]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
MD: when RAID journal is missing/faulty, block RESTART_ARRAY_RW
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         blk_queue_split(q, &bio, q->bio_split);
261
262         if (mddev == NULL || mddev->pers == NULL
263             || !mddev->ready) {
264                 bio_io_error(bio);
265                 return;
266         }
267         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268                 if (bio_sectors(bio) != 0)
269                         bio->bi_error = -EROFS;
270                 bio_endio(bio);
271                 return;
272         }
273         smp_rmb(); /* Ensure implications of  'active' are visible */
274         rcu_read_lock();
275         if (mddev->suspended) {
276                 DEFINE_WAIT(__wait);
277                 for (;;) {
278                         prepare_to_wait(&mddev->sb_wait, &__wait,
279                                         TASK_UNINTERRUPTIBLE);
280                         if (!mddev->suspended)
281                                 break;
282                         rcu_read_unlock();
283                         schedule();
284                         rcu_read_lock();
285                 }
286                 finish_wait(&mddev->sb_wait, &__wait);
287         }
288         atomic_inc(&mddev->active_io);
289         rcu_read_unlock();
290
291         /*
292          * save the sectors now since our bio can
293          * go away inside make_request
294          */
295         sectors = bio_sectors(bio);
296         mddev->pers->make_request(mddev, bio);
297
298         cpu = part_stat_lock();
299         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301         part_stat_unlock();
302
303         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304                 wake_up(&mddev->sb_wait);
305 }
306
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315         BUG_ON(mddev->suspended);
316         mddev->suspended = 1;
317         synchronize_rcu();
318         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319         mddev->pers->quiesce(mddev, 1);
320
321         del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324
325 void mddev_resume(struct mddev *mddev)
326 {
327         mddev->suspended = 0;
328         wake_up(&mddev->sb_wait);
329         mddev->pers->quiesce(mddev, 0);
330
331         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332         md_wakeup_thread(mddev->thread);
333         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339         struct md_personality *pers = mddev->pers;
340         int ret = 0;
341
342         rcu_read_lock();
343         if (mddev->suspended)
344                 ret = 1;
345         else if (pers && pers->congested)
346                 ret = pers->congested(mddev, bits);
347         rcu_read_unlock();
348         return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353         struct mddev *mddev = data;
354         return mddev_congested(mddev, bits);
355 }
356
357 /*
358  * Generic flush handling for md
359  */
360
361 static void md_end_flush(struct bio *bio)
362 {
363         struct md_rdev *rdev = bio->bi_private;
364         struct mddev *mddev = rdev->mddev;
365
366         rdev_dec_pending(rdev, mddev);
367
368         if (atomic_dec_and_test(&mddev->flush_pending)) {
369                 /* The pre-request flush has finished */
370                 queue_work(md_wq, &mddev->flush_work);
371         }
372         bio_put(bio);
373 }
374
375 static void md_submit_flush_data(struct work_struct *ws);
376
377 static void submit_flushes(struct work_struct *ws)
378 {
379         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380         struct md_rdev *rdev;
381
382         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383         atomic_set(&mddev->flush_pending, 1);
384         rcu_read_lock();
385         rdev_for_each_rcu(rdev, mddev)
386                 if (rdev->raid_disk >= 0 &&
387                     !test_bit(Faulty, &rdev->flags)) {
388                         /* Take two references, one is dropped
389                          * when request finishes, one after
390                          * we reclaim rcu_read_lock
391                          */
392                         struct bio *bi;
393                         atomic_inc(&rdev->nr_pending);
394                         atomic_inc(&rdev->nr_pending);
395                         rcu_read_unlock();
396                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397                         bi->bi_end_io = md_end_flush;
398                         bi->bi_private = rdev;
399                         bi->bi_bdev = rdev->bdev;
400                         atomic_inc(&mddev->flush_pending);
401                         submit_bio(WRITE_FLUSH, bi);
402                         rcu_read_lock();
403                         rdev_dec_pending(rdev, mddev);
404                 }
405         rcu_read_unlock();
406         if (atomic_dec_and_test(&mddev->flush_pending))
407                 queue_work(md_wq, &mddev->flush_work);
408 }
409
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413         struct bio *bio = mddev->flush_bio;
414
415         if (bio->bi_iter.bi_size == 0)
416                 /* an empty barrier - all done */
417                 bio_endio(bio);
418         else {
419                 bio->bi_rw &= ~REQ_FLUSH;
420                 mddev->pers->make_request(mddev, bio);
421         }
422
423         mddev->flush_bio = NULL;
424         wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429         spin_lock_irq(&mddev->lock);
430         wait_event_lock_irq(mddev->sb_wait,
431                             !mddev->flush_bio,
432                             mddev->lock);
433         mddev->flush_bio = bio;
434         spin_unlock_irq(&mddev->lock);
435
436         INIT_WORK(&mddev->flush_work, submit_flushes);
437         queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443         struct mddev *mddev = cb->data;
444         md_wakeup_thread(mddev->thread);
445         kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451         atomic_inc(&mddev->active);
452         return mddev;
453 }
454
455 static void mddev_delayed_delete(struct work_struct *ws);
456
457 static void mddev_put(struct mddev *mddev)
458 {
459         struct bio_set *bs = NULL;
460
461         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462                 return;
463         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464             mddev->ctime == 0 && !mddev->hold_active) {
465                 /* Array is not configured at all, and not held active,
466                  * so destroy it */
467                 list_del_init(&mddev->all_mddevs);
468                 bs = mddev->bio_set;
469                 mddev->bio_set = NULL;
470                 if (mddev->gendisk) {
471                         /* We did a probe so need to clean up.  Call
472                          * queue_work inside the spinlock so that
473                          * flush_workqueue() after mddev_find will
474                          * succeed in waiting for the work to be done.
475                          */
476                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477                         queue_work(md_misc_wq, &mddev->del_work);
478                 } else
479                         kfree(mddev);
480         }
481         spin_unlock(&all_mddevs_lock);
482         if (bs)
483                 bioset_free(bs);
484 }
485
486 static void md_safemode_timeout(unsigned long data);
487
488 void mddev_init(struct mddev *mddev)
489 {
490         mutex_init(&mddev->open_mutex);
491         mutex_init(&mddev->reconfig_mutex);
492         mutex_init(&mddev->bitmap_info.mutex);
493         INIT_LIST_HEAD(&mddev->disks);
494         INIT_LIST_HEAD(&mddev->all_mddevs);
495         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496                     (unsigned long) mddev);
497         atomic_set(&mddev->active, 1);
498         atomic_set(&mddev->openers, 0);
499         atomic_set(&mddev->active_io, 0);
500         spin_lock_init(&mddev->lock);
501         atomic_set(&mddev->flush_pending, 0);
502         init_waitqueue_head(&mddev->sb_wait);
503         init_waitqueue_head(&mddev->recovery_wait);
504         mddev->reshape_position = MaxSector;
505         mddev->reshape_backwards = 0;
506         mddev->last_sync_action = "none";
507         mddev->resync_min = 0;
508         mddev->resync_max = MaxSector;
509         mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512
513 static struct mddev *mddev_find(dev_t unit)
514 {
515         struct mddev *mddev, *new = NULL;
516
517         if (unit && MAJOR(unit) != MD_MAJOR)
518                 unit &= ~((1<<MdpMinorShift)-1);
519
520  retry:
521         spin_lock(&all_mddevs_lock);
522
523         if (unit) {
524                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525                         if (mddev->unit == unit) {
526                                 mddev_get(mddev);
527                                 spin_unlock(&all_mddevs_lock);
528                                 kfree(new);
529                                 return mddev;
530                         }
531
532                 if (new) {
533                         list_add(&new->all_mddevs, &all_mddevs);
534                         spin_unlock(&all_mddevs_lock);
535                         new->hold_active = UNTIL_IOCTL;
536                         return new;
537                 }
538         } else if (new) {
539                 /* find an unused unit number */
540                 static int next_minor = 512;
541                 int start = next_minor;
542                 int is_free = 0;
543                 int dev = 0;
544                 while (!is_free) {
545                         dev = MKDEV(MD_MAJOR, next_minor);
546                         next_minor++;
547                         if (next_minor > MINORMASK)
548                                 next_minor = 0;
549                         if (next_minor == start) {
550                                 /* Oh dear, all in use. */
551                                 spin_unlock(&all_mddevs_lock);
552                                 kfree(new);
553                                 return NULL;
554                         }
555
556                         is_free = 1;
557                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558                                 if (mddev->unit == dev) {
559                                         is_free = 0;
560                                         break;
561                                 }
562                 }
563                 new->unit = dev;
564                 new->md_minor = MINOR(dev);
565                 new->hold_active = UNTIL_STOP;
566                 list_add(&new->all_mddevs, &all_mddevs);
567                 spin_unlock(&all_mddevs_lock);
568                 return new;
569         }
570         spin_unlock(&all_mddevs_lock);
571
572         new = kzalloc(sizeof(*new), GFP_KERNEL);
573         if (!new)
574                 return NULL;
575
576         new->unit = unit;
577         if (MAJOR(unit) == MD_MAJOR)
578                 new->md_minor = MINOR(unit);
579         else
580                 new->md_minor = MINOR(unit) >> MdpMinorShift;
581
582         mddev_init(new);
583
584         goto retry;
585 }
586
587 static struct attribute_group md_redundancy_group;
588
589 void mddev_unlock(struct mddev *mddev)
590 {
591         if (mddev->to_remove) {
592                 /* These cannot be removed under reconfig_mutex as
593                  * an access to the files will try to take reconfig_mutex
594                  * while holding the file unremovable, which leads to
595                  * a deadlock.
596                  * So hold set sysfs_active while the remove in happeing,
597                  * and anything else which might set ->to_remove or my
598                  * otherwise change the sysfs namespace will fail with
599                  * -EBUSY if sysfs_active is still set.
600                  * We set sysfs_active under reconfig_mutex and elsewhere
601                  * test it under the same mutex to ensure its correct value
602                  * is seen.
603                  */
604                 struct attribute_group *to_remove = mddev->to_remove;
605                 mddev->to_remove = NULL;
606                 mddev->sysfs_active = 1;
607                 mutex_unlock(&mddev->reconfig_mutex);
608
609                 if (mddev->kobj.sd) {
610                         if (to_remove != &md_redundancy_group)
611                                 sysfs_remove_group(&mddev->kobj, to_remove);
612                         if (mddev->pers == NULL ||
613                             mddev->pers->sync_request == NULL) {
614                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615                                 if (mddev->sysfs_action)
616                                         sysfs_put(mddev->sysfs_action);
617                                 mddev->sysfs_action = NULL;
618                         }
619                 }
620                 mddev->sysfs_active = 0;
621         } else
622                 mutex_unlock(&mddev->reconfig_mutex);
623
624         /* As we've dropped the mutex we need a spinlock to
625          * make sure the thread doesn't disappear
626          */
627         spin_lock(&pers_lock);
628         md_wakeup_thread(mddev->thread);
629         spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each_rcu(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647         struct md_rdev *rdev;
648
649         rdev_for_each(rdev, mddev)
650                 if (rdev->bdev->bd_dev == dev)
651                         return rdev;
652
653         return NULL;
654 }
655
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658         struct md_rdev *rdev;
659
660         rdev_for_each_rcu(rdev, mddev)
661                 if (rdev->bdev->bd_dev == dev)
662                         return rdev;
663
664         return NULL;
665 }
666
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669         struct md_personality *pers;
670         list_for_each_entry(pers, &pers_list, list) {
671                 if (level != LEVEL_NONE && pers->level == level)
672                         return pers;
673                 if (strcmp(pers->name, clevel)==0)
674                         return pers;
675         }
676         return NULL;
677 }
678
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683         return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688         rdev->sb_page = alloc_page(GFP_KERNEL);
689         if (!rdev->sb_page) {
690                 printk(KERN_ALERT "md: out of memory.\n");
691                 return -ENOMEM;
692         }
693
694         return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699         if (rdev->sb_page) {
700                 put_page(rdev->sb_page);
701                 rdev->sb_loaded = 0;
702                 rdev->sb_page = NULL;
703                 rdev->sb_start = 0;
704                 rdev->sectors = 0;
705         }
706         if (rdev->bb_page) {
707                 put_page(rdev->bb_page);
708                 rdev->bb_page = NULL;
709         }
710         kfree(rdev->badblocks.page);
711         rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio)
716 {
717         struct md_rdev *rdev = bio->bi_private;
718         struct mddev *mddev = rdev->mddev;
719
720         if (bio->bi_error) {
721                 printk("md: super_written gets error=%d\n", bio->bi_error);
722                 md_error(mddev, rdev);
723         }
724
725         if (atomic_dec_and_test(&mddev->pending_writes))
726                 wake_up(&mddev->sb_wait);
727         bio_put(bio);
728 }
729
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731                    sector_t sector, int size, struct page *page)
732 {
733         /* write first size bytes of page to sector of rdev
734          * Increment mddev->pending_writes before returning
735          * and decrement it on completion, waking up sb_wait
736          * if zero is reached.
737          * If an error occurred, call md_error
738          */
739         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740
741         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742         bio->bi_iter.bi_sector = sector;
743         bio_add_page(bio, page, size, 0);
744         bio->bi_private = rdev;
745         bio->bi_end_io = super_written;
746
747         atomic_inc(&mddev->pending_writes);
748         submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750
751 void md_super_wait(struct mddev *mddev)
752 {
753         /* wait for all superblock writes that were scheduled to complete */
754         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758                  struct page *page, int rw, bool metadata_op)
759 {
760         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761         int ret;
762
763         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764                 rdev->meta_bdev : rdev->bdev;
765         if (metadata_op)
766                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
767         else if (rdev->mddev->reshape_position != MaxSector &&
768                  (rdev->mddev->reshape_backwards ==
769                   (sector >= rdev->mddev->reshape_position)))
770                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771         else
772                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
773         bio_add_page(bio, page, size, 0);
774         submit_bio_wait(rw, bio);
775
776         ret = !bio->bi_error;
777         bio_put(bio);
778         return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784         char b[BDEVNAME_SIZE];
785
786         if (rdev->sb_loaded)
787                 return 0;
788
789         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790                 goto fail;
791         rdev->sb_loaded = 1;
792         return 0;
793
794 fail:
795         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796                 bdevname(rdev->bdev,b));
797         return -EINVAL;
798 }
799
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802         return  sb1->set_uuid0 == sb2->set_uuid0 &&
803                 sb1->set_uuid1 == sb2->set_uuid1 &&
804                 sb1->set_uuid2 == sb2->set_uuid2 &&
805                 sb1->set_uuid3 == sb2->set_uuid3;
806 }
807
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810         int ret;
811         mdp_super_t *tmp1, *tmp2;
812
813         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815
816         if (!tmp1 || !tmp2) {
817                 ret = 0;
818                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819                 goto abort;
820         }
821
822         *tmp1 = *sb1;
823         *tmp2 = *sb2;
824
825         /*
826          * nr_disks is not constant
827          */
828         tmp1->nr_disks = 0;
829         tmp2->nr_disks = 0;
830
831         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833         kfree(tmp1);
834         kfree(tmp2);
835         return ret;
836 }
837
838 static u32 md_csum_fold(u32 csum)
839 {
840         csum = (csum & 0xffff) + (csum >> 16);
841         return (csum & 0xffff) + (csum >> 16);
842 }
843
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846         u64 newcsum = 0;
847         u32 *sb32 = (u32*)sb;
848         int i;
849         unsigned int disk_csum, csum;
850
851         disk_csum = sb->sb_csum;
852         sb->sb_csum = 0;
853
854         for (i = 0; i < MD_SB_BYTES/4 ; i++)
855                 newcsum += sb32[i];
856         csum = (newcsum & 0xffffffff) + (newcsum>>32);
857
858 #ifdef CONFIG_ALPHA
859         /* This used to use csum_partial, which was wrong for several
860          * reasons including that different results are returned on
861          * different architectures.  It isn't critical that we get exactly
862          * the same return value as before (we always csum_fold before
863          * testing, and that removes any differences).  However as we
864          * know that csum_partial always returned a 16bit value on
865          * alphas, do a fold to maximise conformity to previous behaviour.
866          */
867         sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869         sb->sb_csum = disk_csum;
870 #endif
871         return csum;
872 }
873
874 /*
875  * Handle superblock details.
876  * We want to be able to handle multiple superblock formats
877  * so we have a common interface to them all, and an array of
878  * different handlers.
879  * We rely on user-space to write the initial superblock, and support
880  * reading and updating of superblocks.
881  * Interface methods are:
882  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883  *      loads and validates a superblock on dev.
884  *      if refdev != NULL, compare superblocks on both devices
885  *    Return:
886  *      0 - dev has a superblock that is compatible with refdev
887  *      1 - dev has a superblock that is compatible and newer than refdev
888  *          so dev should be used as the refdev in future
889  *     -EINVAL superblock incompatible or invalid
890  *     -othererror e.g. -EIO
891  *
892  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
893  *      Verify that dev is acceptable into mddev.
894  *       The first time, mddev->raid_disks will be 0, and data from
895  *       dev should be merged in.  Subsequent calls check that dev
896  *       is new enough.  Return 0 or -EINVAL
897  *
898  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
899  *     Update the superblock for rdev with data in mddev
900  *     This does not write to disc.
901  *
902  */
903
904 struct super_type  {
905         char                *name;
906         struct module       *owner;
907         int                 (*load_super)(struct md_rdev *rdev,
908                                           struct md_rdev *refdev,
909                                           int minor_version);
910         int                 (*validate_super)(struct mddev *mddev,
911                                               struct md_rdev *rdev);
912         void                (*sync_super)(struct mddev *mddev,
913                                           struct md_rdev *rdev);
914         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
915                                                 sector_t num_sectors);
916         int                 (*allow_new_offset)(struct md_rdev *rdev,
917                                                 unsigned long long new_offset);
918 };
919
920 /*
921  * Check that the given mddev has no bitmap.
922  *
923  * This function is called from the run method of all personalities that do not
924  * support bitmaps. It prints an error message and returns non-zero if mddev
925  * has a bitmap. Otherwise, it returns 0.
926  *
927  */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931                 return 0;
932         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933                 mdname(mddev), mddev->pers->name);
934         return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937
938 /*
939  * load_super for 0.90.0
940  */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944         mdp_super_t *sb;
945         int ret;
946
947         /*
948          * Calculate the position of the superblock (512byte sectors),
949          * it's at the end of the disk.
950          *
951          * It also happens to be a multiple of 4Kb.
952          */
953         rdev->sb_start = calc_dev_sboffset(rdev);
954
955         ret = read_disk_sb(rdev, MD_SB_BYTES);
956         if (ret) return ret;
957
958         ret = -EINVAL;
959
960         bdevname(rdev->bdev, b);
961         sb = page_address(rdev->sb_page);
962
963         if (sb->md_magic != MD_SB_MAGIC) {
964                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965                        b);
966                 goto abort;
967         }
968
969         if (sb->major_version != 0 ||
970             sb->minor_version < 90 ||
971             sb->minor_version > 91) {
972                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973                         sb->major_version, sb->minor_version,
974                         b);
975                 goto abort;
976         }
977
978         if (sb->raid_disks <= 0)
979                 goto abort;
980
981         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983                         b);
984                 goto abort;
985         }
986
987         rdev->preferred_minor = sb->md_minor;
988         rdev->data_offset = 0;
989         rdev->new_data_offset = 0;
990         rdev->sb_size = MD_SB_BYTES;
991         rdev->badblocks.shift = -1;
992
993         if (sb->level == LEVEL_MULTIPATH)
994                 rdev->desc_nr = -1;
995         else
996                 rdev->desc_nr = sb->this_disk.number;
997
998         if (!refdev) {
999                 ret = 1;
1000         } else {
1001                 __u64 ev1, ev2;
1002                 mdp_super_t *refsb = page_address(refdev->sb_page);
1003                 if (!uuid_equal(refsb, sb)) {
1004                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005                                 b, bdevname(refdev->bdev,b2));
1006                         goto abort;
1007                 }
1008                 if (!sb_equal(refsb, sb)) {
1009                         printk(KERN_WARNING "md: %s has same UUID"
1010                                " but different superblock to %s\n",
1011                                b, bdevname(refdev->bdev, b2));
1012                         goto abort;
1013                 }
1014                 ev1 = md_event(sb);
1015                 ev2 = md_event(refsb);
1016                 if (ev1 > ev2)
1017                         ret = 1;
1018                 else
1019                         ret = 0;
1020         }
1021         rdev->sectors = rdev->sb_start;
1022         /* Limit to 4TB as metadata cannot record more than that.
1023          * (not needed for Linear and RAID0 as metadata doesn't
1024          * record this size)
1025          */
1026         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027                 rdev->sectors = (2ULL << 32) - 2;
1028
1029         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030                 /* "this cannot possibly happen" ... */
1031                 ret = -EINVAL;
1032
1033  abort:
1034         return ret;
1035 }
1036
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042         mdp_disk_t *desc;
1043         mdp_super_t *sb = page_address(rdev->sb_page);
1044         __u64 ev1 = md_event(sb);
1045
1046         rdev->raid_disk = -1;
1047         clear_bit(Faulty, &rdev->flags);
1048         clear_bit(In_sync, &rdev->flags);
1049         clear_bit(Bitmap_sync, &rdev->flags);
1050         clear_bit(WriteMostly, &rdev->flags);
1051
1052         if (mddev->raid_disks == 0) {
1053                 mddev->major_version = 0;
1054                 mddev->minor_version = sb->minor_version;
1055                 mddev->patch_version = sb->patch_version;
1056                 mddev->external = 0;
1057                 mddev->chunk_sectors = sb->chunk_size >> 9;
1058                 mddev->ctime = sb->ctime;
1059                 mddev->utime = sb->utime;
1060                 mddev->level = sb->level;
1061                 mddev->clevel[0] = 0;
1062                 mddev->layout = sb->layout;
1063                 mddev->raid_disks = sb->raid_disks;
1064                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065                 mddev->events = ev1;
1066                 mddev->bitmap_info.offset = 0;
1067                 mddev->bitmap_info.space = 0;
1068                 /* bitmap can use 60 K after the 4K superblocks */
1069                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071                 mddev->reshape_backwards = 0;
1072
1073                 if (mddev->minor_version >= 91) {
1074                         mddev->reshape_position = sb->reshape_position;
1075                         mddev->delta_disks = sb->delta_disks;
1076                         mddev->new_level = sb->new_level;
1077                         mddev->new_layout = sb->new_layout;
1078                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079                         if (mddev->delta_disks < 0)
1080                                 mddev->reshape_backwards = 1;
1081                 } else {
1082                         mddev->reshape_position = MaxSector;
1083                         mddev->delta_disks = 0;
1084                         mddev->new_level = mddev->level;
1085                         mddev->new_layout = mddev->layout;
1086                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1087                 }
1088
1089                 if (sb->state & (1<<MD_SB_CLEAN))
1090                         mddev->recovery_cp = MaxSector;
1091                 else {
1092                         if (sb->events_hi == sb->cp_events_hi &&
1093                                 sb->events_lo == sb->cp_events_lo) {
1094                                 mddev->recovery_cp = sb->recovery_cp;
1095                         } else
1096                                 mddev->recovery_cp = 0;
1097                 }
1098
1099                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104                 mddev->max_disks = MD_SB_DISKS;
1105
1106                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107                     mddev->bitmap_info.file == NULL) {
1108                         mddev->bitmap_info.offset =
1109                                 mddev->bitmap_info.default_offset;
1110                         mddev->bitmap_info.space =
1111                                 mddev->bitmap_info.default_space;
1112                 }
1113
1114         } else if (mddev->pers == NULL) {
1115                 /* Insist on good event counter while assembling, except
1116                  * for spares (which don't need an event count) */
1117                 ++ev1;
1118                 if (sb->disks[rdev->desc_nr].state & (
1119                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120                         if (ev1 < mddev->events)
1121                                 return -EINVAL;
1122         } else if (mddev->bitmap) {
1123                 /* if adding to array with a bitmap, then we can accept an
1124                  * older device ... but not too old.
1125                  */
1126                 if (ev1 < mddev->bitmap->events_cleared)
1127                         return 0;
1128                 if (ev1 < mddev->events)
1129                         set_bit(Bitmap_sync, &rdev->flags);
1130         } else {
1131                 if (ev1 < mddev->events)
1132                         /* just a hot-add of a new device, leave raid_disk at -1 */
1133                         return 0;
1134         }
1135
1136         if (mddev->level != LEVEL_MULTIPATH) {
1137                 desc = sb->disks + rdev->desc_nr;
1138
1139                 if (desc->state & (1<<MD_DISK_FAULTY))
1140                         set_bit(Faulty, &rdev->flags);
1141                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142                             desc->raid_disk < mddev->raid_disks */) {
1143                         set_bit(In_sync, &rdev->flags);
1144                         rdev->raid_disk = desc->raid_disk;
1145                         rdev->saved_raid_disk = desc->raid_disk;
1146                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147                         /* active but not in sync implies recovery up to
1148                          * reshape position.  We don't know exactly where
1149                          * that is, so set to zero for now */
1150                         if (mddev->minor_version >= 91) {
1151                                 rdev->recovery_offset = 0;
1152                                 rdev->raid_disk = desc->raid_disk;
1153                         }
1154                 }
1155                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156                         set_bit(WriteMostly, &rdev->flags);
1157         } else /* MULTIPATH are always insync */
1158                 set_bit(In_sync, &rdev->flags);
1159         return 0;
1160 }
1161
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167         mdp_super_t *sb;
1168         struct md_rdev *rdev2;
1169         int next_spare = mddev->raid_disks;
1170
1171         /* make rdev->sb match mddev data..
1172          *
1173          * 1/ zero out disks
1174          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175          * 3/ any empty disks < next_spare become removed
1176          *
1177          * disks[0] gets initialised to REMOVED because
1178          * we cannot be sure from other fields if it has
1179          * been initialised or not.
1180          */
1181         int i;
1182         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184         rdev->sb_size = MD_SB_BYTES;
1185
1186         sb = page_address(rdev->sb_page);
1187
1188         memset(sb, 0, sizeof(*sb));
1189
1190         sb->md_magic = MD_SB_MAGIC;
1191         sb->major_version = mddev->major_version;
1192         sb->patch_version = mddev->patch_version;
1193         sb->gvalid_words  = 0; /* ignored */
1194         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199         sb->ctime = mddev->ctime;
1200         sb->level = mddev->level;
1201         sb->size = mddev->dev_sectors / 2;
1202         sb->raid_disks = mddev->raid_disks;
1203         sb->md_minor = mddev->md_minor;
1204         sb->not_persistent = 0;
1205         sb->utime = mddev->utime;
1206         sb->state = 0;
1207         sb->events_hi = (mddev->events>>32);
1208         sb->events_lo = (u32)mddev->events;
1209
1210         if (mddev->reshape_position == MaxSector)
1211                 sb->minor_version = 90;
1212         else {
1213                 sb->minor_version = 91;
1214                 sb->reshape_position = mddev->reshape_position;
1215                 sb->new_level = mddev->new_level;
1216                 sb->delta_disks = mddev->delta_disks;
1217                 sb->new_layout = mddev->new_layout;
1218                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219         }
1220         mddev->minor_version = sb->minor_version;
1221         if (mddev->in_sync)
1222         {
1223                 sb->recovery_cp = mddev->recovery_cp;
1224                 sb->cp_events_hi = (mddev->events>>32);
1225                 sb->cp_events_lo = (u32)mddev->events;
1226                 if (mddev->recovery_cp == MaxSector)
1227                         sb->state = (1<< MD_SB_CLEAN);
1228         } else
1229                 sb->recovery_cp = 0;
1230
1231         sb->layout = mddev->layout;
1232         sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238         rdev_for_each(rdev2, mddev) {
1239                 mdp_disk_t *d;
1240                 int desc_nr;
1241                 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243                 if (rdev2->raid_disk >= 0 &&
1244                     sb->minor_version >= 91)
1245                         /* we have nowhere to store the recovery_offset,
1246                          * but if it is not below the reshape_position,
1247                          * we can piggy-back on that.
1248                          */
1249                         is_active = 1;
1250                 if (rdev2->raid_disk < 0 ||
1251                     test_bit(Faulty, &rdev2->flags))
1252                         is_active = 0;
1253                 if (is_active)
1254                         desc_nr = rdev2->raid_disk;
1255                 else
1256                         desc_nr = next_spare++;
1257                 rdev2->desc_nr = desc_nr;
1258                 d = &sb->disks[rdev2->desc_nr];
1259                 nr_disks++;
1260                 d->number = rdev2->desc_nr;
1261                 d->major = MAJOR(rdev2->bdev->bd_dev);
1262                 d->minor = MINOR(rdev2->bdev->bd_dev);
1263                 if (is_active)
1264                         d->raid_disk = rdev2->raid_disk;
1265                 else
1266                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1267                 if (test_bit(Faulty, &rdev2->flags))
1268                         d->state = (1<<MD_DISK_FAULTY);
1269                 else if (is_active) {
1270                         d->state = (1<<MD_DISK_ACTIVE);
1271                         if (test_bit(In_sync, &rdev2->flags))
1272                                 d->state |= (1<<MD_DISK_SYNC);
1273                         active++;
1274                         working++;
1275                 } else {
1276                         d->state = 0;
1277                         spare++;
1278                         working++;
1279                 }
1280                 if (test_bit(WriteMostly, &rdev2->flags))
1281                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282         }
1283         /* now set the "removed" and "faulty" bits on any missing devices */
1284         for (i=0 ; i < mddev->raid_disks ; i++) {
1285                 mdp_disk_t *d = &sb->disks[i];
1286                 if (d->state == 0 && d->number == 0) {
1287                         d->number = i;
1288                         d->raid_disk = i;
1289                         d->state = (1<<MD_DISK_REMOVED);
1290                         d->state |= (1<<MD_DISK_FAULTY);
1291                         failed++;
1292                 }
1293         }
1294         sb->nr_disks = nr_disks;
1295         sb->active_disks = active;
1296         sb->working_disks = working;
1297         sb->failed_disks = failed;
1298         sb->spare_disks = spare;
1299
1300         sb->this_disk = sb->disks[rdev->desc_nr];
1301         sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311                 return 0; /* component must fit device */
1312         if (rdev->mddev->bitmap_info.offset)
1313                 return 0; /* can't move bitmap */
1314         rdev->sb_start = calc_dev_sboffset(rdev);
1315         if (!num_sectors || num_sectors > rdev->sb_start)
1316                 num_sectors = rdev->sb_start;
1317         /* Limit to 4TB as metadata cannot record more than that.
1318          * 4TB == 2^32 KB, or 2*2^32 sectors.
1319          */
1320         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321                 num_sectors = (2ULL << 32) - 2;
1322         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323                        rdev->sb_page);
1324         md_super_wait(rdev->mddev);
1325         return num_sectors;
1326 }
1327
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331         /* non-zero offset changes not possible with v0.90 */
1332         return new_offset == 0;
1333 }
1334
1335 /*
1336  * version 1 superblock
1337  */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341         __le32 disk_csum;
1342         u32 csum;
1343         unsigned long long newcsum;
1344         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345         __le32 *isuper = (__le32*)sb;
1346
1347         disk_csum = sb->sb_csum;
1348         sb->sb_csum = 0;
1349         newcsum = 0;
1350         for (; size >= 4; size -= 4)
1351                 newcsum += le32_to_cpu(*isuper++);
1352
1353         if (size == 2)
1354                 newcsum += le16_to_cpu(*(__le16*) isuper);
1355
1356         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357         sb->sb_csum = disk_csum;
1358         return cpu_to_le32(csum);
1359 }
1360
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362                             int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365         struct mdp_superblock_1 *sb;
1366         int ret;
1367         sector_t sb_start;
1368         sector_t sectors;
1369         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370         int bmask;
1371
1372         /*
1373          * Calculate the position of the superblock in 512byte sectors.
1374          * It is always aligned to a 4K boundary and
1375          * depeding on minor_version, it can be:
1376          * 0: At least 8K, but less than 12K, from end of device
1377          * 1: At start of device
1378          * 2: 4K from start of device.
1379          */
1380         switch(minor_version) {
1381         case 0:
1382                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383                 sb_start -= 8*2;
1384                 sb_start &= ~(sector_t)(4*2-1);
1385                 break;
1386         case 1:
1387                 sb_start = 0;
1388                 break;
1389         case 2:
1390                 sb_start = 8;
1391                 break;
1392         default:
1393                 return -EINVAL;
1394         }
1395         rdev->sb_start = sb_start;
1396
1397         /* superblock is rarely larger than 1K, but it can be larger,
1398          * and it is safe to read 4k, so we do that
1399          */
1400         ret = read_disk_sb(rdev, 4096);
1401         if (ret) return ret;
1402
1403         sb = page_address(rdev->sb_page);
1404
1405         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406             sb->major_version != cpu_to_le32(1) ||
1407             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410                 return -EINVAL;
1411
1412         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413                 printk("md: invalid superblock checksum on %s\n",
1414                         bdevname(rdev->bdev,b));
1415                 return -EINVAL;
1416         }
1417         if (le64_to_cpu(sb->data_size) < 10) {
1418                 printk("md: data_size too small on %s\n",
1419                        bdevname(rdev->bdev,b));
1420                 return -EINVAL;
1421         }
1422         if (sb->pad0 ||
1423             sb->pad3[0] ||
1424             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425                 /* Some padding is non-zero, might be a new feature */
1426                 return -EINVAL;
1427
1428         rdev->preferred_minor = 0xffff;
1429         rdev->data_offset = le64_to_cpu(sb->data_offset);
1430         rdev->new_data_offset = rdev->data_offset;
1431         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435
1436         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438         if (rdev->sb_size & bmask)
1439                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440
1441         if (minor_version
1442             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443                 return -EINVAL;
1444         if (minor_version
1445             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446                 return -EINVAL;
1447
1448         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449                 rdev->desc_nr = -1;
1450         else
1451                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452
1453         if (!rdev->bb_page) {
1454                 rdev->bb_page = alloc_page(GFP_KERNEL);
1455                 if (!rdev->bb_page)
1456                         return -ENOMEM;
1457         }
1458         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459             rdev->badblocks.count == 0) {
1460                 /* need to load the bad block list.
1461                  * Currently we limit it to one page.
1462                  */
1463                 s32 offset;
1464                 sector_t bb_sector;
1465                 u64 *bbp;
1466                 int i;
1467                 int sectors = le16_to_cpu(sb->bblog_size);
1468                 if (sectors > (PAGE_SIZE / 512))
1469                         return -EINVAL;
1470                 offset = le32_to_cpu(sb->bblog_offset);
1471                 if (offset == 0)
1472                         return -EINVAL;
1473                 bb_sector = (long long)offset;
1474                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475                                   rdev->bb_page, READ, true))
1476                         return -EIO;
1477                 bbp = (u64 *)page_address(rdev->bb_page);
1478                 rdev->badblocks.shift = sb->bblog_shift;
1479                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480                         u64 bb = le64_to_cpu(*bbp);
1481                         int count = bb & (0x3ff);
1482                         u64 sector = bb >> 10;
1483                         sector <<= sb->bblog_shift;
1484                         count <<= sb->bblog_shift;
1485                         if (bb + 1 == 0)
1486                                 break;
1487                         if (md_set_badblocks(&rdev->badblocks,
1488                                              sector, count, 1) == 0)
1489                                 return -EINVAL;
1490                 }
1491         } else if (sb->bblog_offset != 0)
1492                 rdev->badblocks.shift = 0;
1493
1494         if (!refdev) {
1495                 ret = 1;
1496         } else {
1497                 __u64 ev1, ev2;
1498                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501                     sb->level != refsb->level ||
1502                     sb->layout != refsb->layout ||
1503                     sb->chunksize != refsb->chunksize) {
1504                         printk(KERN_WARNING "md: %s has strangely different"
1505                                 " superblock to %s\n",
1506                                 bdevname(rdev->bdev,b),
1507                                 bdevname(refdev->bdev,b2));
1508                         return -EINVAL;
1509                 }
1510                 ev1 = le64_to_cpu(sb->events);
1511                 ev2 = le64_to_cpu(refsb->events);
1512
1513                 if (ev1 > ev2)
1514                         ret = 1;
1515                 else
1516                         ret = 0;
1517         }
1518         if (minor_version) {
1519                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520                 sectors -= rdev->data_offset;
1521         } else
1522                 sectors = rdev->sb_start;
1523         if (sectors < le64_to_cpu(sb->data_size))
1524                 return -EINVAL;
1525         rdev->sectors = le64_to_cpu(sb->data_size);
1526         return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532         __u64 ev1 = le64_to_cpu(sb->events);
1533
1534         rdev->raid_disk = -1;
1535         clear_bit(Faulty, &rdev->flags);
1536         clear_bit(In_sync, &rdev->flags);
1537         clear_bit(Bitmap_sync, &rdev->flags);
1538         clear_bit(WriteMostly, &rdev->flags);
1539
1540         if (mddev->raid_disks == 0) {
1541                 mddev->major_version = 1;
1542                 mddev->patch_version = 0;
1543                 mddev->external = 0;
1544                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547                 mddev->level = le32_to_cpu(sb->level);
1548                 mddev->clevel[0] = 0;
1549                 mddev->layout = le32_to_cpu(sb->layout);
1550                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551                 mddev->dev_sectors = le64_to_cpu(sb->size);
1552                 mddev->events = ev1;
1553                 mddev->bitmap_info.offset = 0;
1554                 mddev->bitmap_info.space = 0;
1555                 /* Default location for bitmap is 1K after superblock
1556                  * using 3K - total of 4K
1557                  */
1558                 mddev->bitmap_info.default_offset = 1024 >> 9;
1559                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560                 mddev->reshape_backwards = 0;
1561
1562                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563                 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565                 mddev->max_disks =  (4096-256)/2;
1566
1567                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568                     mddev->bitmap_info.file == NULL) {
1569                         mddev->bitmap_info.offset =
1570                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1571                         /* Metadata doesn't record how much space is available.
1572                          * For 1.0, we assume we can use up to the superblock
1573                          * if before, else to 4K beyond superblock.
1574                          * For others, assume no change is possible.
1575                          */
1576                         if (mddev->minor_version > 0)
1577                                 mddev->bitmap_info.space = 0;
1578                         else if (mddev->bitmap_info.offset > 0)
1579                                 mddev->bitmap_info.space =
1580                                         8 - mddev->bitmap_info.offset;
1581                         else
1582                                 mddev->bitmap_info.space =
1583                                         -mddev->bitmap_info.offset;
1584                 }
1585
1586                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589                         mddev->new_level = le32_to_cpu(sb->new_level);
1590                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1591                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592                         if (mddev->delta_disks < 0 ||
1593                             (mddev->delta_disks == 0 &&
1594                              (le32_to_cpu(sb->feature_map)
1595                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1596                                 mddev->reshape_backwards = 1;
1597                 } else {
1598                         mddev->reshape_position = MaxSector;
1599                         mddev->delta_disks = 0;
1600                         mddev->new_level = mddev->level;
1601                         mddev->new_layout = mddev->layout;
1602                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1603                 }
1604
1605         } else if (mddev->pers == NULL) {
1606                 /* Insist of good event counter while assembling, except for
1607                  * spares (which don't need an event count) */
1608                 ++ev1;
1609                 if (rdev->desc_nr >= 0 &&
1610                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611                     (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1612                      le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1613                         if (ev1 < mddev->events)
1614                                 return -EINVAL;
1615         } else if (mddev->bitmap) {
1616                 /* If adding to array with a bitmap, then we can accept an
1617                  * older device, but not too old.
1618                  */
1619                 if (ev1 < mddev->bitmap->events_cleared)
1620                         return 0;
1621                 if (ev1 < mddev->events)
1622                         set_bit(Bitmap_sync, &rdev->flags);
1623         } else {
1624                 if (ev1 < mddev->events)
1625                         /* just a hot-add of a new device, leave raid_disk at -1 */
1626                         return 0;
1627         }
1628         if (mddev->level != LEVEL_MULTIPATH) {
1629                 int role;
1630                 if (rdev->desc_nr < 0 ||
1631                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1632                         role = MD_DISK_ROLE_SPARE;
1633                         rdev->desc_nr = -1;
1634                 } else
1635                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1636                 switch(role) {
1637                 case MD_DISK_ROLE_SPARE: /* spare */
1638                         break;
1639                 case MD_DISK_ROLE_FAULTY: /* faulty */
1640                         set_bit(Faulty, &rdev->flags);
1641                         break;
1642                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1643                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1644                                 /* journal device without journal feature */
1645                                 printk(KERN_WARNING
1646                                   "md: journal device provided without journal feature, ignoring the device\n");
1647                                 return -EINVAL;
1648                         }
1649                         set_bit(Journal, &rdev->flags);
1650                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1651                         if (mddev->recovery_cp == MaxSector)
1652                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1653                         rdev->raid_disk = mddev->raid_disks;
1654                         break;
1655                 default:
1656                         rdev->saved_raid_disk = role;
1657                         if ((le32_to_cpu(sb->feature_map) &
1658                              MD_FEATURE_RECOVERY_OFFSET)) {
1659                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660                                 if (!(le32_to_cpu(sb->feature_map) &
1661                                       MD_FEATURE_RECOVERY_BITMAP))
1662                                         rdev->saved_raid_disk = -1;
1663                         } else
1664                                 set_bit(In_sync, &rdev->flags);
1665                         rdev->raid_disk = role;
1666                         break;
1667                 }
1668                 if (sb->devflags & WriteMostly1)
1669                         set_bit(WriteMostly, &rdev->flags);
1670                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671                         set_bit(Replacement, &rdev->flags);
1672                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1673                         set_bit(MD_HAS_JOURNAL, &mddev->flags);
1674         } else /* MULTIPATH are always insync */
1675                 set_bit(In_sync, &rdev->flags);
1676
1677         return 0;
1678 }
1679
1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682         struct mdp_superblock_1 *sb;
1683         struct md_rdev *rdev2;
1684         int max_dev, i;
1685         /* make rdev->sb match mddev and rdev data. */
1686
1687         sb = page_address(rdev->sb_page);
1688
1689         sb->feature_map = 0;
1690         sb->pad0 = 0;
1691         sb->recovery_offset = cpu_to_le64(0);
1692         memset(sb->pad3, 0, sizeof(sb->pad3));
1693
1694         sb->utime = cpu_to_le64((__u64)mddev->utime);
1695         sb->events = cpu_to_le64(mddev->events);
1696         if (mddev->in_sync)
1697                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1698         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1699                 sb->resync_offset = cpu_to_le64(MaxSector);
1700         else
1701                 sb->resync_offset = cpu_to_le64(0);
1702
1703         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706         sb->size = cpu_to_le64(mddev->dev_sectors);
1707         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708         sb->level = cpu_to_le32(mddev->level);
1709         sb->layout = cpu_to_le32(mddev->layout);
1710
1711         if (test_bit(WriteMostly, &rdev->flags))
1712                 sb->devflags |= WriteMostly1;
1713         else
1714                 sb->devflags &= ~WriteMostly1;
1715         sb->data_offset = cpu_to_le64(rdev->data_offset);
1716         sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721         }
1722
1723         if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1724             !test_bit(In_sync, &rdev->flags)) {
1725                 sb->feature_map |=
1726                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727                 sb->recovery_offset =
1728                         cpu_to_le64(rdev->recovery_offset);
1729                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730                         sb->feature_map |=
1731                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732         }
1733         /* Note: recovery_offset and journal_tail share space  */
1734         if (test_bit(Journal, &rdev->flags))
1735                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1736         if (test_bit(Replacement, &rdev->flags))
1737                 sb->feature_map |=
1738                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739
1740         if (mddev->reshape_position != MaxSector) {
1741                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1744                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745                 sb->new_level = cpu_to_le32(mddev->new_level);
1746                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747                 if (mddev->delta_disks == 0 &&
1748                     mddev->reshape_backwards)
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751                 if (rdev->new_data_offset != rdev->data_offset) {
1752                         sb->feature_map
1753                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755                                                              - rdev->data_offset));
1756                 }
1757         }
1758
1759         if (mddev_is_clustered(mddev))
1760                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1761
1762         if (rdev->badblocks.count == 0)
1763                 /* Nothing to do for bad blocks*/ ;
1764         else if (sb->bblog_offset == 0)
1765                 /* Cannot record bad blocks on this device */
1766                 md_error(mddev, rdev);
1767         else {
1768                 struct badblocks *bb = &rdev->badblocks;
1769                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1770                 u64 *p = bb->page;
1771                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1772                 if (bb->changed) {
1773                         unsigned seq;
1774
1775 retry:
1776                         seq = read_seqbegin(&bb->lock);
1777
1778                         memset(bbp, 0xff, PAGE_SIZE);
1779
1780                         for (i = 0 ; i < bb->count ; i++) {
1781                                 u64 internal_bb = p[i];
1782                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1783                                                 | BB_LEN(internal_bb));
1784                                 bbp[i] = cpu_to_le64(store_bb);
1785                         }
1786                         bb->changed = 0;
1787                         if (read_seqretry(&bb->lock, seq))
1788                                 goto retry;
1789
1790                         bb->sector = (rdev->sb_start +
1791                                       (int)le32_to_cpu(sb->bblog_offset));
1792                         bb->size = le16_to_cpu(sb->bblog_size);
1793                 }
1794         }
1795
1796         max_dev = 0;
1797         rdev_for_each(rdev2, mddev)
1798                 if (rdev2->desc_nr+1 > max_dev)
1799                         max_dev = rdev2->desc_nr+1;
1800
1801         if (max_dev > le32_to_cpu(sb->max_dev)) {
1802                 int bmask;
1803                 sb->max_dev = cpu_to_le32(max_dev);
1804                 rdev->sb_size = max_dev * 2 + 256;
1805                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1806                 if (rdev->sb_size & bmask)
1807                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1808         } else
1809                 max_dev = le32_to_cpu(sb->max_dev);
1810
1811         for (i=0; i<max_dev;i++)
1812                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1813
1814         if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1815                 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1816
1817         rdev_for_each(rdev2, mddev) {
1818                 i = rdev2->desc_nr;
1819                 if (test_bit(Faulty, &rdev2->flags))
1820                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1821                 else if (test_bit(In_sync, &rdev2->flags))
1822                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823                 else if (test_bit(Journal, &rdev2->flags))
1824                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1825                 else if (rdev2->raid_disk >= 0)
1826                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827                 else
1828                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1829         }
1830
1831         sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837         struct mdp_superblock_1 *sb;
1838         sector_t max_sectors;
1839         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840                 return 0; /* component must fit device */
1841         if (rdev->data_offset != rdev->new_data_offset)
1842                 return 0; /* too confusing */
1843         if (rdev->sb_start < rdev->data_offset) {
1844                 /* minor versions 1 and 2; superblock before data */
1845                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846                 max_sectors -= rdev->data_offset;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849         } else if (rdev->mddev->bitmap_info.offset) {
1850                 /* minor version 0 with bitmap we can't move */
1851                 return 0;
1852         } else {
1853                 /* minor version 0; superblock after data */
1854                 sector_t sb_start;
1855                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856                 sb_start &= ~(sector_t)(4*2 - 1);
1857                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860                 rdev->sb_start = sb_start;
1861         }
1862         sb = page_address(rdev->sb_page);
1863         sb->data_size = cpu_to_le64(num_sectors);
1864         sb->super_offset = rdev->sb_start;
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867                        rdev->sb_page);
1868         md_super_wait(rdev->mddev);
1869         return num_sectors;
1870
1871 }
1872
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875                          unsigned long long new_offset)
1876 {
1877         /* All necessary checks on new >= old have been done */
1878         struct bitmap *bitmap;
1879         if (new_offset >= rdev->data_offset)
1880                 return 1;
1881
1882         /* with 1.0 metadata, there is no metadata to tread on
1883          * so we can always move back */
1884         if (rdev->mddev->minor_version == 0)
1885                 return 1;
1886
1887         /* otherwise we must be sure not to step on
1888          * any metadata, so stay:
1889          * 36K beyond start of superblock
1890          * beyond end of badblocks
1891          * beyond write-intent bitmap
1892          */
1893         if (rdev->sb_start + (32+4)*2 > new_offset)
1894                 return 0;
1895         bitmap = rdev->mddev->bitmap;
1896         if (bitmap && !rdev->mddev->bitmap_info.file &&
1897             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899                 return 0;
1900         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901                 return 0;
1902
1903         return 1;
1904 }
1905
1906 static struct super_type super_types[] = {
1907         [0] = {
1908                 .name   = "0.90.0",
1909                 .owner  = THIS_MODULE,
1910                 .load_super         = super_90_load,
1911                 .validate_super     = super_90_validate,
1912                 .sync_super         = super_90_sync,
1913                 .rdev_size_change   = super_90_rdev_size_change,
1914                 .allow_new_offset   = super_90_allow_new_offset,
1915         },
1916         [1] = {
1917                 .name   = "md-1",
1918                 .owner  = THIS_MODULE,
1919                 .load_super         = super_1_load,
1920                 .validate_super     = super_1_validate,
1921                 .sync_super         = super_1_sync,
1922                 .rdev_size_change   = super_1_rdev_size_change,
1923                 .allow_new_offset   = super_1_allow_new_offset,
1924         },
1925 };
1926
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929         if (mddev->sync_super) {
1930                 mddev->sync_super(mddev, rdev);
1931                 return;
1932         }
1933
1934         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935
1936         super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941         struct md_rdev *rdev, *rdev2;
1942
1943         rcu_read_lock();
1944         rdev_for_each_rcu(rdev, mddev1) {
1945                 if (test_bit(Faulty, &rdev->flags) ||
1946                     test_bit(Journal, &rdev->flags) ||
1947                     rdev->raid_disk == -1)
1948                         continue;
1949                 rdev_for_each_rcu(rdev2, mddev2) {
1950                         if (test_bit(Faulty, &rdev2->flags) ||
1951                             test_bit(Journal, &rdev2->flags) ||
1952                             rdev2->raid_disk == -1)
1953                                 continue;
1954                         if (rdev->bdev->bd_contains ==
1955                             rdev2->bdev->bd_contains) {
1956                                 rcu_read_unlock();
1957                                 return 1;
1958                         }
1959                 }
1960         }
1961         rcu_read_unlock();
1962         return 0;
1963 }
1964
1965 static LIST_HEAD(pending_raid_disks);
1966
1967 /*
1968  * Try to register data integrity profile for an mddev
1969  *
1970  * This is called when an array is started and after a disk has been kicked
1971  * from the array. It only succeeds if all working and active component devices
1972  * are integrity capable with matching profiles.
1973  */
1974 int md_integrity_register(struct mddev *mddev)
1975 {
1976         struct md_rdev *rdev, *reference = NULL;
1977
1978         if (list_empty(&mddev->disks))
1979                 return 0; /* nothing to do */
1980         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1981                 return 0; /* shouldn't register, or already is */
1982         rdev_for_each(rdev, mddev) {
1983                 /* skip spares and non-functional disks */
1984                 if (test_bit(Faulty, &rdev->flags))
1985                         continue;
1986                 if (rdev->raid_disk < 0)
1987                         continue;
1988                 if (!reference) {
1989                         /* Use the first rdev as the reference */
1990                         reference = rdev;
1991                         continue;
1992                 }
1993                 /* does this rdev's profile match the reference profile? */
1994                 if (blk_integrity_compare(reference->bdev->bd_disk,
1995                                 rdev->bdev->bd_disk) < 0)
1996                         return -EINVAL;
1997         }
1998         if (!reference || !bdev_get_integrity(reference->bdev))
1999                 return 0;
2000         /*
2001          * All component devices are integrity capable and have matching
2002          * profiles, register the common profile for the md device.
2003          */
2004         if (blk_integrity_register(mddev->gendisk,
2005                         bdev_get_integrity(reference->bdev)) != 0) {
2006                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2007                         mdname(mddev));
2008                 return -EINVAL;
2009         }
2010         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013                        mdname(mddev));
2014                 return -EINVAL;
2015         }
2016         return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019
2020 /* Disable data integrity if non-capable/non-matching disk is being added */
2021 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2022 {
2023         struct blk_integrity *bi_rdev;
2024         struct blk_integrity *bi_mddev;
2025
2026         if (!mddev->gendisk)
2027                 return;
2028
2029         bi_rdev = bdev_get_integrity(rdev->bdev);
2030         bi_mddev = blk_get_integrity(mddev->gendisk);
2031
2032         if (!bi_mddev) /* nothing to do */
2033                 return;
2034         if (rdev->raid_disk < 0) /* skip spares */
2035                 return;
2036         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2037                                              rdev->bdev->bd_disk) >= 0)
2038                 return;
2039         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2040         blk_integrity_unregister(mddev->gendisk);
2041 }
2042 EXPORT_SYMBOL(md_integrity_add_rdev);
2043
2044 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046         char b[BDEVNAME_SIZE];
2047         struct kobject *ko;
2048         int err;
2049
2050         /* prevent duplicates */
2051         if (find_rdev(mddev, rdev->bdev->bd_dev))
2052                 return -EEXIST;
2053
2054         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2055         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2056                         rdev->sectors < mddev->dev_sectors)) {
2057                 if (mddev->pers) {
2058                         /* Cannot change size, so fail
2059                          * If mddev->level <= 0, then we don't care
2060                          * about aligning sizes (e.g. linear)
2061                          */
2062                         if (mddev->level > 0)
2063                                 return -ENOSPC;
2064                 } else
2065                         mddev->dev_sectors = rdev->sectors;
2066         }
2067
2068         /* Verify rdev->desc_nr is unique.
2069          * If it is -1, assign a free number, else
2070          * check number is not in use
2071          */
2072         rcu_read_lock();
2073         if (rdev->desc_nr < 0) {
2074                 int choice = 0;
2075                 if (mddev->pers)
2076                         choice = mddev->raid_disks;
2077                 while (md_find_rdev_nr_rcu(mddev, choice))
2078                         choice++;
2079                 rdev->desc_nr = choice;
2080         } else {
2081                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2082                         rcu_read_unlock();
2083                         return -EBUSY;
2084                 }
2085         }
2086         rcu_read_unlock();
2087         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2088                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2089                        mdname(mddev), mddev->max_disks);
2090                 return -EBUSY;
2091         }
2092         bdevname(rdev->bdev,b);
2093         strreplace(b, '/', '!');
2094
2095         rdev->mddev = mddev;
2096         printk(KERN_INFO "md: bind<%s>\n", b);
2097
2098         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2099                 goto fail;
2100
2101         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2102         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2103                 /* failure here is OK */;
2104         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2105
2106         list_add_rcu(&rdev->same_set, &mddev->disks);
2107         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2108
2109         /* May as well allow recovery to be retried once */
2110         mddev->recovery_disabled++;
2111
2112         return 0;
2113
2114  fail:
2115         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2116                b, mdname(mddev));
2117         return err;
2118 }
2119
2120 static void md_delayed_delete(struct work_struct *ws)
2121 {
2122         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2123         kobject_del(&rdev->kobj);
2124         kobject_put(&rdev->kobj);
2125 }
2126
2127 static void unbind_rdev_from_array(struct md_rdev *rdev)
2128 {
2129         char b[BDEVNAME_SIZE];
2130
2131         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2132         list_del_rcu(&rdev->same_set);
2133         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2134         rdev->mddev = NULL;
2135         sysfs_remove_link(&rdev->kobj, "block");
2136         sysfs_put(rdev->sysfs_state);
2137         rdev->sysfs_state = NULL;
2138         rdev->badblocks.count = 0;
2139         /* We need to delay this, otherwise we can deadlock when
2140          * writing to 'remove' to "dev/state".  We also need
2141          * to delay it due to rcu usage.
2142          */
2143         synchronize_rcu();
2144         INIT_WORK(&rdev->del_work, md_delayed_delete);
2145         kobject_get(&rdev->kobj);
2146         queue_work(md_misc_wq, &rdev->del_work);
2147 }
2148
2149 /*
2150  * prevent the device from being mounted, repartitioned or
2151  * otherwise reused by a RAID array (or any other kernel
2152  * subsystem), by bd_claiming the device.
2153  */
2154 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2155 {
2156         int err = 0;
2157         struct block_device *bdev;
2158         char b[BDEVNAME_SIZE];
2159
2160         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2161                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2162         if (IS_ERR(bdev)) {
2163                 printk(KERN_ERR "md: could not open %s.\n",
2164                         __bdevname(dev, b));
2165                 return PTR_ERR(bdev);
2166         }
2167         rdev->bdev = bdev;
2168         return err;
2169 }
2170
2171 static void unlock_rdev(struct md_rdev *rdev)
2172 {
2173         struct block_device *bdev = rdev->bdev;
2174         rdev->bdev = NULL;
2175         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2176 }
2177
2178 void md_autodetect_dev(dev_t dev);
2179
2180 static void export_rdev(struct md_rdev *rdev)
2181 {
2182         char b[BDEVNAME_SIZE];
2183
2184         printk(KERN_INFO "md: export_rdev(%s)\n",
2185                 bdevname(rdev->bdev,b));
2186         md_rdev_clear(rdev);
2187 #ifndef MODULE
2188         if (test_bit(AutoDetected, &rdev->flags))
2189                 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191         unlock_rdev(rdev);
2192         kobject_put(&rdev->kobj);
2193 }
2194
2195 void md_kick_rdev_from_array(struct md_rdev *rdev)
2196 {
2197         unbind_rdev_from_array(rdev);
2198         export_rdev(rdev);
2199 }
2200 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2201
2202 static void export_array(struct mddev *mddev)
2203 {
2204         struct md_rdev *rdev;
2205
2206         while (!list_empty(&mddev->disks)) {
2207                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2208                                         same_set);
2209                 md_kick_rdev_from_array(rdev);
2210         }
2211         mddev->raid_disks = 0;
2212         mddev->major_version = 0;
2213 }
2214
2215 static void sync_sbs(struct mddev *mddev, int nospares)
2216 {
2217         /* Update each superblock (in-memory image), but
2218          * if we are allowed to, skip spares which already
2219          * have the right event counter, or have one earlier
2220          * (which would mean they aren't being marked as dirty
2221          * with the rest of the array)
2222          */
2223         struct md_rdev *rdev;
2224         rdev_for_each(rdev, mddev) {
2225                 if (rdev->sb_events == mddev->events ||
2226                     (nospares &&
2227                      rdev->raid_disk < 0 &&
2228                      rdev->sb_events+1 == mddev->events)) {
2229                         /* Don't update this superblock */
2230                         rdev->sb_loaded = 2;
2231                 } else {
2232                         sync_super(mddev, rdev);
2233                         rdev->sb_loaded = 1;
2234                 }
2235         }
2236 }
2237
2238 static bool does_sb_need_changing(struct mddev *mddev)
2239 {
2240         struct md_rdev *rdev;
2241         struct mdp_superblock_1 *sb;
2242         int role;
2243
2244         /* Find a good rdev */
2245         rdev_for_each(rdev, mddev)
2246                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2247                         break;
2248
2249         /* No good device found. */
2250         if (!rdev)
2251                 return false;
2252
2253         sb = page_address(rdev->sb_page);
2254         /* Check if a device has become faulty or a spare become active */
2255         rdev_for_each(rdev, mddev) {
2256                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2257                 /* Device activated? */
2258                 if (role == 0xffff && rdev->raid_disk >=0 &&
2259                     !test_bit(Faulty, &rdev->flags))
2260                         return true;
2261                 /* Device turned faulty? */
2262                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2263                         return true;
2264         }
2265
2266         /* Check if any mddev parameters have changed */
2267         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2268             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2269             (mddev->layout != le64_to_cpu(sb->layout)) ||
2270             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2271             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2272                 return true;
2273
2274         return false;
2275 }
2276
2277 void md_update_sb(struct mddev *mddev, int force_change)
2278 {
2279         struct md_rdev *rdev;
2280         int sync_req;
2281         int nospares = 0;
2282         int any_badblocks_changed = 0;
2283         int ret = -1;
2284
2285         if (mddev->ro) {
2286                 if (force_change)
2287                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2288                 return;
2289         }
2290
2291         if (mddev_is_clustered(mddev)) {
2292                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2293                         force_change = 1;
2294                 ret = md_cluster_ops->metadata_update_start(mddev);
2295                 /* Has someone else has updated the sb */
2296                 if (!does_sb_need_changing(mddev)) {
2297                         if (ret == 0)
2298                                 md_cluster_ops->metadata_update_cancel(mddev);
2299                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2300                         return;
2301                 }
2302         }
2303 repeat:
2304         /* First make sure individual recovery_offsets are correct */
2305         rdev_for_each(rdev, mddev) {
2306                 if (rdev->raid_disk >= 0 &&
2307                     mddev->delta_disks >= 0 &&
2308                     !test_bit(Journal, &rdev->flags) &&
2309                     !test_bit(In_sync, &rdev->flags) &&
2310                     mddev->curr_resync_completed > rdev->recovery_offset)
2311                                 rdev->recovery_offset = mddev->curr_resync_completed;
2312
2313         }
2314         if (!mddev->persistent) {
2315                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2316                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2317                 if (!mddev->external) {
2318                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2319                         rdev_for_each(rdev, mddev) {
2320                                 if (rdev->badblocks.changed) {
2321                                         rdev->badblocks.changed = 0;
2322                                         md_ack_all_badblocks(&rdev->badblocks);
2323                                         md_error(mddev, rdev);
2324                                 }
2325                                 clear_bit(Blocked, &rdev->flags);
2326                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2327                                 wake_up(&rdev->blocked_wait);
2328                         }
2329                 }
2330                 wake_up(&mddev->sb_wait);
2331                 return;
2332         }
2333
2334         spin_lock(&mddev->lock);
2335
2336         mddev->utime = get_seconds();
2337
2338         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2339                 force_change = 1;
2340         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2341                 /* just a clean<-> dirty transition, possibly leave spares alone,
2342                  * though if events isn't the right even/odd, we will have to do
2343                  * spares after all
2344                  */
2345                 nospares = 1;
2346         if (force_change)
2347                 nospares = 0;
2348         if (mddev->degraded)
2349                 /* If the array is degraded, then skipping spares is both
2350                  * dangerous and fairly pointless.
2351                  * Dangerous because a device that was removed from the array
2352                  * might have a event_count that still looks up-to-date,
2353                  * so it can be re-added without a resync.
2354                  * Pointless because if there are any spares to skip,
2355                  * then a recovery will happen and soon that array won't
2356                  * be degraded any more and the spare can go back to sleep then.
2357                  */
2358                 nospares = 0;
2359
2360         sync_req = mddev->in_sync;
2361
2362         /* If this is just a dirty<->clean transition, and the array is clean
2363          * and 'events' is odd, we can roll back to the previous clean state */
2364         if (nospares
2365             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2366             && mddev->can_decrease_events
2367             && mddev->events != 1) {
2368                 mddev->events--;
2369                 mddev->can_decrease_events = 0;
2370         } else {
2371                 /* otherwise we have to go forward and ... */
2372                 mddev->events ++;
2373                 mddev->can_decrease_events = nospares;
2374         }
2375
2376         /*
2377          * This 64-bit counter should never wrap.
2378          * Either we are in around ~1 trillion A.C., assuming
2379          * 1 reboot per second, or we have a bug...
2380          */
2381         WARN_ON(mddev->events == 0);
2382
2383         rdev_for_each(rdev, mddev) {
2384                 if (rdev->badblocks.changed)
2385                         any_badblocks_changed++;
2386                 if (test_bit(Faulty, &rdev->flags))
2387                         set_bit(FaultRecorded, &rdev->flags);
2388         }
2389
2390         sync_sbs(mddev, nospares);
2391         spin_unlock(&mddev->lock);
2392
2393         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2394                  mdname(mddev), mddev->in_sync);
2395
2396         bitmap_update_sb(mddev->bitmap);
2397         rdev_for_each(rdev, mddev) {
2398                 char b[BDEVNAME_SIZE];
2399
2400                 if (rdev->sb_loaded != 1)
2401                         continue; /* no noise on spare devices */
2402
2403                 if (!test_bit(Faulty, &rdev->flags)) {
2404                         md_super_write(mddev,rdev,
2405                                        rdev->sb_start, rdev->sb_size,
2406                                        rdev->sb_page);
2407                         pr_debug("md: (write) %s's sb offset: %llu\n",
2408                                  bdevname(rdev->bdev, b),
2409                                  (unsigned long long)rdev->sb_start);
2410                         rdev->sb_events = mddev->events;
2411                         if (rdev->badblocks.size) {
2412                                 md_super_write(mddev, rdev,
2413                                                rdev->badblocks.sector,
2414                                                rdev->badblocks.size << 9,
2415                                                rdev->bb_page);
2416                                 rdev->badblocks.size = 0;
2417                         }
2418
2419                 } else
2420                         pr_debug("md: %s (skipping faulty)\n",
2421                                  bdevname(rdev->bdev, b));
2422
2423                 if (mddev->level == LEVEL_MULTIPATH)
2424                         /* only need to write one superblock... */
2425                         break;
2426         }
2427         md_super_wait(mddev);
2428         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2429
2430         spin_lock(&mddev->lock);
2431         if (mddev->in_sync != sync_req ||
2432             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2433                 /* have to write it out again */
2434                 spin_unlock(&mddev->lock);
2435                 goto repeat;
2436         }
2437         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2438         spin_unlock(&mddev->lock);
2439         wake_up(&mddev->sb_wait);
2440         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2441                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2442
2443         rdev_for_each(rdev, mddev) {
2444                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2445                         clear_bit(Blocked, &rdev->flags);
2446
2447                 if (any_badblocks_changed)
2448                         md_ack_all_badblocks(&rdev->badblocks);
2449                 clear_bit(BlockedBadBlocks, &rdev->flags);
2450                 wake_up(&rdev->blocked_wait);
2451         }
2452
2453         if (mddev_is_clustered(mddev) && ret == 0)
2454                 md_cluster_ops->metadata_update_finish(mddev);
2455 }
2456 EXPORT_SYMBOL(md_update_sb);
2457
2458 static int add_bound_rdev(struct md_rdev *rdev)
2459 {
2460         struct mddev *mddev = rdev->mddev;
2461         int err = 0;
2462
2463         if (!mddev->pers->hot_remove_disk) {
2464                 /* If there is hot_add_disk but no hot_remove_disk
2465                  * then added disks for geometry changes,
2466                  * and should be added immediately.
2467                  */
2468                 super_types[mddev->major_version].
2469                         validate_super(mddev, rdev);
2470                 err = mddev->pers->hot_add_disk(mddev, rdev);
2471                 if (err) {
2472                         unbind_rdev_from_array(rdev);
2473                         export_rdev(rdev);
2474                         return err;
2475                 }
2476         }
2477         sysfs_notify_dirent_safe(rdev->sysfs_state);
2478
2479         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2480         if (mddev->degraded)
2481                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2482         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2483         md_new_event(mddev);
2484         md_wakeup_thread(mddev->thread);
2485         return 0;
2486 }
2487
2488 /* words written to sysfs files may, or may not, be \n terminated.
2489  * We want to accept with case. For this we use cmd_match.
2490  */
2491 static int cmd_match(const char *cmd, const char *str)
2492 {
2493         /* See if cmd, written into a sysfs file, matches
2494          * str.  They must either be the same, or cmd can
2495          * have a trailing newline
2496          */
2497         while (*cmd && *str && *cmd == *str) {
2498                 cmd++;
2499                 str++;
2500         }
2501         if (*cmd == '\n')
2502                 cmd++;
2503         if (*str || *cmd)
2504                 return 0;
2505         return 1;
2506 }
2507
2508 struct rdev_sysfs_entry {
2509         struct attribute attr;
2510         ssize_t (*show)(struct md_rdev *, char *);
2511         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2512 };
2513
2514 static ssize_t
2515 state_show(struct md_rdev *rdev, char *page)
2516 {
2517         char *sep = "";
2518         size_t len = 0;
2519         unsigned long flags = ACCESS_ONCE(rdev->flags);
2520
2521         if (test_bit(Faulty, &flags) ||
2522             rdev->badblocks.unacked_exist) {
2523                 len+= sprintf(page+len, "%sfaulty",sep);
2524                 sep = ",";
2525         }
2526         if (test_bit(In_sync, &flags)) {
2527                 len += sprintf(page+len, "%sin_sync",sep);
2528                 sep = ",";
2529         }
2530         if (test_bit(Journal, &flags)) {
2531                 len += sprintf(page+len, "%sjournal",sep);
2532                 sep = ",";
2533         }
2534         if (test_bit(WriteMostly, &flags)) {
2535                 len += sprintf(page+len, "%swrite_mostly",sep);
2536                 sep = ",";
2537         }
2538         if (test_bit(Blocked, &flags) ||
2539             (rdev->badblocks.unacked_exist
2540              && !test_bit(Faulty, &flags))) {
2541                 len += sprintf(page+len, "%sblocked", sep);
2542                 sep = ",";
2543         }
2544         if (!test_bit(Faulty, &flags) &&
2545             !test_bit(Journal, &flags) &&
2546             !test_bit(In_sync, &flags)) {
2547                 len += sprintf(page+len, "%sspare", sep);
2548                 sep = ",";
2549         }
2550         if (test_bit(WriteErrorSeen, &flags)) {
2551                 len += sprintf(page+len, "%swrite_error", sep);
2552                 sep = ",";
2553         }
2554         if (test_bit(WantReplacement, &flags)) {
2555                 len += sprintf(page+len, "%swant_replacement", sep);
2556                 sep = ",";
2557         }
2558         if (test_bit(Replacement, &flags)) {
2559                 len += sprintf(page+len, "%sreplacement", sep);
2560                 sep = ",";
2561         }
2562
2563         return len+sprintf(page+len, "\n");
2564 }
2565
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569         /* can write
2570          *  faulty  - simulates an error
2571          *  remove  - disconnects the device
2572          *  writemostly - sets write_mostly
2573          *  -writemostly - clears write_mostly
2574          *  blocked - sets the Blocked flags
2575          *  -blocked - clears the Blocked and possibly simulates an error
2576          *  insync - sets Insync providing device isn't active
2577          *  -insync - clear Insync for a device with a slot assigned,
2578          *            so that it gets rebuilt based on bitmap
2579          *  write_error - sets WriteErrorSeen
2580          *  -write_error - clears WriteErrorSeen
2581          */
2582         int err = -EINVAL;
2583         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584                 md_error(rdev->mddev, rdev);
2585                 if (test_bit(Faulty, &rdev->flags))
2586                         err = 0;
2587                 else
2588                         err = -EBUSY;
2589         } else if (cmd_match(buf, "remove")) {
2590                 if (rdev->raid_disk >= 0)
2591                         err = -EBUSY;
2592                 else {
2593                         struct mddev *mddev = rdev->mddev;
2594                         err = 0;
2595                         if (mddev_is_clustered(mddev))
2596                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2597
2598                         if (err == 0) {
2599                                 md_kick_rdev_from_array(rdev);
2600                                 if (mddev->pers)
2601                                         md_update_sb(mddev, 1);
2602                                 md_new_event(mddev);
2603                         }
2604                 }
2605         } else if (cmd_match(buf, "writemostly")) {
2606                 set_bit(WriteMostly, &rdev->flags);
2607                 err = 0;
2608         } else if (cmd_match(buf, "-writemostly")) {
2609                 clear_bit(WriteMostly, &rdev->flags);
2610                 err = 0;
2611         } else if (cmd_match(buf, "blocked")) {
2612                 set_bit(Blocked, &rdev->flags);
2613                 err = 0;
2614         } else if (cmd_match(buf, "-blocked")) {
2615                 if (!test_bit(Faulty, &rdev->flags) &&
2616                     rdev->badblocks.unacked_exist) {
2617                         /* metadata handler doesn't understand badblocks,
2618                          * so we need to fail the device
2619                          */
2620                         md_error(rdev->mddev, rdev);
2621                 }
2622                 clear_bit(Blocked, &rdev->flags);
2623                 clear_bit(BlockedBadBlocks, &rdev->flags);
2624                 wake_up(&rdev->blocked_wait);
2625                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2626                 md_wakeup_thread(rdev->mddev->thread);
2627
2628                 err = 0;
2629         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2630                 set_bit(In_sync, &rdev->flags);
2631                 err = 0;
2632         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2633                    !test_bit(Journal, &rdev->flags)) {
2634                 if (rdev->mddev->pers == NULL) {
2635                         clear_bit(In_sync, &rdev->flags);
2636                         rdev->saved_raid_disk = rdev->raid_disk;
2637                         rdev->raid_disk = -1;
2638                         err = 0;
2639                 }
2640         } else if (cmd_match(buf, "write_error")) {
2641                 set_bit(WriteErrorSeen, &rdev->flags);
2642                 err = 0;
2643         } else if (cmd_match(buf, "-write_error")) {
2644                 clear_bit(WriteErrorSeen, &rdev->flags);
2645                 err = 0;
2646         } else if (cmd_match(buf, "want_replacement")) {
2647                 /* Any non-spare device that is not a replacement can
2648                  * become want_replacement at any time, but we then need to
2649                  * check if recovery is needed.
2650                  */
2651                 if (rdev->raid_disk >= 0 &&
2652                     !test_bit(Journal, &rdev->flags) &&
2653                     !test_bit(Replacement, &rdev->flags))
2654                         set_bit(WantReplacement, &rdev->flags);
2655                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656                 md_wakeup_thread(rdev->mddev->thread);
2657                 err = 0;
2658         } else if (cmd_match(buf, "-want_replacement")) {
2659                 /* Clearing 'want_replacement' is always allowed.
2660                  * Once replacements starts it is too late though.
2661                  */
2662                 err = 0;
2663                 clear_bit(WantReplacement, &rdev->flags);
2664         } else if (cmd_match(buf, "replacement")) {
2665                 /* Can only set a device as a replacement when array has not
2666                  * yet been started.  Once running, replacement is automatic
2667                  * from spares, or by assigning 'slot'.
2668                  */
2669                 if (rdev->mddev->pers)
2670                         err = -EBUSY;
2671                 else {
2672                         set_bit(Replacement, &rdev->flags);
2673                         err = 0;
2674                 }
2675         } else if (cmd_match(buf, "-replacement")) {
2676                 /* Similarly, can only clear Replacement before start */
2677                 if (rdev->mddev->pers)
2678                         err = -EBUSY;
2679                 else {
2680                         clear_bit(Replacement, &rdev->flags);
2681                         err = 0;
2682                 }
2683         } else if (cmd_match(buf, "re-add")) {
2684                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2685                         /* clear_bit is performed _after_ all the devices
2686                          * have their local Faulty bit cleared. If any writes
2687                          * happen in the meantime in the local node, they
2688                          * will land in the local bitmap, which will be synced
2689                          * by this node eventually
2690                          */
2691                         if (!mddev_is_clustered(rdev->mddev) ||
2692                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2693                                 clear_bit(Faulty, &rdev->flags);
2694                                 err = add_bound_rdev(rdev);
2695                         }
2696                 } else
2697                         err = -EBUSY;
2698         }
2699         if (!err)
2700                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2701         return err ? err : len;
2702 }
2703 static struct rdev_sysfs_entry rdev_state =
2704 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2705
2706 static ssize_t
2707 errors_show(struct md_rdev *rdev, char *page)
2708 {
2709         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2710 }
2711
2712 static ssize_t
2713 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2714 {
2715         unsigned int n;
2716         int rv;
2717
2718         rv = kstrtouint(buf, 10, &n);
2719         if (rv < 0)
2720                 return rv;
2721         atomic_set(&rdev->corrected_errors, n);
2722         return len;
2723 }
2724 static struct rdev_sysfs_entry rdev_errors =
2725 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2726
2727 static ssize_t
2728 slot_show(struct md_rdev *rdev, char *page)
2729 {
2730         if (test_bit(Journal, &rdev->flags))
2731                 return sprintf(page, "journal\n");
2732         else if (rdev->raid_disk < 0)
2733                 return sprintf(page, "none\n");
2734         else
2735                 return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741         int slot;
2742         int err;
2743
2744         if (test_bit(Journal, &rdev->flags))
2745                 return -EBUSY;
2746         if (strncmp(buf, "none", 4)==0)
2747                 slot = -1;
2748         else {
2749                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2750                 if (err < 0)
2751                         return err;
2752         }
2753         if (rdev->mddev->pers && slot == -1) {
2754                 /* Setting 'slot' on an active array requires also
2755                  * updating the 'rd%d' link, and communicating
2756                  * with the personality with ->hot_*_disk.
2757                  * For now we only support removing
2758                  * failed/spare devices.  This normally happens automatically,
2759                  * but not when the metadata is externally managed.
2760                  */
2761                 if (rdev->raid_disk == -1)
2762                         return -EEXIST;
2763                 /* personality does all needed checks */
2764                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2765                         return -EINVAL;
2766                 clear_bit(Blocked, &rdev->flags);
2767                 remove_and_add_spares(rdev->mddev, rdev);
2768                 if (rdev->raid_disk >= 0)
2769                         return -EBUSY;
2770                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771                 md_wakeup_thread(rdev->mddev->thread);
2772         } else if (rdev->mddev->pers) {
2773                 /* Activating a spare .. or possibly reactivating
2774                  * if we ever get bitmaps working here.
2775                  */
2776
2777                 if (rdev->raid_disk != -1)
2778                         return -EBUSY;
2779
2780                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2781                         return -EBUSY;
2782
2783                 if (rdev->mddev->pers->hot_add_disk == NULL)
2784                         return -EINVAL;
2785
2786                 if (slot >= rdev->mddev->raid_disks &&
2787                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788                         return -ENOSPC;
2789
2790                 rdev->raid_disk = slot;
2791                 if (test_bit(In_sync, &rdev->flags))
2792                         rdev->saved_raid_disk = slot;
2793                 else
2794                         rdev->saved_raid_disk = -1;
2795                 clear_bit(In_sync, &rdev->flags);
2796                 clear_bit(Bitmap_sync, &rdev->flags);
2797                 remove_and_add_spares(rdev->mddev, rdev);
2798                 if (rdev->raid_disk == -1)
2799                         return -EBUSY;
2800                 /* don't wakeup anyone, leave that to userspace. */
2801         } else {
2802                 if (slot >= rdev->mddev->raid_disks &&
2803                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804                         return -ENOSPC;
2805                 rdev->raid_disk = slot;
2806                 /* assume it is working */
2807                 clear_bit(Faulty, &rdev->flags);
2808                 clear_bit(WriteMostly, &rdev->flags);
2809                 set_bit(In_sync, &rdev->flags);
2810                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811         }
2812         return len;
2813 }
2814
2815 static struct rdev_sysfs_entry rdev_slot =
2816 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2817
2818 static ssize_t
2819 offset_show(struct md_rdev *rdev, char *page)
2820 {
2821         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2822 }
2823
2824 static ssize_t
2825 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2826 {
2827         unsigned long long offset;
2828         if (kstrtoull(buf, 10, &offset) < 0)
2829                 return -EINVAL;
2830         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2831                 return -EBUSY;
2832         if (rdev->sectors && rdev->mddev->external)
2833                 /* Must set offset before size, so overlap checks
2834                  * can be sane */
2835                 return -EBUSY;
2836         rdev->data_offset = offset;
2837         rdev->new_data_offset = offset;
2838         return len;
2839 }
2840
2841 static struct rdev_sysfs_entry rdev_offset =
2842 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2843
2844 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2845 {
2846         return sprintf(page, "%llu\n",
2847                        (unsigned long long)rdev->new_data_offset);
2848 }
2849
2850 static ssize_t new_offset_store(struct md_rdev *rdev,
2851                                 const char *buf, size_t len)
2852 {
2853         unsigned long long new_offset;
2854         struct mddev *mddev = rdev->mddev;
2855
2856         if (kstrtoull(buf, 10, &new_offset) < 0)
2857                 return -EINVAL;
2858
2859         if (mddev->sync_thread ||
2860             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2861                 return -EBUSY;
2862         if (new_offset == rdev->data_offset)
2863                 /* reset is always permitted */
2864                 ;
2865         else if (new_offset > rdev->data_offset) {
2866                 /* must not push array size beyond rdev_sectors */
2867                 if (new_offset - rdev->data_offset
2868                     + mddev->dev_sectors > rdev->sectors)
2869                                 return -E2BIG;
2870         }
2871         /* Metadata worries about other space details. */
2872
2873         /* decreasing the offset is inconsistent with a backwards
2874          * reshape.
2875          */
2876         if (new_offset < rdev->data_offset &&
2877             mddev->reshape_backwards)
2878                 return -EINVAL;
2879         /* Increasing offset is inconsistent with forwards
2880          * reshape.  reshape_direction should be set to
2881          * 'backwards' first.
2882          */
2883         if (new_offset > rdev->data_offset &&
2884             !mddev->reshape_backwards)
2885                 return -EINVAL;
2886
2887         if (mddev->pers && mddev->persistent &&
2888             !super_types[mddev->major_version]
2889             .allow_new_offset(rdev, new_offset))
2890                 return -E2BIG;
2891         rdev->new_data_offset = new_offset;
2892         if (new_offset > rdev->data_offset)
2893                 mddev->reshape_backwards = 1;
2894         else if (new_offset < rdev->data_offset)
2895                 mddev->reshape_backwards = 0;
2896
2897         return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910         /* check if two start/length pairs overlap */
2911         if (s1+l1 <= s2)
2912                 return 0;
2913         if (s2+l2 <= s1)
2914                 return 0;
2915         return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920         unsigned long long blocks;
2921         sector_t new;
2922
2923         if (kstrtoull(buf, 10, &blocks) < 0)
2924                 return -EINVAL;
2925
2926         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927                 return -EINVAL; /* sector conversion overflow */
2928
2929         new = blocks * 2;
2930         if (new != blocks * 2)
2931                 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933         *sectors = new;
2934         return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940         struct mddev *my_mddev = rdev->mddev;
2941         sector_t oldsectors = rdev->sectors;
2942         sector_t sectors;
2943
2944         if (test_bit(Journal, &rdev->flags))
2945                 return -EBUSY;
2946         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2947                 return -EINVAL;
2948         if (rdev->data_offset != rdev->new_data_offset)
2949                 return -EINVAL; /* too confusing */
2950         if (my_mddev->pers && rdev->raid_disk >= 0) {
2951                 if (my_mddev->persistent) {
2952                         sectors = super_types[my_mddev->major_version].
2953                                 rdev_size_change(rdev, sectors);
2954                         if (!sectors)
2955                                 return -EBUSY;
2956                 } else if (!sectors)
2957                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2958                                 rdev->data_offset;
2959                 if (!my_mddev->pers->resize)
2960                         /* Cannot change size for RAID0 or Linear etc */
2961                         return -EINVAL;
2962         }
2963         if (sectors < my_mddev->dev_sectors)
2964                 return -EINVAL; /* component must fit device */
2965
2966         rdev->sectors = sectors;
2967         if (sectors > oldsectors && my_mddev->external) {
2968                 /* Need to check that all other rdevs with the same
2969                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2970                  * the rdev lists safely.
2971                  * This check does not provide a hard guarantee, it
2972                  * just helps avoid dangerous mistakes.
2973                  */
2974                 struct mddev *mddev;
2975                 int overlap = 0;
2976                 struct list_head *tmp;
2977
2978                 rcu_read_lock();
2979                 for_each_mddev(mddev, tmp) {
2980                         struct md_rdev *rdev2;
2981
2982                         rdev_for_each(rdev2, mddev)
2983                                 if (rdev->bdev == rdev2->bdev &&
2984                                     rdev != rdev2 &&
2985                                     overlaps(rdev->data_offset, rdev->sectors,
2986                                              rdev2->data_offset,
2987                                              rdev2->sectors)) {
2988                                         overlap = 1;
2989                                         break;
2990                                 }
2991                         if (overlap) {
2992                                 mddev_put(mddev);
2993                                 break;
2994                         }
2995                 }
2996                 rcu_read_unlock();
2997                 if (overlap) {
2998                         /* Someone else could have slipped in a size
2999                          * change here, but doing so is just silly.
3000                          * We put oldsectors back because we *know* it is
3001                          * safe, and trust userspace not to race with
3002                          * itself
3003                          */
3004                         rdev->sectors = oldsectors;
3005                         return -EBUSY;
3006                 }
3007         }
3008         return len;
3009 }
3010
3011 static struct rdev_sysfs_entry rdev_size =
3012 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016         unsigned long long recovery_start = rdev->recovery_offset;
3017
3018         if (test_bit(In_sync, &rdev->flags) ||
3019             recovery_start == MaxSector)
3020                 return sprintf(page, "none\n");
3021
3022         return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027         unsigned long long recovery_start;
3028
3029         if (cmd_match(buf, "none"))
3030                 recovery_start = MaxSector;
3031         else if (kstrtoull(buf, 10, &recovery_start))
3032                 return -EINVAL;
3033
3034         if (rdev->mddev->pers &&
3035             rdev->raid_disk >= 0)
3036                 return -EBUSY;
3037
3038         rdev->recovery_offset = recovery_start;
3039         if (recovery_start == MaxSector)
3040                 set_bit(In_sync, &rdev->flags);
3041         else
3042                 clear_bit(In_sync, &rdev->flags);
3043         return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049 static ssize_t
3050 badblocks_show(struct badblocks *bb, char *page, int unack);
3051 static ssize_t
3052 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3053
3054 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3055 {
3056         return badblocks_show(&rdev->badblocks, page, 0);
3057 }
3058 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3059 {
3060         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3061         /* Maybe that ack was all we needed */
3062         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3063                 wake_up(&rdev->blocked_wait);
3064         return rv;
3065 }
3066 static struct rdev_sysfs_entry rdev_bad_blocks =
3067 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3068
3069 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3070 {
3071         return badblocks_show(&rdev->badblocks, page, 1);
3072 }
3073 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3074 {
3075         return badblocks_store(&rdev->badblocks, page, len, 1);
3076 }
3077 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3078 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3079
3080 static struct attribute *rdev_default_attrs[] = {
3081         &rdev_state.attr,
3082         &rdev_errors.attr,
3083         &rdev_slot.attr,
3084         &rdev_offset.attr,
3085         &rdev_new_offset.attr,
3086         &rdev_size.attr,
3087         &rdev_recovery_start.attr,
3088         &rdev_bad_blocks.attr,
3089         &rdev_unack_bad_blocks.attr,
3090         NULL,
3091 };
3092 static ssize_t
3093 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3094 {
3095         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3096         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3097
3098         if (!entry->show)
3099                 return -EIO;
3100         if (!rdev->mddev)
3101                 return -EBUSY;
3102         return entry->show(rdev, page);
3103 }
3104
3105 static ssize_t
3106 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3107               const char *page, size_t length)
3108 {
3109         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3110         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3111         ssize_t rv;
3112         struct mddev *mddev = rdev->mddev;
3113
3114         if (!entry->store)
3115                 return -EIO;
3116         if (!capable(CAP_SYS_ADMIN))
3117                 return -EACCES;
3118         rv = mddev ? mddev_lock(mddev): -EBUSY;
3119         if (!rv) {
3120                 if (rdev->mddev == NULL)
3121                         rv = -EBUSY;
3122                 else
3123                         rv = entry->store(rdev, page, length);
3124                 mddev_unlock(mddev);
3125         }
3126         return rv;
3127 }
3128
3129 static void rdev_free(struct kobject *ko)
3130 {
3131         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3132         kfree(rdev);
3133 }
3134 static const struct sysfs_ops rdev_sysfs_ops = {
3135         .show           = rdev_attr_show,
3136         .store          = rdev_attr_store,
3137 };
3138 static struct kobj_type rdev_ktype = {
3139         .release        = rdev_free,
3140         .sysfs_ops      = &rdev_sysfs_ops,
3141         .default_attrs  = rdev_default_attrs,
3142 };
3143
3144 int md_rdev_init(struct md_rdev *rdev)
3145 {
3146         rdev->desc_nr = -1;
3147         rdev->saved_raid_disk = -1;
3148         rdev->raid_disk = -1;
3149         rdev->flags = 0;
3150         rdev->data_offset = 0;
3151         rdev->new_data_offset = 0;
3152         rdev->sb_events = 0;
3153         rdev->last_read_error.tv_sec  = 0;
3154         rdev->last_read_error.tv_nsec = 0;
3155         rdev->sb_loaded = 0;
3156         rdev->bb_page = NULL;
3157         atomic_set(&rdev->nr_pending, 0);
3158         atomic_set(&rdev->read_errors, 0);
3159         atomic_set(&rdev->corrected_errors, 0);
3160
3161         INIT_LIST_HEAD(&rdev->same_set);
3162         init_waitqueue_head(&rdev->blocked_wait);
3163
3164         /* Add space to store bad block list.
3165          * This reserves the space even on arrays where it cannot
3166          * be used - I wonder if that matters
3167          */
3168         rdev->badblocks.count = 0;
3169         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3170         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3171         seqlock_init(&rdev->badblocks.lock);
3172         if (rdev->badblocks.page == NULL)
3173                 return -ENOMEM;
3174
3175         return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(md_rdev_init);
3178 /*
3179  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3180  *
3181  * mark the device faulty if:
3182  *
3183  *   - the device is nonexistent (zero size)
3184  *   - the device has no valid superblock
3185  *
3186  * a faulty rdev _never_ has rdev->sb set.
3187  */
3188 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3189 {
3190         char b[BDEVNAME_SIZE];
3191         int err;
3192         struct md_rdev *rdev;
3193         sector_t size;
3194
3195         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3196         if (!rdev) {
3197                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3198                 return ERR_PTR(-ENOMEM);
3199         }
3200
3201         err = md_rdev_init(rdev);
3202         if (err)
3203                 goto abort_free;
3204         err = alloc_disk_sb(rdev);
3205         if (err)
3206                 goto abort_free;
3207
3208         err = lock_rdev(rdev, newdev, super_format == -2);
3209         if (err)
3210                 goto abort_free;
3211
3212         kobject_init(&rdev->kobj, &rdev_ktype);
3213
3214         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3215         if (!size) {
3216                 printk(KERN_WARNING
3217                         "md: %s has zero or unknown size, marking faulty!\n",
3218                         bdevname(rdev->bdev,b));
3219                 err = -EINVAL;
3220                 goto abort_free;
3221         }
3222
3223         if (super_format >= 0) {
3224                 err = super_types[super_format].
3225                         load_super(rdev, NULL, super_minor);
3226                 if (err == -EINVAL) {
3227                         printk(KERN_WARNING
3228                                 "md: %s does not have a valid v%d.%d "
3229                                "superblock, not importing!\n",
3230                                 bdevname(rdev->bdev,b),
3231                                super_format, super_minor);
3232                         goto abort_free;
3233                 }
3234                 if (err < 0) {
3235                         printk(KERN_WARNING
3236                                 "md: could not read %s's sb, not importing!\n",
3237                                 bdevname(rdev->bdev,b));
3238                         goto abort_free;
3239                 }
3240         }
3241
3242         return rdev;
3243
3244 abort_free:
3245         if (rdev->bdev)
3246                 unlock_rdev(rdev);
3247         md_rdev_clear(rdev);
3248         kfree(rdev);
3249         return ERR_PTR(err);
3250 }
3251
3252 /*
3253  * Check a full RAID array for plausibility
3254  */
3255
3256 static void analyze_sbs(struct mddev *mddev)
3257 {
3258         int i;
3259         struct md_rdev *rdev, *freshest, *tmp;
3260         char b[BDEVNAME_SIZE];
3261
3262         freshest = NULL;
3263         rdev_for_each_safe(rdev, tmp, mddev)
3264                 switch (super_types[mddev->major_version].
3265                         load_super(rdev, freshest, mddev->minor_version)) {
3266                 case 1:
3267                         freshest = rdev;
3268                         break;
3269                 case 0:
3270                         break;
3271                 default:
3272                         printk( KERN_ERR \
3273                                 "md: fatal superblock inconsistency in %s"
3274                                 " -- removing from array\n",
3275                                 bdevname(rdev->bdev,b));
3276                         md_kick_rdev_from_array(rdev);
3277                 }
3278
3279         super_types[mddev->major_version].
3280                 validate_super(mddev, freshest);
3281
3282         i = 0;
3283         rdev_for_each_safe(rdev, tmp, mddev) {
3284                 if (mddev->max_disks &&
3285                     (rdev->desc_nr >= mddev->max_disks ||
3286                      i > mddev->max_disks)) {
3287                         printk(KERN_WARNING
3288                                "md: %s: %s: only %d devices permitted\n",
3289                                mdname(mddev), bdevname(rdev->bdev, b),
3290                                mddev->max_disks);
3291                         md_kick_rdev_from_array(rdev);
3292                         continue;
3293                 }
3294                 if (rdev != freshest) {
3295                         if (super_types[mddev->major_version].
3296                             validate_super(mddev, rdev)) {
3297                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3298                                         " from array!\n",
3299                                         bdevname(rdev->bdev,b));
3300                                 md_kick_rdev_from_array(rdev);
3301                                 continue;
3302                         }
3303                 }
3304                 if (mddev->level == LEVEL_MULTIPATH) {
3305                         rdev->desc_nr = i++;
3306                         rdev->raid_disk = rdev->desc_nr;
3307                         set_bit(In_sync, &rdev->flags);
3308                 } else if (rdev->raid_disk >=
3309                             (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3310                            !test_bit(Journal, &rdev->flags)) {
3311                         rdev->raid_disk = -1;
3312                         clear_bit(In_sync, &rdev->flags);
3313                 }
3314         }
3315 }
3316
3317 /* Read a fixed-point number.
3318  * Numbers in sysfs attributes should be in "standard" units where
3319  * possible, so time should be in seconds.
3320  * However we internally use a a much smaller unit such as
3321  * milliseconds or jiffies.
3322  * This function takes a decimal number with a possible fractional
3323  * component, and produces an integer which is the result of
3324  * multiplying that number by 10^'scale'.
3325  * all without any floating-point arithmetic.
3326  */
3327 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3328 {
3329         unsigned long result = 0;
3330         long decimals = -1;
3331         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3332                 if (*cp == '.')
3333                         decimals = 0;
3334                 else if (decimals < scale) {
3335                         unsigned int value;
3336                         value = *cp - '0';
3337                         result = result * 10 + value;
3338                         if (decimals >= 0)
3339                                 decimals++;
3340                 }
3341                 cp++;
3342         }
3343         if (*cp == '\n')
3344                 cp++;
3345         if (*cp)
3346                 return -EINVAL;
3347         if (decimals < 0)
3348                 decimals = 0;
3349         while (decimals < scale) {
3350                 result *= 10;
3351                 decimals ++;
3352         }
3353         *res = result;
3354         return 0;
3355 }
3356
3357 static ssize_t
3358 safe_delay_show(struct mddev *mddev, char *page)
3359 {
3360         int msec = (mddev->safemode_delay*1000)/HZ;
3361         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3362 }
3363 static ssize_t
3364 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3365 {
3366         unsigned long msec;
3367
3368         if (mddev_is_clustered(mddev)) {
3369                 pr_info("md: Safemode is disabled for clustered mode\n");
3370                 return -EINVAL;
3371         }
3372
3373         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3374                 return -EINVAL;
3375         if (msec == 0)
3376                 mddev->safemode_delay = 0;
3377         else {
3378                 unsigned long old_delay = mddev->safemode_delay;
3379                 unsigned long new_delay = (msec*HZ)/1000;
3380
3381                 if (new_delay == 0)
3382                         new_delay = 1;
3383                 mddev->safemode_delay = new_delay;
3384                 if (new_delay < old_delay || old_delay == 0)
3385                         mod_timer(&mddev->safemode_timer, jiffies+1);
3386         }
3387         return len;
3388 }
3389 static struct md_sysfs_entry md_safe_delay =
3390 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3391
3392 static ssize_t
3393 level_show(struct mddev *mddev, char *page)
3394 {
3395         struct md_personality *p;
3396         int ret;
3397         spin_lock(&mddev->lock);
3398         p = mddev->pers;
3399         if (p)
3400                 ret = sprintf(page, "%s\n", p->name);
3401         else if (mddev->clevel[0])
3402                 ret = sprintf(page, "%s\n", mddev->clevel);
3403         else if (mddev->level != LEVEL_NONE)
3404                 ret = sprintf(page, "%d\n", mddev->level);
3405         else
3406                 ret = 0;
3407         spin_unlock(&mddev->lock);
3408         return ret;
3409 }
3410
3411 static ssize_t
3412 level_store(struct mddev *mddev, const char *buf, size_t len)
3413 {
3414         char clevel[16];
3415         ssize_t rv;
3416         size_t slen = len;
3417         struct md_personality *pers, *oldpers;
3418         long level;
3419         void *priv, *oldpriv;
3420         struct md_rdev *rdev;
3421
3422         if (slen == 0 || slen >= sizeof(clevel))
3423                 return -EINVAL;
3424
3425         rv = mddev_lock(mddev);
3426         if (rv)
3427                 return rv;
3428
3429         if (mddev->pers == NULL) {
3430                 strncpy(mddev->clevel, buf, slen);
3431                 if (mddev->clevel[slen-1] == '\n')
3432                         slen--;
3433                 mddev->clevel[slen] = 0;
3434                 mddev->level = LEVEL_NONE;
3435                 rv = len;
3436                 goto out_unlock;
3437         }
3438         rv = -EROFS;
3439         if (mddev->ro)
3440                 goto out_unlock;
3441
3442         /* request to change the personality.  Need to ensure:
3443          *  - array is not engaged in resync/recovery/reshape
3444          *  - old personality can be suspended
3445          *  - new personality will access other array.
3446          */
3447
3448         rv = -EBUSY;
3449         if (mddev->sync_thread ||
3450             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3451             mddev->reshape_position != MaxSector ||
3452             mddev->sysfs_active)
3453                 goto out_unlock;
3454
3455         rv = -EINVAL;
3456         if (!mddev->pers->quiesce) {
3457                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3458                        mdname(mddev), mddev->pers->name);
3459                 goto out_unlock;
3460         }
3461
3462         /* Now find the new personality */
3463         strncpy(clevel, buf, slen);
3464         if (clevel[slen-1] == '\n')
3465                 slen--;
3466         clevel[slen] = 0;
3467         if (kstrtol(clevel, 10, &level))
3468                 level = LEVEL_NONE;
3469
3470         if (request_module("md-%s", clevel) != 0)
3471                 request_module("md-level-%s", clevel);
3472         spin_lock(&pers_lock);
3473         pers = find_pers(level, clevel);
3474         if (!pers || !try_module_get(pers->owner)) {
3475                 spin_unlock(&pers_lock);
3476                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3477                 rv = -EINVAL;
3478                 goto out_unlock;
3479         }
3480         spin_unlock(&pers_lock);
3481
3482         if (pers == mddev->pers) {
3483                 /* Nothing to do! */
3484                 module_put(pers->owner);
3485                 rv = len;
3486                 goto out_unlock;
3487         }
3488         if (!pers->takeover) {
3489                 module_put(pers->owner);
3490                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3491                        mdname(mddev), clevel);
3492                 rv = -EINVAL;
3493                 goto out_unlock;
3494         }
3495
3496         rdev_for_each(rdev, mddev)
3497                 rdev->new_raid_disk = rdev->raid_disk;
3498
3499         /* ->takeover must set new_* and/or delta_disks
3500          * if it succeeds, and may set them when it fails.
3501          */
3502         priv = pers->takeover(mddev);
3503         if (IS_ERR(priv)) {
3504                 mddev->new_level = mddev->level;
3505                 mddev->new_layout = mddev->layout;
3506                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3507                 mddev->raid_disks -= mddev->delta_disks;
3508                 mddev->delta_disks = 0;
3509                 mddev->reshape_backwards = 0;
3510                 module_put(pers->owner);
3511                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3512                        mdname(mddev), clevel);
3513                 rv = PTR_ERR(priv);
3514                 goto out_unlock;
3515         }
3516
3517         /* Looks like we have a winner */
3518         mddev_suspend(mddev);
3519         mddev_detach(mddev);
3520
3521         spin_lock(&mddev->lock);
3522         oldpers = mddev->pers;
3523         oldpriv = mddev->private;
3524         mddev->pers = pers;
3525         mddev->private = priv;
3526         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3527         mddev->level = mddev->new_level;
3528         mddev->layout = mddev->new_layout;
3529         mddev->chunk_sectors = mddev->new_chunk_sectors;
3530         mddev->delta_disks = 0;
3531         mddev->reshape_backwards = 0;
3532         mddev->degraded = 0;
3533         spin_unlock(&mddev->lock);
3534
3535         if (oldpers->sync_request == NULL &&
3536             mddev->external) {
3537                 /* We are converting from a no-redundancy array
3538                  * to a redundancy array and metadata is managed
3539                  * externally so we need to be sure that writes
3540                  * won't block due to a need to transition
3541                  *      clean->dirty
3542                  * until external management is started.
3543                  */
3544                 mddev->in_sync = 0;
3545                 mddev->safemode_delay = 0;
3546                 mddev->safemode = 0;
3547         }
3548
3549         oldpers->free(mddev, oldpriv);
3550
3551         if (oldpers->sync_request == NULL &&
3552             pers->sync_request != NULL) {
3553                 /* need to add the md_redundancy_group */
3554                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555                         printk(KERN_WARNING
3556                                "md: cannot register extra attributes for %s\n",
3557                                mdname(mddev));
3558                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3559         }
3560         if (oldpers->sync_request != NULL &&
3561             pers->sync_request == NULL) {
3562                 /* need to remove the md_redundancy_group */
3563                 if (mddev->to_remove == NULL)
3564                         mddev->to_remove = &md_redundancy_group;
3565         }
3566
3567         rdev_for_each(rdev, mddev) {
3568                 if (rdev->raid_disk < 0)
3569                         continue;
3570                 if (rdev->new_raid_disk >= mddev->raid_disks)
3571                         rdev->new_raid_disk = -1;
3572                 if (rdev->new_raid_disk == rdev->raid_disk)
3573                         continue;
3574                 sysfs_unlink_rdev(mddev, rdev);
3575         }
3576         rdev_for_each(rdev, mddev) {
3577                 if (rdev->raid_disk < 0)
3578                         continue;
3579                 if (rdev->new_raid_disk == rdev->raid_disk)
3580                         continue;
3581                 rdev->raid_disk = rdev->new_raid_disk;
3582                 if (rdev->raid_disk < 0)
3583                         clear_bit(In_sync, &rdev->flags);
3584                 else {
3585                         if (sysfs_link_rdev(mddev, rdev))
3586                                 printk(KERN_WARNING "md: cannot register rd%d"
3587                                        " for %s after level change\n",
3588                                        rdev->raid_disk, mdname(mddev));
3589                 }
3590         }
3591
3592         if (pers->sync_request == NULL) {
3593                 /* this is now an array without redundancy, so
3594                  * it must always be in_sync
3595                  */
3596                 mddev->in_sync = 1;
3597                 del_timer_sync(&mddev->safemode_timer);
3598         }
3599         blk_set_stacking_limits(&mddev->queue->limits);
3600         pers->run(mddev);
3601         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3602         mddev_resume(mddev);
3603         if (!mddev->thread)
3604                 md_update_sb(mddev, 1);
3605         sysfs_notify(&mddev->kobj, NULL, "level");
3606         md_new_event(mddev);
3607         rv = len;
3608 out_unlock:
3609         mddev_unlock(mddev);
3610         return rv;
3611 }
3612
3613 static struct md_sysfs_entry md_level =
3614 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3615
3616 static ssize_t
3617 layout_show(struct mddev *mddev, char *page)
3618 {
3619         /* just a number, not meaningful for all levels */
3620         if (mddev->reshape_position != MaxSector &&
3621             mddev->layout != mddev->new_layout)
3622                 return sprintf(page, "%d (%d)\n",
3623                                mddev->new_layout, mddev->layout);
3624         return sprintf(page, "%d\n", mddev->layout);
3625 }
3626
3627 static ssize_t
3628 layout_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630         unsigned int n;
3631         int err;
3632
3633         err = kstrtouint(buf, 10, &n);
3634         if (err < 0)
3635                 return err;
3636         err = mddev_lock(mddev);
3637         if (err)
3638                 return err;
3639
3640         if (mddev->pers) {
3641                 if (mddev->pers->check_reshape == NULL)
3642                         err = -EBUSY;
3643                 else if (mddev->ro)
3644                         err = -EROFS;
3645                 else {
3646                         mddev->new_layout = n;
3647                         err = mddev->pers->check_reshape(mddev);
3648                         if (err)
3649                                 mddev->new_layout = mddev->layout;
3650                 }
3651         } else {
3652                 mddev->new_layout = n;
3653                 if (mddev->reshape_position == MaxSector)
3654                         mddev->layout = n;
3655         }
3656         mddev_unlock(mddev);
3657         return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_layout =
3660 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3661
3662 static ssize_t
3663 raid_disks_show(struct mddev *mddev, char *page)
3664 {
3665         if (mddev->raid_disks == 0)
3666                 return 0;
3667         if (mddev->reshape_position != MaxSector &&
3668             mddev->delta_disks != 0)
3669                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3670                                mddev->raid_disks - mddev->delta_disks);
3671         return sprintf(page, "%d\n", mddev->raid_disks);
3672 }
3673
3674 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3675
3676 static ssize_t
3677 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3678 {
3679         unsigned int n;
3680         int err;
3681
3682         err = kstrtouint(buf, 10, &n);
3683         if (err < 0)
3684                 return err;
3685
3686         err = mddev_lock(mddev);
3687         if (err)
3688                 return err;
3689         if (mddev->pers)
3690                 err = update_raid_disks(mddev, n);
3691         else if (mddev->reshape_position != MaxSector) {
3692                 struct md_rdev *rdev;
3693                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3694
3695                 err = -EINVAL;
3696                 rdev_for_each(rdev, mddev) {
3697                         if (olddisks < n &&
3698                             rdev->data_offset < rdev->new_data_offset)
3699                                 goto out_unlock;
3700                         if (olddisks > n &&
3701                             rdev->data_offset > rdev->new_data_offset)
3702                                 goto out_unlock;
3703                 }
3704                 err = 0;
3705                 mddev->delta_disks = n - olddisks;
3706                 mddev->raid_disks = n;
3707                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3708         } else
3709                 mddev->raid_disks = n;
3710 out_unlock:
3711         mddev_unlock(mddev);
3712         return err ? err : len;
3713 }
3714 static struct md_sysfs_entry md_raid_disks =
3715 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3716
3717 static ssize_t
3718 chunk_size_show(struct mddev *mddev, char *page)
3719 {
3720         if (mddev->reshape_position != MaxSector &&
3721             mddev->chunk_sectors != mddev->new_chunk_sectors)
3722                 return sprintf(page, "%d (%d)\n",
3723                                mddev->new_chunk_sectors << 9,
3724                                mddev->chunk_sectors << 9);
3725         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3726 }
3727
3728 static ssize_t
3729 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3730 {
3731         unsigned long n;
3732         int err;
3733
3734         err = kstrtoul(buf, 10, &n);
3735         if (err < 0)
3736                 return err;
3737
3738         err = mddev_lock(mddev);
3739         if (err)
3740                 return err;
3741         if (mddev->pers) {
3742                 if (mddev->pers->check_reshape == NULL)
3743                         err = -EBUSY;
3744                 else if (mddev->ro)
3745                         err = -EROFS;
3746                 else {
3747                         mddev->new_chunk_sectors = n >> 9;
3748                         err = mddev->pers->check_reshape(mddev);
3749                         if (err)
3750                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                 }
3752         } else {
3753                 mddev->new_chunk_sectors = n >> 9;
3754                 if (mddev->reshape_position == MaxSector)
3755                         mddev->chunk_sectors = n >> 9;
3756         }
3757         mddev_unlock(mddev);
3758         return err ?: len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         unsigned long long n;
3775         int err;
3776
3777         if (cmd_match(buf, "none"))
3778                 n = MaxSector;
3779         else {
3780                 err = kstrtoull(buf, 10, &n);
3781                 if (err < 0)
3782                         return err;
3783                 if (n != (sector_t)n)
3784                         return -EINVAL;
3785         }
3786
3787         err = mddev_lock(mddev);
3788         if (err)
3789                 return err;
3790         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3791                 err = -EBUSY;
3792
3793         if (!err) {
3794                 mddev->recovery_cp = n;
3795                 if (mddev->pers)
3796                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3797         }
3798         mddev_unlock(mddev);
3799         return err ?: len;
3800 }
3801 static struct md_sysfs_entry md_resync_start =
3802 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3803                 resync_start_show, resync_start_store);
3804
3805 /*
3806  * The array state can be:
3807  *
3808  * clear
3809  *     No devices, no size, no level
3810  *     Equivalent to STOP_ARRAY ioctl
3811  * inactive
3812  *     May have some settings, but array is not active
3813  *        all IO results in error
3814  *     When written, doesn't tear down array, but just stops it
3815  * suspended (not supported yet)
3816  *     All IO requests will block. The array can be reconfigured.
3817  *     Writing this, if accepted, will block until array is quiescent
3818  * readonly
3819  *     no resync can happen.  no superblocks get written.
3820  *     write requests fail
3821  * read-auto
3822  *     like readonly, but behaves like 'clean' on a write request.
3823  *
3824  * clean - no pending writes, but otherwise active.
3825  *     When written to inactive array, starts without resync
3826  *     If a write request arrives then
3827  *       if metadata is known, mark 'dirty' and switch to 'active'.
3828  *       if not known, block and switch to write-pending
3829  *     If written to an active array that has pending writes, then fails.
3830  * active
3831  *     fully active: IO and resync can be happening.
3832  *     When written to inactive array, starts with resync
3833  *
3834  * write-pending
3835  *     clean, but writes are blocked waiting for 'active' to be written.
3836  *
3837  * active-idle
3838  *     like active, but no writes have been seen for a while (100msec).
3839  *
3840  */
3841 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3842                    write_pending, active_idle, bad_word};
3843 static char *array_states[] = {
3844         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3845         "write-pending", "active-idle", NULL };
3846
3847 static int match_word(const char *word, char **list)
3848 {
3849         int n;
3850         for (n=0; list[n]; n++)
3851                 if (cmd_match(word, list[n]))
3852                         break;
3853         return n;
3854 }
3855
3856 static ssize_t
3857 array_state_show(struct mddev *mddev, char *page)
3858 {
3859         enum array_state st = inactive;
3860
3861         if (mddev->pers)
3862                 switch(mddev->ro) {
3863                 case 1:
3864                         st = readonly;
3865                         break;
3866                 case 2:
3867                         st = read_auto;
3868                         break;
3869                 case 0:
3870                         if (mddev->in_sync)
3871                                 st = clean;
3872                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3873                                 st = write_pending;
3874                         else if (mddev->safemode)
3875                                 st = active_idle;
3876                         else
3877                                 st = active;
3878                 }
3879         else {
3880                 if (list_empty(&mddev->disks) &&
3881                     mddev->raid_disks == 0 &&
3882                     mddev->dev_sectors == 0)
3883                         st = clear;
3884                 else
3885                         st = inactive;
3886         }
3887         return sprintf(page, "%s\n", array_states[st]);
3888 }
3889
3890 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3891 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3892 static int do_md_run(struct mddev *mddev);
3893 static int restart_array(struct mddev *mddev);
3894
3895 static ssize_t
3896 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3897 {
3898         int err;
3899         enum array_state st = match_word(buf, array_states);
3900
3901         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3902                 /* don't take reconfig_mutex when toggling between
3903                  * clean and active
3904                  */
3905                 spin_lock(&mddev->lock);
3906                 if (st == active) {
3907                         restart_array(mddev);
3908                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909                         wake_up(&mddev->sb_wait);
3910                         err = 0;
3911                 } else /* st == clean */ {
3912                         restart_array(mddev);
3913                         if (atomic_read(&mddev->writes_pending) == 0) {
3914                                 if (mddev->in_sync == 0) {
3915                                         mddev->in_sync = 1;
3916                                         if (mddev->safemode == 1)
3917                                                 mddev->safemode = 0;
3918                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3919                                 }
3920                                 err = 0;
3921                         } else
3922                                 err = -EBUSY;
3923                 }
3924                 spin_unlock(&mddev->lock);
3925                 return err ?: len;
3926         }
3927         err = mddev_lock(mddev);
3928         if (err)
3929                 return err;
3930         err = -EINVAL;
3931         switch(st) {
3932         case bad_word:
3933                 break;
3934         case clear:
3935                 /* stopping an active array */
3936                 err = do_md_stop(mddev, 0, NULL);
3937                 break;
3938         case inactive:
3939                 /* stopping an active array */
3940                 if (mddev->pers)
3941                         err = do_md_stop(mddev, 2, NULL);
3942                 else
3943                         err = 0; /* already inactive */
3944                 break;
3945         case suspended:
3946                 break; /* not supported yet */
3947         case readonly:
3948                 if (mddev->pers)
3949                         err = md_set_readonly(mddev, NULL);
3950                 else {
3951                         mddev->ro = 1;
3952                         set_disk_ro(mddev->gendisk, 1);
3953                         err = do_md_run(mddev);
3954                 }
3955                 break;
3956         case read_auto:
3957                 if (mddev->pers) {
3958                         if (mddev->ro == 0)
3959                                 err = md_set_readonly(mddev, NULL);
3960                         else if (mddev->ro == 1)
3961                                 err = restart_array(mddev);
3962                         if (err == 0) {
3963                                 mddev->ro = 2;
3964                                 set_disk_ro(mddev->gendisk, 0);
3965                         }
3966                 } else {
3967                         mddev->ro = 2;
3968                         err = do_md_run(mddev);
3969                 }
3970                 break;
3971         case clean:
3972                 if (mddev->pers) {
3973                         err = restart_array(mddev);
3974                         if (err)
3975                                 break;
3976                         spin_lock(&mddev->lock);
3977                         if (atomic_read(&mddev->writes_pending) == 0) {
3978                                 if (mddev->in_sync == 0) {
3979                                         mddev->in_sync = 1;
3980                                         if (mddev->safemode == 1)
3981                                                 mddev->safemode = 0;
3982                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3983                                 }
3984                                 err = 0;
3985                         } else
3986                                 err = -EBUSY;
3987                         spin_unlock(&mddev->lock);
3988                 } else
3989                         err = -EINVAL;
3990                 break;
3991         case active:
3992                 if (mddev->pers) {
3993                         err = restart_array(mddev);
3994                         if (err)
3995                                 break;
3996                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3997                         wake_up(&mddev->sb_wait);
3998                         err = 0;
3999                 } else {
4000                         mddev->ro = 0;
4001                         set_disk_ro(mddev->gendisk, 0);
4002                         err = do_md_run(mddev);
4003                 }
4004                 break;
4005         case write_pending:
4006         case active_idle:
4007                 /* these cannot be set */
4008                 break;
4009         }
4010
4011         if (!err) {
4012                 if (mddev->hold_active == UNTIL_IOCTL)
4013                         mddev->hold_active = 0;
4014                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4015         }
4016         mddev_unlock(mddev);
4017         return err ?: len;
4018 }
4019 static struct md_sysfs_entry md_array_state =
4020 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4021
4022 static ssize_t
4023 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4024         return sprintf(page, "%d\n",
4025                        atomic_read(&mddev->max_corr_read_errors));
4026 }
4027
4028 static ssize_t
4029 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4030 {
4031         unsigned int n;
4032         int rv;
4033
4034         rv = kstrtouint(buf, 10, &n);
4035         if (rv < 0)
4036                 return rv;
4037         atomic_set(&mddev->max_corr_read_errors, n);
4038         return len;
4039 }
4040
4041 static struct md_sysfs_entry max_corr_read_errors =
4042 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4043         max_corrected_read_errors_store);
4044
4045 static ssize_t
4046 null_show(struct mddev *mddev, char *page)
4047 {
4048         return -EINVAL;
4049 }
4050
4051 static ssize_t
4052 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4053 {
4054         /* buf must be %d:%d\n? giving major and minor numbers */
4055         /* The new device is added to the array.
4056          * If the array has a persistent superblock, we read the
4057          * superblock to initialise info and check validity.
4058          * Otherwise, only checking done is that in bind_rdev_to_array,
4059          * which mainly checks size.
4060          */
4061         char *e;
4062         int major = simple_strtoul(buf, &e, 10);
4063         int minor;
4064         dev_t dev;
4065         struct md_rdev *rdev;
4066         int err;
4067
4068         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4069                 return -EINVAL;
4070         minor = simple_strtoul(e+1, &e, 10);
4071         if (*e && *e != '\n')
4072                 return -EINVAL;
4073         dev = MKDEV(major, minor);
4074         if (major != MAJOR(dev) ||
4075             minor != MINOR(dev))
4076                 return -EOVERFLOW;
4077
4078         flush_workqueue(md_misc_wq);
4079
4080         err = mddev_lock(mddev);
4081         if (err)
4082                 return err;
4083         if (mddev->persistent) {
4084                 rdev = md_import_device(dev, mddev->major_version,
4085                                         mddev->minor_version);
4086                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4087                         struct md_rdev *rdev0
4088                                 = list_entry(mddev->disks.next,
4089                                              struct md_rdev, same_set);
4090                         err = super_types[mddev->major_version]
4091                                 .load_super(rdev, rdev0, mddev->minor_version);
4092                         if (err < 0)
4093                                 goto out;
4094                 }
4095         } else if (mddev->external)
4096                 rdev = md_import_device(dev, -2, -1);
4097         else
4098                 rdev = md_import_device(dev, -1, -1);
4099
4100         if (IS_ERR(rdev)) {
4101                 mddev_unlock(mddev);
4102                 return PTR_ERR(rdev);
4103         }
4104         err = bind_rdev_to_array(rdev, mddev);
4105  out:
4106         if (err)
4107                 export_rdev(rdev);
4108         mddev_unlock(mddev);
4109         return err ? err : len;
4110 }
4111
4112 static struct md_sysfs_entry md_new_device =
4113 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4114
4115 static ssize_t
4116 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118         char *end;
4119         unsigned long chunk, end_chunk;
4120         int err;
4121
4122         err = mddev_lock(mddev);
4123         if (err)
4124                 return err;
4125         if (!mddev->bitmap)
4126                 goto out;
4127         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4128         while (*buf) {
4129                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4130                 if (buf == end) break;
4131                 if (*end == '-') { /* range */
4132                         buf = end + 1;
4133                         end_chunk = simple_strtoul(buf, &end, 0);
4134                         if (buf == end) break;
4135                 }
4136                 if (*end && !isspace(*end)) break;
4137                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4138                 buf = skip_spaces(end);
4139         }
4140         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4141 out:
4142         mddev_unlock(mddev);
4143         return len;
4144 }
4145
4146 static struct md_sysfs_entry md_bitmap =
4147 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148
4149 static ssize_t
4150 size_show(struct mddev *mddev, char *page)
4151 {
4152         return sprintf(page, "%llu\n",
4153                 (unsigned long long)mddev->dev_sectors / 2);
4154 }
4155
4156 static int update_size(struct mddev *mddev, sector_t num_sectors);
4157
4158 static ssize_t
4159 size_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161         /* If array is inactive, we can reduce the component size, but
4162          * not increase it (except from 0).
4163          * If array is active, we can try an on-line resize
4164          */
4165         sector_t sectors;
4166         int err = strict_blocks_to_sectors(buf, &sectors);
4167
4168         if (err < 0)
4169                 return err;
4170         err = mddev_lock(mddev);
4171         if (err)
4172                 return err;
4173         if (mddev->pers) {
4174                 err = update_size(mddev, sectors);
4175                 md_update_sb(mddev, 1);
4176         } else {
4177                 if (mddev->dev_sectors == 0 ||
4178                     mddev->dev_sectors > sectors)
4179                         mddev->dev_sectors = sectors;
4180                 else
4181                         err = -ENOSPC;
4182         }
4183         mddev_unlock(mddev);
4184         return err ? err : len;
4185 }
4186
4187 static struct md_sysfs_entry md_size =
4188 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4189
4190 /* Metadata version.
4191  * This is one of
4192  *   'none' for arrays with no metadata (good luck...)
4193  *   'external' for arrays with externally managed metadata,
4194  * or N.M for internally known formats
4195  */
4196 static ssize_t
4197 metadata_show(struct mddev *mddev, char *page)
4198 {
4199         if (mddev->persistent)
4200                 return sprintf(page, "%d.%d\n",
4201                                mddev->major_version, mddev->minor_version);
4202         else if (mddev->external)
4203                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4204         else
4205                 return sprintf(page, "none\n");
4206 }
4207
4208 static ssize_t
4209 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4210 {
4211         int major, minor;
4212         char *e;
4213         int err;
4214         /* Changing the details of 'external' metadata is
4215          * always permitted.  Otherwise there must be
4216          * no devices attached to the array.
4217          */
4218
4219         err = mddev_lock(mddev);
4220         if (err)
4221                 return err;
4222         err = -EBUSY;
4223         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4224                 ;
4225         else if (!list_empty(&mddev->disks))
4226                 goto out_unlock;
4227
4228         err = 0;
4229         if (cmd_match(buf, "none")) {
4230                 mddev->persistent = 0;
4231                 mddev->external = 0;
4232                 mddev->major_version = 0;
4233                 mddev->minor_version = 90;
4234                 goto out_unlock;
4235         }
4236         if (strncmp(buf, "external:", 9) == 0) {
4237                 size_t namelen = len-9;
4238                 if (namelen >= sizeof(mddev->metadata_type))
4239                         namelen = sizeof(mddev->metadata_type)-1;
4240                 strncpy(mddev->metadata_type, buf+9, namelen);
4241                 mddev->metadata_type[namelen] = 0;
4242                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4243                         mddev->metadata_type[--namelen] = 0;
4244                 mddev->persistent = 0;
4245                 mddev->external = 1;
4246                 mddev->major_version = 0;
4247                 mddev->minor_version = 90;
4248                 goto out_unlock;
4249         }
4250         major = simple_strtoul(buf, &e, 10);
4251         err = -EINVAL;
4252         if (e==buf || *e != '.')
4253                 goto out_unlock;
4254         buf = e+1;
4255         minor = simple_strtoul(buf, &e, 10);
4256         if (e==buf || (*e && *e != '\n') )
4257                 goto out_unlock;
4258         err = -ENOENT;
4259         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4260                 goto out_unlock;
4261         mddev->major_version = major;
4262         mddev->minor_version = minor;
4263         mddev->persistent = 1;
4264         mddev->external = 0;
4265         err = 0;
4266 out_unlock:
4267         mddev_unlock(mddev);
4268         return err ?: len;
4269 }
4270
4271 static struct md_sysfs_entry md_metadata =
4272 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4273
4274 static ssize_t
4275 action_show(struct mddev *mddev, char *page)
4276 {
4277         char *type = "idle";
4278         unsigned long recovery = mddev->recovery;
4279         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4280                 type = "frozen";
4281         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4282             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4283                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4284                         type = "reshape";
4285                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4286                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4287                                 type = "resync";
4288                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4289                                 type = "check";
4290                         else
4291                                 type = "repair";
4292                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4293                         type = "recover";
4294                 else if (mddev->reshape_position != MaxSector)
4295                         type = "reshape";
4296         }
4297         return sprintf(page, "%s\n", type);
4298 }
4299
4300 static ssize_t
4301 action_store(struct mddev *mddev, const char *page, size_t len)
4302 {
4303         if (!mddev->pers || !mddev->pers->sync_request)
4304                 return -EINVAL;
4305
4306
4307         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4308                 if (cmd_match(page, "frozen"))
4309                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310                 else
4311                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4312                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4313                     mddev_lock(mddev) == 0) {
4314                         flush_workqueue(md_misc_wq);
4315                         if (mddev->sync_thread) {
4316                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4317                                 md_reap_sync_thread(mddev);
4318                         }
4319                         mddev_unlock(mddev);
4320                 }
4321         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4322                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4323                 return -EBUSY;
4324         else if (cmd_match(page, "resync"))
4325                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326         else if (cmd_match(page, "recover")) {
4327                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4328                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4329         } else if (cmd_match(page, "reshape")) {
4330                 int err;
4331                 if (mddev->pers->start_reshape == NULL)
4332                         return -EINVAL;
4333                 err = mddev_lock(mddev);
4334                 if (!err) {
4335                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336                         err = mddev->pers->start_reshape(mddev);
4337                         mddev_unlock(mddev);
4338                 }
4339                 if (err)
4340                         return err;
4341                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4342         } else {
4343                 if (cmd_match(page, "check"))
4344                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4345                 else if (!cmd_match(page, "repair"))
4346                         return -EINVAL;
4347                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4348                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4349                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4350         }
4351         if (mddev->ro == 2) {
4352                 /* A write to sync_action is enough to justify
4353                  * canceling read-auto mode
4354                  */
4355                 mddev->ro = 0;
4356                 md_wakeup_thread(mddev->sync_thread);
4357         }
4358         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4359         md_wakeup_thread(mddev->thread);
4360         sysfs_notify_dirent_safe(mddev->sysfs_action);
4361         return len;
4362 }
4363
4364 static struct md_sysfs_entry md_scan_mode =
4365 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4366
4367 static ssize_t
4368 last_sync_action_show(struct mddev *mddev, char *page)
4369 {
4370         return sprintf(page, "%s\n", mddev->last_sync_action);
4371 }
4372
4373 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4374
4375 static ssize_t
4376 mismatch_cnt_show(struct mddev *mddev, char *page)
4377 {
4378         return sprintf(page, "%llu\n",
4379                        (unsigned long long)
4380                        atomic64_read(&mddev->resync_mismatches));
4381 }
4382
4383 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4384
4385 static ssize_t
4386 sync_min_show(struct mddev *mddev, char *page)
4387 {
4388         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4389                        mddev->sync_speed_min ? "local": "system");
4390 }
4391
4392 static ssize_t
4393 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4394 {
4395         unsigned int min;
4396         int rv;
4397
4398         if (strncmp(buf, "system", 6)==0) {
4399                 min = 0;
4400         } else {
4401                 rv = kstrtouint(buf, 10, &min);
4402                 if (rv < 0)
4403                         return rv;
4404                 if (min == 0)
4405                         return -EINVAL;
4406         }
4407         mddev->sync_speed_min = min;
4408         return len;
4409 }
4410
4411 static struct md_sysfs_entry md_sync_min =
4412 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4413
4414 static ssize_t
4415 sync_max_show(struct mddev *mddev, char *page)
4416 {
4417         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4418                        mddev->sync_speed_max ? "local": "system");
4419 }
4420
4421 static ssize_t
4422 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424         unsigned int max;
4425         int rv;
4426
4427         if (strncmp(buf, "system", 6)==0) {
4428                 max = 0;
4429         } else {
4430                 rv = kstrtouint(buf, 10, &max);
4431                 if (rv < 0)
4432                         return rv;
4433                 if (max == 0)
4434                         return -EINVAL;
4435         }
4436         mddev->sync_speed_max = max;
4437         return len;
4438 }
4439
4440 static struct md_sysfs_entry md_sync_max =
4441 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4442
4443 static ssize_t
4444 degraded_show(struct mddev *mddev, char *page)
4445 {
4446         return sprintf(page, "%d\n", mddev->degraded);
4447 }
4448 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4449
4450 static ssize_t
4451 sync_force_parallel_show(struct mddev *mddev, char *page)
4452 {
4453         return sprintf(page, "%d\n", mddev->parallel_resync);
4454 }
4455
4456 static ssize_t
4457 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459         long n;
4460
4461         if (kstrtol(buf, 10, &n))
4462                 return -EINVAL;
4463
4464         if (n != 0 && n != 1)
4465                 return -EINVAL;
4466
4467         mddev->parallel_resync = n;
4468
4469         if (mddev->sync_thread)
4470                 wake_up(&resync_wait);
4471
4472         return len;
4473 }
4474
4475 /* force parallel resync, even with shared block devices */
4476 static struct md_sysfs_entry md_sync_force_parallel =
4477 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4478        sync_force_parallel_show, sync_force_parallel_store);
4479
4480 static ssize_t
4481 sync_speed_show(struct mddev *mddev, char *page)
4482 {
4483         unsigned long resync, dt, db;
4484         if (mddev->curr_resync == 0)
4485                 return sprintf(page, "none\n");
4486         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4487         dt = (jiffies - mddev->resync_mark) / HZ;
4488         if (!dt) dt++;
4489         db = resync - mddev->resync_mark_cnt;
4490         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4491 }
4492
4493 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4494
4495 static ssize_t
4496 sync_completed_show(struct mddev *mddev, char *page)
4497 {
4498         unsigned long long max_sectors, resync;
4499
4500         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501                 return sprintf(page, "none\n");
4502
4503         if (mddev->curr_resync == 1 ||
4504             mddev->curr_resync == 2)
4505                 return sprintf(page, "delayed\n");
4506
4507         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4508             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4509                 max_sectors = mddev->resync_max_sectors;
4510         else
4511                 max_sectors = mddev->dev_sectors;
4512
4513         resync = mddev->curr_resync_completed;
4514         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4515 }
4516
4517 static struct md_sysfs_entry md_sync_completed =
4518         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4519
4520 static ssize_t
4521 min_sync_show(struct mddev *mddev, char *page)
4522 {
4523         return sprintf(page, "%llu\n",
4524                        (unsigned long long)mddev->resync_min);
4525 }
4526 static ssize_t
4527 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4528 {
4529         unsigned long long min;
4530         int err;
4531
4532         if (kstrtoull(buf, 10, &min))
4533                 return -EINVAL;
4534
4535         spin_lock(&mddev->lock);
4536         err = -EINVAL;
4537         if (min > mddev->resync_max)
4538                 goto out_unlock;
4539
4540         err = -EBUSY;
4541         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4542                 goto out_unlock;
4543
4544         /* Round down to multiple of 4K for safety */
4545         mddev->resync_min = round_down(min, 8);
4546         err = 0;
4547
4548 out_unlock:
4549         spin_unlock(&mddev->lock);
4550         return err ?: len;
4551 }
4552
4553 static struct md_sysfs_entry md_min_sync =
4554 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4555
4556 static ssize_t
4557 max_sync_show(struct mddev *mddev, char *page)
4558 {
4559         if (mddev->resync_max == MaxSector)
4560                 return sprintf(page, "max\n");
4561         else
4562                 return sprintf(page, "%llu\n",
4563                                (unsigned long long)mddev->resync_max);
4564 }
4565 static ssize_t
4566 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568         int err;
4569         spin_lock(&mddev->lock);
4570         if (strncmp(buf, "max", 3) == 0)
4571                 mddev->resync_max = MaxSector;
4572         else {
4573                 unsigned long long max;
4574                 int chunk;
4575
4576                 err = -EINVAL;
4577                 if (kstrtoull(buf, 10, &max))
4578                         goto out_unlock;
4579                 if (max < mddev->resync_min)
4580                         goto out_unlock;
4581
4582                 err = -EBUSY;
4583                 if (max < mddev->resync_max &&
4584                     mddev->ro == 0 &&
4585                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4586                         goto out_unlock;
4587
4588                 /* Must be a multiple of chunk_size */
4589                 chunk = mddev->chunk_sectors;
4590                 if (chunk) {
4591                         sector_t temp = max;
4592
4593                         err = -EINVAL;
4594                         if (sector_div(temp, chunk))
4595                                 goto out_unlock;
4596                 }
4597                 mddev->resync_max = max;
4598         }
4599         wake_up(&mddev->recovery_wait);
4600         err = 0;
4601 out_unlock:
4602         spin_unlock(&mddev->lock);
4603         return err ?: len;
4604 }
4605
4606 static struct md_sysfs_entry md_max_sync =
4607 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4608
4609 static ssize_t
4610 suspend_lo_show(struct mddev *mddev, char *page)
4611 {
4612         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4613 }
4614
4615 static ssize_t
4616 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4617 {
4618         unsigned long long old, new;
4619         int err;
4620
4621         err = kstrtoull(buf, 10, &new);
4622         if (err < 0)
4623                 return err;
4624         if (new != (sector_t)new)
4625                 return -EINVAL;
4626
4627         err = mddev_lock(mddev);
4628         if (err)
4629                 return err;
4630         err = -EINVAL;
4631         if (mddev->pers == NULL ||
4632             mddev->pers->quiesce == NULL)
4633                 goto unlock;
4634         old = mddev->suspend_lo;
4635         mddev->suspend_lo = new;
4636         if (new >= old)
4637                 /* Shrinking suspended region */
4638                 mddev->pers->quiesce(mddev, 2);
4639         else {
4640                 /* Expanding suspended region - need to wait */
4641                 mddev->pers->quiesce(mddev, 1);
4642                 mddev->pers->quiesce(mddev, 0);
4643         }
4644         err = 0;
4645 unlock:
4646         mddev_unlock(mddev);
4647         return err ?: len;
4648 }
4649 static struct md_sysfs_entry md_suspend_lo =
4650 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4651
4652 static ssize_t
4653 suspend_hi_show(struct mddev *mddev, char *page)
4654 {
4655         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4656 }
4657
4658 static ssize_t
4659 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661         unsigned long long old, new;
4662         int err;
4663
4664         err = kstrtoull(buf, 10, &new);
4665         if (err < 0)
4666                 return err;
4667         if (new != (sector_t)new)
4668                 return -EINVAL;
4669
4670         err = mddev_lock(mddev);
4671         if (err)
4672                 return err;
4673         err = -EINVAL;
4674         if (mddev->pers == NULL ||
4675             mddev->pers->quiesce == NULL)
4676                 goto unlock;
4677         old = mddev->suspend_hi;
4678         mddev->suspend_hi = new;
4679         if (new <= old)
4680                 /* Shrinking suspended region */
4681                 mddev->pers->quiesce(mddev, 2);
4682         else {
4683                 /* Expanding suspended region - need to wait */
4684                 mddev->pers->quiesce(mddev, 1);
4685                 mddev->pers->quiesce(mddev, 0);
4686         }
4687         err = 0;
4688 unlock:
4689         mddev_unlock(mddev);
4690         return err ?: len;
4691 }
4692 static struct md_sysfs_entry md_suspend_hi =
4693 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4694
4695 static ssize_t
4696 reshape_position_show(struct mddev *mddev, char *page)
4697 {
4698         if (mddev->reshape_position != MaxSector)
4699                 return sprintf(page, "%llu\n",
4700                                (unsigned long long)mddev->reshape_position);
4701         strcpy(page, "none\n");
4702         return 5;
4703 }
4704
4705 static ssize_t
4706 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4707 {
4708         struct md_rdev *rdev;
4709         unsigned long long new;
4710         int err;
4711
4712         err = kstrtoull(buf, 10, &new);
4713         if (err < 0)
4714                 return err;
4715         if (new != (sector_t)new)
4716                 return -EINVAL;
4717         err = mddev_lock(mddev);
4718         if (err)
4719                 return err;
4720         err = -EBUSY;
4721         if (mddev->pers)
4722                 goto unlock;
4723         mddev->reshape_position = new;
4724         mddev->delta_disks = 0;
4725         mddev->reshape_backwards = 0;
4726         mddev->new_level = mddev->level;
4727         mddev->new_layout = mddev->layout;
4728         mddev->new_chunk_sectors = mddev->chunk_sectors;
4729         rdev_for_each(rdev, mddev)
4730                 rdev->new_data_offset = rdev->data_offset;
4731         err = 0;
4732 unlock:
4733         mddev_unlock(mddev);
4734         return err ?: len;
4735 }
4736
4737 static struct md_sysfs_entry md_reshape_position =
4738 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4739        reshape_position_store);
4740
4741 static ssize_t
4742 reshape_direction_show(struct mddev *mddev, char *page)
4743 {
4744         return sprintf(page, "%s\n",
4745                        mddev->reshape_backwards ? "backwards" : "forwards");
4746 }
4747
4748 static ssize_t
4749 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751         int backwards = 0;
4752         int err;
4753
4754         if (cmd_match(buf, "forwards"))
4755                 backwards = 0;
4756         else if (cmd_match(buf, "backwards"))
4757                 backwards = 1;
4758         else
4759                 return -EINVAL;
4760         if (mddev->reshape_backwards == backwards)
4761                 return len;
4762
4763         err = mddev_lock(mddev);
4764         if (err)
4765                 return err;
4766         /* check if we are allowed to change */
4767         if (mddev->delta_disks)
4768                 err = -EBUSY;
4769         else if (mddev->persistent &&
4770             mddev->major_version == 0)
4771                 err =  -EINVAL;
4772         else
4773                 mddev->reshape_backwards = backwards;
4774         mddev_unlock(mddev);
4775         return err ?: len;
4776 }
4777
4778 static struct md_sysfs_entry md_reshape_direction =
4779 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4780        reshape_direction_store);
4781
4782 static ssize_t
4783 array_size_show(struct mddev *mddev, char *page)
4784 {
4785         if (mddev->external_size)
4786                 return sprintf(page, "%llu\n",
4787                                (unsigned long long)mddev->array_sectors/2);
4788         else
4789                 return sprintf(page, "default\n");
4790 }
4791
4792 static ssize_t
4793 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4794 {
4795         sector_t sectors;
4796         int err;
4797
4798         err = mddev_lock(mddev);
4799         if (err)
4800                 return err;
4801
4802         if (strncmp(buf, "default", 7) == 0) {
4803                 if (mddev->pers)
4804                         sectors = mddev->pers->size(mddev, 0, 0);
4805                 else
4806                         sectors = mddev->array_sectors;
4807
4808                 mddev->external_size = 0;
4809         } else {
4810                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4811                         err = -EINVAL;
4812                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4813                         err = -E2BIG;
4814                 else
4815                         mddev->external_size = 1;
4816         }
4817
4818         if (!err) {
4819                 mddev->array_sectors = sectors;
4820                 if (mddev->pers) {
4821                         set_capacity(mddev->gendisk, mddev->array_sectors);
4822                         revalidate_disk(mddev->gendisk);
4823                 }
4824         }
4825         mddev_unlock(mddev);
4826         return err ?: len;
4827 }
4828
4829 static struct md_sysfs_entry md_array_size =
4830 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4831        array_size_store);
4832
4833 static struct attribute *md_default_attrs[] = {
4834         &md_level.attr,
4835         &md_layout.attr,
4836         &md_raid_disks.attr,
4837         &md_chunk_size.attr,
4838         &md_size.attr,
4839         &md_resync_start.attr,
4840         &md_metadata.attr,
4841         &md_new_device.attr,
4842         &md_safe_delay.attr,
4843         &md_array_state.attr,
4844         &md_reshape_position.attr,
4845         &md_reshape_direction.attr,
4846         &md_array_size.attr,
4847         &max_corr_read_errors.attr,
4848         NULL,
4849 };
4850
4851 static struct attribute *md_redundancy_attrs[] = {
4852         &md_scan_mode.attr,
4853         &md_last_scan_mode.attr,
4854         &md_mismatches.attr,
4855         &md_sync_min.attr,
4856         &md_sync_max.attr,
4857         &md_sync_speed.attr,
4858         &md_sync_force_parallel.attr,
4859         &md_sync_completed.attr,
4860         &md_min_sync.attr,
4861         &md_max_sync.attr,
4862         &md_suspend_lo.attr,
4863         &md_suspend_hi.attr,
4864         &md_bitmap.attr,
4865         &md_degraded.attr,
4866         NULL,
4867 };
4868 static struct attribute_group md_redundancy_group = {
4869         .name = NULL,
4870         .attrs = md_redundancy_attrs,
4871 };
4872
4873 static ssize_t
4874 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4875 {
4876         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4877         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4878         ssize_t rv;
4879
4880         if (!entry->show)
4881                 return -EIO;
4882         spin_lock(&all_mddevs_lock);
4883         if (list_empty(&mddev->all_mddevs)) {
4884                 spin_unlock(&all_mddevs_lock);
4885                 return -EBUSY;
4886         }
4887         mddev_get(mddev);
4888         spin_unlock(&all_mddevs_lock);
4889
4890         rv = entry->show(mddev, page);
4891         mddev_put(mddev);
4892         return rv;
4893 }
4894
4895 static ssize_t
4896 md_attr_store(struct kobject *kobj, struct attribute *attr,
4897               const char *page, size_t length)
4898 {
4899         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4900         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4901         ssize_t rv;
4902
4903         if (!entry->store)
4904                 return -EIO;
4905         if (!capable(CAP_SYS_ADMIN))
4906                 return -EACCES;
4907         spin_lock(&all_mddevs_lock);
4908         if (list_empty(&mddev->all_mddevs)) {
4909                 spin_unlock(&all_mddevs_lock);
4910                 return -EBUSY;
4911         }
4912         mddev_get(mddev);
4913         spin_unlock(&all_mddevs_lock);
4914         rv = entry->store(mddev, page, length);
4915         mddev_put(mddev);
4916         return rv;
4917 }
4918
4919 static void md_free(struct kobject *ko)
4920 {
4921         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4922
4923         if (mddev->sysfs_state)
4924                 sysfs_put(mddev->sysfs_state);
4925
4926         if (mddev->queue)
4927                 blk_cleanup_queue(mddev->queue);
4928         if (mddev->gendisk) {
4929                 del_gendisk(mddev->gendisk);
4930                 put_disk(mddev->gendisk);
4931         }
4932
4933         kfree(mddev);
4934 }
4935
4936 static const struct sysfs_ops md_sysfs_ops = {
4937         .show   = md_attr_show,
4938         .store  = md_attr_store,
4939 };
4940 static struct kobj_type md_ktype = {
4941         .release        = md_free,
4942         .sysfs_ops      = &md_sysfs_ops,
4943         .default_attrs  = md_default_attrs,
4944 };
4945
4946 int mdp_major = 0;
4947
4948 static void mddev_delayed_delete(struct work_struct *ws)
4949 {
4950         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4951
4952         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4953         kobject_del(&mddev->kobj);
4954         kobject_put(&mddev->kobj);
4955 }
4956
4957 static int md_alloc(dev_t dev, char *name)
4958 {
4959         static DEFINE_MUTEX(disks_mutex);
4960         struct mddev *mddev = mddev_find(dev);
4961         struct gendisk *disk;
4962         int partitioned;
4963         int shift;
4964         int unit;
4965         int error;
4966
4967         if (!mddev)
4968                 return -ENODEV;
4969
4970         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4971         shift = partitioned ? MdpMinorShift : 0;
4972         unit = MINOR(mddev->unit) >> shift;
4973
4974         /* wait for any previous instance of this device to be
4975          * completely removed (mddev_delayed_delete).
4976          */
4977         flush_workqueue(md_misc_wq);
4978
4979         mutex_lock(&disks_mutex);
4980         error = -EEXIST;
4981         if (mddev->gendisk)
4982                 goto abort;
4983
4984         if (name) {
4985                 /* Need to ensure that 'name' is not a duplicate.
4986                  */
4987                 struct mddev *mddev2;
4988                 spin_lock(&all_mddevs_lock);
4989
4990                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4991                         if (mddev2->gendisk &&
4992                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4993                                 spin_unlock(&all_mddevs_lock);
4994                                 goto abort;
4995                         }
4996                 spin_unlock(&all_mddevs_lock);
4997         }
4998
4999         error = -ENOMEM;
5000         mddev->queue = blk_alloc_queue(GFP_KERNEL);
5001         if (!mddev->queue)
5002                 goto abort;
5003         mddev->queue->queuedata = mddev;
5004
5005         blk_queue_make_request(mddev->queue, md_make_request);
5006         blk_set_stacking_limits(&mddev->queue->limits);
5007
5008         disk = alloc_disk(1 << shift);
5009         if (!disk) {
5010                 blk_cleanup_queue(mddev->queue);
5011                 mddev->queue = NULL;
5012                 goto abort;
5013         }
5014         disk->major = MAJOR(mddev->unit);
5015         disk->first_minor = unit << shift;
5016         if (name)
5017                 strcpy(disk->disk_name, name);
5018         else if (partitioned)
5019                 sprintf(disk->disk_name, "md_d%d", unit);
5020         else
5021                 sprintf(disk->disk_name, "md%d", unit);
5022         disk->fops = &md_fops;
5023         disk->private_data = mddev;
5024         disk->queue = mddev->queue;
5025         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5026         /* Allow extended partitions.  This makes the
5027          * 'mdp' device redundant, but we can't really
5028          * remove it now.
5029          */
5030         disk->flags |= GENHD_FL_EXT_DEVT;
5031         mddev->gendisk = disk;
5032         /* As soon as we call add_disk(), another thread could get
5033          * through to md_open, so make sure it doesn't get too far
5034          */
5035         mutex_lock(&mddev->open_mutex);
5036         add_disk(disk);
5037
5038         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5039                                      &disk_to_dev(disk)->kobj, "%s", "md");
5040         if (error) {
5041                 /* This isn't possible, but as kobject_init_and_add is marked
5042                  * __must_check, we must do something with the result
5043                  */
5044                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5045                        disk->disk_name);
5046                 error = 0;
5047         }
5048         if (mddev->kobj.sd &&
5049             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5050                 printk(KERN_DEBUG "pointless warning\n");
5051         mutex_unlock(&mddev->open_mutex);
5052  abort:
5053         mutex_unlock(&disks_mutex);
5054         if (!error && mddev->kobj.sd) {
5055                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5056                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5057         }
5058         mddev_put(mddev);
5059         return error;
5060 }
5061
5062 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5063 {
5064         md_alloc(dev, NULL);
5065         return NULL;
5066 }
5067
5068 static int add_named_array(const char *val, struct kernel_param *kp)
5069 {
5070         /* val must be "md_*" where * is not all digits.
5071          * We allocate an array with a large free minor number, and
5072          * set the name to val.  val must not already be an active name.
5073          */
5074         int len = strlen(val);
5075         char buf[DISK_NAME_LEN];
5076
5077         while (len && val[len-1] == '\n')
5078                 len--;
5079         if (len >= DISK_NAME_LEN)
5080                 return -E2BIG;
5081         strlcpy(buf, val, len+1);
5082         if (strncmp(buf, "md_", 3) != 0)
5083                 return -EINVAL;
5084         return md_alloc(0, buf);
5085 }
5086
5087 static void md_safemode_timeout(unsigned long data)
5088 {
5089         struct mddev *mddev = (struct mddev *) data;
5090
5091         if (!atomic_read(&mddev->writes_pending)) {
5092                 mddev->safemode = 1;
5093                 if (mddev->external)
5094                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5095         }
5096         md_wakeup_thread(mddev->thread);
5097 }
5098
5099 static int start_dirty_degraded;
5100
5101 int md_run(struct mddev *mddev)
5102 {
5103         int err;
5104         struct md_rdev *rdev;
5105         struct md_personality *pers;
5106
5107         if (list_empty(&mddev->disks))
5108                 /* cannot run an array with no devices.. */
5109                 return -EINVAL;
5110
5111         if (mddev->pers)
5112                 return -EBUSY;
5113         /* Cannot run until previous stop completes properly */
5114         if (mddev->sysfs_active)
5115                 return -EBUSY;
5116
5117         /*
5118          * Analyze all RAID superblock(s)
5119          */
5120         if (!mddev->raid_disks) {
5121                 if (!mddev->persistent)
5122                         return -EINVAL;
5123                 analyze_sbs(mddev);
5124         }
5125
5126         if (mddev->level != LEVEL_NONE)
5127                 request_module("md-level-%d", mddev->level);
5128         else if (mddev->clevel[0])
5129                 request_module("md-%s", mddev->clevel);
5130
5131         /*
5132          * Drop all container device buffers, from now on
5133          * the only valid external interface is through the md
5134          * device.
5135          */
5136         rdev_for_each(rdev, mddev) {
5137                 if (test_bit(Faulty, &rdev->flags))
5138                         continue;
5139                 sync_blockdev(rdev->bdev);
5140                 invalidate_bdev(rdev->bdev);
5141
5142                 /* perform some consistency tests on the device.
5143                  * We don't want the data to overlap the metadata,
5144                  * Internal Bitmap issues have been handled elsewhere.
5145                  */
5146                 if (rdev->meta_bdev) {
5147                         /* Nothing to check */;
5148                 } else if (rdev->data_offset < rdev->sb_start) {
5149                         if (mddev->dev_sectors &&
5150                             rdev->data_offset + mddev->dev_sectors
5151                             > rdev->sb_start) {
5152                                 printk("md: %s: data overlaps metadata\n",
5153                                        mdname(mddev));
5154                                 return -EINVAL;
5155                         }
5156                 } else {
5157                         if (rdev->sb_start + rdev->sb_size/512
5158                             > rdev->data_offset) {
5159                                 printk("md: %s: metadata overlaps data\n",
5160                                        mdname(mddev));
5161                                 return -EINVAL;
5162                         }
5163                 }
5164                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5165         }
5166
5167         if (mddev->bio_set == NULL)
5168                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5169
5170         spin_lock(&pers_lock);
5171         pers = find_pers(mddev->level, mddev->clevel);
5172         if (!pers || !try_module_get(pers->owner)) {
5173                 spin_unlock(&pers_lock);
5174                 if (mddev->level != LEVEL_NONE)
5175                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5176                                mddev->level);
5177                 else
5178                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5179                                mddev->clevel);
5180                 return -EINVAL;
5181         }
5182         spin_unlock(&pers_lock);
5183         if (mddev->level != pers->level) {
5184                 mddev->level = pers->level;
5185                 mddev->new_level = pers->level;
5186         }
5187         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5188
5189         if (mddev->reshape_position != MaxSector &&
5190             pers->start_reshape == NULL) {
5191                 /* This personality cannot handle reshaping... */
5192                 module_put(pers->owner);
5193                 return -EINVAL;
5194         }
5195
5196         if (pers->sync_request) {
5197                 /* Warn if this is a potentially silly
5198                  * configuration.
5199                  */
5200                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5201                 struct md_rdev *rdev2;
5202                 int warned = 0;
5203
5204                 rdev_for_each(rdev, mddev)
5205                         rdev_for_each(rdev2, mddev) {
5206                                 if (rdev < rdev2 &&
5207                                     rdev->bdev->bd_contains ==
5208                                     rdev2->bdev->bd_contains) {
5209                                         printk(KERN_WARNING
5210                                                "%s: WARNING: %s appears to be"
5211                                                " on the same physical disk as"
5212                                                " %s.\n",
5213                                                mdname(mddev),
5214                                                bdevname(rdev->bdev,b),
5215                                                bdevname(rdev2->bdev,b2));
5216                                         warned = 1;
5217                                 }
5218                         }
5219
5220                 if (warned)
5221                         printk(KERN_WARNING
5222                                "True protection against single-disk"
5223                                " failure might be compromised.\n");
5224         }
5225
5226         mddev->recovery = 0;
5227         /* may be over-ridden by personality */
5228         mddev->resync_max_sectors = mddev->dev_sectors;
5229
5230         mddev->ok_start_degraded = start_dirty_degraded;
5231
5232         if (start_readonly && mddev->ro == 0)
5233                 mddev->ro = 2; /* read-only, but switch on first write */
5234
5235         err = pers->run(mddev);
5236         if (err)
5237                 printk(KERN_ERR "md: pers->run() failed ...\n");
5238         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5239                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5240                           " but 'external_size' not in effect?\n", __func__);
5241                 printk(KERN_ERR
5242                        "md: invalid array_size %llu > default size %llu\n",
5243                        (unsigned long long)mddev->array_sectors / 2,
5244                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5245                 err = -EINVAL;
5246         }
5247         if (err == 0 && pers->sync_request &&
5248             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5249                 struct bitmap *bitmap;
5250
5251                 bitmap = bitmap_create(mddev, -1);
5252                 if (IS_ERR(bitmap)) {
5253                         err = PTR_ERR(bitmap);
5254                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5255                                mdname(mddev), err);
5256                 } else
5257                         mddev->bitmap = bitmap;
5258
5259         }
5260         if (err) {
5261                 mddev_detach(mddev);
5262                 if (mddev->private)
5263                         pers->free(mddev, mddev->private);
5264                 mddev->private = NULL;
5265                 module_put(pers->owner);
5266                 bitmap_destroy(mddev);
5267                 return err;
5268         }
5269         if (mddev->queue) {
5270                 mddev->queue->backing_dev_info.congested_data = mddev;
5271                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5272         }
5273         if (pers->sync_request) {
5274                 if (mddev->kobj.sd &&
5275                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5276                         printk(KERN_WARNING
5277                                "md: cannot register extra attributes for %s\n",
5278                                mdname(mddev));
5279                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5280         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5281                 mddev->ro = 0;
5282
5283         atomic_set(&mddev->writes_pending,0);
5284         atomic_set(&mddev->max_corr_read_errors,
5285                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5286         mddev->safemode = 0;
5287         if (mddev_is_clustered(mddev))
5288                 mddev->safemode_delay = 0;
5289         else
5290                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5291         mddev->in_sync = 1;
5292         smp_wmb();
5293         spin_lock(&mddev->lock);
5294         mddev->pers = pers;
5295         mddev->ready = 1;
5296         spin_unlock(&mddev->lock);
5297         rdev_for_each(rdev, mddev)
5298                 if (rdev->raid_disk >= 0)
5299                         if (sysfs_link_rdev(mddev, rdev))
5300                                 /* failure here is OK */;
5301
5302         if (mddev->degraded && !mddev->ro)
5303                 /* This ensures that recovering status is reported immediately
5304                  * via sysfs - until a lack of spares is confirmed.
5305                  */
5306                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5307         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5308
5309         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5310                 md_update_sb(mddev, 0);
5311
5312         md_new_event(mddev);
5313         sysfs_notify_dirent_safe(mddev->sysfs_state);
5314         sysfs_notify_dirent_safe(mddev->sysfs_action);
5315         sysfs_notify(&mddev->kobj, NULL, "degraded");
5316         return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(md_run);
5319
5320 static int do_md_run(struct mddev *mddev)
5321 {
5322         int err;
5323
5324         err = md_run(mddev);
5325         if (err)
5326                 goto out;
5327         err = bitmap_load(mddev);
5328         if (err) {
5329                 bitmap_destroy(mddev);
5330                 goto out;
5331         }
5332
5333         if (mddev_is_clustered(mddev))
5334                 md_allow_write(mddev);
5335
5336         md_wakeup_thread(mddev->thread);
5337         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5338
5339         set_capacity(mddev->gendisk, mddev->array_sectors);
5340         revalidate_disk(mddev->gendisk);
5341         mddev->changed = 1;
5342         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5343 out:
5344         return err;
5345 }
5346
5347 static int restart_array(struct mddev *mddev)
5348 {
5349         struct gendisk *disk = mddev->gendisk;
5350
5351         /* Complain if it has no devices */
5352         if (list_empty(&mddev->disks))
5353                 return -ENXIO;
5354         if (!mddev->pers)
5355                 return -EINVAL;
5356         if (!mddev->ro)
5357                 return -EBUSY;
5358         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5359                 struct md_rdev *rdev;
5360                 bool has_journal = false;
5361
5362                 rcu_read_lock();
5363                 rdev_for_each_rcu(rdev, mddev) {
5364                         if (test_bit(Journal, &rdev->flags) &&
5365                             !test_bit(Faulty, &rdev->flags)) {
5366                                 has_journal = true;
5367                                 break;
5368                         }
5369                 }
5370                 rcu_read_unlock();
5371
5372                 /* Don't restart rw with journal missing/faulty */
5373                 if (!has_journal)
5374                         return -EINVAL;
5375         }
5376
5377         mddev->safemode = 0;
5378         mddev->ro = 0;
5379         set_disk_ro(disk, 0);
5380         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5381                 mdname(mddev));
5382         /* Kick recovery or resync if necessary */
5383         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5384         md_wakeup_thread(mddev->thread);
5385         md_wakeup_thread(mddev->sync_thread);
5386         sysfs_notify_dirent_safe(mddev->sysfs_state);
5387         return 0;
5388 }
5389
5390 static void md_clean(struct mddev *mddev)
5391 {
5392         mddev->array_sectors = 0;
5393         mddev->external_size = 0;
5394         mddev->dev_sectors = 0;
5395         mddev->raid_disks = 0;
5396         mddev->recovery_cp = 0;
5397         mddev->resync_min = 0;
5398         mddev->resync_max = MaxSector;
5399         mddev->reshape_position = MaxSector;
5400         mddev->external = 0;
5401         mddev->persistent = 0;
5402         mddev->level = LEVEL_NONE;
5403         mddev->clevel[0] = 0;
5404         mddev->flags = 0;
5405         mddev->ro = 0;
5406         mddev->metadata_type[0] = 0;
5407         mddev->chunk_sectors = 0;
5408         mddev->ctime = mddev->utime = 0;
5409         mddev->layout = 0;
5410         mddev->max_disks = 0;
5411         mddev->events = 0;
5412         mddev->can_decrease_events = 0;
5413         mddev->delta_disks = 0;
5414         mddev->reshape_backwards = 0;
5415         mddev->new_level = LEVEL_NONE;
5416         mddev->new_layout = 0;
5417         mddev->new_chunk_sectors = 0;
5418         mddev->curr_resync = 0;
5419         atomic64_set(&mddev->resync_mismatches, 0);
5420         mddev->suspend_lo = mddev->suspend_hi = 0;
5421         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5422         mddev->recovery = 0;
5423         mddev->in_sync = 0;
5424         mddev->changed = 0;
5425         mddev->degraded = 0;
5426         mddev->safemode = 0;
5427         mddev->private = NULL;
5428         mddev->bitmap_info.offset = 0;
5429         mddev->bitmap_info.default_offset = 0;
5430         mddev->bitmap_info.default_space = 0;
5431         mddev->bitmap_info.chunksize = 0;
5432         mddev->bitmap_info.daemon_sleep = 0;
5433         mddev->bitmap_info.max_write_behind = 0;
5434 }
5435
5436 static void __md_stop_writes(struct mddev *mddev)
5437 {
5438         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5439         flush_workqueue(md_misc_wq);
5440         if (mddev->sync_thread) {
5441                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5442                 md_reap_sync_thread(mddev);
5443         }
5444
5445         del_timer_sync(&mddev->safemode_timer);
5446
5447         bitmap_flush(mddev);
5448         md_super_wait(mddev);
5449
5450         if (mddev->ro == 0 &&
5451             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5452              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5453                 /* mark array as shutdown cleanly */
5454                 if (!mddev_is_clustered(mddev))
5455                         mddev->in_sync = 1;
5456                 md_update_sb(mddev, 1);
5457         }
5458 }
5459
5460 void md_stop_writes(struct mddev *mddev)
5461 {
5462         mddev_lock_nointr(mddev);
5463         __md_stop_writes(mddev);
5464         mddev_unlock(mddev);
5465 }
5466 EXPORT_SYMBOL_GPL(md_stop_writes);
5467
5468 static void mddev_detach(struct mddev *mddev)
5469 {
5470         struct bitmap *bitmap = mddev->bitmap;
5471         /* wait for behind writes to complete */
5472         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5473                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5474                        mdname(mddev));
5475                 /* need to kick something here to make sure I/O goes? */
5476                 wait_event(bitmap->behind_wait,
5477                            atomic_read(&bitmap->behind_writes) == 0);
5478         }
5479         if (mddev->pers && mddev->pers->quiesce) {
5480                 mddev->pers->quiesce(mddev, 1);
5481                 mddev->pers->quiesce(mddev, 0);
5482         }
5483         md_unregister_thread(&mddev->thread);
5484         if (mddev->queue)
5485                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5486 }
5487
5488 static void __md_stop(struct mddev *mddev)
5489 {
5490         struct md_personality *pers = mddev->pers;
5491         mddev_detach(mddev);
5492         /* Ensure ->event_work is done */
5493         flush_workqueue(md_misc_wq);
5494         spin_lock(&mddev->lock);
5495         mddev->ready = 0;
5496         mddev->pers = NULL;
5497         spin_unlock(&mddev->lock);
5498         pers->free(mddev, mddev->private);
5499         mddev->private = NULL;
5500         if (pers->sync_request && mddev->to_remove == NULL)
5501                 mddev->to_remove = &md_redundancy_group;
5502         module_put(pers->owner);
5503         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 }
5505
5506 void md_stop(struct mddev *mddev)
5507 {
5508         /* stop the array and free an attached data structures.
5509          * This is called from dm-raid
5510          */
5511         __md_stop(mddev);
5512         bitmap_destroy(mddev);
5513         if (mddev->bio_set)
5514                 bioset_free(mddev->bio_set);
5515 }
5516
5517 EXPORT_SYMBOL_GPL(md_stop);
5518
5519 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5520 {
5521         int err = 0;
5522         int did_freeze = 0;
5523
5524         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5525                 did_freeze = 1;
5526                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5527                 md_wakeup_thread(mddev->thread);
5528         }
5529         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5530                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5531         if (mddev->sync_thread)
5532                 /* Thread might be blocked waiting for metadata update
5533                  * which will now never happen */
5534                 wake_up_process(mddev->sync_thread->tsk);
5535
5536         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5537                 return -EBUSY;
5538         mddev_unlock(mddev);
5539         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5540                                           &mddev->recovery));
5541         wait_event(mddev->sb_wait,
5542                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5543         mddev_lock_nointr(mddev);
5544
5545         mutex_lock(&mddev->open_mutex);
5546         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5547             mddev->sync_thread ||
5548             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5549             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5550                 printk("md: %s still in use.\n",mdname(mddev));
5551                 if (did_freeze) {
5552                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5553                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5554                         md_wakeup_thread(mddev->thread);
5555                 }
5556                 err = -EBUSY;
5557                 goto out;
5558         }
5559         if (mddev->pers) {
5560                 __md_stop_writes(mddev);
5561
5562                 err  = -ENXIO;
5563                 if (mddev->ro==1)
5564                         goto out;
5565                 mddev->ro = 1;
5566                 set_disk_ro(mddev->gendisk, 1);
5567                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5568                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5569                 md_wakeup_thread(mddev->thread);
5570                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5571                 err = 0;
5572         }
5573 out:
5574         mutex_unlock(&mddev->open_mutex);
5575         return err;
5576 }
5577
5578 /* mode:
5579  *   0 - completely stop and dis-assemble array
5580  *   2 - stop but do not disassemble array
5581  */
5582 static int do_md_stop(struct mddev *mddev, int mode,
5583                       struct block_device *bdev)
5584 {
5585         struct gendisk *disk = mddev->gendisk;
5586         struct md_rdev *rdev;
5587         int did_freeze = 0;
5588
5589         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5590                 did_freeze = 1;
5591                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5592                 md_wakeup_thread(mddev->thread);
5593         }
5594         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5595                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5596         if (mddev->sync_thread)
5597                 /* Thread might be blocked waiting for metadata update
5598                  * which will now never happen */
5599                 wake_up_process(mddev->sync_thread->tsk);
5600
5601         mddev_unlock(mddev);
5602         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5603                                  !test_bit(MD_RECOVERY_RUNNING,
5604                                            &mddev->recovery)));
5605         mddev_lock_nointr(mddev);
5606
5607         mutex_lock(&mddev->open_mutex);
5608         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5609             mddev->sysfs_active ||
5610             mddev->sync_thread ||
5611             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5612             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5613                 printk("md: %s still in use.\n",mdname(mddev));
5614                 mutex_unlock(&mddev->open_mutex);
5615                 if (did_freeze) {
5616                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5617                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5618                         md_wakeup_thread(mddev->thread);
5619                 }
5620                 return -EBUSY;
5621         }
5622         if (mddev->pers) {
5623                 if (mddev->ro)
5624                         set_disk_ro(disk, 0);
5625
5626                 __md_stop_writes(mddev);
5627                 __md_stop(mddev);
5628                 mddev->queue->backing_dev_info.congested_fn = NULL;
5629
5630                 /* tell userspace to handle 'inactive' */
5631                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5632
5633                 rdev_for_each(rdev, mddev)
5634                         if (rdev->raid_disk >= 0)
5635                                 sysfs_unlink_rdev(mddev, rdev);
5636
5637                 set_capacity(disk, 0);
5638                 mutex_unlock(&mddev->open_mutex);
5639                 mddev->changed = 1;
5640                 revalidate_disk(disk);
5641
5642                 if (mddev->ro)
5643                         mddev->ro = 0;
5644         } else
5645                 mutex_unlock(&mddev->open_mutex);
5646         /*
5647          * Free resources if final stop
5648          */
5649         if (mode == 0) {
5650                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5651
5652                 bitmap_destroy(mddev);
5653                 if (mddev->bitmap_info.file) {
5654                         struct file *f = mddev->bitmap_info.file;
5655                         spin_lock(&mddev->lock);
5656                         mddev->bitmap_info.file = NULL;
5657                         spin_unlock(&mddev->lock);
5658                         fput(f);
5659                 }
5660                 mddev->bitmap_info.offset = 0;
5661
5662                 export_array(mddev);
5663
5664                 md_clean(mddev);
5665                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5666                 if (mddev->hold_active == UNTIL_STOP)
5667                         mddev->hold_active = 0;
5668         }
5669         blk_integrity_unregister(disk);
5670         md_new_event(mddev);
5671         sysfs_notify_dirent_safe(mddev->sysfs_state);
5672         return 0;
5673 }
5674
5675 #ifndef MODULE
5676 static void autorun_array(struct mddev *mddev)
5677 {
5678         struct md_rdev *rdev;
5679         int err;
5680
5681         if (list_empty(&mddev->disks))
5682                 return;
5683
5684         printk(KERN_INFO "md: running: ");
5685
5686         rdev_for_each(rdev, mddev) {
5687                 char b[BDEVNAME_SIZE];
5688                 printk("<%s>", bdevname(rdev->bdev,b));
5689         }
5690         printk("\n");
5691
5692         err = do_md_run(mddev);
5693         if (err) {
5694                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5695                 do_md_stop(mddev, 0, NULL);
5696         }
5697 }
5698
5699 /*
5700  * lets try to run arrays based on all disks that have arrived
5701  * until now. (those are in pending_raid_disks)
5702  *
5703  * the method: pick the first pending disk, collect all disks with
5704  * the same UUID, remove all from the pending list and put them into
5705  * the 'same_array' list. Then order this list based on superblock
5706  * update time (freshest comes first), kick out 'old' disks and
5707  * compare superblocks. If everything's fine then run it.
5708  *
5709  * If "unit" is allocated, then bump its reference count
5710  */
5711 static void autorun_devices(int part)
5712 {
5713         struct md_rdev *rdev0, *rdev, *tmp;
5714         struct mddev *mddev;
5715         char b[BDEVNAME_SIZE];
5716
5717         printk(KERN_INFO "md: autorun ...\n");
5718         while (!list_empty(&pending_raid_disks)) {
5719                 int unit;
5720                 dev_t dev;
5721                 LIST_HEAD(candidates);
5722                 rdev0 = list_entry(pending_raid_disks.next,
5723                                          struct md_rdev, same_set);
5724
5725                 printk(KERN_INFO "md: considering %s ...\n",
5726                         bdevname(rdev0->bdev,b));
5727                 INIT_LIST_HEAD(&candidates);
5728                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5729                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5730                                 printk(KERN_INFO "md:  adding %s ...\n",
5731                                         bdevname(rdev->bdev,b));
5732                                 list_move(&rdev->same_set, &candidates);
5733                         }
5734                 /*
5735                  * now we have a set of devices, with all of them having
5736                  * mostly sane superblocks. It's time to allocate the
5737                  * mddev.
5738                  */
5739                 if (part) {
5740                         dev = MKDEV(mdp_major,
5741                                     rdev0->preferred_minor << MdpMinorShift);
5742                         unit = MINOR(dev) >> MdpMinorShift;
5743                 } else {
5744                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5745                         unit = MINOR(dev);
5746                 }
5747                 if (rdev0->preferred_minor != unit) {
5748                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5749                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5750                         break;
5751                 }
5752
5753                 md_probe(dev, NULL, NULL);
5754                 mddev = mddev_find(dev);
5755                 if (!mddev || !mddev->gendisk) {
5756                         if (mddev)
5757                                 mddev_put(mddev);
5758                         printk(KERN_ERR
5759                                 "md: cannot allocate memory for md drive.\n");
5760                         break;
5761                 }
5762                 if (mddev_lock(mddev))
5763                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5764                                mdname(mddev));
5765                 else if (mddev->raid_disks || mddev->major_version
5766                          || !list_empty(&mddev->disks)) {
5767                         printk(KERN_WARNING
5768                                 "md: %s already running, cannot run %s\n",
5769                                 mdname(mddev), bdevname(rdev0->bdev,b));
5770                         mddev_unlock(mddev);
5771                 } else {
5772                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5773                         mddev->persistent = 1;
5774                         rdev_for_each_list(rdev, tmp, &candidates) {
5775                                 list_del_init(&rdev->same_set);
5776                                 if (bind_rdev_to_array(rdev, mddev))
5777                                         export_rdev(rdev);
5778                         }
5779                         autorun_array(mddev);
5780                         mddev_unlock(mddev);
5781                 }
5782                 /* on success, candidates will be empty, on error
5783                  * it won't...
5784                  */
5785                 rdev_for_each_list(rdev, tmp, &candidates) {
5786                         list_del_init(&rdev->same_set);
5787                         export_rdev(rdev);
5788                 }
5789                 mddev_put(mddev);
5790         }
5791         printk(KERN_INFO "md: ... autorun DONE.\n");
5792 }
5793 #endif /* !MODULE */
5794
5795 static int get_version(void __user *arg)
5796 {
5797         mdu_version_t ver;
5798
5799         ver.major = MD_MAJOR_VERSION;
5800         ver.minor = MD_MINOR_VERSION;
5801         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5802
5803         if (copy_to_user(arg, &ver, sizeof(ver)))
5804                 return -EFAULT;
5805
5806         return 0;
5807 }
5808
5809 static int get_array_info(struct mddev *mddev, void __user *arg)
5810 {
5811         mdu_array_info_t info;
5812         int nr,working,insync,failed,spare;
5813         struct md_rdev *rdev;
5814
5815         nr = working = insync = failed = spare = 0;
5816         rcu_read_lock();
5817         rdev_for_each_rcu(rdev, mddev) {
5818                 nr++;
5819                 if (test_bit(Faulty, &rdev->flags))
5820                         failed++;
5821                 else {
5822                         working++;
5823                         if (test_bit(In_sync, &rdev->flags))
5824                                 insync++;
5825                         else
5826                                 spare++;
5827                 }
5828         }
5829         rcu_read_unlock();
5830
5831         info.major_version = mddev->major_version;
5832         info.minor_version = mddev->minor_version;
5833         info.patch_version = MD_PATCHLEVEL_VERSION;
5834         info.ctime         = mddev->ctime;
5835         info.level         = mddev->level;
5836         info.size          = mddev->dev_sectors / 2;
5837         if (info.size != mddev->dev_sectors / 2) /* overflow */
5838                 info.size = -1;
5839         info.nr_disks      = nr;
5840         info.raid_disks    = mddev->raid_disks;
5841         info.md_minor      = mddev->md_minor;
5842         info.not_persistent= !mddev->persistent;
5843
5844         info.utime         = mddev->utime;
5845         info.state         = 0;
5846         if (mddev->in_sync)
5847                 info.state = (1<<MD_SB_CLEAN);
5848         if (mddev->bitmap && mddev->bitmap_info.offset)
5849                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5850         if (mddev_is_clustered(mddev))
5851                 info.state |= (1<<MD_SB_CLUSTERED);
5852         info.active_disks  = insync;
5853         info.working_disks = working;
5854         info.failed_disks  = failed;
5855         info.spare_disks   = spare;
5856
5857         info.layout        = mddev->layout;
5858         info.chunk_size    = mddev->chunk_sectors << 9;
5859
5860         if (copy_to_user(arg, &info, sizeof(info)))
5861                 return -EFAULT;
5862
5863         return 0;
5864 }
5865
5866 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5867 {
5868         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5869         char *ptr;
5870         int err;
5871
5872         file = kzalloc(sizeof(*file), GFP_NOIO);
5873         if (!file)
5874                 return -ENOMEM;
5875
5876         err = 0;
5877         spin_lock(&mddev->lock);
5878         /* bitmap enabled */
5879         if (mddev->bitmap_info.file) {
5880                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5881                                 sizeof(file->pathname));
5882                 if (IS_ERR(ptr))
5883                         err = PTR_ERR(ptr);
5884                 else
5885                         memmove(file->pathname, ptr,
5886                                 sizeof(file->pathname)-(ptr-file->pathname));
5887         }
5888         spin_unlock(&mddev->lock);
5889
5890         if (err == 0 &&
5891             copy_to_user(arg, file, sizeof(*file)))
5892                 err = -EFAULT;
5893
5894         kfree(file);
5895         return err;
5896 }
5897
5898 static int get_disk_info(struct mddev *mddev, void __user * arg)
5899 {
5900         mdu_disk_info_t info;
5901         struct md_rdev *rdev;
5902
5903         if (copy_from_user(&info, arg, sizeof(info)))
5904                 return -EFAULT;
5905
5906         rcu_read_lock();
5907         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5908         if (rdev) {
5909                 info.major = MAJOR(rdev->bdev->bd_dev);
5910                 info.minor = MINOR(rdev->bdev->bd_dev);
5911                 info.raid_disk = rdev->raid_disk;
5912                 info.state = 0;
5913                 if (test_bit(Faulty, &rdev->flags))
5914                         info.state |= (1<<MD_DISK_FAULTY);
5915                 else if (test_bit(In_sync, &rdev->flags)) {
5916                         info.state |= (1<<MD_DISK_ACTIVE);
5917                         info.state |= (1<<MD_DISK_SYNC);
5918                 }
5919                 if (test_bit(Journal, &rdev->flags))
5920                         info.state |= (1<<MD_DISK_JOURNAL);
5921                 if (test_bit(WriteMostly, &rdev->flags))
5922                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5923         } else {
5924                 info.major = info.minor = 0;
5925                 info.raid_disk = -1;
5926                 info.state = (1<<MD_DISK_REMOVED);
5927         }
5928         rcu_read_unlock();
5929
5930         if (copy_to_user(arg, &info, sizeof(info)))
5931                 return -EFAULT;
5932
5933         return 0;
5934 }
5935
5936 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5937 {
5938         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5939         struct md_rdev *rdev;
5940         dev_t dev = MKDEV(info->major,info->minor);
5941
5942         if (mddev_is_clustered(mddev) &&
5943                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5944                 pr_err("%s: Cannot add to clustered mddev.\n",
5945                                mdname(mddev));
5946                 return -EINVAL;
5947         }
5948
5949         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5950                 return -EOVERFLOW;
5951
5952         if (!mddev->raid_disks) {
5953                 int err;
5954                 /* expecting a device which has a superblock */
5955                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5956                 if (IS_ERR(rdev)) {
5957                         printk(KERN_WARNING
5958                                 "md: md_import_device returned %ld\n",
5959                                 PTR_ERR(rdev));
5960                         return PTR_ERR(rdev);
5961                 }
5962                 if (!list_empty(&mddev->disks)) {
5963                         struct md_rdev *rdev0
5964                                 = list_entry(mddev->disks.next,
5965                                              struct md_rdev, same_set);
5966                         err = super_types[mddev->major_version]
5967                                 .load_super(rdev, rdev0, mddev->minor_version);
5968                         if (err < 0) {
5969                                 printk(KERN_WARNING
5970                                         "md: %s has different UUID to %s\n",
5971                                         bdevname(rdev->bdev,b),
5972                                         bdevname(rdev0->bdev,b2));
5973                                 export_rdev(rdev);
5974                                 return -EINVAL;
5975                         }
5976                 }
5977                 err = bind_rdev_to_array(rdev, mddev);
5978                 if (err)
5979                         export_rdev(rdev);
5980                 return err;
5981         }
5982
5983         /*
5984          * add_new_disk can be used once the array is assembled
5985          * to add "hot spares".  They must already have a superblock
5986          * written
5987          */
5988         if (mddev->pers) {
5989                 int err;
5990                 if (!mddev->pers->hot_add_disk) {
5991                         printk(KERN_WARNING
5992                                 "%s: personality does not support diskops!\n",
5993                                mdname(mddev));
5994                         return -EINVAL;
5995                 }
5996                 if (mddev->persistent)
5997                         rdev = md_import_device(dev, mddev->major_version,
5998                                                 mddev->minor_version);
5999                 else
6000                         rdev = md_import_device(dev, -1, -1);
6001                 if (IS_ERR(rdev)) {
6002                         printk(KERN_WARNING
6003                                 "md: md_import_device returned %ld\n",
6004                                 PTR_ERR(rdev));
6005                         return PTR_ERR(rdev);
6006                 }
6007                 /* set saved_raid_disk if appropriate */
6008                 if (!mddev->persistent) {
6009                         if (info->state & (1<<MD_DISK_SYNC)  &&
6010                             info->raid_disk < mddev->raid_disks) {
6011                                 rdev->raid_disk = info->raid_disk;
6012                                 set_bit(In_sync, &rdev->flags);
6013                                 clear_bit(Bitmap_sync, &rdev->flags);
6014                         } else
6015                                 rdev->raid_disk = -1;
6016                         rdev->saved_raid_disk = rdev->raid_disk;
6017                 } else
6018                         super_types[mddev->major_version].
6019                                 validate_super(mddev, rdev);
6020                 if ((info->state & (1<<MD_DISK_SYNC)) &&
6021                      rdev->raid_disk != info->raid_disk) {
6022                         /* This was a hot-add request, but events doesn't
6023                          * match, so reject it.
6024                          */
6025                         export_rdev(rdev);
6026                         return -EINVAL;
6027                 }
6028
6029                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6030                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6031                         set_bit(WriteMostly, &rdev->flags);
6032                 else
6033                         clear_bit(WriteMostly, &rdev->flags);
6034
6035                 if (info->state & (1<<MD_DISK_JOURNAL))
6036                         set_bit(Journal, &rdev->flags);
6037                 /*
6038                  * check whether the device shows up in other nodes
6039                  */
6040                 if (mddev_is_clustered(mddev)) {
6041                         if (info->state & (1 << MD_DISK_CANDIDATE))
6042                                 set_bit(Candidate, &rdev->flags);
6043                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6044                                 /* --add initiated by this node */
6045                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6046                                 if (err) {
6047                                         export_rdev(rdev);
6048                                         return err;
6049                                 }
6050                         }
6051                 }
6052
6053                 rdev->raid_disk = -1;
6054                 err = bind_rdev_to_array(rdev, mddev);
6055
6056                 if (err)
6057                         export_rdev(rdev);
6058
6059                 if (mddev_is_clustered(mddev)) {
6060                         if (info->state & (1 << MD_DISK_CANDIDATE))
6061                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6062                         else {
6063                                 if (err)
6064                                         md_cluster_ops->add_new_disk_cancel(mddev);
6065                                 else
6066                                         err = add_bound_rdev(rdev);
6067                         }
6068
6069                 } else if (!err)
6070                         err = add_bound_rdev(rdev);
6071
6072                 return err;
6073         }
6074
6075         /* otherwise, add_new_disk is only allowed
6076          * for major_version==0 superblocks
6077          */
6078         if (mddev->major_version != 0) {
6079                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6080                        mdname(mddev));
6081                 return -EINVAL;
6082         }
6083
6084         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6085                 int err;
6086                 rdev = md_import_device(dev, -1, 0);
6087                 if (IS_ERR(rdev)) {
6088                         printk(KERN_WARNING
6089                                 "md: error, md_import_device() returned %ld\n",
6090                                 PTR_ERR(rdev));
6091                         return PTR_ERR(rdev);
6092                 }
6093                 rdev->desc_nr = info->number;
6094                 if (info->raid_disk < mddev->raid_disks)
6095                         rdev->raid_disk = info->raid_disk;
6096                 else
6097                         rdev->raid_disk = -1;
6098
6099                 if (rdev->raid_disk < mddev->raid_disks)
6100                         if (info->state & (1<<MD_DISK_SYNC))
6101                                 set_bit(In_sync, &rdev->flags);
6102
6103                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6104                         set_bit(WriteMostly, &rdev->flags);
6105
6106                 if (!mddev->persistent) {
6107                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6108                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6109                 } else
6110                         rdev->sb_start = calc_dev_sboffset(rdev);
6111                 rdev->sectors = rdev->sb_start;
6112
6113                 err = bind_rdev_to_array(rdev, mddev);
6114                 if (err) {
6115                         export_rdev(rdev);
6116                         return err;
6117                 }
6118         }
6119
6120         return 0;
6121 }
6122
6123 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6124 {
6125         char b[BDEVNAME_SIZE];
6126         struct md_rdev *rdev;
6127         int ret = -1;
6128
6129         rdev = find_rdev(mddev, dev);
6130         if (!rdev)
6131                 return -ENXIO;
6132
6133         if (mddev_is_clustered(mddev))
6134                 ret = md_cluster_ops->metadata_update_start(mddev);
6135
6136         if (rdev->raid_disk < 0)
6137                 goto kick_rdev;
6138
6139         clear_bit(Blocked, &rdev->flags);
6140         remove_and_add_spares(mddev, rdev);
6141
6142         if (rdev->raid_disk >= 0)
6143                 goto busy;
6144
6145 kick_rdev:
6146         if (mddev_is_clustered(mddev) && ret == 0)
6147                 md_cluster_ops->remove_disk(mddev, rdev);
6148
6149         md_kick_rdev_from_array(rdev);
6150         md_update_sb(mddev, 1);
6151         md_new_event(mddev);
6152
6153         return 0;
6154 busy:
6155         if (mddev_is_clustered(mddev) && ret == 0)
6156                 md_cluster_ops->metadata_update_cancel(mddev);
6157
6158         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6159                 bdevname(rdev->bdev,b), mdname(mddev));
6160         return -EBUSY;
6161 }
6162
6163 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6164 {
6165         char b[BDEVNAME_SIZE];
6166         int err;
6167         struct md_rdev *rdev;
6168
6169         if (!mddev->pers)
6170                 return -ENODEV;
6171
6172         if (mddev->major_version != 0) {
6173                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6174                         " version-0 superblocks.\n",
6175                         mdname(mddev));
6176                 return -EINVAL;
6177         }
6178         if (!mddev->pers->hot_add_disk) {
6179                 printk(KERN_WARNING
6180                         "%s: personality does not support diskops!\n",
6181                         mdname(mddev));
6182                 return -EINVAL;
6183         }
6184
6185         rdev = md_import_device(dev, -1, 0);
6186         if (IS_ERR(rdev)) {
6187                 printk(KERN_WARNING
6188                         "md: error, md_import_device() returned %ld\n",
6189                         PTR_ERR(rdev));
6190                 return -EINVAL;
6191         }
6192
6193         if (mddev->persistent)
6194                 rdev->sb_start = calc_dev_sboffset(rdev);
6195         else
6196                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6197
6198         rdev->sectors = rdev->sb_start;
6199
6200         if (test_bit(Faulty, &rdev->flags)) {
6201                 printk(KERN_WARNING
6202                         "md: can not hot-add faulty %s disk to %s!\n",
6203                         bdevname(rdev->bdev,b), mdname(mddev));
6204                 err = -EINVAL;
6205                 goto abort_export;
6206         }
6207
6208         clear_bit(In_sync, &rdev->flags);
6209         rdev->desc_nr = -1;
6210         rdev->saved_raid_disk = -1;
6211         err = bind_rdev_to_array(rdev, mddev);
6212         if (err)
6213                 goto abort_export;
6214
6215         /*
6216          * The rest should better be atomic, we can have disk failures
6217          * noticed in interrupt contexts ...
6218          */
6219
6220         rdev->raid_disk = -1;
6221
6222         md_update_sb(mddev, 1);
6223         /*
6224          * Kick recovery, maybe this spare has to be added to the
6225          * array immediately.
6226          */
6227         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6228         md_wakeup_thread(mddev->thread);
6229         md_new_event(mddev);
6230         return 0;
6231
6232 abort_export:
6233         export_rdev(rdev);
6234         return err;
6235 }
6236
6237 static int set_bitmap_file(struct mddev *mddev, int fd)
6238 {
6239         int err = 0;
6240
6241         if (mddev->pers) {
6242                 if (!mddev->pers->quiesce || !mddev->thread)
6243                         return -EBUSY;
6244                 if (mddev->recovery || mddev->sync_thread)
6245                         return -EBUSY;
6246                 /* we should be able to change the bitmap.. */
6247         }
6248
6249         if (fd >= 0) {
6250                 struct inode *inode;
6251                 struct file *f;
6252
6253                 if (mddev->bitmap || mddev->bitmap_info.file)
6254                         return -EEXIST; /* cannot add when bitmap is present */
6255                 f = fget(fd);
6256
6257                 if (f == NULL) {
6258                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6259                                mdname(mddev));
6260                         return -EBADF;
6261                 }
6262
6263                 inode = f->f_mapping->host;
6264                 if (!S_ISREG(inode->i_mode)) {
6265                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6266                                mdname(mddev));
6267                         err = -EBADF;
6268                 } else if (!(f->f_mode & FMODE_WRITE)) {
6269                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6270                                mdname(mddev));
6271                         err = -EBADF;
6272                 } else if (atomic_read(&inode->i_writecount) != 1) {
6273                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6274                                mdname(mddev));
6275                         err = -EBUSY;
6276                 }
6277                 if (err) {
6278                         fput(f);
6279                         return err;
6280                 }
6281                 mddev->bitmap_info.file = f;
6282                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6283         } else if (mddev->bitmap == NULL)
6284                 return -ENOENT; /* cannot remove what isn't there */
6285         err = 0;
6286         if (mddev->pers) {
6287                 mddev->pers->quiesce(mddev, 1);
6288                 if (fd >= 0) {
6289                         struct bitmap *bitmap;
6290
6291                         bitmap = bitmap_create(mddev, -1);
6292                         if (!IS_ERR(bitmap)) {
6293                                 mddev->bitmap = bitmap;
6294                                 err = bitmap_load(mddev);
6295                         } else
6296                                 err = PTR_ERR(bitmap);
6297                 }
6298                 if (fd < 0 || err) {
6299                         bitmap_destroy(mddev);
6300                         fd = -1; /* make sure to put the file */
6301                 }
6302                 mddev->pers->quiesce(mddev, 0);
6303         }
6304         if (fd < 0) {
6305                 struct file *f = mddev->bitmap_info.file;
6306                 if (f) {
6307                         spin_lock(&mddev->lock);
6308                         mddev->bitmap_info.file = NULL;
6309                         spin_unlock(&mddev->lock);
6310                         fput(f);
6311                 }
6312         }
6313
6314         return err;
6315 }
6316
6317 /*
6318  * set_array_info is used two different ways
6319  * The original usage is when creating a new array.
6320  * In this usage, raid_disks is > 0 and it together with
6321  *  level, size, not_persistent,layout,chunksize determine the
6322  *  shape of the array.
6323  *  This will always create an array with a type-0.90.0 superblock.
6324  * The newer usage is when assembling an array.
6325  *  In this case raid_disks will be 0, and the major_version field is
6326  *  use to determine which style super-blocks are to be found on the devices.
6327  *  The minor and patch _version numbers are also kept incase the
6328  *  super_block handler wishes to interpret them.
6329  */
6330 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6331 {
6332
6333         if (info->raid_disks == 0) {
6334                 /* just setting version number for superblock loading */
6335                 if (info->major_version < 0 ||
6336                     info->major_version >= ARRAY_SIZE(super_types) ||
6337                     super_types[info->major_version].name == NULL) {
6338                         /* maybe try to auto-load a module? */
6339                         printk(KERN_INFO
6340                                 "md: superblock version %d not known\n",
6341                                 info->major_version);
6342                         return -EINVAL;
6343                 }
6344                 mddev->major_version = info->major_version;
6345                 mddev->minor_version = info->minor_version;
6346                 mddev->patch_version = info->patch_version;
6347                 mddev->persistent = !info->not_persistent;
6348                 /* ensure mddev_put doesn't delete this now that there
6349                  * is some minimal configuration.
6350                  */
6351                 mddev->ctime         = get_seconds();
6352                 return 0;
6353         }
6354         mddev->major_version = MD_MAJOR_VERSION;
6355         mddev->minor_version = MD_MINOR_VERSION;
6356         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6357         mddev->ctime         = get_seconds();
6358
6359         mddev->level         = info->level;
6360         mddev->clevel[0]     = 0;
6361         mddev->dev_sectors   = 2 * (sector_t)info->size;
6362         mddev->raid_disks    = info->raid_disks;
6363         /* don't set md_minor, it is determined by which /dev/md* was
6364          * openned
6365          */
6366         if (info->state & (1<<MD_SB_CLEAN))
6367                 mddev->recovery_cp = MaxSector;
6368         else
6369                 mddev->recovery_cp = 0;
6370         mddev->persistent    = ! info->not_persistent;
6371         mddev->external      = 0;
6372
6373         mddev->layout        = info->layout;
6374         mddev->chunk_sectors = info->chunk_size >> 9;
6375
6376         mddev->max_disks     = MD_SB_DISKS;
6377
6378         if (mddev->persistent)
6379                 mddev->flags         = 0;
6380         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6381
6382         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6383         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6384         mddev->bitmap_info.offset = 0;
6385
6386         mddev->reshape_position = MaxSector;
6387
6388         /*
6389          * Generate a 128 bit UUID
6390          */
6391         get_random_bytes(mddev->uuid, 16);
6392
6393         mddev->new_level = mddev->level;
6394         mddev->new_chunk_sectors = mddev->chunk_sectors;
6395         mddev->new_layout = mddev->layout;
6396         mddev->delta_disks = 0;
6397         mddev->reshape_backwards = 0;
6398
6399         return 0;
6400 }
6401
6402 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6403 {
6404         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6405
6406         if (mddev->external_size)
6407                 return;
6408
6409         mddev->array_sectors = array_sectors;
6410 }
6411 EXPORT_SYMBOL(md_set_array_sectors);
6412
6413 static int update_size(struct mddev *mddev, sector_t num_sectors)
6414 {
6415         struct md_rdev *rdev;
6416         int rv;
6417         int fit = (num_sectors == 0);
6418
6419         if (mddev->pers->resize == NULL)
6420                 return -EINVAL;
6421         /* The "num_sectors" is the number of sectors of each device that
6422          * is used.  This can only make sense for arrays with redundancy.
6423          * linear and raid0 always use whatever space is available. We can only
6424          * consider changing this number if no resync or reconstruction is
6425          * happening, and if the new size is acceptable. It must fit before the
6426          * sb_start or, if that is <data_offset, it must fit before the size
6427          * of each device.  If num_sectors is zero, we find the largest size
6428          * that fits.
6429          */
6430         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6431             mddev->sync_thread)
6432                 return -EBUSY;
6433         if (mddev->ro)
6434                 return -EROFS;
6435
6436         rdev_for_each(rdev, mddev) {
6437                 sector_t avail = rdev->sectors;
6438
6439                 if (fit && (num_sectors == 0 || num_sectors > avail))
6440                         num_sectors = avail;
6441                 if (avail < num_sectors)
6442                         return -ENOSPC;
6443         }
6444         rv = mddev->pers->resize(mddev, num_sectors);
6445         if (!rv)
6446                 revalidate_disk(mddev->gendisk);
6447         return rv;
6448 }
6449
6450 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6451 {
6452         int rv;
6453         struct md_rdev *rdev;
6454         /* change the number of raid disks */
6455         if (mddev->pers->check_reshape == NULL)
6456                 return -EINVAL;
6457         if (mddev->ro)
6458                 return -EROFS;
6459         if (raid_disks <= 0 ||
6460             (mddev->max_disks && raid_disks >= mddev->max_disks))
6461                 return -EINVAL;
6462         if (mddev->sync_thread ||
6463             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6464             mddev->reshape_position != MaxSector)
6465                 return -EBUSY;
6466
6467         rdev_for_each(rdev, mddev) {
6468                 if (mddev->raid_disks < raid_disks &&
6469                     rdev->data_offset < rdev->new_data_offset)
6470                         return -EINVAL;
6471                 if (mddev->raid_disks > raid_disks &&
6472                     rdev->data_offset > rdev->new_data_offset)
6473                         return -EINVAL;
6474         }
6475
6476         mddev->delta_disks = raid_disks - mddev->raid_disks;
6477         if (mddev->delta_disks < 0)
6478                 mddev->reshape_backwards = 1;
6479         else if (mddev->delta_disks > 0)
6480                 mddev->reshape_backwards = 0;
6481
6482         rv = mddev->pers->check_reshape(mddev);
6483         if (rv < 0) {
6484                 mddev->delta_disks = 0;
6485                 mddev->reshape_backwards = 0;
6486         }
6487         return rv;
6488 }
6489
6490 /*
6491  * update_array_info is used to change the configuration of an
6492  * on-line array.
6493  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6494  * fields in the info are checked against the array.
6495  * Any differences that cannot be handled will cause an error.
6496  * Normally, only one change can be managed at a time.
6497  */
6498 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6499 {
6500         int rv = 0;
6501         int cnt = 0;
6502         int state = 0;
6503
6504         /* calculate expected state,ignoring low bits */
6505         if (mddev->bitmap && mddev->bitmap_info.offset)
6506                 state |= (1 << MD_SB_BITMAP_PRESENT);
6507
6508         if (mddev->major_version != info->major_version ||
6509             mddev->minor_version != info->minor_version ||
6510 /*          mddev->patch_version != info->patch_version || */
6511             mddev->ctime         != info->ctime         ||
6512             mddev->level         != info->level         ||
6513 /*          mddev->layout        != info->layout        || */
6514             mddev->persistent    != !info->not_persistent ||
6515             mddev->chunk_sectors != info->chunk_size >> 9 ||
6516             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6517             ((state^info->state) & 0xfffffe00)
6518                 )
6519                 return -EINVAL;
6520         /* Check there is only one change */
6521         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6522                 cnt++;
6523         if (mddev->raid_disks != info->raid_disks)
6524                 cnt++;
6525         if (mddev->layout != info->layout)
6526                 cnt++;
6527         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6528                 cnt++;
6529         if (cnt == 0)
6530                 return 0;
6531         if (cnt > 1)
6532                 return -EINVAL;
6533
6534         if (mddev->layout != info->layout) {
6535                 /* Change layout
6536                  * we don't need to do anything at the md level, the
6537                  * personality will take care of it all.
6538                  */
6539                 if (mddev->pers->check_reshape == NULL)
6540                         return -EINVAL;
6541                 else {
6542                         mddev->new_layout = info->layout;
6543                         rv = mddev->pers->check_reshape(mddev);
6544                         if (rv)
6545                                 mddev->new_layout = mddev->layout;
6546                         return rv;
6547                 }
6548         }
6549         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6550                 rv = update_size(mddev, (sector_t)info->size * 2);
6551
6552         if (mddev->raid_disks    != info->raid_disks)
6553                 rv = update_raid_disks(mddev, info->raid_disks);
6554
6555         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6556                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6557                         rv = -EINVAL;
6558                         goto err;
6559                 }
6560                 if (mddev->recovery || mddev->sync_thread) {
6561                         rv = -EBUSY;
6562                         goto err;
6563                 }
6564                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6565                         struct bitmap *bitmap;
6566                         /* add the bitmap */
6567                         if (mddev->bitmap) {
6568                                 rv = -EEXIST;
6569                                 goto err;
6570                         }
6571                         if (mddev->bitmap_info.default_offset == 0) {
6572                                 rv = -EINVAL;
6573                                 goto err;
6574                         }
6575                         mddev->bitmap_info.offset =
6576                                 mddev->bitmap_info.default_offset;
6577                         mddev->bitmap_info.space =
6578                                 mddev->bitmap_info.default_space;
6579                         mddev->pers->quiesce(mddev, 1);
6580                         bitmap = bitmap_create(mddev, -1);
6581                         if (!IS_ERR(bitmap)) {
6582                                 mddev->bitmap = bitmap;
6583                                 rv = bitmap_load(mddev);
6584                         } else
6585                                 rv = PTR_ERR(bitmap);
6586                         if (rv)
6587                                 bitmap_destroy(mddev);
6588                         mddev->pers->quiesce(mddev, 0);
6589                 } else {
6590                         /* remove the bitmap */
6591                         if (!mddev->bitmap) {
6592                                 rv = -ENOENT;
6593                                 goto err;
6594                         }
6595                         if (mddev->bitmap->storage.file) {
6596                                 rv = -EINVAL;
6597                                 goto err;
6598                         }
6599                         mddev->pers->quiesce(mddev, 1);
6600                         bitmap_destroy(mddev);
6601                         mddev->pers->quiesce(mddev, 0);
6602                         mddev->bitmap_info.offset = 0;
6603                 }
6604         }
6605         md_update_sb(mddev, 1);
6606         return rv;
6607 err:
6608         return rv;
6609 }
6610
6611 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6612 {
6613         struct md_rdev *rdev;
6614         int err = 0;
6615
6616         if (mddev->pers == NULL)
6617                 return -ENODEV;
6618
6619         rcu_read_lock();
6620         rdev = find_rdev_rcu(mddev, dev);
6621         if (!rdev)
6622                 err =  -ENODEV;
6623         else {
6624                 md_error(mddev, rdev);
6625                 if (!test_bit(Faulty, &rdev->flags))
6626                         err = -EBUSY;
6627         }
6628         rcu_read_unlock();
6629         return err;
6630 }
6631
6632 /*
6633  * We have a problem here : there is no easy way to give a CHS
6634  * virtual geometry. We currently pretend that we have a 2 heads
6635  * 4 sectors (with a BIG number of cylinders...). This drives
6636  * dosfs just mad... ;-)
6637  */
6638 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6639 {
6640         struct mddev *mddev = bdev->bd_disk->private_data;
6641
6642         geo->heads = 2;
6643         geo->sectors = 4;
6644         geo->cylinders = mddev->array_sectors / 8;
6645         return 0;
6646 }
6647
6648 static inline bool md_ioctl_valid(unsigned int cmd)
6649 {
6650         switch (cmd) {
6651         case ADD_NEW_DISK:
6652         case BLKROSET:
6653         case GET_ARRAY_INFO:
6654         case GET_BITMAP_FILE:
6655         case GET_DISK_INFO:
6656         case HOT_ADD_DISK:
6657         case HOT_REMOVE_DISK:
6658         case RAID_AUTORUN:
6659         case RAID_VERSION:
6660         case RESTART_ARRAY_RW:
6661         case RUN_ARRAY:
6662         case SET_ARRAY_INFO:
6663         case SET_BITMAP_FILE:
6664         case SET_DISK_FAULTY:
6665         case STOP_ARRAY:
6666         case STOP_ARRAY_RO:
6667         case CLUSTERED_DISK_NACK:
6668                 return true;
6669         default:
6670                 return false;
6671         }
6672 }
6673
6674 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6675                         unsigned int cmd, unsigned long arg)
6676 {
6677         int err = 0;
6678         void __user *argp = (void __user *)arg;
6679         struct mddev *mddev = NULL;
6680         int ro;
6681
6682         if (!md_ioctl_valid(cmd))
6683                 return -ENOTTY;
6684
6685         switch (cmd) {
6686         case RAID_VERSION:
6687         case GET_ARRAY_INFO:
6688         case GET_DISK_INFO:
6689                 break;
6690         default:
6691                 if (!capable(CAP_SYS_ADMIN))
6692                         return -EACCES;
6693         }
6694
6695         /*
6696          * Commands dealing with the RAID driver but not any
6697          * particular array:
6698          */
6699         switch (cmd) {
6700         case RAID_VERSION:
6701                 err = get_version(argp);
6702                 goto out;
6703
6704 #ifndef MODULE
6705         case RAID_AUTORUN:
6706                 err = 0;
6707                 autostart_arrays(arg);
6708                 goto out;
6709 #endif
6710         default:;
6711         }
6712
6713         /*
6714          * Commands creating/starting a new array:
6715          */
6716
6717         mddev = bdev->bd_disk->private_data;
6718
6719         if (!mddev) {
6720                 BUG();
6721                 goto out;
6722         }
6723
6724         /* Some actions do not requires the mutex */
6725         switch (cmd) {
6726         case GET_ARRAY_INFO:
6727                 if (!mddev->raid_disks && !mddev->external)
6728                         err = -ENODEV;
6729                 else
6730                         err = get_array_info(mddev, argp);
6731                 goto out;
6732
6733         case GET_DISK_INFO:
6734                 if (!mddev->raid_disks && !mddev->external)
6735                         err = -ENODEV;
6736                 else
6737                         err = get_disk_info(mddev, argp);
6738                 goto out;
6739
6740         case SET_DISK_FAULTY:
6741                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6742                 goto out;
6743
6744         case GET_BITMAP_FILE:
6745                 err = get_bitmap_file(mddev, argp);
6746                 goto out;
6747
6748         }
6749
6750         if (cmd == ADD_NEW_DISK)
6751                 /* need to ensure md_delayed_delete() has completed */
6752                 flush_workqueue(md_misc_wq);
6753
6754         if (cmd == HOT_REMOVE_DISK)
6755                 /* need to ensure recovery thread has run */
6756                 wait_event_interruptible_timeout(mddev->sb_wait,
6757                                                  !test_bit(MD_RECOVERY_NEEDED,
6758                                                            &mddev->flags),
6759                                                  msecs_to_jiffies(5000));
6760         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6761                 /* Need to flush page cache, and ensure no-one else opens
6762                  * and writes
6763                  */
6764                 mutex_lock(&mddev->open_mutex);
6765                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6766                         mutex_unlock(&mddev->open_mutex);
6767                         err = -EBUSY;
6768                         goto out;
6769                 }
6770                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6771                 mutex_unlock(&mddev->open_mutex);
6772                 sync_blockdev(bdev);
6773         }
6774         err = mddev_lock(mddev);
6775         if (err) {
6776                 printk(KERN_INFO
6777                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6778                         err, cmd);
6779                 goto out;
6780         }
6781
6782         if (cmd == SET_ARRAY_INFO) {
6783                 mdu_array_info_t info;
6784                 if (!arg)
6785                         memset(&info, 0, sizeof(info));
6786                 else if (copy_from_user(&info, argp, sizeof(info))) {
6787                         err = -EFAULT;
6788                         goto unlock;
6789                 }
6790                 if (mddev->pers) {
6791                         err = update_array_info(mddev, &info);
6792                         if (err) {
6793                                 printk(KERN_WARNING "md: couldn't update"
6794                                        " array info. %d\n", err);
6795                                 goto unlock;
6796                         }
6797                         goto unlock;
6798                 }
6799                 if (!list_empty(&mddev->disks)) {
6800                         printk(KERN_WARNING
6801                                "md: array %s already has disks!\n",
6802                                mdname(mddev));
6803                         err = -EBUSY;
6804                         goto unlock;
6805                 }
6806                 if (mddev->raid_disks) {
6807                         printk(KERN_WARNING
6808                                "md: array %s already initialised!\n",
6809                                mdname(mddev));
6810                         err = -EBUSY;
6811                         goto unlock;
6812                 }
6813                 err = set_array_info(mddev, &info);
6814                 if (err) {
6815                         printk(KERN_WARNING "md: couldn't set"
6816                                " array info. %d\n", err);
6817                         goto unlock;
6818                 }
6819                 goto unlock;
6820         }
6821
6822         /*
6823          * Commands querying/configuring an existing array:
6824          */
6825         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6826          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6827         if ((!mddev->raid_disks && !mddev->external)
6828             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6829             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6830             && cmd != GET_BITMAP_FILE) {
6831                 err = -ENODEV;
6832                 goto unlock;
6833         }
6834
6835         /*
6836          * Commands even a read-only array can execute:
6837          */
6838         switch (cmd) {
6839         case RESTART_ARRAY_RW:
6840                 err = restart_array(mddev);
6841                 goto unlock;
6842
6843         case STOP_ARRAY:
6844                 err = do_md_stop(mddev, 0, bdev);
6845                 goto unlock;
6846
6847         case STOP_ARRAY_RO:
6848                 err = md_set_readonly(mddev, bdev);
6849                 goto unlock;
6850
6851         case HOT_REMOVE_DISK:
6852                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6853                 goto unlock;
6854
6855         case ADD_NEW_DISK:
6856                 /* We can support ADD_NEW_DISK on read-only arrays
6857                  * on if we are re-adding a preexisting device.
6858                  * So require mddev->pers and MD_DISK_SYNC.
6859                  */
6860                 if (mddev->pers) {
6861                         mdu_disk_info_t info;
6862                         if (copy_from_user(&info, argp, sizeof(info)))
6863                                 err = -EFAULT;
6864                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6865                                 /* Need to clear read-only for this */
6866                                 break;
6867                         else
6868                                 err = add_new_disk(mddev, &info);
6869                         goto unlock;
6870                 }
6871                 break;
6872
6873         case BLKROSET:
6874                 if (get_user(ro, (int __user *)(arg))) {
6875                         err = -EFAULT;
6876                         goto unlock;
6877                 }
6878                 err = -EINVAL;
6879
6880                 /* if the bdev is going readonly the value of mddev->ro
6881                  * does not matter, no writes are coming
6882                  */
6883                 if (ro)
6884                         goto unlock;
6885
6886                 /* are we are already prepared for writes? */
6887                 if (mddev->ro != 1)
6888                         goto unlock;
6889
6890                 /* transitioning to readauto need only happen for
6891                  * arrays that call md_write_start
6892                  */
6893                 if (mddev->pers) {
6894                         err = restart_array(mddev);
6895                         if (err == 0) {
6896                                 mddev->ro = 2;
6897                                 set_disk_ro(mddev->gendisk, 0);
6898                         }
6899                 }
6900                 goto unlock;
6901         }
6902
6903         /*
6904          * The remaining ioctls are changing the state of the
6905          * superblock, so we do not allow them on read-only arrays.
6906          */
6907         if (mddev->ro && mddev->pers) {
6908                 if (mddev->ro == 2) {
6909                         mddev->ro = 0;
6910                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6911                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6912                         /* mddev_unlock will wake thread */
6913                         /* If a device failed while we were read-only, we
6914                          * need to make sure the metadata is updated now.
6915                          */
6916                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6917                                 mddev_unlock(mddev);
6918                                 wait_event(mddev->sb_wait,
6919                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6920                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6921                                 mddev_lock_nointr(mddev);
6922                         }
6923                 } else {
6924                         err = -EROFS;
6925                         goto unlock;
6926                 }
6927         }
6928
6929         switch (cmd) {
6930         case ADD_NEW_DISK:
6931         {
6932                 mdu_disk_info_t info;
6933                 if (copy_from_user(&info, argp, sizeof(info)))
6934                         err = -EFAULT;
6935                 else
6936                         err = add_new_disk(mddev, &info);
6937                 goto unlock;
6938         }
6939
6940         case CLUSTERED_DISK_NACK:
6941                 if (mddev_is_clustered(mddev))
6942                         md_cluster_ops->new_disk_ack(mddev, false);
6943                 else
6944                         err = -EINVAL;
6945                 goto unlock;
6946
6947         case HOT_ADD_DISK:
6948                 err = hot_add_disk(mddev, new_decode_dev(arg));
6949                 goto unlock;
6950
6951         case RUN_ARRAY:
6952                 err = do_md_run(mddev);
6953                 goto unlock;
6954
6955         case SET_BITMAP_FILE:
6956                 err = set_bitmap_file(mddev, (int)arg);
6957                 goto unlock;
6958
6959         default:
6960                 err = -EINVAL;
6961                 goto unlock;
6962         }
6963
6964 unlock:
6965         if (mddev->hold_active == UNTIL_IOCTL &&
6966             err != -EINVAL)
6967                 mddev->hold_active = 0;
6968         mddev_unlock(mddev);
6969 out:
6970         return err;
6971 }
6972 #ifdef CONFIG_COMPAT
6973 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6974                     unsigned int cmd, unsigned long arg)
6975 {
6976         switch (cmd) {
6977         case HOT_REMOVE_DISK:
6978         case HOT_ADD_DISK:
6979         case SET_DISK_FAULTY:
6980         case SET_BITMAP_FILE:
6981                 /* These take in integer arg, do not convert */
6982                 break;
6983         default:
6984                 arg = (unsigned long)compat_ptr(arg);
6985                 break;
6986         }
6987
6988         return md_ioctl(bdev, mode, cmd, arg);
6989 }
6990 #endif /* CONFIG_COMPAT */
6991
6992 static int md_open(struct block_device *bdev, fmode_t mode)
6993 {
6994         /*
6995          * Succeed if we can lock the mddev, which confirms that
6996          * it isn't being stopped right now.
6997          */
6998         struct mddev *mddev = mddev_find(bdev->bd_dev);
6999         int err;
7000
7001         if (!mddev)
7002                 return -ENODEV;
7003
7004         if (mddev->gendisk != bdev->bd_disk) {
7005                 /* we are racing with mddev_put which is discarding this
7006                  * bd_disk.
7007                  */
7008                 mddev_put(mddev);
7009                 /* Wait until bdev->bd_disk is definitely gone */
7010                 flush_workqueue(md_misc_wq);
7011                 /* Then retry the open from the top */
7012                 return -ERESTARTSYS;
7013         }
7014         BUG_ON(mddev != bdev->bd_disk->private_data);
7015
7016         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7017                 goto out;
7018
7019         err = 0;
7020         atomic_inc(&mddev->openers);
7021         clear_bit(MD_STILL_CLOSED, &mddev->flags);
7022         mutex_unlock(&mddev->open_mutex);
7023
7024         check_disk_change(bdev);
7025  out:
7026         return err;
7027 }
7028
7029 static void md_release(struct gendisk *disk, fmode_t mode)
7030 {
7031         struct mddev *mddev = disk->private_data;
7032
7033         BUG_ON(!mddev);
7034         atomic_dec(&mddev->openers);
7035         mddev_put(mddev);
7036 }
7037
7038 static int md_media_changed(struct gendisk *disk)
7039 {
7040         struct mddev *mddev = disk->private_data;
7041
7042         return mddev->changed;
7043 }
7044
7045 static int md_revalidate(struct gendisk *disk)
7046 {
7047         struct mddev *mddev = disk->private_data;
7048
7049         mddev->changed = 0;
7050         return 0;
7051 }
7052 static const struct block_device_operations md_fops =
7053 {
7054         .owner          = THIS_MODULE,
7055         .open           = md_open,
7056         .release        = md_release,
7057         .ioctl          = md_ioctl,
7058 #ifdef CONFIG_COMPAT
7059         .compat_ioctl   = md_compat_ioctl,
7060 #endif
7061         .getgeo         = md_getgeo,
7062         .media_changed  = md_media_changed,
7063         .revalidate_disk= md_revalidate,
7064 };
7065
7066 static int md_thread(void *arg)
7067 {
7068         struct md_thread *thread = arg;
7069
7070         /*
7071          * md_thread is a 'system-thread', it's priority should be very
7072          * high. We avoid resource deadlocks individually in each
7073          * raid personality. (RAID5 does preallocation) We also use RR and
7074          * the very same RT priority as kswapd, thus we will never get
7075          * into a priority inversion deadlock.
7076          *
7077          * we definitely have to have equal or higher priority than
7078          * bdflush, otherwise bdflush will deadlock if there are too
7079          * many dirty RAID5 blocks.
7080          */
7081
7082         allow_signal(SIGKILL);
7083         while (!kthread_should_stop()) {
7084
7085                 /* We need to wait INTERRUPTIBLE so that
7086                  * we don't add to the load-average.
7087                  * That means we need to be sure no signals are
7088                  * pending
7089                  */
7090                 if (signal_pending(current))
7091                         flush_signals(current);
7092
7093                 wait_event_interruptible_timeout
7094                         (thread->wqueue,
7095                          test_bit(THREAD_WAKEUP, &thread->flags)
7096                          || kthread_should_stop(),
7097                          thread->timeout);
7098
7099                 clear_bit(THREAD_WAKEUP, &thread->flags);
7100                 if (!kthread_should_stop())
7101                         thread->run(thread);
7102         }
7103
7104         return 0;
7105 }
7106
7107 void md_wakeup_thread(struct md_thread *thread)
7108 {
7109         if (thread) {
7110                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7111                 set_bit(THREAD_WAKEUP, &thread->flags);
7112                 wake_up(&thread->wqueue);
7113         }
7114 }
7115 EXPORT_SYMBOL(md_wakeup_thread);
7116
7117 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7118                 struct mddev *mddev, const char *name)
7119 {
7120         struct md_thread *thread;
7121
7122         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7123         if (!thread)
7124                 return NULL;
7125
7126         init_waitqueue_head(&thread->wqueue);
7127
7128         thread->run = run;
7129         thread->mddev = mddev;
7130         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7131         thread->tsk = kthread_run(md_thread, thread,
7132                                   "%s_%s",
7133                                   mdname(thread->mddev),
7134                                   name);
7135         if (IS_ERR(thread->tsk)) {
7136                 kfree(thread);
7137                 return NULL;
7138         }
7139         return thread;
7140 }
7141 EXPORT_SYMBOL(md_register_thread);
7142
7143 void md_unregister_thread(struct md_thread **threadp)
7144 {
7145         struct md_thread *thread = *threadp;
7146         if (!thread)
7147                 return;
7148         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7149         /* Locking ensures that mddev_unlock does not wake_up a
7150          * non-existent thread
7151          */
7152         spin_lock(&pers_lock);
7153         *threadp = NULL;
7154         spin_unlock(&pers_lock);
7155
7156         kthread_stop(thread->tsk);
7157         kfree(thread);
7158 }
7159 EXPORT_SYMBOL(md_unregister_thread);
7160
7161 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7162 {
7163         if (!rdev || test_bit(Faulty, &rdev->flags))
7164                 return;
7165
7166         if (!mddev->pers || !mddev->pers->error_handler)
7167                 return;
7168         mddev->pers->error_handler(mddev,rdev);
7169         if (mddev->degraded)
7170                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7171         sysfs_notify_dirent_safe(rdev->sysfs_state);
7172         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7173         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7174         md_wakeup_thread(mddev->thread);
7175         if (mddev->event_work.func)
7176                 queue_work(md_misc_wq, &mddev->event_work);
7177         md_new_event_inintr(mddev);
7178 }
7179 EXPORT_SYMBOL(md_error);
7180
7181 /* seq_file implementation /proc/mdstat */
7182
7183 static void status_unused(struct seq_file *seq)
7184 {
7185         int i = 0;
7186         struct md_rdev *rdev;
7187
7188         seq_printf(seq, "unused devices: ");
7189
7190         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7191                 char b[BDEVNAME_SIZE];
7192                 i++;
7193                 seq_printf(seq, "%s ",
7194                               bdevname(rdev->bdev,b));
7195         }
7196         if (!i)
7197                 seq_printf(seq, "<none>");
7198
7199         seq_printf(seq, "\n");
7200 }
7201
7202 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7203 {
7204         sector_t max_sectors, resync, res;
7205         unsigned long dt, db;
7206         sector_t rt;
7207         int scale;
7208         unsigned int per_milli;
7209
7210         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7211             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7212                 max_sectors = mddev->resync_max_sectors;
7213         else
7214                 max_sectors = mddev->dev_sectors;
7215
7216         resync = mddev->curr_resync;
7217         if (resync <= 3) {
7218                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7219                         /* Still cleaning up */
7220                         resync = max_sectors;
7221         } else
7222                 resync -= atomic_read(&mddev->recovery_active);
7223
7224         if (resync == 0) {
7225                 if (mddev->recovery_cp < MaxSector) {
7226                         seq_printf(seq, "\tresync=PENDING");
7227                         return 1;
7228                 }
7229                 return 0;
7230         }
7231         if (resync < 3) {
7232                 seq_printf(seq, "\tresync=DELAYED");
7233                 return 1;
7234         }
7235
7236         WARN_ON(max_sectors == 0);
7237         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7238          * in a sector_t, and (max_sectors>>scale) will fit in a
7239          * u32, as those are the requirements for sector_div.
7240          * Thus 'scale' must be at least 10
7241          */
7242         scale = 10;
7243         if (sizeof(sector_t) > sizeof(unsigned long)) {
7244                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7245                         scale++;
7246         }
7247         res = (resync>>scale)*1000;
7248         sector_div(res, (u32)((max_sectors>>scale)+1));
7249
7250         per_milli = res;
7251         {
7252                 int i, x = per_milli/50, y = 20-x;
7253                 seq_printf(seq, "[");
7254                 for (i = 0; i < x; i++)
7255                         seq_printf(seq, "=");
7256                 seq_printf(seq, ">");
7257                 for (i = 0; i < y; i++)
7258                         seq_printf(seq, ".");
7259                 seq_printf(seq, "] ");
7260         }
7261         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7262                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7263                     "reshape" :
7264                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7265                      "check" :
7266                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7267                       "resync" : "recovery"))),
7268                    per_milli/10, per_milli % 10,
7269                    (unsigned long long) resync/2,
7270                    (unsigned long long) max_sectors/2);
7271
7272         /*
7273          * dt: time from mark until now
7274          * db: blocks written from mark until now
7275          * rt: remaining time
7276          *
7277          * rt is a sector_t, so could be 32bit or 64bit.
7278          * So we divide before multiply in case it is 32bit and close
7279          * to the limit.
7280          * We scale the divisor (db) by 32 to avoid losing precision
7281          * near the end of resync when the number of remaining sectors
7282          * is close to 'db'.
7283          * We then divide rt by 32 after multiplying by db to compensate.
7284          * The '+1' avoids division by zero if db is very small.
7285          */
7286         dt = ((jiffies - mddev->resync_mark) / HZ);
7287         if (!dt) dt++;
7288         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7289                 - mddev->resync_mark_cnt;
7290
7291         rt = max_sectors - resync;    /* number of remaining sectors */
7292         sector_div(rt, db/32+1);
7293         rt *= dt;
7294         rt >>= 5;
7295
7296         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7297                    ((unsigned long)rt % 60)/6);
7298
7299         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7300         return 1;
7301 }
7302
7303 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7304 {
7305         struct list_head *tmp;
7306         loff_t l = *pos;
7307         struct mddev *mddev;
7308
7309         if (l >= 0x10000)
7310                 return NULL;
7311         if (!l--)
7312                 /* header */
7313                 return (void*)1;
7314
7315         spin_lock(&all_mddevs_lock);
7316         list_for_each(tmp,&all_mddevs)
7317                 if (!l--) {
7318                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7319                         mddev_get(mddev);
7320                         spin_unlock(&all_mddevs_lock);
7321                         return mddev;
7322                 }
7323         spin_unlock(&all_mddevs_lock);
7324         if (!l--)
7325                 return (void*)2;/* tail */
7326         return NULL;
7327 }
7328
7329 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7330 {
7331         struct list_head *tmp;
7332         struct mddev *next_mddev, *mddev = v;
7333
7334         ++*pos;
7335         if (v == (void*)2)
7336                 return NULL;
7337
7338         spin_lock(&all_mddevs_lock);
7339         if (v == (void*)1)
7340                 tmp = all_mddevs.next;
7341         else
7342                 tmp = mddev->all_mddevs.next;
7343         if (tmp != &all_mddevs)
7344                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7345         else {
7346                 next_mddev = (void*)2;
7347                 *pos = 0x10000;
7348         }
7349         spin_unlock(&all_mddevs_lock);
7350
7351         if (v != (void*)1)
7352                 mddev_put(mddev);
7353         return next_mddev;
7354
7355 }
7356
7357 static void md_seq_stop(struct seq_file *seq, void *v)
7358 {
7359         struct mddev *mddev = v;
7360
7361         if (mddev && v != (void*)1 && v != (void*)2)
7362                 mddev_put(mddev);
7363 }
7364
7365 static int md_seq_show(struct seq_file *seq, void *v)
7366 {
7367         struct mddev *mddev = v;
7368         sector_t sectors;
7369         struct md_rdev *rdev;
7370
7371         if (v == (void*)1) {
7372                 struct md_personality *pers;
7373                 seq_printf(seq, "Personalities : ");
7374                 spin_lock(&pers_lock);
7375                 list_for_each_entry(pers, &pers_list, list)
7376                         seq_printf(seq, "[%s] ", pers->name);
7377
7378                 spin_unlock(&pers_lock);
7379                 seq_printf(seq, "\n");
7380                 seq->poll_event = atomic_read(&md_event_count);
7381                 return 0;
7382         }
7383         if (v == (void*)2) {
7384                 status_unused(seq);
7385                 return 0;
7386         }
7387
7388         spin_lock(&mddev->lock);
7389         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7390                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7391                                                 mddev->pers ? "" : "in");
7392                 if (mddev->pers) {
7393                         if (mddev->ro==1)
7394                                 seq_printf(seq, " (read-only)");
7395                         if (mddev->ro==2)
7396                                 seq_printf(seq, " (auto-read-only)");
7397                         seq_printf(seq, " %s", mddev->pers->name);
7398                 }
7399
7400                 sectors = 0;
7401                 rcu_read_lock();
7402                 rdev_for_each_rcu(rdev, mddev) {
7403                         char b[BDEVNAME_SIZE];
7404                         seq_printf(seq, " %s[%d]",
7405                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7406                         if (test_bit(WriteMostly, &rdev->flags))
7407                                 seq_printf(seq, "(W)");
7408                         if (test_bit(Journal, &rdev->flags))
7409                                 seq_printf(seq, "(J)");
7410                         if (test_bit(Faulty, &rdev->flags)) {
7411                                 seq_printf(seq, "(F)");
7412                                 continue;
7413                         }
7414                         if (rdev->raid_disk < 0)
7415                                 seq_printf(seq, "(S)"); /* spare */
7416                         if (test_bit(Replacement, &rdev->flags))
7417                                 seq_printf(seq, "(R)");
7418                         sectors += rdev->sectors;
7419                 }
7420                 rcu_read_unlock();
7421
7422                 if (!list_empty(&mddev->disks)) {
7423                         if (mddev->pers)
7424                                 seq_printf(seq, "\n      %llu blocks",
7425                                            (unsigned long long)
7426                                            mddev->array_sectors / 2);
7427                         else
7428                                 seq_printf(seq, "\n      %llu blocks",
7429                                            (unsigned long long)sectors / 2);
7430                 }
7431                 if (mddev->persistent) {
7432                         if (mddev->major_version != 0 ||
7433                             mddev->minor_version != 90) {
7434                                 seq_printf(seq," super %d.%d",
7435                                            mddev->major_version,
7436                                            mddev->minor_version);
7437                         }
7438                 } else if (mddev->external)
7439                         seq_printf(seq, " super external:%s",
7440                                    mddev->metadata_type);
7441                 else
7442                         seq_printf(seq, " super non-persistent");
7443
7444                 if (mddev->pers) {
7445                         mddev->pers->status(seq, mddev);
7446                         seq_printf(seq, "\n      ");
7447                         if (mddev->pers->sync_request) {
7448                                 if (status_resync(seq, mddev))
7449                                         seq_printf(seq, "\n      ");
7450                         }
7451                 } else
7452                         seq_printf(seq, "\n       ");
7453
7454                 bitmap_status(seq, mddev->bitmap);
7455
7456                 seq_printf(seq, "\n");
7457         }
7458         spin_unlock(&mddev->lock);
7459
7460         return 0;
7461 }
7462
7463 static const struct seq_operations md_seq_ops = {
7464         .start  = md_seq_start,
7465         .next   = md_seq_next,
7466         .stop   = md_seq_stop,
7467         .show   = md_seq_show,
7468 };
7469
7470 static int md_seq_open(struct inode *inode, struct file *file)
7471 {
7472         struct seq_file *seq;
7473         int error;
7474
7475         error = seq_open(file, &md_seq_ops);
7476         if (error)
7477                 return error;
7478
7479         seq = file->private_data;
7480         seq->poll_event = atomic_read(&md_event_count);
7481         return error;
7482 }
7483
7484 static int md_unloading;
7485 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7486 {
7487         struct seq_file *seq = filp->private_data;
7488         int mask;
7489
7490         if (md_unloading)
7491                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7492         poll_wait(filp, &md_event_waiters, wait);
7493
7494         /* always allow read */
7495         mask = POLLIN | POLLRDNORM;
7496
7497         if (seq->poll_event != atomic_read(&md_event_count))
7498                 mask |= POLLERR | POLLPRI;
7499         return mask;
7500 }
7501
7502 static const struct file_operations md_seq_fops = {
7503         .owner          = THIS_MODULE,
7504         .open           = md_seq_open,
7505         .read           = seq_read,
7506         .llseek         = seq_lseek,
7507         .release        = seq_release_private,
7508         .poll           = mdstat_poll,
7509 };
7510
7511 int register_md_personality(struct md_personality *p)
7512 {
7513         printk(KERN_INFO "md: %s personality registered for level %d\n",
7514                                                 p->name, p->level);
7515         spin_lock(&pers_lock);
7516         list_add_tail(&p->list, &pers_list);
7517         spin_unlock(&pers_lock);
7518         return 0;
7519 }
7520 EXPORT_SYMBOL(register_md_personality);
7521
7522 int unregister_md_personality(struct md_personality *p)
7523 {
7524         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7525         spin_lock(&pers_lock);
7526         list_del_init(&p->list);
7527         spin_unlock(&pers_lock);
7528         return 0;
7529 }
7530 EXPORT_SYMBOL(unregister_md_personality);
7531
7532 int register_md_cluster_operations(struct md_cluster_operations *ops,
7533                                    struct module *module)
7534 {
7535         int ret = 0;
7536         spin_lock(&pers_lock);
7537         if (md_cluster_ops != NULL)
7538                 ret = -EALREADY;
7539         else {
7540                 md_cluster_ops = ops;
7541                 md_cluster_mod = module;
7542         }
7543         spin_unlock(&pers_lock);
7544         return ret;
7545 }
7546 EXPORT_SYMBOL(register_md_cluster_operations);
7547
7548 int unregister_md_cluster_operations(void)
7549 {
7550         spin_lock(&pers_lock);
7551         md_cluster_ops = NULL;
7552         spin_unlock(&pers_lock);
7553         return 0;
7554 }
7555 EXPORT_SYMBOL(unregister_md_cluster_operations);
7556
7557 int md_setup_cluster(struct mddev *mddev, int nodes)
7558 {
7559         int err;
7560
7561         err = request_module("md-cluster");
7562         if (err) {
7563                 pr_err("md-cluster module not found.\n");
7564                 return -ENOENT;
7565         }
7566
7567         spin_lock(&pers_lock);
7568         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7569                 spin_unlock(&pers_lock);
7570                 return -ENOENT;
7571         }
7572         spin_unlock(&pers_lock);
7573
7574         return md_cluster_ops->join(mddev, nodes);
7575 }
7576
7577 void md_cluster_stop(struct mddev *mddev)
7578 {
7579         if (!md_cluster_ops)
7580                 return;
7581         md_cluster_ops->leave(mddev);
7582         module_put(md_cluster_mod);
7583 }
7584
7585 static int is_mddev_idle(struct mddev *mddev, int init)
7586 {
7587         struct md_rdev *rdev;
7588         int idle;
7589         int curr_events;
7590
7591         idle = 1;
7592         rcu_read_lock();
7593         rdev_for_each_rcu(rdev, mddev) {
7594                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7595                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7596                               (int)part_stat_read(&disk->part0, sectors[1]) -
7597                               atomic_read(&disk->sync_io);
7598                 /* sync IO will cause sync_io to increase before the disk_stats
7599                  * as sync_io is counted when a request starts, and
7600                  * disk_stats is counted when it completes.
7601                  * So resync activity will cause curr_events to be smaller than
7602                  * when there was no such activity.
7603                  * non-sync IO will cause disk_stat to increase without
7604                  * increasing sync_io so curr_events will (eventually)
7605                  * be larger than it was before.  Once it becomes
7606                  * substantially larger, the test below will cause
7607                  * the array to appear non-idle, and resync will slow
7608                  * down.
7609                  * If there is a lot of outstanding resync activity when
7610                  * we set last_event to curr_events, then all that activity
7611                  * completing might cause the array to appear non-idle
7612                  * and resync will be slowed down even though there might
7613                  * not have been non-resync activity.  This will only
7614                  * happen once though.  'last_events' will soon reflect
7615                  * the state where there is little or no outstanding
7616                  * resync requests, and further resync activity will
7617                  * always make curr_events less than last_events.
7618                  *
7619                  */
7620                 if (init || curr_events - rdev->last_events > 64) {
7621                         rdev->last_events = curr_events;
7622                         idle = 0;
7623                 }
7624         }
7625         rcu_read_unlock();
7626         return idle;
7627 }
7628
7629 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7630 {
7631         /* another "blocks" (512byte) blocks have been synced */
7632         atomic_sub(blocks, &mddev->recovery_active);
7633         wake_up(&mddev->recovery_wait);
7634         if (!ok) {
7635                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7636                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7637                 md_wakeup_thread(mddev->thread);
7638                 // stop recovery, signal do_sync ....
7639         }
7640 }
7641 EXPORT_SYMBOL(md_done_sync);
7642
7643 /* md_write_start(mddev, bi)
7644  * If we need to update some array metadata (e.g. 'active' flag
7645  * in superblock) before writing, schedule a superblock update
7646  * and wait for it to complete.
7647  */
7648 void md_write_start(struct mddev *mddev, struct bio *bi)
7649 {
7650         int did_change = 0;
7651         if (bio_data_dir(bi) != WRITE)
7652                 return;
7653
7654         BUG_ON(mddev->ro == 1);
7655         if (mddev->ro == 2) {
7656                 /* need to switch to read/write */
7657                 mddev->ro = 0;
7658                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7659                 md_wakeup_thread(mddev->thread);
7660                 md_wakeup_thread(mddev->sync_thread);
7661                 did_change = 1;
7662         }
7663         atomic_inc(&mddev->writes_pending);
7664         if (mddev->safemode == 1)
7665                 mddev->safemode = 0;
7666         if (mddev->in_sync) {
7667                 spin_lock(&mddev->lock);
7668                 if (mddev->in_sync) {
7669                         mddev->in_sync = 0;
7670                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7671                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7672                         md_wakeup_thread(mddev->thread);
7673                         did_change = 1;
7674                 }
7675                 spin_unlock(&mddev->lock);
7676         }
7677         if (did_change)
7678                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7679         wait_event(mddev->sb_wait,
7680                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7681 }
7682 EXPORT_SYMBOL(md_write_start);
7683
7684 void md_write_end(struct mddev *mddev)
7685 {
7686         if (atomic_dec_and_test(&mddev->writes_pending)) {
7687                 if (mddev->safemode == 2)
7688                         md_wakeup_thread(mddev->thread);
7689                 else if (mddev->safemode_delay)
7690                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7691         }
7692 }
7693 EXPORT_SYMBOL(md_write_end);
7694
7695 /* md_allow_write(mddev)
7696  * Calling this ensures that the array is marked 'active' so that writes
7697  * may proceed without blocking.  It is important to call this before
7698  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7699  * Must be called with mddev_lock held.
7700  *
7701  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7702  * is dropped, so return -EAGAIN after notifying userspace.
7703  */
7704 int md_allow_write(struct mddev *mddev)
7705 {
7706         if (!mddev->pers)
7707                 return 0;
7708         if (mddev->ro)
7709                 return 0;
7710         if (!mddev->pers->sync_request)
7711                 return 0;
7712
7713         spin_lock(&mddev->lock);
7714         if (mddev->in_sync) {
7715                 mddev->in_sync = 0;
7716                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7717                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7718                 if (mddev->safemode_delay &&
7719                     mddev->safemode == 0)
7720                         mddev->safemode = 1;
7721                 spin_unlock(&mddev->lock);
7722                 md_update_sb(mddev, 0);
7723                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7724         } else
7725                 spin_unlock(&mddev->lock);
7726
7727         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7728                 return -EAGAIN;
7729         else
7730                 return 0;
7731 }
7732 EXPORT_SYMBOL_GPL(md_allow_write);
7733
7734 #define SYNC_MARKS      10
7735 #define SYNC_MARK_STEP  (3*HZ)
7736 #define UPDATE_FREQUENCY (5*60*HZ)
7737 void md_do_sync(struct md_thread *thread)
7738 {
7739         struct mddev *mddev = thread->mddev;
7740         struct mddev *mddev2;
7741         unsigned int currspeed = 0,
7742                  window;
7743         sector_t max_sectors,j, io_sectors, recovery_done;
7744         unsigned long mark[SYNC_MARKS];
7745         unsigned long update_time;
7746         sector_t mark_cnt[SYNC_MARKS];
7747         int last_mark,m;
7748         struct list_head *tmp;
7749         sector_t last_check;
7750         int skipped = 0;
7751         struct md_rdev *rdev;
7752         char *desc, *action = NULL;
7753         struct blk_plug plug;
7754         bool cluster_resync_finished = false;
7755
7756         /* just incase thread restarts... */
7757         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7758                 return;
7759         if (mddev->ro) {/* never try to sync a read-only array */
7760                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7761                 return;
7762         }
7763
7764         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7765                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7766                         desc = "data-check";
7767                         action = "check";
7768                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7769                         desc = "requested-resync";
7770                         action = "repair";
7771                 } else
7772                         desc = "resync";
7773         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7774                 desc = "reshape";
7775         else
7776                 desc = "recovery";
7777
7778         mddev->last_sync_action = action ?: desc;
7779
7780         /* we overload curr_resync somewhat here.
7781          * 0 == not engaged in resync at all
7782          * 2 == checking that there is no conflict with another sync
7783          * 1 == like 2, but have yielded to allow conflicting resync to
7784          *              commense
7785          * other == active in resync - this many blocks
7786          *
7787          * Before starting a resync we must have set curr_resync to
7788          * 2, and then checked that every "conflicting" array has curr_resync
7789          * less than ours.  When we find one that is the same or higher
7790          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7791          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7792          * This will mean we have to start checking from the beginning again.
7793          *
7794          */
7795
7796         do {
7797                 mddev->curr_resync = 2;
7798
7799         try_again:
7800                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7801                         goto skip;
7802                 for_each_mddev(mddev2, tmp) {
7803                         if (mddev2 == mddev)
7804                                 continue;
7805                         if (!mddev->parallel_resync
7806                         &&  mddev2->curr_resync
7807                         &&  match_mddev_units(mddev, mddev2)) {
7808                                 DEFINE_WAIT(wq);
7809                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7810                                         /* arbitrarily yield */
7811                                         mddev->curr_resync = 1;
7812                                         wake_up(&resync_wait);
7813                                 }
7814                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7815                                         /* no need to wait here, we can wait the next
7816                                          * time 'round when curr_resync == 2
7817                                          */
7818                                         continue;
7819                                 /* We need to wait 'interruptible' so as not to
7820                                  * contribute to the load average, and not to
7821                                  * be caught by 'softlockup'
7822                                  */
7823                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7824                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7825                                     mddev2->curr_resync >= mddev->curr_resync) {
7826                                         printk(KERN_INFO "md: delaying %s of %s"
7827                                                " until %s has finished (they"
7828                                                " share one or more physical units)\n",
7829                                                desc, mdname(mddev), mdname(mddev2));
7830                                         mddev_put(mddev2);
7831                                         if (signal_pending(current))
7832                                                 flush_signals(current);
7833                                         schedule();
7834                                         finish_wait(&resync_wait, &wq);
7835                                         goto try_again;
7836                                 }
7837                                 finish_wait(&resync_wait, &wq);
7838                         }
7839                 }
7840         } while (mddev->curr_resync < 2);
7841
7842         j = 0;
7843         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7844                 /* resync follows the size requested by the personality,
7845                  * which defaults to physical size, but can be virtual size
7846                  */
7847                 max_sectors = mddev->resync_max_sectors;
7848                 atomic64_set(&mddev->resync_mismatches, 0);
7849                 /* we don't use the checkpoint if there's a bitmap */
7850                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7851                         j = mddev->resync_min;
7852                 else if (!mddev->bitmap)
7853                         j = mddev->recovery_cp;
7854
7855         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7856                 max_sectors = mddev->resync_max_sectors;
7857         else {
7858                 /* recovery follows the physical size of devices */
7859                 max_sectors = mddev->dev_sectors;
7860                 j = MaxSector;
7861                 rcu_read_lock();
7862                 rdev_for_each_rcu(rdev, mddev)
7863                         if (rdev->raid_disk >= 0 &&
7864                             !test_bit(Journal, &rdev->flags) &&
7865                             !test_bit(Faulty, &rdev->flags) &&
7866                             !test_bit(In_sync, &rdev->flags) &&
7867                             rdev->recovery_offset < j)
7868                                 j = rdev->recovery_offset;
7869                 rcu_read_unlock();
7870
7871                 /* If there is a bitmap, we need to make sure all
7872                  * writes that started before we added a spare
7873                  * complete before we start doing a recovery.
7874                  * Otherwise the write might complete and (via
7875                  * bitmap_endwrite) set a bit in the bitmap after the
7876                  * recovery has checked that bit and skipped that
7877                  * region.
7878                  */
7879                 if (mddev->bitmap) {
7880                         mddev->pers->quiesce(mddev, 1);
7881                         mddev->pers->quiesce(mddev, 0);
7882                 }
7883         }
7884
7885         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7886         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7887                 " %d KB/sec/disk.\n", speed_min(mddev));
7888         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7889                "(but not more than %d KB/sec) for %s.\n",
7890                speed_max(mddev), desc);
7891
7892         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7893
7894         io_sectors = 0;
7895         for (m = 0; m < SYNC_MARKS; m++) {
7896                 mark[m] = jiffies;
7897                 mark_cnt[m] = io_sectors;
7898         }
7899         last_mark = 0;
7900         mddev->resync_mark = mark[last_mark];
7901         mddev->resync_mark_cnt = mark_cnt[last_mark];
7902
7903         /*
7904          * Tune reconstruction:
7905          */
7906         window = 32*(PAGE_SIZE/512);
7907         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7908                 window/2, (unsigned long long)max_sectors/2);
7909
7910         atomic_set(&mddev->recovery_active, 0);
7911         last_check = 0;
7912
7913         if (j>2) {
7914                 printk(KERN_INFO
7915                        "md: resuming %s of %s from checkpoint.\n",
7916                        desc, mdname(mddev));
7917                 mddev->curr_resync = j;
7918         } else
7919                 mddev->curr_resync = 3; /* no longer delayed */
7920         mddev->curr_resync_completed = j;
7921         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7922         md_new_event(mddev);
7923         update_time = jiffies;
7924
7925         blk_start_plug(&plug);
7926         while (j < max_sectors) {
7927                 sector_t sectors;
7928
7929                 skipped = 0;
7930
7931                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7932                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7933                       (mddev->curr_resync - mddev->curr_resync_completed)
7934                       > (max_sectors >> 4)) ||
7935                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7936                      (j - mddev->curr_resync_completed)*2
7937                      >= mddev->resync_max - mddev->curr_resync_completed ||
7938                      mddev->curr_resync_completed > mddev->resync_max
7939                             )) {
7940                         /* time to update curr_resync_completed */
7941                         wait_event(mddev->recovery_wait,
7942                                    atomic_read(&mddev->recovery_active) == 0);
7943                         mddev->curr_resync_completed = j;
7944                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7945                             j > mddev->recovery_cp)
7946                                 mddev->recovery_cp = j;
7947                         update_time = jiffies;
7948                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7949                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7950                 }
7951
7952                 while (j >= mddev->resync_max &&
7953                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7954                         /* As this condition is controlled by user-space,
7955                          * we can block indefinitely, so use '_interruptible'
7956                          * to avoid triggering warnings.
7957                          */
7958                         flush_signals(current); /* just in case */
7959                         wait_event_interruptible(mddev->recovery_wait,
7960                                                  mddev->resync_max > j
7961                                                  || test_bit(MD_RECOVERY_INTR,
7962                                                              &mddev->recovery));
7963                 }
7964
7965                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7966                         break;
7967
7968                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7969                 if (sectors == 0) {
7970                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7971                         break;
7972                 }
7973
7974                 if (!skipped) { /* actual IO requested */
7975                         io_sectors += sectors;
7976                         atomic_add(sectors, &mddev->recovery_active);
7977                 }
7978
7979                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7980                         break;
7981
7982                 j += sectors;
7983                 if (j > max_sectors)
7984                         /* when skipping, extra large numbers can be returned. */
7985                         j = max_sectors;
7986                 if (j > 2)
7987                         mddev->curr_resync = j;
7988                 mddev->curr_mark_cnt = io_sectors;
7989                 if (last_check == 0)
7990                         /* this is the earliest that rebuild will be
7991                          * visible in /proc/mdstat
7992                          */
7993                         md_new_event(mddev);
7994
7995                 if (last_check + window > io_sectors || j == max_sectors)
7996                         continue;
7997
7998                 last_check = io_sectors;
7999         repeat:
8000                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8001                         /* step marks */
8002                         int next = (last_mark+1) % SYNC_MARKS;
8003
8004                         mddev->resync_mark = mark[next];
8005                         mddev->resync_mark_cnt = mark_cnt[next];
8006                         mark[next] = jiffies;
8007                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8008                         last_mark = next;
8009                 }
8010
8011                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8012                         break;
8013
8014                 /*
8015                  * this loop exits only if either when we are slower than
8016                  * the 'hard' speed limit, or the system was IO-idle for
8017                  * a jiffy.
8018                  * the system might be non-idle CPU-wise, but we only care
8019                  * about not overloading the IO subsystem. (things like an
8020                  * e2fsck being done on the RAID array should execute fast)
8021                  */
8022                 cond_resched();
8023
8024                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8025                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8026                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
8027
8028                 if (currspeed > speed_min(mddev)) {
8029                         if (currspeed > speed_max(mddev)) {
8030                                 msleep(500);
8031                                 goto repeat;
8032                         }
8033                         if (!is_mddev_idle(mddev, 0)) {
8034                                 /*
8035                                  * Give other IO more of a chance.
8036                                  * The faster the devices, the less we wait.
8037                                  */
8038                                 wait_event(mddev->recovery_wait,
8039                                            !atomic_read(&mddev->recovery_active));
8040                         }
8041                 }
8042         }
8043         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8044                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8045                ? "interrupted" : "done");
8046         /*
8047          * this also signals 'finished resyncing' to md_stop
8048          */
8049         blk_finish_plug(&plug);
8050         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8051
8052         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8053             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8054             mddev->curr_resync > 2) {
8055                 mddev->curr_resync_completed = mddev->curr_resync;
8056                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8057         }
8058         /* tell personality and other nodes that we are finished */
8059         if (mddev_is_clustered(mddev)) {
8060                 md_cluster_ops->resync_finish(mddev);
8061                 cluster_resync_finished = true;
8062         }
8063         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8064
8065         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8066             mddev->curr_resync > 2) {
8067                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8068                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8069                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8070                                         printk(KERN_INFO
8071                                                "md: checkpointing %s of %s.\n",
8072                                                desc, mdname(mddev));
8073                                         if (test_bit(MD_RECOVERY_ERROR,
8074                                                 &mddev->recovery))
8075                                                 mddev->recovery_cp =
8076                                                         mddev->curr_resync_completed;
8077                                         else
8078                                                 mddev->recovery_cp =
8079                                                         mddev->curr_resync;
8080                                 }
8081                         } else
8082                                 mddev->recovery_cp = MaxSector;
8083                 } else {
8084                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8085                                 mddev->curr_resync = MaxSector;
8086                         rcu_read_lock();
8087                         rdev_for_each_rcu(rdev, mddev)
8088                                 if (rdev->raid_disk >= 0 &&
8089                                     mddev->delta_disks >= 0 &&
8090                                     !test_bit(Journal, &rdev->flags) &&
8091                                     !test_bit(Faulty, &rdev->flags) &&
8092                                     !test_bit(In_sync, &rdev->flags) &&
8093                                     rdev->recovery_offset < mddev->curr_resync)
8094                                         rdev->recovery_offset = mddev->curr_resync;
8095                         rcu_read_unlock();
8096                 }
8097         }
8098  skip:
8099         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8100
8101         if (mddev_is_clustered(mddev) &&
8102             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8103             !cluster_resync_finished)
8104                 md_cluster_ops->resync_finish(mddev);
8105
8106         spin_lock(&mddev->lock);
8107         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8108                 /* We completed so min/max setting can be forgotten if used. */
8109                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8110                         mddev->resync_min = 0;
8111                 mddev->resync_max = MaxSector;
8112         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8113                 mddev->resync_min = mddev->curr_resync_completed;
8114         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8115         mddev->curr_resync = 0;
8116         spin_unlock(&mddev->lock);
8117
8118         wake_up(&resync_wait);
8119         md_wakeup_thread(mddev->thread);
8120         return;
8121 }
8122 EXPORT_SYMBOL_GPL(md_do_sync);
8123
8124 static int remove_and_add_spares(struct mddev *mddev,
8125                                  struct md_rdev *this)
8126 {
8127         struct md_rdev *rdev;
8128         int spares = 0;
8129         int removed = 0;
8130
8131         rdev_for_each(rdev, mddev)
8132                 if ((this == NULL || rdev == this) &&
8133                     rdev->raid_disk >= 0 &&
8134                     !test_bit(Blocked, &rdev->flags) &&
8135                     (test_bit(Faulty, &rdev->flags) ||
8136                      (!test_bit(In_sync, &rdev->flags) &&
8137                       !test_bit(Journal, &rdev->flags))) &&
8138                     atomic_read(&rdev->nr_pending)==0) {
8139                         if (mddev->pers->hot_remove_disk(
8140                                     mddev, rdev) == 0) {
8141                                 sysfs_unlink_rdev(mddev, rdev);
8142                                 rdev->raid_disk = -1;
8143                                 removed++;
8144                         }
8145                 }
8146         if (removed && mddev->kobj.sd)
8147                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8148
8149         if (this && removed)
8150                 goto no_add;
8151
8152         rdev_for_each(rdev, mddev) {
8153                 if (this && this != rdev)
8154                         continue;
8155                 if (test_bit(Candidate, &rdev->flags))
8156                         continue;
8157                 if (rdev->raid_disk >= 0 &&
8158                     !test_bit(In_sync, &rdev->flags) &&
8159                     !test_bit(Journal, &rdev->flags) &&
8160                     !test_bit(Faulty, &rdev->flags))
8161                         spares++;
8162                 if (rdev->raid_disk >= 0)
8163                         continue;
8164                 if (test_bit(Faulty, &rdev->flags))
8165                         continue;
8166                 if (test_bit(Journal, &rdev->flags))
8167                         continue;
8168                 if (mddev->ro &&
8169                     ! (rdev->saved_raid_disk >= 0 &&
8170                        !test_bit(Bitmap_sync, &rdev->flags)))
8171                         continue;
8172
8173                 if (rdev->saved_raid_disk < 0)
8174                         rdev->recovery_offset = 0;
8175                 if (mddev->pers->
8176                     hot_add_disk(mddev, rdev) == 0) {
8177                         if (sysfs_link_rdev(mddev, rdev))
8178                                 /* failure here is OK */;
8179                         spares++;
8180                         md_new_event(mddev);
8181                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8182                 }
8183         }
8184 no_add:
8185         if (removed)
8186                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8187         return spares;
8188 }
8189
8190 static void md_start_sync(struct work_struct *ws)
8191 {
8192         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8193         int ret = 0;
8194
8195         if (mddev_is_clustered(mddev)) {
8196                 ret = md_cluster_ops->resync_start(mddev);
8197                 if (ret) {
8198                         mddev->sync_thread = NULL;
8199                         goto out;
8200                 }
8201         }
8202
8203         mddev->sync_thread = md_register_thread(md_do_sync,
8204                                                 mddev,
8205                                                 "resync");
8206 out:
8207         if (!mddev->sync_thread) {
8208                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8209                         printk(KERN_ERR "%s: could not start resync"
8210                                " thread...\n",
8211                                mdname(mddev));
8212                 /* leave the spares where they are, it shouldn't hurt */
8213                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8214                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8215                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8216                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8217                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8218                 wake_up(&resync_wait);
8219                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8220                                        &mddev->recovery))
8221                         if (mddev->sysfs_action)
8222                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8223         } else
8224                 md_wakeup_thread(mddev->sync_thread);
8225         sysfs_notify_dirent_safe(mddev->sysfs_action);
8226         md_new_event(mddev);
8227 }
8228
8229 /*
8230  * This routine is regularly called by all per-raid-array threads to
8231  * deal with generic issues like resync and super-block update.
8232  * Raid personalities that don't have a thread (linear/raid0) do not
8233  * need this as they never do any recovery or update the superblock.
8234  *
8235  * It does not do any resync itself, but rather "forks" off other threads
8236  * to do that as needed.
8237  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8238  * "->recovery" and create a thread at ->sync_thread.
8239  * When the thread finishes it sets MD_RECOVERY_DONE
8240  * and wakeups up this thread which will reap the thread and finish up.
8241  * This thread also removes any faulty devices (with nr_pending == 0).
8242  *
8243  * The overall approach is:
8244  *  1/ if the superblock needs updating, update it.
8245  *  2/ If a recovery thread is running, don't do anything else.
8246  *  3/ If recovery has finished, clean up, possibly marking spares active.
8247  *  4/ If there are any faulty devices, remove them.
8248  *  5/ If array is degraded, try to add spares devices
8249  *  6/ If array has spares or is not in-sync, start a resync thread.
8250  */
8251 void md_check_recovery(struct mddev *mddev)
8252 {
8253         if (mddev->suspended)
8254                 return;
8255
8256         if (mddev->bitmap)
8257                 bitmap_daemon_work(mddev);
8258
8259         if (signal_pending(current)) {
8260                 if (mddev->pers->sync_request && !mddev->external) {
8261                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8262                                mdname(mddev));
8263                         mddev->safemode = 2;
8264                 }
8265                 flush_signals(current);
8266         }
8267
8268         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8269                 return;
8270         if ( ! (
8271                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8272                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8273                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8274                 (mddev->external == 0 && mddev->safemode == 1) ||
8275                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8276                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8277                 ))
8278                 return;
8279
8280         if (mddev_trylock(mddev)) {
8281                 int spares = 0;
8282
8283                 if (mddev->ro) {
8284                         struct md_rdev *rdev;
8285                         if (!mddev->external && mddev->in_sync)
8286                                 /* 'Blocked' flag not needed as failed devices
8287                                  * will be recorded if array switched to read/write.
8288                                  * Leaving it set will prevent the device
8289                                  * from being removed.
8290                                  */
8291                                 rdev_for_each(rdev, mddev)
8292                                         clear_bit(Blocked, &rdev->flags);
8293                         /* On a read-only array we can:
8294                          * - remove failed devices
8295                          * - add already-in_sync devices if the array itself
8296                          *   is in-sync.
8297                          * As we only add devices that are already in-sync,
8298                          * we can activate the spares immediately.
8299                          */
8300                         remove_and_add_spares(mddev, NULL);
8301                         /* There is no thread, but we need to call
8302                          * ->spare_active and clear saved_raid_disk
8303                          */
8304                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8305                         md_reap_sync_thread(mddev);
8306                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8307                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8308                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8309                         goto unlock;
8310                 }
8311
8312                 if (!mddev->external) {
8313                         int did_change = 0;
8314                         spin_lock(&mddev->lock);
8315                         if (mddev->safemode &&
8316                             !atomic_read(&mddev->writes_pending) &&
8317                             !mddev->in_sync &&
8318                             mddev->recovery_cp == MaxSector) {
8319                                 mddev->in_sync = 1;
8320                                 did_change = 1;
8321                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8322                         }
8323                         if (mddev->safemode == 1)
8324                                 mddev->safemode = 0;
8325                         spin_unlock(&mddev->lock);
8326                         if (did_change)
8327                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8328                 }
8329
8330                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8331                         md_update_sb(mddev, 0);
8332
8333                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8334                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8335                         /* resync/recovery still happening */
8336                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8337                         goto unlock;
8338                 }
8339                 if (mddev->sync_thread) {
8340                         md_reap_sync_thread(mddev);
8341                         goto unlock;
8342                 }
8343                 /* Set RUNNING before clearing NEEDED to avoid
8344                  * any transients in the value of "sync_action".
8345                  */
8346                 mddev->curr_resync_completed = 0;
8347                 spin_lock(&mddev->lock);
8348                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8349                 spin_unlock(&mddev->lock);
8350                 /* Clear some bits that don't mean anything, but
8351                  * might be left set
8352                  */
8353                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8354                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8355
8356                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8357                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8358                         goto not_running;
8359                 /* no recovery is running.
8360                  * remove any failed drives, then
8361                  * add spares if possible.
8362                  * Spares are also removed and re-added, to allow
8363                  * the personality to fail the re-add.
8364                  */
8365
8366                 if (mddev->reshape_position != MaxSector) {
8367                         if (mddev->pers->check_reshape == NULL ||
8368                             mddev->pers->check_reshape(mddev) != 0)
8369                                 /* Cannot proceed */
8370                                 goto not_running;
8371                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8372                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8373                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8374                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8375                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8376                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8377                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8378                 } else if (mddev->recovery_cp < MaxSector) {
8379                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8380                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8381                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8382                         /* nothing to be done ... */
8383                         goto not_running;
8384
8385                 if (mddev->pers->sync_request) {
8386                         if (spares) {
8387                                 /* We are adding a device or devices to an array
8388                                  * which has the bitmap stored on all devices.
8389                                  * So make sure all bitmap pages get written
8390                                  */
8391                                 bitmap_write_all(mddev->bitmap);
8392                         }
8393                         INIT_WORK(&mddev->del_work, md_start_sync);
8394                         queue_work(md_misc_wq, &mddev->del_work);
8395                         goto unlock;
8396                 }
8397         not_running:
8398                 if (!mddev->sync_thread) {
8399                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8400                         wake_up(&resync_wait);
8401                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8402                                                &mddev->recovery))
8403                                 if (mddev->sysfs_action)
8404                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8405                 }
8406         unlock:
8407                 wake_up(&mddev->sb_wait);
8408                 mddev_unlock(mddev);
8409         }
8410 }
8411 EXPORT_SYMBOL(md_check_recovery);
8412
8413 void md_reap_sync_thread(struct mddev *mddev)
8414 {
8415         struct md_rdev *rdev;
8416
8417         /* resync has finished, collect result */
8418         md_unregister_thread(&mddev->sync_thread);
8419         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8420             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8421                 /* success...*/
8422                 /* activate any spares */
8423                 if (mddev->pers->spare_active(mddev)) {
8424                         sysfs_notify(&mddev->kobj, NULL,
8425                                      "degraded");
8426                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8427                 }
8428         }
8429         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8430             mddev->pers->finish_reshape)
8431                 mddev->pers->finish_reshape(mddev);
8432
8433         /* If array is no-longer degraded, then any saved_raid_disk
8434          * information must be scrapped.
8435          */
8436         if (!mddev->degraded)
8437                 rdev_for_each(rdev, mddev)
8438                         rdev->saved_raid_disk = -1;
8439
8440         md_update_sb(mddev, 1);
8441         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8442         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8443         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8444         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8445         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8446         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8447         wake_up(&resync_wait);
8448         /* flag recovery needed just to double check */
8449         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8450         sysfs_notify_dirent_safe(mddev->sysfs_action);
8451         md_new_event(mddev);
8452         if (mddev->event_work.func)
8453                 queue_work(md_misc_wq, &mddev->event_work);
8454 }
8455 EXPORT_SYMBOL(md_reap_sync_thread);
8456
8457 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8458 {
8459         sysfs_notify_dirent_safe(rdev->sysfs_state);
8460         wait_event_timeout(rdev->blocked_wait,
8461                            !test_bit(Blocked, &rdev->flags) &&
8462                            !test_bit(BlockedBadBlocks, &rdev->flags),
8463                            msecs_to_jiffies(5000));
8464         rdev_dec_pending(rdev, mddev);
8465 }
8466 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8467
8468 void md_finish_reshape(struct mddev *mddev)
8469 {
8470         /* called be personality module when reshape completes. */
8471         struct md_rdev *rdev;
8472
8473         rdev_for_each(rdev, mddev) {
8474                 if (rdev->data_offset > rdev->new_data_offset)
8475                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8476                 else
8477                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8478                 rdev->data_offset = rdev->new_data_offset;
8479         }
8480 }
8481 EXPORT_SYMBOL(md_finish_reshape);
8482
8483 /* Bad block management.
8484  * We can record which blocks on each device are 'bad' and so just
8485  * fail those blocks, or that stripe, rather than the whole device.
8486  * Entries in the bad-block table are 64bits wide.  This comprises:
8487  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8488  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8489  *  A 'shift' can be set so that larger blocks are tracked and
8490  *  consequently larger devices can be covered.
8491  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8492  *
8493  * Locking of the bad-block table uses a seqlock so md_is_badblock
8494  * might need to retry if it is very unlucky.
8495  * We will sometimes want to check for bad blocks in a bi_end_io function,
8496  * so we use the write_seqlock_irq variant.
8497  *
8498  * When looking for a bad block we specify a range and want to
8499  * know if any block in the range is bad.  So we binary-search
8500  * to the last range that starts at-or-before the given endpoint,
8501  * (or "before the sector after the target range")
8502  * then see if it ends after the given start.
8503  * We return
8504  *  0 if there are no known bad blocks in the range
8505  *  1 if there are known bad block which are all acknowledged
8506  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8507  * plus the start/length of the first bad section we overlap.
8508  */
8509 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8510                    sector_t *first_bad, int *bad_sectors)
8511 {
8512         int hi;
8513         int lo;
8514         u64 *p = bb->page;
8515         int rv;
8516         sector_t target = s + sectors;
8517         unsigned seq;
8518
8519         if (bb->shift > 0) {
8520                 /* round the start down, and the end up */
8521                 s >>= bb->shift;
8522                 target += (1<<bb->shift) - 1;
8523                 target >>= bb->shift;
8524                 sectors = target - s;
8525         }
8526         /* 'target' is now the first block after the bad range */
8527
8528 retry:
8529         seq = read_seqbegin(&bb->lock);
8530         lo = 0;
8531         rv = 0;
8532         hi = bb->count;
8533
8534         /* Binary search between lo and hi for 'target'
8535          * i.e. for the last range that starts before 'target'
8536          */
8537         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8538          * are known not to be the last range before target.
8539          * VARIANT: hi-lo is the number of possible
8540          * ranges, and decreases until it reaches 1
8541          */
8542         while (hi - lo > 1) {
8543                 int mid = (lo + hi) / 2;
8544                 sector_t a = BB_OFFSET(p[mid]);
8545                 if (a < target)
8546                         /* This could still be the one, earlier ranges
8547                          * could not. */
8548                         lo = mid;
8549                 else
8550                         /* This and later ranges are definitely out. */
8551                         hi = mid;
8552         }
8553         /* 'lo' might be the last that started before target, but 'hi' isn't */
8554         if (hi > lo) {
8555                 /* need to check all range that end after 's' to see if
8556                  * any are unacknowledged.
8557                  */
8558                 while (lo >= 0 &&
8559                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8560                         if (BB_OFFSET(p[lo]) < target) {
8561                                 /* starts before the end, and finishes after
8562                                  * the start, so they must overlap
8563                                  */
8564                                 if (rv != -1 && BB_ACK(p[lo]))
8565                                         rv = 1;
8566                                 else
8567                                         rv = -1;
8568                                 *first_bad = BB_OFFSET(p[lo]);
8569                                 *bad_sectors = BB_LEN(p[lo]);
8570                         }
8571                         lo--;
8572                 }
8573         }
8574
8575         if (read_seqretry(&bb->lock, seq))
8576                 goto retry;
8577
8578         return rv;
8579 }
8580 EXPORT_SYMBOL_GPL(md_is_badblock);
8581
8582 /*
8583  * Add a range of bad blocks to the table.
8584  * This might extend the table, or might contract it
8585  * if two adjacent ranges can be merged.
8586  * We binary-search to find the 'insertion' point, then
8587  * decide how best to handle it.
8588  */
8589 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8590                             int acknowledged)
8591 {
8592         u64 *p;
8593         int lo, hi;
8594         int rv = 1;
8595         unsigned long flags;
8596
8597         if (bb->shift < 0)
8598                 /* badblocks are disabled */
8599                 return 0;
8600
8601         if (bb->shift) {
8602                 /* round the start down, and the end up */
8603                 sector_t next = s + sectors;
8604                 s >>= bb->shift;
8605                 next += (1<<bb->shift) - 1;
8606                 next >>= bb->shift;
8607                 sectors = next - s;
8608         }
8609
8610         write_seqlock_irqsave(&bb->lock, flags);
8611
8612         p = bb->page;
8613         lo = 0;
8614         hi = bb->count;
8615         /* Find the last range that starts at-or-before 's' */
8616         while (hi - lo > 1) {
8617                 int mid = (lo + hi) / 2;
8618                 sector_t a = BB_OFFSET(p[mid]);
8619                 if (a <= s)
8620                         lo = mid;
8621                 else
8622                         hi = mid;
8623         }
8624         if (hi > lo && BB_OFFSET(p[lo]) > s)
8625                 hi = lo;
8626
8627         if (hi > lo) {
8628                 /* we found a range that might merge with the start
8629                  * of our new range
8630                  */
8631                 sector_t a = BB_OFFSET(p[lo]);
8632                 sector_t e = a + BB_LEN(p[lo]);
8633                 int ack = BB_ACK(p[lo]);
8634                 if (e >= s) {
8635                         /* Yes, we can merge with a previous range */
8636                         if (s == a && s + sectors >= e)
8637                                 /* new range covers old */
8638                                 ack = acknowledged;
8639                         else
8640                                 ack = ack && acknowledged;
8641
8642                         if (e < s + sectors)
8643                                 e = s + sectors;
8644                         if (e - a <= BB_MAX_LEN) {
8645                                 p[lo] = BB_MAKE(a, e-a, ack);
8646                                 s = e;
8647                         } else {
8648                                 /* does not all fit in one range,
8649                                  * make p[lo] maximal
8650                                  */
8651                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8652                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8653                                 s = a + BB_MAX_LEN;
8654                         }
8655                         sectors = e - s;
8656                 }
8657         }
8658         if (sectors && hi < bb->count) {
8659                 /* 'hi' points to the first range that starts after 's'.
8660                  * Maybe we can merge with the start of that range */
8661                 sector_t a = BB_OFFSET(p[hi]);
8662                 sector_t e = a + BB_LEN(p[hi]);
8663                 int ack = BB_ACK(p[hi]);
8664                 if (a <= s + sectors) {
8665                         /* merging is possible */
8666                         if (e <= s + sectors) {
8667                                 /* full overlap */
8668                                 e = s + sectors;
8669                                 ack = acknowledged;
8670                         } else
8671                                 ack = ack && acknowledged;
8672
8673                         a = s;
8674                         if (e - a <= BB_MAX_LEN) {
8675                                 p[hi] = BB_MAKE(a, e-a, ack);
8676                                 s = e;
8677                         } else {
8678                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8679                                 s = a + BB_MAX_LEN;
8680                         }
8681                         sectors = e - s;
8682                         lo = hi;
8683                         hi++;
8684                 }
8685         }
8686         if (sectors == 0 && hi < bb->count) {
8687                 /* we might be able to combine lo and hi */
8688                 /* Note: 's' is at the end of 'lo' */
8689                 sector_t a = BB_OFFSET(p[hi]);
8690                 int lolen = BB_LEN(p[lo]);
8691                 int hilen = BB_LEN(p[hi]);
8692                 int newlen = lolen + hilen - (s - a);
8693                 if (s >= a && newlen < BB_MAX_LEN) {
8694                         /* yes, we can combine them */
8695                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8696                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8697                         memmove(p + hi, p + hi + 1,
8698                                 (bb->count - hi - 1) * 8);
8699                         bb->count--;
8700                 }
8701         }
8702         while (sectors) {
8703                 /* didn't merge (it all).
8704                  * Need to add a range just before 'hi' */
8705                 if (bb->count >= MD_MAX_BADBLOCKS) {
8706                         /* No room for more */
8707                         rv = 0;
8708                         break;
8709                 } else {
8710                         int this_sectors = sectors;
8711                         memmove(p + hi + 1, p + hi,
8712                                 (bb->count - hi) * 8);
8713                         bb->count++;
8714
8715                         if (this_sectors > BB_MAX_LEN)
8716                                 this_sectors = BB_MAX_LEN;
8717                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8718                         sectors -= this_sectors;
8719                         s += this_sectors;
8720                 }
8721         }
8722
8723         bb->changed = 1;
8724         if (!acknowledged)
8725                 bb->unacked_exist = 1;
8726         write_sequnlock_irqrestore(&bb->lock, flags);
8727
8728         return rv;
8729 }
8730
8731 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8732                        int is_new)
8733 {
8734         int rv;
8735         if (is_new)
8736                 s += rdev->new_data_offset;
8737         else
8738                 s += rdev->data_offset;
8739         rv = md_set_badblocks(&rdev->badblocks,
8740                               s, sectors, 0);
8741         if (rv) {
8742                 /* Make sure they get written out promptly */
8743                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8744                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8745                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8746                 md_wakeup_thread(rdev->mddev->thread);
8747         }
8748         return rv;
8749 }
8750 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8751
8752 /*
8753  * Remove a range of bad blocks from the table.
8754  * This may involve extending the table if we spilt a region,
8755  * but it must not fail.  So if the table becomes full, we just
8756  * drop the remove request.
8757  */
8758 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8759 {
8760         u64 *p;
8761         int lo, hi;
8762         sector_t target = s + sectors;
8763         int rv = 0;
8764
8765         if (bb->shift > 0) {
8766                 /* When clearing we round the start up and the end down.
8767                  * This should not matter as the shift should align with
8768                  * the block size and no rounding should ever be needed.
8769                  * However it is better the think a block is bad when it
8770                  * isn't than to think a block is not bad when it is.
8771                  */
8772                 s += (1<<bb->shift) - 1;
8773                 s >>= bb->shift;
8774                 target >>= bb->shift;
8775                 sectors = target - s;
8776         }
8777
8778         write_seqlock_irq(&bb->lock);
8779
8780         p = bb->page;
8781         lo = 0;
8782         hi = bb->count;
8783         /* Find the last range that starts before 'target' */
8784         while (hi - lo > 1) {
8785                 int mid = (lo + hi) / 2;
8786                 sector_t a = BB_OFFSET(p[mid]);
8787                 if (a < target)
8788                         lo = mid;
8789                 else
8790                         hi = mid;
8791         }
8792         if (hi > lo) {
8793                 /* p[lo] is the last range that could overlap the
8794                  * current range.  Earlier ranges could also overlap,
8795                  * but only this one can overlap the end of the range.
8796                  */
8797                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8798                         /* Partial overlap, leave the tail of this range */
8799                         int ack = BB_ACK(p[lo]);
8800                         sector_t a = BB_OFFSET(p[lo]);
8801                         sector_t end = a + BB_LEN(p[lo]);
8802
8803                         if (a < s) {
8804                                 /* we need to split this range */
8805                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8806                                         rv = -ENOSPC;
8807                                         goto out;
8808                                 }
8809                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8810                                 bb->count++;
8811                                 p[lo] = BB_MAKE(a, s-a, ack);
8812                                 lo++;
8813                         }
8814                         p[lo] = BB_MAKE(target, end - target, ack);
8815                         /* there is no longer an overlap */
8816                         hi = lo;
8817                         lo--;
8818                 }
8819                 while (lo >= 0 &&
8820                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8821                         /* This range does overlap */
8822                         if (BB_OFFSET(p[lo]) < s) {
8823                                 /* Keep the early parts of this range. */
8824                                 int ack = BB_ACK(p[lo]);
8825                                 sector_t start = BB_OFFSET(p[lo]);
8826                                 p[lo] = BB_MAKE(start, s - start, ack);
8827                                 /* now low doesn't overlap, so.. */
8828                                 break;
8829                         }
8830                         lo--;
8831                 }
8832                 /* 'lo' is strictly before, 'hi' is strictly after,
8833                  * anything between needs to be discarded
8834                  */
8835                 if (hi - lo > 1) {
8836                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8837                         bb->count -= (hi - lo - 1);
8838                 }
8839         }
8840
8841         bb->changed = 1;
8842 out:
8843         write_sequnlock_irq(&bb->lock);
8844         return rv;
8845 }
8846
8847 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8848                          int is_new)
8849 {
8850         if (is_new)
8851                 s += rdev->new_data_offset;
8852         else
8853                 s += rdev->data_offset;
8854         return md_clear_badblocks(&rdev->badblocks,
8855                                   s, sectors);
8856 }
8857 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8858
8859 /*
8860  * Acknowledge all bad blocks in a list.
8861  * This only succeeds if ->changed is clear.  It is used by
8862  * in-kernel metadata updates
8863  */
8864 void md_ack_all_badblocks(struct badblocks *bb)
8865 {
8866         if (bb->page == NULL || bb->changed)
8867                 /* no point even trying */
8868                 return;
8869         write_seqlock_irq(&bb->lock);
8870
8871         if (bb->changed == 0 && bb->unacked_exist) {
8872                 u64 *p = bb->page;
8873                 int i;
8874                 for (i = 0; i < bb->count ; i++) {
8875                         if (!BB_ACK(p[i])) {
8876                                 sector_t start = BB_OFFSET(p[i]);
8877                                 int len = BB_LEN(p[i]);
8878                                 p[i] = BB_MAKE(start, len, 1);
8879                         }
8880                 }
8881                 bb->unacked_exist = 0;
8882         }
8883         write_sequnlock_irq(&bb->lock);
8884 }
8885 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8886
8887 /* sysfs access to bad-blocks list.
8888  * We present two files.
8889  * 'bad-blocks' lists sector numbers and lengths of ranges that
8890  *    are recorded as bad.  The list is truncated to fit within
8891  *    the one-page limit of sysfs.
8892  *    Writing "sector length" to this file adds an acknowledged
8893  *    bad block list.
8894  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8895  *    been acknowledged.  Writing to this file adds bad blocks
8896  *    without acknowledging them.  This is largely for testing.
8897  */
8898
8899 static ssize_t
8900 badblocks_show(struct badblocks *bb, char *page, int unack)
8901 {
8902         size_t len;
8903         int i;
8904         u64 *p = bb->page;
8905         unsigned seq;
8906
8907         if (bb->shift < 0)
8908                 return 0;
8909
8910 retry:
8911         seq = read_seqbegin(&bb->lock);
8912
8913         len = 0;
8914         i = 0;
8915
8916         while (len < PAGE_SIZE && i < bb->count) {
8917                 sector_t s = BB_OFFSET(p[i]);
8918                 unsigned int length = BB_LEN(p[i]);
8919                 int ack = BB_ACK(p[i]);
8920                 i++;
8921
8922                 if (unack && ack)
8923                         continue;
8924
8925                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8926                                 (unsigned long long)s << bb->shift,
8927                                 length << bb->shift);
8928         }
8929         if (unack && len == 0)
8930                 bb->unacked_exist = 0;
8931
8932         if (read_seqretry(&bb->lock, seq))
8933                 goto retry;
8934
8935         return len;
8936 }
8937
8938 #define DO_DEBUG 1
8939
8940 static ssize_t
8941 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8942 {
8943         unsigned long long sector;
8944         int length;
8945         char newline;
8946 #ifdef DO_DEBUG
8947         /* Allow clearing via sysfs *only* for testing/debugging.
8948          * Normally only a successful write may clear a badblock
8949          */
8950         int clear = 0;
8951         if (page[0] == '-') {
8952                 clear = 1;
8953                 page++;
8954         }
8955 #endif /* DO_DEBUG */
8956
8957         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8958         case 3:
8959                 if (newline != '\n')
8960                         return -EINVAL;
8961         case 2:
8962                 if (length <= 0)
8963                         return -EINVAL;
8964                 break;
8965         default:
8966                 return -EINVAL;
8967         }
8968
8969 #ifdef DO_DEBUG
8970         if (clear) {
8971                 md_clear_badblocks(bb, sector, length);
8972                 return len;
8973         }
8974 #endif /* DO_DEBUG */
8975         if (md_set_badblocks(bb, sector, length, !unack))
8976                 return len;
8977         else
8978                 return -ENOSPC;
8979 }
8980
8981 static int md_notify_reboot(struct notifier_block *this,
8982                             unsigned long code, void *x)
8983 {
8984         struct list_head *tmp;
8985         struct mddev *mddev;
8986         int need_delay = 0;
8987
8988         for_each_mddev(mddev, tmp) {
8989                 if (mddev_trylock(mddev)) {
8990                         if (mddev->pers)
8991                                 __md_stop_writes(mddev);
8992                         if (mddev->persistent)
8993                                 mddev->safemode = 2;
8994                         mddev_unlock(mddev);
8995                 }
8996                 need_delay = 1;
8997         }
8998         /*
8999          * certain more exotic SCSI devices are known to be
9000          * volatile wrt too early system reboots. While the
9001          * right place to handle this issue is the given
9002          * driver, we do want to have a safe RAID driver ...
9003          */
9004         if (need_delay)
9005                 mdelay(1000*1);
9006
9007         return NOTIFY_DONE;
9008 }
9009
9010 static struct notifier_block md_notifier = {
9011         .notifier_call  = md_notify_reboot,
9012         .next           = NULL,
9013         .priority       = INT_MAX, /* before any real devices */
9014 };
9015
9016 static void md_geninit(void)
9017 {
9018         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9019
9020         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9021 }
9022
9023 static int __init md_init(void)
9024 {
9025         int ret = -ENOMEM;
9026
9027         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9028         if (!md_wq)
9029                 goto err_wq;
9030
9031         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9032         if (!md_misc_wq)
9033                 goto err_misc_wq;
9034
9035         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9036                 goto err_md;
9037
9038         if ((ret = register_blkdev(0, "mdp")) < 0)
9039                 goto err_mdp;
9040         mdp_major = ret;
9041
9042         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9043                             md_probe, NULL, NULL);
9044         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9045                             md_probe, NULL, NULL);
9046
9047         register_reboot_notifier(&md_notifier);
9048         raid_table_header = register_sysctl_table(raid_root_table);
9049
9050         md_geninit();
9051         return 0;
9052
9053 err_mdp:
9054         unregister_blkdev(MD_MAJOR, "md");
9055 err_md:
9056         destroy_workqueue(md_misc_wq);
9057 err_misc_wq:
9058         destroy_workqueue(md_wq);
9059 err_wq:
9060         return ret;
9061 }
9062
9063 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9064 {
9065         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9066         struct md_rdev *rdev2;
9067         int role, ret;
9068         char b[BDEVNAME_SIZE];
9069
9070         /* Check for change of roles in the active devices */
9071         rdev_for_each(rdev2, mddev) {
9072                 if (test_bit(Faulty, &rdev2->flags))
9073                         continue;
9074
9075                 /* Check if the roles changed */
9076                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9077
9078                 if (test_bit(Candidate, &rdev2->flags)) {
9079                         if (role == 0xfffe) {
9080                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9081                                 md_kick_rdev_from_array(rdev2);
9082                                 continue;
9083                         }
9084                         else
9085                                 clear_bit(Candidate, &rdev2->flags);
9086                 }
9087
9088                 if (role != rdev2->raid_disk) {
9089                         /* got activated */
9090                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9091                                 rdev2->saved_raid_disk = role;
9092                                 ret = remove_and_add_spares(mddev, rdev2);
9093                                 pr_info("Activated spare: %s\n",
9094                                                 bdevname(rdev2->bdev,b));
9095                                 continue;
9096                         }
9097                         /* device faulty
9098                          * We just want to do the minimum to mark the disk
9099                          * as faulty. The recovery is performed by the
9100                          * one who initiated the error.
9101                          */
9102                         if ((role == 0xfffe) || (role == 0xfffd)) {
9103                                 md_error(mddev, rdev2);
9104                                 clear_bit(Blocked, &rdev2->flags);
9105                         }
9106                 }
9107         }
9108
9109         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9110                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9111
9112         /* Finally set the event to be up to date */
9113         mddev->events = le64_to_cpu(sb->events);
9114 }
9115
9116 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9117 {
9118         int err;
9119         struct page *swapout = rdev->sb_page;
9120         struct mdp_superblock_1 *sb;
9121
9122         /* Store the sb page of the rdev in the swapout temporary
9123          * variable in case we err in the future
9124          */
9125         rdev->sb_page = NULL;
9126         alloc_disk_sb(rdev);
9127         ClearPageUptodate(rdev->sb_page);
9128         rdev->sb_loaded = 0;
9129         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9130
9131         if (err < 0) {
9132                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9133                                 __func__, __LINE__, rdev->desc_nr, err);
9134                 put_page(rdev->sb_page);
9135                 rdev->sb_page = swapout;
9136                 rdev->sb_loaded = 1;
9137                 return err;
9138         }
9139
9140         sb = page_address(rdev->sb_page);
9141         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9142          * is not set
9143          */
9144
9145         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9146                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9147
9148         /* The other node finished recovery, call spare_active to set
9149          * device In_sync and mddev->degraded
9150          */
9151         if (rdev->recovery_offset == MaxSector &&
9152             !test_bit(In_sync, &rdev->flags) &&
9153             mddev->pers->spare_active(mddev))
9154                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9155
9156         put_page(swapout);
9157         return 0;
9158 }
9159
9160 void md_reload_sb(struct mddev *mddev, int nr)
9161 {
9162         struct md_rdev *rdev;
9163         int err;
9164
9165         /* Find the rdev */
9166         rdev_for_each_rcu(rdev, mddev) {
9167                 if (rdev->desc_nr == nr)
9168                         break;
9169         }
9170
9171         if (!rdev || rdev->desc_nr != nr) {
9172                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9173                 return;
9174         }
9175
9176         err = read_rdev(mddev, rdev);
9177         if (err < 0)
9178                 return;
9179
9180         check_sb_changes(mddev, rdev);
9181
9182         /* Read all rdev's to update recovery_offset */
9183         rdev_for_each_rcu(rdev, mddev)
9184                 read_rdev(mddev, rdev);
9185 }
9186 EXPORT_SYMBOL(md_reload_sb);
9187
9188 #ifndef MODULE
9189
9190 /*
9191  * Searches all registered partitions for autorun RAID arrays
9192  * at boot time.
9193  */
9194
9195 static LIST_HEAD(all_detected_devices);
9196 struct detected_devices_node {
9197         struct list_head list;
9198         dev_t dev;
9199 };
9200
9201 void md_autodetect_dev(dev_t dev)
9202 {
9203         struct detected_devices_node *node_detected_dev;
9204
9205         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9206         if (node_detected_dev) {
9207                 node_detected_dev->dev = dev;
9208                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9209         } else {
9210                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9211                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9212         }
9213 }
9214
9215 static void autostart_arrays(int part)
9216 {
9217         struct md_rdev *rdev;
9218         struct detected_devices_node *node_detected_dev;
9219         dev_t dev;
9220         int i_scanned, i_passed;
9221
9222         i_scanned = 0;
9223         i_passed = 0;
9224
9225         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9226
9227         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9228                 i_scanned++;
9229                 node_detected_dev = list_entry(all_detected_devices.next,
9230                                         struct detected_devices_node, list);
9231                 list_del(&node_detected_dev->list);
9232                 dev = node_detected_dev->dev;
9233                 kfree(node_detected_dev);
9234                 rdev = md_import_device(dev,0, 90);
9235                 if (IS_ERR(rdev))
9236                         continue;
9237
9238                 if (test_bit(Faulty, &rdev->flags))
9239                         continue;
9240
9241                 set_bit(AutoDetected, &rdev->flags);
9242                 list_add(&rdev->same_set, &pending_raid_disks);
9243                 i_passed++;
9244         }
9245
9246         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9247                                                 i_scanned, i_passed);
9248
9249         autorun_devices(part);
9250 }
9251
9252 #endif /* !MODULE */
9253
9254 static __exit void md_exit(void)
9255 {
9256         struct mddev *mddev;
9257         struct list_head *tmp;
9258         int delay = 1;
9259
9260         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9261         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9262
9263         unregister_blkdev(MD_MAJOR,"md");
9264         unregister_blkdev(mdp_major, "mdp");
9265         unregister_reboot_notifier(&md_notifier);
9266         unregister_sysctl_table(raid_table_header);
9267
9268         /* We cannot unload the modules while some process is
9269          * waiting for us in select() or poll() - wake them up
9270          */
9271         md_unloading = 1;
9272         while (waitqueue_active(&md_event_waiters)) {
9273                 /* not safe to leave yet */
9274                 wake_up(&md_event_waiters);
9275                 msleep(delay);
9276                 delay += delay;
9277         }
9278         remove_proc_entry("mdstat", NULL);
9279
9280         for_each_mddev(mddev, tmp) {
9281                 export_array(mddev);
9282                 mddev->hold_active = 0;
9283         }
9284         destroy_workqueue(md_misc_wq);
9285         destroy_workqueue(md_wq);
9286 }
9287
9288 subsys_initcall(md_init);
9289 module_exit(md_exit)
9290
9291 static int get_ro(char *buffer, struct kernel_param *kp)
9292 {
9293         return sprintf(buffer, "%d", start_readonly);
9294 }
9295 static int set_ro(const char *val, struct kernel_param *kp)
9296 {
9297         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9298 }
9299
9300 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9301 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9302 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9303
9304 MODULE_LICENSE("GPL");
9305 MODULE_DESCRIPTION("MD RAID framework");
9306 MODULE_ALIAS("md");
9307 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);