_entry(connector, &dev->mode_config.connector_list,
7643                             base.head) {
7644                 connector->base.encoder = &connector->new_encoder->base;
7645         }
7646
7647         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7648                             base.head) {
7649                 encoder->base.crtc = &encoder->new_crtc->base;
7650         }
7651 }
7652
7653 static void
7654 connected_sink_compute_bpp(struct intel_connector * connector,
7655                            struct intel_crtc_config *pipe_config)
7656 {
7657         int bpp = pipe_config->pipe_bpp;
7658
7659         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7660                 connector->base.base.id,
7661                 drm_get_connector_name(&connector->base));
7662
7663         /* Don't use an invalid EDID bpc value */
7664         if (connector->base.display_info.bpc &&
7665             connector->base.display_info.bpc * 3 < bpp) {
7666                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7667                               bpp, connector->base.display_info.bpc*3);
7668                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7669         }
7670
7671         /* Clamp bpp to 8 on screens without EDID 1.4 */
7672         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7673                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7674                               bpp);
7675                 pipe_config->pipe_bpp = 24;
7676         }
7677 }
7678
7679 static int
7680 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7681                           struct drm_framebuffer *fb,
7682                           struct intel_crtc_config *pipe_config)
7683 {
7684         struct drm_device *dev = crtc->base.dev;
7685         struct intel_connector *connector;
7686         int bpp;
7687
7688         switch (fb->pixel_format) {
7689         case DRM_FORMAT_C8:
7690                 bpp = 8*3; /* since we go through a colormap */
7691                 break;
7692         case DRM_FORMAT_XRGB1555:
7693         case DRM_FORMAT_ARGB1555:
7694                 /* checked in intel_framebuffer_init already */
7695                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7696                         return -EINVAL;
7697         case DRM_FORMAT_RGB565:
7698                 bpp = 6*3; /* min is 18bpp */
7699                 break;
7700         case DRM_FORMAT_XBGR8888:
7701         case DRM_FORMAT_ABGR8888:
7702                 /* checked in intel_framebuffer_init already */
7703                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7704                         return -EINVAL;
7705         case DRM_FORMAT_XRGB8888:
7706         case DRM_FORMAT_ARGB8888:
7707                 bpp = 8*3;
7708                 break;
7709         case DRM_FORMAT_XRGB2101010:
7710         case DRM_FORMAT_ARGB2101010:
7711         case DRM_FORMAT_XBGR2101010:
7712         case DRM_FORMAT_ABGR2101010:
7713                 /* checked in intel_framebuffer_init already */
7714                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7715                         return -EINVAL;
7716                 bpp = 10*3;
7717                 break;
7718         /* TODO: gen4+ supports 16 bpc floating point, too. */
7719         default:
7720                 DRM_DEBUG_KMS("unsupported depth\n");
7721                 return -EINVAL;
7722         }
7723
7724         pipe_config->pipe_bpp = bpp;
7725
7726         /* Clamp display bpp to EDID value */
7727         list_for_each_entry(connector, &dev->mode_config.connector_list,
7728                             base.head) {
7729                 if (!connector->new_encoder ||
7730                     connector->new_encoder->new_crtc != crtc)
7731                         continue;
7732
7733                 connected_sink_compute_bpp(connector, pipe_config);
7734         }
7735
7736         return bpp;
7737 }
7738
7739 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7740                                    struct intel_crtc_config *pipe_config,
7741                                    const char *context)
7742 {
7743         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7744                       context, pipe_name(crtc->pipe));
7745
7746         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7747         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7748                       pipe_config->pipe_bpp, pipe_config->dither);
7749         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7750                       pipe_config->has_pch_encoder,
7751                       pipe_config->fdi_lanes,
7752                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7753                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7754                       pipe_config->fdi_m_n.tu);
7755         DRM_DEBUG_KMS("requested mode:\n");
7756         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7757         DRM_DEBUG_KMS("adjusted mode:\n");
7758         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7759         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7760                       pipe_config->gmch_pfit.control,
7761                       pipe_config->gmch_pfit.pgm_ratios,
7762                       pipe_config->gmch_pfit.lvds_border_bits);
7763         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7764                       pipe_config->pch_pfit.pos,
7765                       pipe_config->pch_pfit.size);
7766         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7767 }
7768
7769 static bool check_encoder_cloning(struct drm_crtc *crtc)
7770 {
7771         int num_encoders = 0;
7772         bool uncloneable_encoders = false;
7773         struct intel_encoder *encoder;
7774
7775         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7776                             base.head) {
7777                 if (&encoder->new_crtc->base != crtc)
7778                         continue;
7779
7780                 num_encoders++;
7781                 if (!encoder->cloneable)
7782                         uncloneable_encoders = true;
7783         }
7784
7785         return !(num_encoders > 1 && uncloneable_encoders);
7786 }
7787
7788 static struct intel_crtc_config *
7789 intel_modeset_pipe_config(struct drm_crtc *crtc,
7790                           struct drm_framebuffer *fb,
7791                           struct drm_display_mode *mode)
7792 {
7793         struct drm_device *dev = crtc->dev;
7794         struct drm_encoder_helper_funcs *encoder_funcs;
7795         struct intel_encoder *encoder;
7796         struct intel_crtc_config *pipe_config;
7797         int plane_bpp, ret = -EINVAL;
7798         bool retry = true;
7799
7800         if (!check_encoder_cloning(crtc)) {
7801                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7802                 return ERR_PTR(-EINVAL);
7803         }
7804
7805         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7806         if (!pipe_config)
7807                 return ERR_PTR(-ENOMEM);
7808
7809         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7810         drm_mode_copy(&pipe_config->requested_mode, mode);
7811         pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7812         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7813
7814         /* Compute a starting value for pipe_config->pipe_bpp taking the source
7815          * plane pixel format and any sink constraints into account. Returns the
7816          * source plane bpp so that dithering can be selected on mismatches
7817          * after encoders and crtc also have had their say. */
7818         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7819                                               fb, pipe_config);
7820         if (plane_bpp < 0)
7821                 goto fail;
7822
7823 encoder_retry:
7824         /* Ensure the port clock defaults are reset when retrying. */
7825         pipe_config->port_clock = 0;
7826         pipe_config->pixel_multiplier = 1;
7827
7828         /* Pass our mode to the connectors and the CRTC to give them a chance to
7829          * adjust it according to limitations or connector properties, and also
7830          * a chance to reject the mode entirely.
7831          */
7832         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7833                             base.head) {
7834
7835                 if (&encoder->new_crtc->base != crtc)
7836                         continue;
7837
7838                 if (encoder->compute_config) {
7839                         if (!(encoder->compute_config(encoder, pipe_config))) {
7840                                 DRM_DEBUG_KMS("Encoder config failure\n");
7841                                 goto fail;
7842                         }
7843
7844                         continue;
7845                 }
7846
7847                 encoder_funcs = encoder->base.helper_private;
7848                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7849                                                 &pipe_config->requested_mode,
7850                                                 &pipe_config->adjusted_mode))) {
7851                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7852                         goto fail;
7853                 }
7854         }
7855
7856         /* Set default port clock if not overwritten by the encoder. Needs to be
7857          * done afterwards in case the encoder adjusts the mode. */
7858         if (!pipe_config->port_clock)
7859                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7860
7861         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7862         if (ret < 0) {
7863                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7864                 goto fail;
7865         }
7866
7867         if (ret == RETRY) {
7868                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7869                         ret = -EINVAL;
7870                         goto fail;
7871                 }
7872
7873                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7874                 retry = false;
7875                 goto encoder_retry;
7876         }
7877
7878         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7879         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7880                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7881
7882         return pipe_config;
7883 fail:
7884         kfree(pipe_config);
7885         return ERR_PTR(ret);
7886 }
7887
7888 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7889  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7890 static void
7891 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7892                              unsigned *prepare_pipes, unsigned *disable_pipes)
7893 {
7894         struct intel_crtc *intel_crtc;
7895         struct drm_device *dev = crtc->dev;
7896         struct intel_encoder *encoder;
7897         struct intel_connector *connector;
7898         struct drm_crtc *tmp_crtc;
7899
7900         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7901
7902         /* Check which crtcs have changed outputs connected to them, these need
7903          * to be part of the prepare_pipes mask. We don't (yet) support global
7904          * modeset across multiple crtcs, so modeset_pipes will only have one
7905          * bit set at most. */
7906         list_for_each_entry(connector, &dev->mode_config.connector_list,
7907                             base.head) {
7908                 if (connector->base.encoder == &connector->new_encoder->base)
7909                         continue;
7910
7911                 if (connector->base.encoder) {
7912                         tmp_crtc = connector->base.encoder->crtc;
7913
7914                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7915                 }
7916
7917                 if (connector->new_encoder)
7918                         *prepare_pipes |=
7919                                 1 << connector->new_encoder->new_crtc->pipe;
7920         }
7921
7922         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7923                             base.head) {
7924                 if (encoder->base.crtc == &encoder->new_crtc->base)
7925                         continue;
7926
7927                 if (encoder->base.crtc) {
7928                         tmp_crtc = encoder->base.crtc;
7929
7930                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7931                 }
7932
7933                 if (encoder->new_crtc)
7934                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7935         }
7936
7937         /* Check for any pipes that will be fully disabled ... */
7938         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7939                             base.head) {
7940                 bool used = false;
7941
7942                 /* Don't try to disable disabled crtcs. */
7943                 if (!intel_crtc->base.enabled)
7944                         continue;
7945
7946                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7947                                     base.head) {
7948                         if (encoder->new_crtc == intel_crtc)
7949                                 used = true;
7950                 }
7951
7952                 if (!used)
7953                         *disable_pipes |= 1 << intel_crtc->pipe;
7954         }
7955
7956
7957         /* set_mode is also used to update properties on life display pipes. */
7958         intel_crtc = to_intel_crtc(crtc);
7959         if (crtc->enabled)
7960                 *prepare_pipes |= 1 << intel_crtc->pipe;
7961
7962         /*
7963          * For simplicity do a full modeset on any pipe where the output routing
7964          * changed. We could be more clever, but that would require us to be
7965          * more careful with calling the relevant encoder->mode_set functions.
7966          */
7967         if (*prepare_pipes)
7968                 *modeset_pipes = *prepare_pipes;
7969
7970         /* ... and mask these out. */
7971         *modeset_pipes &= ~(*disable_pipes);
7972         *prepare_pipes &= ~(*disable_pipes);
7973
7974         /*
7975          * HACK: We don't (yet) fully support global modesets. intel_set_config
7976          * obies this rule, but the modeset restore mode of
7977          * intel_modeset_setup_hw_state does not.
7978          */
7979         *modeset_pipes &= 1 << intel_crtc->pipe;
7980         *prepare_pipes &= 1 << intel_crtc->pipe;
7981
7982         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7983                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7984 }
7985
7986 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7987 {
7988         struct drm_encoder *encoder;
7989         struct drm_device *dev = crtc->dev;
7990
7991         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7992                 if (encoder->crtc == crtc)
7993                         return true;
7994
7995         return false;
7996 }
7997
7998 static void
7999 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8000 {
8001         struct intel_encoder *intel_encoder;
8002         struct intel_crtc *intel_crtc;
8003         struct drm_connector *connector;
8004
8005         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8006                             base.head) {
8007                 if (!intel_encoder->base.crtc)
8008                         continue;
8009
8010                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8011
8012                 if (prepare_pipes & (1 << intel_crtc->pipe))
8013                         intel_encoder->connectors_active = false;
8014         }
8015
8016         intel_modeset_commit_output_state(dev);
8017
8018         /* Update computed state. */
8019         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8020                             base.head) {
8021                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8022         }
8023
8024         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8025                 if (!connector->encoder || !connector->encoder->crtc)
8026                         continue;
8027
8028                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8029
8030                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8031                         struct drm_property *dpms_property =
8032                                 dev->mode_config.dpms_property;
8033
8034                         connector->dpms = DRM_MODE_DPMS_ON;
8035                         drm_object_property_set_value(&connector->base,
8036                                                          dpms_property,
8037                                                          DRM_MODE_DPMS_ON);
8038
8039                         intel_encoder = to_intel_encoder(connector->encoder);
8040                         intel_encoder->connectors_active = true;
8041                 }
8042         }
8043
8044 }
8045
8046 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8047         list_for_each_entry((intel_crtc), \
8048                             &(dev)->mode_config.crtc_list, \
8049                             base.head) \
8050                 if (mask & (1 <<(intel_crtc)->pipe))
8051
8052 static bool
8053 intel_pipe_config_compare(struct drm_device *dev,
8054                           struct intel_crtc_config *current_config,
8055                           struct intel_crtc_config *pipe_config)
8056 {
8057 #define PIPE_CONF_CHECK_X(name) \
8058         if (current_config->name != pipe_config->name) { \
8059                 DRM_ERROR("mismatch in " #name " " \
8060                           "(expected 0x%08x, found 0x%08x)\n", \
8061                           current_config->name, \
8062                           pipe_config->name); \
8063                 return false; \
8064         }
8065
8066 #define PIPE_CONF_CHECK_I(name) \
8067         if (current_config->name != pipe_config->name) { \
8068                 DRM_ERROR("mismatch in " #name " " \
8069                           "(expected %i, found %i)\n", \
8070                           current_config->name, \
8071                           pipe_config->name); \
8072                 return false; \
8073         }
8074
8075 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8076         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8077                 DRM_ERROR("mismatch in " #name " " \
8078                           "(expected %i, found %i)\n", \
8079                           current_config->name & (mask), \
8080                           pipe_config->name & (mask)); \
8081                 return false; \
8082         }
8083
8084 #define PIPE_CONF_QUIRK(quirk)  \
8085         ((current_config->quirks | pipe_config->quirks) & (quirk))
8086
8087         PIPE_CONF_CHECK_I(cpu_transcoder);
8088
8089         PIPE_CONF_CHECK_I(has_pch_encoder);
8090         PIPE_CONF_CHECK_I(fdi_lanes);
8091         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8092         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8093         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8094         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8095         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8096
8097         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8098         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8099         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8100         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8101         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8102         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8103
8104         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8105         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8106         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8107         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8108         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8109         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8110
8111         if (!HAS_PCH_SPLIT(dev))
8112                 PIPE_CONF_CHECK_I(pixel_multiplier);
8113
8114         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8115                               DRM_MODE_FLAG_INTERLACE);
8116
8117         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8118                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8119                                       DRM_MODE_FLAG_PHSYNC);
8120                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8121                                       DRM_MODE_FLAG_NHSYNC);
8122                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8123                                       DRM_MODE_FLAG_PVSYNC);
8124                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8125                                       DRM_MODE_FLAG_NVSYNC);
8126         }
8127
8128         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8129         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8130
8131         PIPE_CONF_CHECK_I(gmch_pfit.control);
8132         /* pfit ratios are autocomputed by the hw on gen4+ */
8133         if (INTEL_INFO(dev)->gen < 4)
8134                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8135         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8136         PIPE_CONF_CHECK_I(pch_pfit.pos);
8137         PIPE_CONF_CHECK_I(pch_pfit.size);
8138
8139         PIPE_CONF_CHECK_I(ips_enabled);
8140
8141         PIPE_CONF_CHECK_I(shared_dpll);
8142         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8143         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8144         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8145
8146 #undef PIPE_CONF_CHECK_X
8147 #undef PIPE_CONF_CHECK_I
8148 #undef PIPE_CONF_CHECK_FLAGS
8149 #undef PIPE_CONF_QUIRK
8150
8151         return true;
8152 }
8153
8154 static void
8155 check_connector_state(struct drm_device *dev)
8156 {
8157         struct intel_connector *connector;
8158
8159         list_for_each_entry(connector, &dev->mode_config.connector_list,
8160                             base.head) {
8161                 /* This also checks the encoder/connector hw state with the
8162                  * ->get_hw_state callbacks. */
8163                 intel_connector_check_state(connector);
8164
8165                 WARN(&connector->new_encoder->base != connector->base.encoder,
8166                      "connector's staged encoder doesn't match current encoder\n");
8167         }
8168 }
8169
8170 static void
8171 check_encoder_state(struct drm_device *dev)
8172 {
8173         struct intel_encoder *encoder;
8174         struct intel_connector *connector;
8175
8176         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8177                             base.head) {
8178                 bool enabled = false;
8179                 bool active = false;
8180                 enum pipe pipe, tracked_pipe;
8181
8182                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8183                               encoder->base.base.id,
8184                               drm_get_encoder_name(&encoder->base));
8185
8186                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8187                      "encoder's stage crtc doesn't match current crtc\n");
8188                 WARN(encoder->connectors_active && !encoder->base.crtc,
8189                      "encoder's active_connectors set, but no crtc\n");
8190
8191                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8192                                     base.head) {
8193                         if (connector->base.encoder != &encoder->base)
8194                                 continue;
8195                         enabled = true;
8196                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8197                                 active = true;
8198                 }
8199                 WARN(!!encoder->base.crtc != enabled,
8200                      "encoder's enabled state mismatch "
8201                      "(expected %i, found %i)\n",
8202                      !!encoder->base.crtc, enabled);
8203                 WARN(active && !encoder->base.crtc,
8204                      "active encoder with no crtc\n");
8205
8206                 WARN(encoder->connectors_active != active,
8207                      "encoder's computed active state doesn't match tracked active state "
8208                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8209
8210                 active = encoder->get_hw_state(encoder, &pipe);
8211                 WARN(active != encoder->connectors_active,
8212                      "encoder's hw state doesn't match sw tracking "
8213                      "(expected %i, found %i)\n",
8214                      encoder->connectors_active, active);
8215
8216                 if (!encoder->base.crtc)
8217                         continue;
8218
8219                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8220                 WARN(active && pipe != tracked_pipe,
8221                      "active encoder's pipe doesn't match"
8222                      "(expected %i, found %i)\n",
8223                      tracked_pipe, pipe);
8224
8225         }
8226 }
8227
8228 static void
8229 check_crtc_state(struct drm_device *dev)
8230 {
8231         drm_i915_private_t *dev_priv = dev->dev_private;
8232         struct intel_crtc *crtc;
8233         struct intel_encoder *encoder;
8234         struct intel_crtc_config pipe_config;
8235
8236         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8237                             base.head) {
8238                 bool enabled = false;
8239                 bool active = false;
8240
8241                 memset(&pipe_config, 0, sizeof(pipe_config));
8242
8243                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8244                               crtc->base.base.id);
8245
8246                 WARN(crtc->active && !crtc->base.enabled,
8247                      "active crtc, but not enabled in sw tracking\n");
8248
8249                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8250                                     base.head) {
8251                         if (encoder->base.crtc != &crtc->base)
8252                                 continue;
8253                         enabled = true;
8254                         if (encoder->connectors_active)
8255                                 active = true;
8256                 }
8257
8258                 WARN(active != crtc->active,
8259                      "crtc's computed active state doesn't match tracked active state "
8260                      "(expected %i, found %i)\n", active, crtc->active);
8261                 WARN(enabled != crtc->base.enabled,
8262                      "crtc's computed enabled state doesn't match tracked enabled state "
8263                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8264
8265                 active = dev_priv->display.get_pipe_config(crtc,
8266                                                            &pipe_config);
8267
8268                 /* hw state is inconsistent with the pipe A quirk */
8269                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8270                         active = crtc->active;
8271
8272                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8273                                     base.head) {
8274                         if (encoder->base.crtc != &crtc->base)
8275                                 continue;
8276                         if (encoder->get_config)
8277                                 encoder->get_config(encoder, &pipe_config);
8278                 }
8279
8280                 WARN(crtc->active != active,
8281                      "crtc active state doesn't match with hw state "
8282                      "(expected %i, found %i)\n", crtc->active, active);
8283
8284                 if (active &&
8285                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8286                         WARN(1, "pipe state doesn't match!\n");
8287                         intel_dump_pipe_config(crtc, &pipe_config,
8288                                                "[hw state]");
8289                         intel_dump_pipe_config(crtc, &crtc->config,
8290                                                "[sw state]");
8291                 }
8292         }
8293 }
8294
8295 static void
8296 check_shared_dpll_state(struct drm_device *dev)
8297 {
8298         drm_i915_private_t *dev_priv = dev->dev_private;
8299         struct intel_crtc *crtc;
8300         struct intel_dpll_hw_state dpll_hw_state;
8301         int i;
8302
8303         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8304                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8305                 int enabled_crtcs = 0, active_crtcs = 0;
8306                 bool active;
8307
8308                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8309
8310                 DRM_DEBUG_KMS("%s\n", pll->name);
8311
8312                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8313
8314                 WARN(pll->active > pll->refcount,
8315                      "more active pll users than references: %i vs %i\n",
8316                      pll->active, pll->refcount);
8317                 WARN(pll->active && !pll->on,
8318                      "pll in active use but not on in sw tracking\n");
8319                 WARN(pll->on != active,
8320                      "pll on state mismatch (expected %i, found %i)\n",
8321                      pll->on, active);
8322
8323                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8324                                     base.head) {
8325                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8326                                 enabled_crtcs++;
8327                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8328                                 active_crtcs++;
8329                 }
8330                 WARN(pll->active != active_crtcs,
8331                      "pll active crtcs mismatch (expected %i, found %i)\n",
8332                      pll->active, active_crtcs);
8333                 WARN(pll->refcount != enabled_crtcs,
8334                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8335                      pll->refcount, enabled_crtcs);
8336
8337                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8338                                        sizeof(dpll_hw_state)),
8339                      "pll hw state mismatch\n");
8340         }
8341 }
8342
8343 void
8344 intel_modeset_check_state(struct drm_device *dev)
8345 {
8346         check_connector_state(dev);
8347         check_encoder_state(dev);
8348         check_crtc_state(dev);
8349         check_shared_dpll_state(dev);
8350 }
8351
8352 static int __intel_set_mode(struct drm_crtc *crtc,
8353                             struct drm_display_mode *mode,
8354                             int x, int y, struct drm_framebuffer *fb)
8355 {
8356         struct drm_device *dev = crtc->dev;
8357         drm_i915_private_t *dev_priv = dev->dev_private;
8358         struct drm_display_mode *saved_mode, *saved_hwmode;
8359         struct intel_crtc_config *pipe_config = NULL;
8360         struct intel_crtc *intel_crtc;
8361         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8362         int ret = 0;
8363
8364         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8365         if (!saved_mode)
8366                 return -ENOMEM;
8367         saved_hwmode = saved_mode + 1;
8368
8369         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8370                                      &prepare_pipes, &disable_pipes);
8371
8372         *saved_hwmode = crtc->hwmode;
8373         *saved_mode = crtc->mode;
8374
8375         /* Hack: Because we don't (yet) support global modeset on multiple
8376          * crtcs, we don't keep track of the new mode for more than one crtc.
8377          * Hence simply check whether any bit is set in modeset_pipes in all the
8378          * pieces of code that are not yet converted to deal with mutliple crtcs
8379          * changing their mode at the same time. */
8380         if (modeset_pipes) {
8381                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8382                 if (IS_ERR(pipe_config)) {
8383                         ret = PTR_ERR(pipe_config);
8384                         pipe_config = NULL;
8385
8386                         goto out;
8387                 }
8388                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8389                                        "[modeset]");
8390         }
8391
8392         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8393                 intel_crtc_disable(&intel_crtc->base);
8394
8395         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8396                 if (intel_crtc->base.enabled)
8397                         dev_priv->display.crtc_disable(&intel_crtc->base);
8398         }
8399
8400         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8401          * to set it here already despite that we pass it down the callchain.
8402          */
8403         if (modeset_pipes) {
8404                 crtc->mode = *mode;
8405                 /* mode_set/enable/disable functions rely on a correct pipe
8406                  * config. */
8407                 to_intel_crtc(crtc)->config = *pipe_config;
8408         }
8409
8410         /* Only after disabling all output pipelines that will be changed can we
8411          * update the the output configuration. */
8412         intel_modeset_update_state(dev, prepare_pipes);
8413
8414         if (dev_priv->display.modeset_global_resources)
8415                 dev_priv->display.modeset_global_resources(dev);
8416
8417         /* Set up the DPLL and any encoders state that needs to adjust or depend
8418          * on the DPLL.
8419          */
8420         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8421                 ret = intel_crtc_mode_set(&intel_crtc->base,
8422                                           x, y, fb);
8423                 if (ret)
8424                         goto done;
8425         }
8426
8427         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8428         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8429                 dev_priv->display.crtc_enable(&intel_crtc->base);
8430
8431         if (modeset_pipes) {
8432                 /* Store real post-adjustment hardware mode. */
8433                 crtc->hwmode = pipe_config->adjusted_mode;
8434
8435                 /* Calculate and store various constants which
8436                  * are later needed by vblank and swap-completion
8437                  * timestamping. They are derived from true hwmode.
8438                  */
8439                 drm_calc_timestamping_constants(crtc);
8440         }
8441
8442         /* FIXME: add subpixel order */
8443 done:
8444         if (ret && crtc->enabled) {
8445                 crtc->hwmode = *saved_hwmode;
8446                 crtc->mode = *saved_mode;
8447         }
8448
8449 out:
8450         kfree(pipe_config);
8451         kfree(saved_mode);
8452         return ret;
8453 }
8454
8455 int intel_set_mode(struct drm_crtc *crtc,
8456                      struct drm_display_mode *mode,
8457                      int x, int y, struct drm_framebuffer *fb)
8458 {
8459         int ret;
8460
8461         ret = __intel_set_mode(crtc, mode, x, y, fb);
8462
8463         if (ret == 0)
8464                 intel_modeset_check_state(crtc->dev);
8465
8466         return ret;
8467 }
8468
8469 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8470 {
8471         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8472 }
8473
8474 #undef for_each_intel_crtc_masked
8475
8476 static void intel_set_config_free(struct intel_set_config *config)
8477 {
8478         if (!config)
8479                 return;
8480
8481         kfree(config->save_connector_encoders);
8482         kfree(config->save_encoder_crtcs);
8483         kfree(config);
8484 }
8485
8486 static int intel_set_config_save_state(struct drm_device *dev,
8487                                        struct intel_set_config *config)
8488 {
8489         struct drm_encoder *encoder;
8490         struct drm_connector *connector;
8491         int count;
8492
8493         config->save_encoder_crtcs =
8494                 kcalloc(dev->mode_config.num_encoder,
8495                         sizeof(struct drm_crtc *), GFP_KERNEL);
8496         if (!config->save_encoder_crtcs)
8497                 return -ENOMEM;
8498
8499         config->save_connector_encoders =
8500                 kcalloc(dev->mode_config.num_connector,
8501                         sizeof(struct drm_encoder *), GFP_KERNEL);
8502         if (!config->save_connector_encoders)
8503                 return -ENOMEM;
8504
8505         /* Copy data. Note that driver private data is not affected.
8506          * Should anything bad happen only the expected state is
8507          * restored, not the drivers personal bookkeeping.
8508          */
8509         count = 0;
8510         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8511                 config->save_encoder_crtcs[count++] = encoder->crtc;
8512         }
8513
8514         count = 0;
8515         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8516                 config->save_connector_encoders[count++] = connector->encoder;
8517         }
8518
8519         return 0;
8520 }
8521
8522 static void intel_set_config_restore_state(struct drm_device *dev,
8523                                            struct intel_set_config *config)
8524 {
8525         struct intel_encoder *encoder;
8526         struct intel_connector *connector;
8527         int count;
8528
8529         count = 0;
8530         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8531                 encoder->new_crtc =
8532                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8533         }
8534
8535         count = 0;
8536         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8537                 connector->new_encoder =
8538                         to_intel_encoder(config->save_connector_encoders[count++]);
8539         }
8540 }
8541
8542 static bool
8543 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8544                       int num_connectors)
8545 {
8546         int i;
8547
8548         for (i = 0; i < num_connectors; i++)
8549                 if (connectors[i].encoder &&
8550                     connectors[i].encoder->crtc == crtc &&
8551                     connectors[i].dpms != DRM_MODE_DPMS_ON)
8552                         return true;
8553
8554         return false;
8555 }
8556
8557 static void
8558 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8559                                       struct intel_set_config *config)
8560 {
8561
8562         /* We should be able to check here if the fb has the same properties
8563          * and then just flip_or_move it */
8564         if (set->connectors != NULL &&
8565             is_crtc_connector_off(set->crtc, *set->connectors,
8566                                   set->num_connectors)) {
8567                         config->mode_changed = true;
8568         } else if (set->crtc->fb != set->fb) {
8569                 /* If we have no fb then treat it as a full mode set */
8570                 if (set->crtc->fb == NULL) {
8571                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8572                         config->mode_changed = true;
8573                 } else if (set->fb == NULL) {
8574                         config->mode_changed = true;
8575                 } else if (set->fb->pixel_format !=
8576                            set->crtc->fb->pixel_format) {
8577                         config->mode_changed = true;
8578                 } else {
8579                         config->fb_changed = true;
8580                 }
8581         }
8582
8583         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8584                 config->fb_changed = true;
8585
8586         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8587                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8588                 drm_mode_debug_printmodeline(&set->crtc->mode);
8589                 drm_mode_debug_printmodeline(set->mode);
8590                 config->mode_changed = true;
8591         }
8592 }
8593
8594 static int
8595 intel_modeset_stage_output_state(struct drm_device *dev,
8596                                  struct drm_mode_set *set,
8597                                  struct intel_set_config *config)
8598 {
8599         struct drm_crtc *new_crtc;
8600         struct intel_connector *connector;
8601         struct intel_encoder *encoder;
8602         int count, ro;
8603
8604         /* The upper layers ensure that we either disable a crtc or have a list
8605          * of connectors. For paranoia, double-check this. */
8606         WARN_ON(!set->fb && (set->num_connectors != 0));
8607         WARN_ON(set->fb && (set->num_connectors == 0));
8608
8609         count = 0;
8610         list_for_each_entry(connector, &dev->mode_config.connector_list,
8611                             base.head) {
8612                 /* Otherwise traverse passed in connector list and get encoders
8613                  * for them. */
8614                 for (ro = 0; ro < set->num_connectors; ro++) {
8615                         if (set->connectors[ro] == &connector->base) {
8616                                 connector->new_encoder = connector->encoder;
8617                                 break;
8618                         }
8619                 }
8620
8621                 /* If we disable the crtc, disable all its connectors. Also, if
8622                  * the connector is on the changing crtc but not on the new
8623                  * connector list, disable it. */
8624                 if ((!set->fb || ro == set->num_connectors) &&
8625                     connector->base.encoder &&
8626                     connector->base.encoder->crtc == set->crtc) {
8627                         connector->new_encoder = NULL;
8628
8629                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8630                                 connector->base.base.id,
8631                                 drm_get_connector_name(&connector->base));
8632                 }
8633
8634
8635                 if (&connector->new_encoder->base != connector->base.encoder) {
8636                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8637                         config->mode_changed = true;
8638                 }
8639         }
8640         /* connector->new_encoder is now updated for all connectors. */
8641
8642         /* Update crtc of enabled connectors. */
8643         count = 0;
8644         list_for_each_entry(connector, &dev->mode_config.connector_list,
8645                             base.head) {
8646                 if (!connector->new_encoder)
8647                         continue;
8648
8649                 new_crtc = connector->new_encoder->base.crtc;
8650
8651                 for (ro = 0; ro < set->num_connectors; ro++) {
8652                         if (set->connectors[ro] == &connector->base)
8653                                 new_crtc = set->crtc;
8654                 }
8655
8656                 /* Make sure the new CRTC will work with the encoder */
8657                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8658                                            new_crtc)) {
8659                         return -EINVAL;
8660                 }
8661                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8662
8663                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8664                         connector->base.base.id,
8665                         drm_get_connector_name(&connector->base),
8666                         new_crtc->base.id);
8667         }
8668
8669         /* Check for any encoders that needs to be disabled. */
8670         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8671                             base.head) {
8672                 list_for_each_entry(connector,
8673                                     &dev->mode_config.connector_list,
8674                                     base.head) {
8675                         if (connector->new_encoder == encoder) {
8676                                 WARN_ON(!connector->new_encoder->new_crtc);
8677
8678                                 goto next_encoder;
8679                         }
8680                 }
8681                 encoder->new_crtc = NULL;
8682 next_encoder:
8683                 /* Only now check for crtc changes so we don't miss encoders
8684                  * that will be disabled. */
8685                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8686                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8687                         config->mode_changed = true;
8688                 }
8689         }
8690         /* Now we've also updated encoder->new_crtc for all encoders. */
8691
8692         return 0;
8693 }
8694
8695 static int intel_crtc_set_config(struct drm_mode_set *set)
8696 {
8697         struct drm_device *dev;
8698         struct drm_mode_set save_set;
8699         struct intel_set_config *config;
8700         int ret;
8701
8702         BUG_ON(!set);
8703         BUG_ON(!set->crtc);
8704         BUG_ON(!set->crtc->helper_private);
8705
8706         /* Enforce sane interface api - has been abused by the fb helper. */
8707         BUG_ON(!set->mode && set->fb);
8708         BUG_ON(set->fb && set->num_connectors == 0);
8709
8710         if (set->fb) {
8711                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8712                                 set->crtc->base.id, set->fb->base.id,
8713                                 (int)set->num_connectors, set->x, set->y);
8714         } else {
8715                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8716         }
8717
8718         dev = set->crtc->dev;
8719
8720         ret = -ENOMEM;
8721         config = kzalloc(sizeof(*config), GFP_KERNEL);
8722         if (!config)
8723                 goto out_config;
8724
8725         ret = intel_set_config_save_state(dev, config);
8726         if (ret)
8727                 goto out_config;
8728
8729         save_set.crtc = set->crtc;
8730         save_set.mode = &set->crtc->mode;
8731         save_set.x = set->crtc->x;
8732         save_set.y = set->crtc->y;
8733         save_set.fb = set->crtc->fb;
8734
8735         /* Compute whether we need a full modeset, only an fb base update or no
8736          * change at all. In the future we might also check whether only the
8737          * mode changed, e.g. for LVDS where we only change the panel fitter in
8738          * such cases. */
8739         intel_set_config_compute_mode_changes(set, config);
8740
8741         ret = intel_modeset_stage_output_state(dev, set, config);
8742         if (ret)
8743                 goto fail;
8744
8745         if (config->mode_changed) {
8746                 ret = intel_set_mode(set->crtc, set->mode,
8747                                      set->x, set->y, set->fb);
8748         } else if (config->fb_changed) {
8749                 intel_crtc_wait_for_pending_flips(set->crtc);
8750
8751                 ret = intel_pipe_set_base(set->crtc,
8752                                           set->x, set->y, set->fb);
8753         }
8754
8755         if (ret) {
8756                 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8757                           set->crtc->base.id, ret);
8758 fail:
8759                 intel_set_config_restore_state(dev, config);
8760
8761                 /* Try to restore the config */
8762                 if (config->mode_changed &&
8763                     intel_set_mode(save_set.crtc, save_set.mode,
8764                                    save_set.x, save_set.y, save_set.fb))
8765                         DRM_ERROR("failed to restore config after modeset failure\n");
8766         }
8767
8768 out_config:
8769         intel_set_config_free(config);
8770         return ret;
8771 }
8772
8773 static const struct drm_crtc_funcs intel_crtc_funcs = {
8774         .cursor_set = intel_crtc_cursor_set,
8775         .cursor_move = intel_crtc_cursor_move,
8776         .gamma_set = intel_crtc_gamma_set,
8777         .set_config = intel_crtc_set_config,
8778         .destroy = intel_crtc_destroy,
8779         .page_flip = intel_crtc_page_flip,
8780 };
8781
8782 static void intel_cpu_pll_init(struct drm_device *dev)
8783 {
8784         if (HAS_DDI(dev))
8785                 intel_ddi_pll_init(dev);
8786 }
8787
8788 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8789                                       struct intel_shared_dpll *pll,
8790                                       struct intel_dpll_hw_state *hw_state)
8791 {
8792         uint32_t val;
8793
8794         val = I915_READ(PCH_DPLL(pll->id));
8795         hw_state->dpll = val;
8796         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8797         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8798
8799         return val & DPLL_VCO_ENABLE;
8800 }
8801
8802 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8803                                 struct intel_shared_dpll *pll)
8804 {
8805         uint32_t reg, val;
8806
8807         /* PCH refclock must be enabled first */
8808         assert_pch_refclk_enabled(dev_priv);
8809
8810         reg = PCH_DPLL(pll->id);
8811         val = I915_READ(reg);
8812         val |= DPLL_VCO_ENABLE;
8813         I915_WRITE(reg, val);
8814         POSTING_READ(reg);
8815         udelay(200);
8816 }
8817
8818 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8819                                  struct intel_shared_dpll *pll)
8820 {
8821         struct drm_device *dev = dev_priv->dev;
8822         struct intel_crtc *crtc;
8823         uint32_t reg, val;
8824
8825         /* Make sure no transcoder isn't still depending on us. */
8826         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8827                 if (intel_crtc_to_shared_dpll(crtc) == pll)
8828                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8829         }
8830
8831         reg = PCH_DPLL(pll->id);
8832         val = I915_READ(reg);
8833         val &= ~DPLL_VCO_ENABLE;
8834         I915_WRITE(reg, val);
8835         POSTING_READ(reg);
8836         udelay(200);
8837 }
8838
8839 static char *ibx_pch_dpll_names[] = {
8840         "PCH DPLL A",
8841         "PCH DPLL B",
8842 };
8843
8844 static void ibx_pch_dpll_init(struct drm_device *dev)
8845 {
8846         struct drm_i915_private *dev_priv = dev->dev_private;
8847         int i;
8848
8849         dev_priv->num_shared_dpll = 2;
8850
8851         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8852                 dev_priv->shared_dplls[i].id = i;
8853                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8854                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8855                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8856                 dev_priv->shared_dplls[i].get_hw_state =
8857                         ibx_pch_dpll_get_hw_state;
8858         }
8859 }
8860
8861 static void intel_shared_dpll_init(struct drm_device *dev)
8862 {
8863         struct drm_i915_private *dev_priv = dev->dev_private;
8864
8865         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8866                 ibx_pch_dpll_init(dev);
8867         else
8868                 dev_priv->num_shared_dpll = 0;
8869
8870         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
8871         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
8872                       dev_priv->num_shared_dpll);
8873 }
8874
8875 static void intel_crtc_init(struct drm_device *dev, int pipe)
8876 {
8877         drm_i915_private_t *dev_priv = dev->dev_private;
8878         struct intel_crtc *intel_crtc;
8879         int i;
8880
8881         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8882         if (intel_crtc == NULL)
8883                 return;
8884
8885         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8886
8887         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8888         for (i = 0; i < 256; i++) {
8889                 intel_crtc->lut_r[i] = i;
8890                 intel_crtc->lut_g[i] = i;
8891                 intel_crtc->lut_b[i] = i;
8892         }
8893
8894         /* Swap pipes & planes for FBC on pre-965 */
8895         intel_crtc->pipe = pipe;
8896         intel_crtc->plane = pipe;
8897         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8898                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8899                 intel_crtc->plane = !pipe;
8900         }
8901
8902         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8903                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8904         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8905         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8906
8907         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8908 }
8909
8910 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8911                                 struct drm_file *file)
8912 {
8913         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8914         struct drm_mode_object *drmmode_obj;
8915         struct intel_crtc *crtc;
8916
8917         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8918                 return -ENODEV;
8919
8920         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8921                         DRM_MODE_OBJECT_CRTC);
8922
8923         if (!drmmode_obj) {
8924                 DRM_ERROR("no such CRTC id\n");
8925                 return -EINVAL;
8926         }
8927
8928         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8929         pipe_from_crtc_id->pipe = crtc->pipe;
8930
8931         return 0;
8932 }
8933
8934 static int intel_encoder_clones(struct intel_encoder *encoder)
8935 {
8936         struct drm_device *dev = encoder->base.dev;
8937         struct intel_encoder *source_encoder;
8938         int index_mask = 0;
8939         int entry = 0;
8940
8941         list_for_each_entry(source_encoder,
8942                             &dev->mode_config.encoder_list, base.head) {
8943
8944                 if (encoder == source_encoder)
8945                         index_mask |= (1 << entry);
8946
8947                 /* Intel hw has only one MUX where enocoders could be cloned. */
8948                 if (encoder->cloneable && source_encoder->cloneable)
8949                         index_mask |= (1 << entry);
8950
8951                 entry++;
8952         }
8953
8954         return index_mask;
8955 }
8956
8957 static bool has_edp_a(struct drm_device *dev)
8958 {
8959         struct drm_i915_private *dev_priv = dev->dev_private;
8960
8961         if (!IS_MOBILE(dev))
8962                 return false;
8963
8964         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8965                 return false;
8966
8967         if (IS_GEN5(dev) &&
8968             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8969                 return false;
8970
8971         return true;
8972 }
8973
8974 static void intel_setup_outputs(struct drm_device *dev)
8975 {
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977         struct intel_encoder *encoder;
8978         bool dpd_is_edp = false;
8979
8980         intel_lvds_init(dev);
8981
8982         if (!IS_ULT(dev))
8983                 intel_crt_init(dev);
8984
8985         if (HAS_DDI(dev)) {
8986                 int found;
8987
8988                 /* Haswell uses DDI functions to detect digital outputs */
8989                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8990                 /* DDI A only supports eDP */
8991                 if (found)
8992                         intel_ddi_init(dev, PORT_A);
8993
8994                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8995                  * register */
8996                 found = I915_READ(SFUSE_STRAP);
8997
8998                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8999                         intel_ddi_init(dev, PORT_B);
9000                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9001                         intel_ddi_init(dev, PORT_C);
9002                 if (found & SFUSE_STRAP_DDID_DETECTED)
9003                         intel_ddi_init(dev, PORT_D);
9004         } else if (HAS_PCH_SPLIT(dev)) {
9005                 int found;
9006                 dpd_is_edp = intel_dpd_is_edp(dev);
9007
9008                 if (has_edp_a(dev))
9009                         intel_dp_init(dev, DP_A, PORT_A);
9010
9011                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9012                         /* PCH SDVOB multiplex with HDMIB */
9013                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9014                         if (!found)
9015                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9016                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9017                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9018                 }
9019
9020                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9021                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9022
9023                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9024                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9025
9026                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9027                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9028
9029                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9030                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9031         } else if (IS_VALLEYVIEW(dev)) {
9032                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9033                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9034                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9035
9036                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9037                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9038                                         PORT_B);
9039                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9040                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9041                 }
9042         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9043                 bool found = false;
9044
9045                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9046                         DRM_DEBUG_KMS("probing SDVOB\n");
9047                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9048                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9049                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9050                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9051                         }
9052
9053                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9054                                 intel_dp_init(dev, DP_B, PORT_B);
9055                 }
9056
9057                 /* Before G4X SDVOC doesn't have its own detect register */
9058
9059                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9060                         DRM_DEBUG_KMS("probing SDVOC\n");
9061                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9062                 }
9063
9064                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9065
9066                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9067                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9068                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9069                         }
9070                         if (SUPPORTS_INTEGRATED_DP(dev))
9071                                 intel_dp_init(dev, DP_C, PORT_C);
9072                 }
9073
9074                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9075                     (I915_READ(DP_D) & DP_DETECTED))
9076                         intel_dp_init(dev, DP_D, PORT_D);
9077         } else if (IS_GEN2(dev))
9078                 intel_dvo_init(dev);
9079
9080         if (SUPPORTS_TV(dev))
9081                 intel_tv_init(dev);
9082
9083         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9084                 encoder->base.possible_crtcs = encoder->crtc_mask;
9085                 encoder->base.possible_clones =
9086                         intel_encoder_clones(encoder);
9087         }
9088
9089         intel_init_pch_refclk(dev);
9090
9091         drm_helper_move_panel_connectors_to_head(dev);
9092 }
9093
9094 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9095 {
9096         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9097
9098         drm_framebuffer_cleanup(fb);
9099         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9100
9101         kfree(intel_fb);
9102 }
9103
9104 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9105                                                 struct drm_file *file,
9106                                                 unsigned int *handle)
9107 {
9108         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9109         struct drm_i915_gem_object *obj = intel_fb->obj;
9110
9111         return drm_gem_handle_create(file, &obj->base, handle);
9112 }
9113
9114 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9115         .destroy = intel_user_framebuffer_destroy,
9116         .create_handle = intel_user_framebuffer_create_handle,
9117 };
9118
9119 int intel_framebuffer_init(struct drm_device *dev,
9120                            struct intel_framebuffer *intel_fb,
9121                            struct drm_mode_fb_cmd2 *mode_cmd,
9122                            struct drm_i915_gem_object *obj)
9123 {
9124         int ret;
9125
9126         if (obj->tiling_mode == I915_TILING_Y) {
9127                 DRM_DEBUG("hardware does not support tiling Y\n");
9128                 return -EINVAL;
9129         }
9130
9131         if (mode_cmd->pitches[0] & 63) {
9132                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9133                           mode_cmd->pitches[0]);
9134                 return -EINVAL;
9135         }
9136
9137         /* FIXME <= Gen4 stride limits are bit unclear */
9138         if (mode_cmd->pitches[0] > 32768) {
9139                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
9140                           mode_cmd->pitches[0]);
9141                 return -EINVAL;
9142         }
9143
9144         if (obj->tiling_mode != I915_TILING_NONE &&
9145             mode_cmd->pitches[0] != obj->stride) {
9146                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9147                           mode_cmd->pitches[0], obj->stride);
9148                 return -EINVAL;
9149         }
9150
9151         /* Reject formats not supported by any plane early. */
9152         switch (mode_cmd->pixel_format) {
9153         case DRM_FORMAT_C8:
9154         case DRM_FORMAT_RGB565:
9155         case DRM_FORMAT_XRGB8888:
9156         case DRM_FORMAT_ARGB8888:
9157                 break;
9158         case DRM_FORMAT_XRGB1555:
9159         case DRM_FORMAT_ARGB1555:
9160                 if (INTEL_INFO(dev)->gen > 3) {
9161                         DRM_DEBUG("unsupported pixel format: %s\n",
9162                                   drm_get_format_name(mode_cmd->pixel_format));
9163                         return -EINVAL;
9164                 }
9165                 break;
9166         case DRM_FORMAT_XBGR8888:
9167         case DRM_FORMAT_ABGR8888:
9168         case DRM_FORMAT_XRGB2101010:
9169         case DRM_FORMAT_ARGB2101010:
9170         case DRM_FORMAT_XBGR2101010:
9171         case DRM_FORMAT_ABGR2101010:
9172                 if (INTEL_INFO(dev)->gen < 4) {
9173                         DRM_DEBUG("unsupported pixel format: %s\n",
9174                                   drm_get_format_name(mode_cmd->pixel_format));
9175                         return -EINVAL;
9176                 }
9177                 break;
9178         case DRM_FORMAT_YUYV:
9179         case DRM_FORMAT_UYVY:
9180         case DRM_FORMAT_YVYU:
9181         case DRM_FORMAT_VYUY:
9182                 if (INTEL_INFO(dev)->gen < 5) {
9183                         DRM_DEBUG("unsupported pixel format: %s\n",
9184                                   drm_get_format_name(mode_cmd->pixel_format));
9185                         return -EINVAL;
9186                 }
9187                 break;
9188         default:
9189                 DRM_DEBUG("unsupported pixel format: %s\n",
9190                           drm_get_format_name(mode_cmd->pixel_format));
9191                 return -EINVAL;
9192         }
9193
9194         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9195         if (mode_cmd->offsets[0] != 0)
9196                 return -EINVAL;
9197
9198         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9199         intel_fb->obj = obj;
9200
9201         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9202         if (ret) {
9203                 DRM_ERROR("framebuffer init failed %d\n", ret);
9204                 return ret;
9205         }
9206
9207         return 0;
9208 }
9209
9210 static struct drm_framebuffer *
9211 intel_user_framebuffer_create(struct drm_device *dev,
9212                               struct drm_file *filp,
9213                               struct drm_mode_fb_cmd2 *mode_cmd)
9214 {
9215         struct drm_i915_gem_object *obj;
9216
9217         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9218                                                 mode_cmd->handles[0]));
9219         if (&obj->base == NULL)
9220                 return ERR_PTR(-ENOENT);
9221
9222         return intel_framebuffer_create(dev, mode_cmd, obj);
9223 }
9224
9225 static const struct drm_mode_config_funcs intel_mode_funcs = {
9226         .fb_create = intel_user_framebuffer_create,
9227         .output_poll_changed = intel_fb_output_poll_changed,
9228 };
9229
9230 /* Set up chip specific display functions */
9231 static void intel_init_display(struct drm_device *dev)
9232 {
9233         struct drm_i915_private *dev_priv = dev->dev_private;
9234
9235         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9236                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9237         else if (IS_VALLEYVIEW(dev))
9238                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9239         else if (IS_PINEVIEW(dev))
9240                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9241         else
9242                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9243
9244         if (HAS_DDI(dev)) {
9245                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9246                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9247                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9248                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9249                 dev_priv->display.off = haswell_crtc_off;
9250                 dev_priv->display.update_plane = ironlake_update_plane;
9251         } else if (HAS_PCH_SPLIT(dev)) {
9252                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9253                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9254                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9255                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9256                 dev_priv->display.off = ironlake_crtc_off;
9257                 dev_priv->display.update_plane = ironlake_update_plane;
9258         } else if (IS_VALLEYVIEW(dev)) {
9259                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9260                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9261                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9262                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9263                 dev_priv->display.off = i9xx_crtc_off;
9264                 dev_priv->display.update_plane = i9xx_update_plane;
9265         } else {
9266                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9267                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9268                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9269                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9270                 dev_priv->display.off = i9xx_crtc_off;
9271                 dev_priv->display.update_plane = i9xx_update_plane;
9272         }
9273
9274         /* Returns the core display clock speed */
9275         if (IS_VALLEYVIEW(dev))
9276                 dev_priv->display.get_display_clock_speed =
9277                         valleyview_get_display_clock_speed;
9278         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9279                 dev_priv->display.get_display_clock_speed =
9280                         i945_get_display_clock_speed;
9281         else if (IS_I915G(dev))
9282                 dev_priv->display.get_display_clock_speed =
9283                         i915_get_display_clock_speed;
9284         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9285                 dev_priv->display.get_display_clock_speed =
9286                         i9xx_misc_get_display_clock_speed;
9287         else if (IS_I915GM(dev))
9288                 dev_priv->display.get_display_clock_speed =
9289                         i915gm_get_display_clock_speed;
9290         else if (IS_I865G(dev))
9291                 dev_priv->display.get_display_clock_speed =
9292                         i865_get_display_clock_speed;
9293         else if (IS_I85X(dev))
9294                 dev_priv->display.get_display_clock_speed =
9295                         i855_get_display_clock_speed;
9296         else /* 852, 830 */
9297                 dev_priv->display.get_display_clock_speed =
9298                         i830_get_display_clock_speed;
9299
9300         if (HAS_PCH_SPLIT(dev)) {
9301                 if (IS_GEN5(dev)) {
9302                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9303                         dev_priv->display.write_eld = ironlake_write_eld;
9304                 } else if (IS_GEN6(dev)) {
9305                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9306                         dev_priv->display.write_eld = ironlake_write_eld;
9307                 } else if (IS_IVYBRIDGE(dev)) {
9308                         /* FIXME: detect B0+ stepping and use auto training */
9309                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9310                         dev_priv->display.write_eld = ironlake_write_eld;
9311                         dev_priv->display.modeset_global_resources =
9312                                 ivb_modeset_global_resources;
9313                 } else if (IS_HASWELL(dev)) {
9314                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9315                         dev_priv->display.write_eld = haswell_write_eld;
9316                         dev_priv->display.modeset_global_resources =
9317                                 haswell_modeset_global_resources;
9318                 }
9319         } else if (IS_G4X(dev)) {
9320                 dev_priv->display.write_eld = g4x_write_eld;
9321         }
9322
9323         /* Default just returns -ENODEV to indicate unsupported */
9324         dev_priv->display.queue_flip = intel_default_queue_flip;
9325
9326         switch (INTEL_INFO(dev)->gen) {
9327         case 2:
9328                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9329                 break;
9330
9331         case 3:
9332                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9333                 break;
9334
9335         case 4:
9336         case 5:
9337                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9338                 break;
9339
9340         case 6:
9341                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9342                 break;
9343         case 7:
9344                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9345                 break;
9346         }
9347 }
9348
9349 /*
9350  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9351  * resume, or other times.  This quirk makes sure that's the case for
9352  * affected systems.
9353  */
9354 static void quirk_pipea_force(struct drm_device *dev)
9355 {
9356         struct drm_i915_private *dev_priv = dev->dev_private;
9357
9358         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9359         DRM_INFO("applying pipe a force quirk\n");
9360 }
9361
9362 /*
9363  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9364  */
9365 static void quirk_ssc_force_disable(struct drm_device *dev)
9366 {
9367         struct drm_i915_private *dev_priv = dev->dev_private;
9368         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9369         DRM_INFO("applying lvds SSC disable quirk\n");
9370 }
9371
9372 /*
9373  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9374  * brightness value
9375  */
9376 static void quirk_invert_brightness(struct drm_device *dev)
9377 {
9378         struct drm_i915_private *dev_priv = dev->dev_private;
9379         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9380         DRM_INFO("applying inverted panel brightness quirk\n");
9381 }
9382
9383 struct intel_quirk {
9384         int device;
9385         int subsystem_vendor;
9386         int subsystem_device;
9387         void (*hook)(struct drm_device *dev);
9388 };
9389
9390 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9391 struct intel_dmi_quirk {
9392         void (*hook)(struct drm_device *dev);
9393         const struct dmi_system_id (*dmi_id_list)[];
9394 };
9395
9396 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9397 {
9398         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9399         return 1;
9400 }
9401
9402 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9403         {
9404                 .dmi_id_list = &(const struct dmi_system_id[]) {
9405                         {
9406                                 .callback = intel_dmi_reverse_brightness,
9407                                 .ident = "NCR Corporation",
9408                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9409                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9410                                 },
9411                         },
9412                         { }  /* terminating entry */
9413                 },
9414                 .hook = quirk_invert_brightness,
9415         },
9416 };
9417
9418 static struct intel_quirk intel_quirks[] = {
9419         /* HP Mini needs pipe A force quirk (LP: #322104) */
9420         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9421
9422         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9423         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9424
9425         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9426         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9427
9428         /* 830/845 need to leave pipe A & dpll A up */
9429         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9430         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9431
9432         /* Lenovo U160 cannot use SSC on LVDS */
9433         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9434
9435         /* Sony Vaio Y cannot use SSC on LVDS */
9436         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9437
9438         /* Acer Aspire 5734Z must invert backlight brightness */
9439         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9440
9441         /* Acer/eMachines G725 */
9442         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9443
9444         /* Acer/eMachines e725 */
9445         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9446
9447         /* Acer/Packard Bell NCL20 */
9448         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9449
9450         /* Acer Aspire 4736Z */
9451         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9452 };
9453
9454 static void intel_init_quirks(struct drm_device *dev)
9455 {
9456         struct pci_dev *d = dev->pdev;
9457         int i;
9458
9459         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9460                 struct intel_quirk *q = &intel_quirks[i];
9461
9462                 if (d->device == q->device &&
9463                     (d->subsystem_vendor == q->subsystem_vendor ||
9464                      q->subsystem_vendor == PCI_ANY_ID) &&
9465                     (d->subsystem_device == q->subsystem_device ||
9466                      q->subsystem_device == PCI_ANY_ID))
9467                         q->hook(dev);
9468         }
9469         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9470                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9471                         intel_dmi_quirks[i].hook(dev);
9472         }
9473 }
9474
9475 /* Disable the VGA plane that we never use */
9476 static void i915_disable_vga(struct drm_device *dev)
9477 {
9478         struct drm_i915_private *dev_priv = dev->dev_private;
9479         u8 sr1;
9480         u32 vga_reg = i915_vgacntrl_reg(dev);
9481
9482         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9483         outb(SR01, VGA_SR_INDEX);
9484         sr1 = inb(VGA_SR_DATA);
9485         outb(sr1 | 1<<5, VGA_SR_DATA);
9486         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9487         udelay(300);
9488
9489         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9490         POSTING_READ(vga_reg);
9491 }
9492
9493 void intel_modeset_init_hw(struct drm_device *dev)
9494 {
9495         intel_init_power_well(dev);
9496
9497         intel_prepare_ddi(dev);
9498
9499         intel_init_clock_gating(dev);
9500
9501         mutex_lock(&dev->struct_mutex);
9502         intel_enable_gt_powersave(dev);
9503         mutex_unlock(&dev->struct_mutex);
9504 }
9505
9506 void intel_modeset_suspend_hw(struct drm_device *dev)
9507 {
9508         intel_suspend_hw(dev);
9509 }
9510
9511 void intel_modeset_init(struct drm_device *dev)
9512 {
9513         struct drm_i915_private *dev_priv = dev->dev_private;
9514         int i, j, ret;
9515
9516         drm_mode_config_init(dev);
9517
9518         dev->mode_config.min_width = 0;
9519         dev->mode_config.min_height = 0;
9520
9521         dev->mode_config.preferred_depth = 24;
9522         dev->mode_config.prefer_shadow = 1;
9523
9524         dev->mode_config.funcs = &intel_mode_funcs;
9525
9526         intel_init_quirks(dev);
9527
9528         intel_init_pm(dev);
9529
9530         if (INTEL_INFO(dev)->num_pipes == 0)
9531                 return;
9532
9533         intel_init_display(dev);
9534
9535         if (IS_GEN2(dev)) {
9536                 dev->mode_config.max_width = 2048;
9537                 dev->mode_config.max_height = 2048;
9538         } else if (IS_GEN3(dev)) {
9539                 dev->mode_config.max_width = 4096;
9540                 dev->mode_config.max_height = 4096;
9541         } else {
9542                 dev->mode_config.max_width = 8192;
9543                 dev->mode_config.max_height = 8192;
9544         }
9545         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9546
9547         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9548                       INTEL_INFO(dev)->num_pipes,
9549                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9550
9551         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9552                 intel_crtc_init(dev, i);
9553                 for (j = 0; j < dev_priv->num_plane; j++) {
9554                         ret = intel_plane_init(dev, i, j);
9555                         if (ret)
9556                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9557                                               pipe_name(i), sprite_name(i, j), ret);
9558                 }
9559         }
9560
9561         intel_cpu_pll_init(dev);
9562         intel_shared_dpll_init(dev);
9563
9564         /* Just disable it once at startup */
9565         i915_disable_vga(dev);
9566         intel_setup_outputs(dev);
9567
9568         /* Just in case the BIOS is doing something questionable. */
9569         intel_disable_fbc(dev);
9570 }
9571
9572 static void
9573 intel_connector_break_all_links(struct intel_connector *connector)
9574 {
9575         connector->base.dpms = DRM_MODE_DPMS_OFF;
9576         connector->base.encoder = NULL;
9577         connector->encoder->connectors_active = false;
9578         connector->encoder->base.crtc = NULL;
9579 }
9580
9581 static void intel_enable_pipe_a(struct drm_device *dev)
9582 {
9583         struct intel_connector *connector;
9584         struct drm_connector *crt = NULL;
9585         struct intel_load_detect_pipe load_detect_temp;
9586
9587         /* We can't just switch on the pipe A, we need to set things up with a
9588          * proper mode and output configuration. As a gross hack, enable pipe A
9589          * by enabling the load detect pipe once. */
9590         list_for_each_entry(connector,
9591                             &dev->mode_config.connector_list,
9592                             base.head) {
9593                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9594                         crt = &connector->base;
9595                         break;
9596                 }
9597         }
9598
9599         if (!crt)
9600                 return;
9601
9602         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9603                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9604
9605
9606 }
9607
9608 static bool
9609 intel_check_plane_mapping(struct intel_crtc *crtc)
9610 {
9611         struct drm_device *dev = crtc->base.dev;
9612         struct drm_i915_private *dev_priv = dev->dev_private;
9613         u32 reg, val;
9614
9615         if (INTEL_INFO(dev)->num_pipes == 1)
9616                 return true;
9617
9618         reg = DSPCNTR(!crtc->plane);
9619         val = I915_READ(reg);
9620
9621         if ((val & DISPLAY_PLANE_ENABLE) &&
9622             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9623                 return false;
9624
9625         return true;
9626 }
9627
9628 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9629 {
9630         struct drm_device *dev = crtc->base.dev;
9631         struct drm_i915_private *dev_priv = dev->dev_private;
9632         u32 reg;
9633
9634         /* Clear any frame start delays used for debugging left by the BIOS */
9635         reg = PIPECONF(crtc->config.cpu_transcoder);
9636         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9637
9638         /* We need to sanitize the plane -> pipe mapping first because this will
9639          * disable the crtc (and hence change the state) if it is wrong. Note
9640          * that gen4+ has a fixed plane -> pipe mapping.  */
9641         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9642                 struct intel_connector *connector;
9643                 bool plane;
9644
9645                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9646                               crtc->base.base.id);
9647
9648                 /* Pipe has the wrong plane attached and the plane is active.
9649                  * Temporarily change the plane mapping and disable everything
9650                  * ...  */
9651                 plane = crtc->plane;
9652                 crtc->plane = !plane;
9653                 dev_priv->display.crtc_disable(&crtc->base);
9654                 crtc->plane = plane;
9655
9656                 /* ... and break all links. */
9657                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9658                                     base.head) {
9659                         if (connector->encoder->base.crtc != &crtc->base)
9660                                 continue;
9661
9662                         intel_connector_break_all_links(connector);
9663                 }
9664
9665                 WARN_ON(crtc->active);
9666                 crtc->base.enabled = false;
9667         }
9668
9669         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9670             crtc->pipe == PIPE_A && !crtc->active) {
9671                 /* BIOS forgot to enable pipe A, this mostly happens after
9672                  * resume. Force-enable the pipe to fix this, the update_dpms
9673                  * call below we restore the pipe to the right state, but leave
9674                  * the required bits on. */
9675                 intel_enable_pipe_a(dev);
9676         }
9677
9678         /* Adjust the state of the output pipe according to whether we
9679          * have active connectors/encoders. */
9680         intel_crtc_update_dpms(&crtc->base);
9681
9682         if (crtc->active != crtc->base.enabled) {
9683                 struct intel_encoder *encoder;
9684
9685                 /* This can happen either due to bugs in the get_hw_state
9686                  * functions or because the pipe is force-enabled due to the
9687                  * pipe A quirk. */
9688                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9689                               crtc->base.base.id,
9690                               crtc->base.enabled ? "enabled" : "disabled",
9691                               crtc->active ? "enabled" : "disabled");
9692
9693                 crtc->base.enabled = crtc->active;
9694
9695                 /* Because we only establish the connector -> encoder ->
9696                  * crtc links if something is active, this means the
9697                  * crtc is now deactivated. Break the links. connector
9698                  * -> encoder links are only establish when things are
9699                  *  actually up, hence no need to break them. */
9700                 WARN_ON(crtc->active);
9701
9702                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9703                         WARN_ON(encoder->connectors_active);
9704                         encoder->base.crtc = NULL;
9705                 }
9706         }
9707 }
9708
9709 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9710 {
9711         struct intel_connector *connector;
9712         struct drm_device *dev = encoder->base.dev;
9713
9714         /* We need to check both for a crtc link (meaning that the
9715          * encoder is active and trying to read from a pipe) and the
9716          * pipe itself being active. */
9717         bool has_active_crtc = encoder->base.crtc &&
9718                 to_intel_crtc(encoder->base.crtc)->active;
9719
9720         if (encoder->connectors_active && !has_active_crtc) {
9721                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9722                               encoder->base.base.id,
9723                               drm_get_encoder_name(&encoder->base));
9724
9725                 /* Connector is active, but has no active pipe. This is
9726                  * fallout from our resume register restoring. Disable
9727                  * the encoder manually again. */
9728                 if (encoder->base.crtc) {
9729                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9730                                       encoder->base.base.id,
9731                                       drm_get_encoder_name(&encoder->base));
9732                         encoder->disable(encoder);
9733                 }
9734
9735                 /* Inconsistent output/port/pipe state happens presumably due to
9736                  * a bug in one of the get_hw_state functions. Or someplace else
9737                  * in our code, like the register restore mess on resume. Clamp
9738                  * things to off as a safer default. */
9739                 list_for_each_entry(connector,
9740                                     &dev->mode_config.connector_list,
9741                                     base.head) {
9742                         if (connector->encoder != encoder)
9743                                 continue;
9744
9745                         intel_connector_break_all_links(connector);
9746                 }
9747         }
9748         /* Enabled encoders without active connectors will be fixed in
9749          * the crtc fixup. */
9750 }
9751
9752 void i915_redisable_vga(struct drm_device *dev)
9753 {
9754         struct drm_i915_private *dev_priv = dev->dev_private;
9755         u32 vga_reg = i915_vgacntrl_reg(dev);
9756
9757         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9758                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9759                 i915_disable_vga(dev);
9760         }
9761 }
9762
9763 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9764 {
9765         struct drm_i915_private *dev_priv = dev->dev_private;
9766         enum pipe pipe;
9767         struct intel_crtc *crtc;
9768         struct intel_encoder *encoder;
9769         struct intel_connector *connector;
9770         int i;
9771
9772         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9773                             base.head) {
9774                 memset(&crtc->config, 0, sizeof(crtc->config));
9775
9776                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9777                                                                  &crtc->config);
9778
9779                 crtc->base.enabled = crtc->active;
9780
9781                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9782                               crtc->base.base.id,
9783                               crtc->active ? "enabled" : "disabled");
9784         }
9785
9786         /* FIXME: Smash this into the new shared dpll infrastructure. */
9787         if (HAS_DDI(dev))
9788                 intel_ddi_setup_hw_pll_state(dev);
9789
9790         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9791                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9792
9793                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9794                 pll->active = 0;
9795                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9796                                     base.head) {
9797                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9798                                 pll->active++;
9799                 }
9800                 pll->refcount = pll->active;
9801
9802                 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9803                               pll->name, pll->refcount);
9804         }
9805
9806         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9807                             base.head) {
9808                 pipe = 0;
9809
9810                 if (encoder->get_hw_state(encoder, &pipe)) {
9811                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9812                         encoder->base.crtc = &crtc->base;
9813                         if (encoder->get_config)
9814                                 encoder->get_config(encoder, &crtc->config);
9815                 } else {
9816                         encoder->base.crtc = NULL;
9817                 }
9818
9819                 encoder->connectors_active = false;
9820                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9821                               encoder->base.base.id,
9822                               drm_get_encoder_name(&encoder->base),
9823                               encoder->base.crtc ? "enabled" : "disabled",
9824                               pipe);
9825         }
9826
9827         list_for_each_entry(connector, &dev->mode_config.connector_list,
9828                             base.head) {
9829                 if (connector->get_hw_state(connector)) {
9830                         connector->base.dpms = DRM_MODE_DPMS_ON;
9831                         connector->encoder->connectors_active = true;
9832                         connector->base.encoder = &connector->encoder->base;
9833                 } else {
9834                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9835                         connector->base.encoder = NULL;
9836                 }
9837                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9838                               connector->base.base.id,
9839                               drm_get_connector_name(&connector->base),
9840                               connector->base.encoder ? "enabled" : "disabled");
9841         }
9842 }
9843
9844 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9845  * and i915 state tracking structures. */
9846 void intel_modeset_setup_hw_state(struct drm_device *dev,
9847                                   bool force_restore)
9848 {
9849         struct drm_i915_private *dev_priv = dev->dev_private;
9850         enum pipe pipe;
9851         struct drm_plane *plane;
9852         struct intel_crtc *crtc;
9853         struct intel_encoder *encoder;
9854
9855         intel_modeset_readout_hw_state(dev);
9856
9857         /* HW state is read out, now we need to sanitize this mess. */
9858         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9859                             base.head) {
9860                 intel_sanitize_encoder(encoder);
9861         }
9862
9863         for_each_pipe(pipe) {
9864                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9865                 intel_sanitize_crtc(crtc);
9866                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9867         }
9868
9869         if (force_restore) {
9870                 /*
9871                  * We need to use raw interfaces for restoring state to avoid
9872                  * checking (bogus) intermediate states.
9873                  */
9874                 for_each_pipe(pipe) {
9875                         struct drm_crtc *crtc =
9876                                 dev_priv->pipe_to_crtc_mapping[pipe];
9877
9878                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9879                                          crtc->fb);
9880                 }
9881                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9882                         intel_plane_restore(plane);
9883
9884                 i915_redisable_vga(dev);
9885         } else {
9886                 intel_modeset_update_staged_output_state(dev);
9887         }
9888
9889         intel_modeset_check_state(dev);
9890
9891         drm_mode_config_reset(dev);
9892 }
9893
9894 void intel_modeset_gem_init(struct drm_device *dev)
9895 {
9896         intel_modeset_init_hw(dev);
9897
9898         intel_setup_overlay(dev);
9899
9900         intel_modeset_setup_hw_state(dev, false);
9901 }
9902
9903 void intel_modeset_cleanup(struct drm_device *dev)
9904 {
9905         struct drm_i915_private *dev_priv = dev->dev_private;
9906         struct drm_crtc *crtc;
9907         struct intel_crtc *intel_crtc;
9908
9909         /*
9910          * Interrupts and polling as the first thing to avoid creating havoc.
9911          * Too much stuff here (turning of rps, connectors, ...) would
9912          * experience fancy races otherwise.
9913          */
9914         drm_irq_uninstall(dev);
9915         cancel_work_sync(&dev_priv->hotplug_work);
9916         /*
9917          * Due to the hpd irq storm handling the hotplug work can re-arm the
9918          * poll handlers. Hence disable polling after hpd handling is shut down.
9919          */
9920         drm_kms_helper_poll_fini(dev);
9921
9922         mutex_lock(&dev->struct_mutex);
9923
9924         intel_unregister_dsm_handler();
9925
9926         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9927                 /* Skip inactive CRTCs */
9928                 if (!crtc->fb)
9929                         continue;
9930
9931                 intel_crtc = to_intel_crtc(crtc);
9932                 intel_increase_pllclock(crtc);
9933         }
9934
9935         intel_disable_fbc(dev);
9936
9937         intel_disable_gt_powersave(dev);
9938
9939         ironlake_teardown_rc6(dev);
9940
9941         mutex_unlock(&dev->struct_mutex);
9942
9943         /* flush any delayed tasks or pending work */
9944         flush_scheduled_work();
9945
9946         /* destroy backlight, if any, before the connectors */
9947         intel_panel_destroy_backlight(dev);
9948
9949         drm_mode_config_cleanup(dev);
9950
9951         intel_cleanup_overlay(dev);
9952 }
9953
9954 /*
9955  * Return which encoder is currently attached for connector.
9956  */
9957 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9958 {
9959         return &intel_attached_encoder(connector)->base;
9960 }
9961
9962 void intel_connector_attach_encoder(struct intel_connector *connector,
9963                                     struct intel_encoder *encoder)
9964 {
9965         connector->encoder = encoder;
9966         drm_mode_connector_attach_encoder(&connector->base,
9967                                           &encoder->base);
9968 }
9969
9970 /*
9971  * set vga decode state - true == enable VGA decode
9972  */
9973 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9974 {
9975         struct drm_i915_private *dev_priv = dev->dev_private;
9976         u16 gmch_ctrl;
9977
9978         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9979         if (state)
9980                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9981         else
9982                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9983         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9984         return 0;
9985 }
9986
9987 #ifdef CONFIG_DEBUG_FS
9988 #include <linux/seq_file.h>
9989
9990 struct intel_display_error_state {
9991
9992         u32 power_well_driver;
9993
9994         struct intel_cursor_error_state {
9995                 u32 control;
9996                 u32 position;
9997                 u32 base;
9998                 u32 size;
9999         } cursor[I915_MAX_PIPES];
10000
10001         struct intel_pipe_error_state {
10002                 enum transcoder cpu_transcoder;
10003                 u32 conf;
10004                 u32 source;
10005
10006                 u32 htotal;
10007                 u32 hblank;
10008                 u32 hsync;
10009                 u32 vtotal;
10010                 u32 vblank;
10011                 u32 vsync;
10012         } pipe[I915_MAX_PIPES];
10013
10014         struct intel_plane_error_state {
10015                 u32 control;
10016                 u32 stride;
10017                 u32 size;
10018                 u32 pos;
10019                 u32 addr;
10020                 u32 surface;
10021                 u32 tile_offset;
10022         } plane[I915_MAX_PIPES];
10023 };
10024
10025 struct intel_display_error_state *
10026 intel_display_capture_error_state(struct drm_device *dev)
10027 {
10028         drm_i915_private_t *dev_priv = dev->dev_private;
10029         struct intel_display_error_state *error;
10030         enum transcoder cpu_transcoder;
10031         int i;
10032
10033         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10034         if (error == NULL)
10035                 return NULL;
10036
10037         if (HAS_POWER_WELL(dev))
10038                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10039
10040         for_each_pipe(i) {
10041                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10042                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10043
10044                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10045                         error->cursor[i].control = I915_READ(CURCNTR(i));
10046                         error->cursor[i].position = I915_READ(CURPOS(i));
10047                         error->cursor[i].base = I915_READ(CURBASE(i));
10048                 } else {
10049                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10050                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10051                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10052                 }
10053
10054                 error->plane[i].control = I915_READ(DSPCNTR(i));
10055                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10056                 if (INTEL_INFO(dev)->gen <= 3) {
10057                         error->plane[i].size = I915_READ(DSPSIZE(i));
10058                         error->plane[i].pos = I915_READ(DSPPOS(i));
10059                 }
10060                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10061                         error->plane[i].addr = I915_READ(DSPADDR(i));
10062                 if (INTEL_INFO(dev)->gen >= 4) {
10063                         error->plane[i].surface = I915_READ(DSPSURF(i));
10064                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10065                 }
10066
10067                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10068                 error->pipe[i].source = I915_READ(PIPESRC(i));
10069                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10070                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10071                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10072                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10073                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10074                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10075         }
10076
10077         /* In the code above we read the registers without checking if the power
10078          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10079          * prevent the next I915_WRITE from detecting it and printing an error
10080          * message. */
10081         if (HAS_POWER_WELL(dev))
10082                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10083
10084         return error;
10085 }
10086
10087 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10088
10089 void
10090 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10091                                 struct drm_device *dev,
10092                                 struct intel_display_error_state *error)
10093 {
10094         int i;
10095
10096         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10097         if (HAS_POWER_WELL(dev))
10098                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10099                            error->power_well_driver);
10100         for_each_pipe(i) {
10101                 err_printf(m, "Pipe [%d]:\n", i);
10102                 err_printf(m, "  CPU transcoder: %c\n",
10103                            transcoder_name(error->pipe[i].cpu_transcoder));
10104                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10105                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10106                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10107                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10108                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10109                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10110                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10111                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10112
10113                 err_printf(m, "Plane [%d]:\n", i);
10114                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10115                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10116                 if (INTEL_INFO(dev)->gen <= 3) {
10117                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10118                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10119                 }
10120                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10121                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10122                 if (INTEL_INFO(dev)->gen >= 4) {
10123                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10124                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10125                 }
10126
10127                 err_printf(m, "Cursor [%d]:\n", i);
10128                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10129                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10130                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10131         }
10132 }
10133 #endif