]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
net: phy: mdio-sun4i: don't select REGULATOR
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (!is_bad_inode(inode))
228                 dquot_initialize(inode);
229
230         if (ext4_should_order_data(inode))
231                 ext4_begin_ordered_truncate(inode, 0);
232         truncate_inode_pages_final(&inode->i_data);
233
234         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235         if (is_bad_inode(inode))
236                 goto no_delete;
237
238         /*
239          * Protect us against freezing - iput() caller didn't have to have any
240          * protection against it
241          */
242         sb_start_intwrite(inode->i_sb);
243         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244                                     ext4_blocks_for_truncate(inode)+3);
245         if (IS_ERR(handle)) {
246                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
247                 /*
248                  * If we're going to skip the normal cleanup, we still need to
249                  * make sure that the in-core orphan linked list is properly
250                  * cleaned up.
251                  */
252                 ext4_orphan_del(NULL, inode);
253                 sb_end_intwrite(inode->i_sb);
254                 goto no_delete;
255         }
256
257         if (IS_SYNC(inode))
258                 ext4_handle_sync(handle);
259         inode->i_size = 0;
260         err = ext4_mark_inode_dirty(handle, inode);
261         if (err) {
262                 ext4_warning(inode->i_sb,
263                              "couldn't mark inode dirty (err %d)", err);
264                 goto stop_handle;
265         }
266         if (inode->i_blocks)
267                 ext4_truncate(inode);
268
269         /*
270          * ext4_ext_truncate() doesn't reserve any slop when it
271          * restarts journal transactions; therefore there may not be
272          * enough credits left in the handle to remove the inode from
273          * the orphan list and set the dtime field.
274          */
275         if (!ext4_handle_has_enough_credits(handle, 3)) {
276                 err = ext4_journal_extend(handle, 3);
277                 if (err > 0)
278                         err = ext4_journal_restart(handle, 3);
279                 if (err != 0) {
280                         ext4_warning(inode->i_sb,
281                                      "couldn't extend journal (err %d)", err);
282                 stop_handle:
283                         ext4_journal_stop(handle);
284                         ext4_orphan_del(NULL, inode);
285                         sb_end_intwrite(inode->i_sb);
286                         goto no_delete;
287                 }
288         }
289
290         /*
291          * Kill off the orphan record which ext4_truncate created.
292          * AKPM: I think this can be inside the above `if'.
293          * Note that ext4_orphan_del() has to be able to cope with the
294          * deletion of a non-existent orphan - this is because we don't
295          * know if ext4_truncate() actually created an orphan record.
296          * (Well, we could do this if we need to, but heck - it works)
297          */
298         ext4_orphan_del(handle, inode);
299         EXT4_I(inode)->i_dtime  = get_seconds();
300
301         /*
302          * One subtle ordering requirement: if anything has gone wrong
303          * (transaction abort, IO errors, whatever), then we can still
304          * do these next steps (the fs will already have been marked as
305          * having errors), but we can't free the inode if the mark_dirty
306          * fails.
307          */
308         if (ext4_mark_inode_dirty(handle, inode))
309                 /* If that failed, just do the required in-core inode clear. */
310                 ext4_clear_inode(inode);
311         else
312                 ext4_free_inode(handle, inode);
313         ext4_journal_stop(handle);
314         sb_end_intwrite(inode->i_sb);
315         return;
316 no_delete:
317         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
318 }
319
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323         return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332                                         int used, int quota_claim)
333 {
334         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335         struct ext4_inode_info *ei = EXT4_I(inode);
336
337         spin_lock(&ei->i_block_reservation_lock);
338         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339         if (unlikely(used > ei->i_reserved_data_blocks)) {
340                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341                          "with only %d reserved data blocks",
342                          __func__, inode->i_ino, used,
343                          ei->i_reserved_data_blocks);
344                 WARN_ON(1);
345                 used = ei->i_reserved_data_blocks;
346         }
347
348         /* Update per-inode reservations */
349         ei->i_reserved_data_blocks -= used;
350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351
352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353
354         /* Update quota subsystem for data blocks */
355         if (quota_claim)
356                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357         else {
358                 /*
359                  * We did fallocate with an offset that is already delayed
360                  * allocated. So on delayed allocated writeback we should
361                  * not re-claim the quota for fallocated blocks.
362                  */
363                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364         }
365
366         /*
367          * If we have done all the pending block allocations and if
368          * there aren't any writers on the inode, we can discard the
369          * inode's preallocations.
370          */
371         if ((ei->i_reserved_data_blocks == 0) &&
372             (atomic_read(&inode->i_writecount) == 0))
373                 ext4_discard_preallocations(inode);
374 }
375
376 static int __check_block_validity(struct inode *inode, const char *func,
377                                 unsigned int line,
378                                 struct ext4_map_blocks *map)
379 {
380         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381                                    map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_len);
386                 return -EIO;
387         }
388         return 0;
389 }
390
391 #define check_block_validity(inode, map)        \
392         __check_block_validity((inode), __func__, __LINE__, (map))
393
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396                                        struct inode *inode,
397                                        struct ext4_map_blocks *es_map,
398                                        struct ext4_map_blocks *map,
399                                        int flags)
400 {
401         int retval;
402
403         map->m_flags = 0;
404         /*
405          * There is a race window that the result is not the same.
406          * e.g. xfstests #223 when dioread_nolock enables.  The reason
407          * is that we lookup a block mapping in extent status tree with
408          * out taking i_data_sem.  So at the time the unwritten extent
409          * could be converted.
410          */
411         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412                 down_read(&EXT4_I(inode)->i_data_sem);
413         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         } else {
417                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418                                              EXT4_GET_BLOCKS_KEEP_SIZE);
419         }
420         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421                 up_read((&EXT4_I(inode)->i_data_sem));
422         /*
423          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424          * because it shouldn't be marked in es_map->m_flags.
425          */
426         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EIO;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 ext4_es_lru_add(inode);
498                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499                         map->m_pblk = ext4_es_pblock(&es) +
500                                         map->m_lblk - es.es_lblk;
501                         map->m_flags |= ext4_es_is_written(&es) ?
502                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503                         retval = es.es_len - (map->m_lblk - es.es_lblk);
504                         if (retval > map->m_len)
505                                 retval = map->m_len;
506                         map->m_len = retval;
507                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508                         retval = 0;
509                 } else {
510                         BUG_ON(1);
511                 }
512 #ifdef ES_AGGRESSIVE_TEST
513                 ext4_map_blocks_es_recheck(handle, inode, map,
514                                            &orig_map, flags);
515 #endif
516                 goto found;
517         }
518
519         /*
520          * Try to see if we can get the block without requesting a new
521          * file system block.
522          */
523         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524                 down_read(&EXT4_I(inode)->i_data_sem);
525         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         } else {
529                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         }
532         if (retval > 0) {
533                 unsigned int status;
534
535                 if (unlikely(retval != map->m_len)) {
536                         ext4_warning(inode->i_sb,
537                                      "ES len assertion failed for inode "
538                                      "%lu: retval %d != map->m_len %d",
539                                      inode->i_ino, retval, map->m_len);
540                         WARN_ON(1);
541                 }
542
543                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546                     ext4_find_delalloc_range(inode, map->m_lblk,
547                                              map->m_lblk + map->m_len - 1))
548                         status |= EXTENT_STATUS_DELAYED;
549                 ret = ext4_es_insert_extent(inode, map->m_lblk,
550                                             map->m_len, map->m_pblk, status);
551                 if (ret < 0)
552                         retval = ret;
553         }
554         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555                 up_read((&EXT4_I(inode)->i_data_sem));
556
557 found:
558         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559                 ret = check_block_validity(inode, map);
560                 if (ret != 0)
561                         return ret;
562         }
563
564         /* If it is only a block(s) look up */
565         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566                 return retval;
567
568         /*
569          * Returns if the blocks have already allocated
570          *
571          * Note that if blocks have been preallocated
572          * ext4_ext_get_block() returns the create = 0
573          * with buffer head unmapped.
574          */
575         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576                 /*
577                  * If we need to convert extent to unwritten
578                  * we continue and do the actual work in
579                  * ext4_ext_map_blocks()
580                  */
581                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582                         return retval;
583
584         /*
585          * Here we clear m_flags because after allocating an new extent,
586          * it will be set again.
587          */
588         map->m_flags &= ~EXT4_MAP_FLAGS;
589
590         /*
591          * New blocks allocate and/or writing to unwritten extent
592          * will possibly result in updating i_data, so we take
593          * the write lock of i_data_sem, and call get_blocks()
594          * with create == 1 flag.
595          */
596         down_write(&EXT4_I(inode)->i_data_sem);
597
598         /*
599          * if the caller is from delayed allocation writeout path
600          * we have already reserved fs blocks for allocation
601          * let the underlying get_block() function know to
602          * avoid double accounting
603          */
604         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606         /*
607          * We need to check for EXT4 here because migrate
608          * could have changed the inode type in between
609          */
610         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
612         } else {
613                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
614
615                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616                         /*
617                          * We allocated new blocks which will result in
618                          * i_data's format changing.  Force the migrate
619                          * to fail by clearing migrate flags
620                          */
621                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
622                 }
623
624                 /*
625                  * Update reserved blocks/metadata blocks after successful
626                  * block allocation which had been deferred till now. We don't
627                  * support fallocate for non extent files. So we can update
628                  * reserve space here.
629                  */
630                 if ((retval > 0) &&
631                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632                         ext4_da_update_reserve_space(inode, retval, 1);
633         }
634         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636
637         if (retval > 0) {
638                 unsigned int status;
639
640                 if (unlikely(retval != map->m_len)) {
641                         ext4_warning(inode->i_sb,
642                                      "ES len assertion failed for inode "
643                                      "%lu: retval %d != map->m_len %d",
644                                      inode->i_ino, retval, map->m_len);
645                         WARN_ON(1);
646                 }
647
648                 /*
649                  * If the extent has been zeroed out, we don't need to update
650                  * extent status tree.
651                  */
652                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654                         if (ext4_es_is_written(&es))
655                                 goto has_zeroout;
656                 }
657                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660                     ext4_find_delalloc_range(inode, map->m_lblk,
661                                              map->m_lblk + map->m_len - 1))
662                         status |= EXTENT_STATUS_DELAYED;
663                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664                                             map->m_pblk, status);
665                 if (ret < 0)
666                         retval = ret;
667         }
668
669 has_zeroout:
670         up_write((&EXT4_I(inode)->i_data_sem));
671         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672                 ret = check_block_validity(inode, map);
673                 if (ret != 0)
674                         return ret;
675         }
676         return retval;
677 }
678
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
681
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683                            struct buffer_head *bh, int flags)
684 {
685         handle_t *handle = ext4_journal_current_handle();
686         struct ext4_map_blocks map;
687         int ret = 0, started = 0;
688         int dio_credits;
689
690         if (ext4_has_inline_data(inode))
691                 return -ERANGE;
692
693         map.m_lblk = iblock;
694         map.m_len = bh->b_size >> inode->i_blkbits;
695
696         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697                 /* Direct IO write... */
698                 if (map.m_len > DIO_MAX_BLOCKS)
699                         map.m_len = DIO_MAX_BLOCKS;
700                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702                                             dio_credits);
703                 if (IS_ERR(handle)) {
704                         ret = PTR_ERR(handle);
705                         return ret;
706                 }
707                 started = 1;
708         }
709
710         ret = ext4_map_blocks(handle, inode, &map, flags);
711         if (ret > 0) {
712                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
714                 map_bh(bh, inode->i_sb, map.m_pblk);
715                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717                         set_buffer_defer_completion(bh);
718                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719                 ret = 0;
720         }
721         if (started)
722                 ext4_journal_stop(handle);
723         return ret;
724 }
725
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727                    struct buffer_head *bh, int create)
728 {
729         return _ext4_get_block(inode, iblock, bh,
730                                create ? EXT4_GET_BLOCKS_CREATE : 0);
731 }
732
733 /*
734  * `handle' can be NULL if create is zero
735  */
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737                                 ext4_lblk_t block, int create, int *errp)
738 {
739         struct ext4_map_blocks map;
740         struct buffer_head *bh;
741         int fatal = 0, err;
742
743         J_ASSERT(handle != NULL || create == 0);
744
745         map.m_lblk = block;
746         map.m_len = 1;
747         err = ext4_map_blocks(handle, inode, &map,
748                               create ? EXT4_GET_BLOCKS_CREATE : 0);
749
750         /* ensure we send some value back into *errp */
751         *errp = 0;
752
753         if (create && err == 0)
754                 err = -ENOSPC;  /* should never happen */
755         if (err < 0)
756                 *errp = err;
757         if (err <= 0)
758                 return NULL;
759
760         bh = sb_getblk(inode->i_sb, map.m_pblk);
761         if (unlikely(!bh)) {
762                 *errp = -ENOMEM;
763                 return NULL;
764         }
765         if (map.m_flags & EXT4_MAP_NEW) {
766                 J_ASSERT(create != 0);
767                 J_ASSERT(handle != NULL);
768
769                 /*
770                  * Now that we do not always journal data, we should
771                  * keep in mind whether this should always journal the
772                  * new buffer as metadata.  For now, regular file
773                  * writes use ext4_get_block instead, so it's not a
774                  * problem.
775                  */
776                 lock_buffer(bh);
777                 BUFFER_TRACE(bh, "call get_create_access");
778                 fatal = ext4_journal_get_create_access(handle, bh);
779                 if (!fatal && !buffer_uptodate(bh)) {
780                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781                         set_buffer_uptodate(bh);
782                 }
783                 unlock_buffer(bh);
784                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785                 err = ext4_handle_dirty_metadata(handle, inode, bh);
786                 if (!fatal)
787                         fatal = err;
788         } else {
789                 BUFFER_TRACE(bh, "not a new buffer");
790         }
791         if (fatal) {
792                 *errp = fatal;
793                 brelse(bh);
794                 bh = NULL;
795         }
796         return bh;
797 }
798
799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
800                                ext4_lblk_t block, int create, int *err)
801 {
802         struct buffer_head *bh;
803
804         bh = ext4_getblk(handle, inode, block, create, err);
805         if (!bh)
806                 return bh;
807         if (buffer_uptodate(bh))
808                 return bh;
809         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
810         wait_on_buffer(bh);
811         if (buffer_uptodate(bh))
812                 return bh;
813         put_bh(bh);
814         *err = -EIO;
815         return NULL;
816 }
817
818 int ext4_walk_page_buffers(handle_t *handle,
819                            struct buffer_head *head,
820                            unsigned from,
821                            unsigned to,
822                            int *partial,
823                            int (*fn)(handle_t *handle,
824                                      struct buffer_head *bh))
825 {
826         struct buffer_head *bh;
827         unsigned block_start, block_end;
828         unsigned blocksize = head->b_size;
829         int err, ret = 0;
830         struct buffer_head *next;
831
832         for (bh = head, block_start = 0;
833              ret == 0 && (bh != head || !block_start);
834              block_start = block_end, bh = next) {
835                 next = bh->b_this_page;
836                 block_end = block_start + blocksize;
837                 if (block_end <= from || block_start >= to) {
838                         if (partial && !buffer_uptodate(bh))
839                                 *partial = 1;
840                         continue;
841                 }
842                 err = (*fn)(handle, bh);
843                 if (!ret)
844                         ret = err;
845         }
846         return ret;
847 }
848
849 /*
850  * To preserve ordering, it is essential that the hole instantiation and
851  * the data write be encapsulated in a single transaction.  We cannot
852  * close off a transaction and start a new one between the ext4_get_block()
853  * and the commit_write().  So doing the jbd2_journal_start at the start of
854  * prepare_write() is the right place.
855  *
856  * Also, this function can nest inside ext4_writepage().  In that case, we
857  * *know* that ext4_writepage() has generated enough buffer credits to do the
858  * whole page.  So we won't block on the journal in that case, which is good,
859  * because the caller may be PF_MEMALLOC.
860  *
861  * By accident, ext4 can be reentered when a transaction is open via
862  * quota file writes.  If we were to commit the transaction while thus
863  * reentered, there can be a deadlock - we would be holding a quota
864  * lock, and the commit would never complete if another thread had a
865  * transaction open and was blocking on the quota lock - a ranking
866  * violation.
867  *
868  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
869  * will _not_ run commit under these circumstances because handle->h_ref
870  * is elevated.  We'll still have enough credits for the tiny quotafile
871  * write.
872  */
873 int do_journal_get_write_access(handle_t *handle,
874                                 struct buffer_head *bh)
875 {
876         int dirty = buffer_dirty(bh);
877         int ret;
878
879         if (!buffer_mapped(bh) || buffer_freed(bh))
880                 return 0;
881         /*
882          * __block_write_begin() could have dirtied some buffers. Clean
883          * the dirty bit as jbd2_journal_get_write_access() could complain
884          * otherwise about fs integrity issues. Setting of the dirty bit
885          * by __block_write_begin() isn't a real problem here as we clear
886          * the bit before releasing a page lock and thus writeback cannot
887          * ever write the buffer.
888          */
889         if (dirty)
890                 clear_buffer_dirty(bh);
891         BUFFER_TRACE(bh, "get write access");
892         ret = ext4_journal_get_write_access(handle, bh);
893         if (!ret && dirty)
894                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895         return ret;
896 }
897
898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899                    struct buffer_head *bh_result, int create);
900 static int ext4_write_begin(struct file *file, struct address_space *mapping,
901                             loff_t pos, unsigned len, unsigned flags,
902                             struct page **pagep, void **fsdata)
903 {
904         struct inode *inode = mapping->host;
905         int ret, needed_blocks;
906         handle_t *handle;
907         int retries = 0;
908         struct page *page;
909         pgoff_t index;
910         unsigned from, to;
911
912         trace_ext4_write_begin(inode, pos, len, flags);
913         /*
914          * Reserve one block more for addition to orphan list in case
915          * we allocate blocks but write fails for some reason
916          */
917         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
918         index = pos >> PAGE_CACHE_SHIFT;
919         from = pos & (PAGE_CACHE_SIZE - 1);
920         to = from + len;
921
922         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924                                                     flags, pagep);
925                 if (ret < 0)
926                         return ret;
927                 if (ret == 1)
928                         return 0;
929         }
930
931         /*
932          * grab_cache_page_write_begin() can take a long time if the
933          * system is thrashing due to memory pressure, or if the page
934          * is being written back.  So grab it first before we start
935          * the transaction handle.  This also allows us to allocate
936          * the page (if needed) without using GFP_NOFS.
937          */
938 retry_grab:
939         page = grab_cache_page_write_begin(mapping, index, flags);
940         if (!page)
941                 return -ENOMEM;
942         unlock_page(page);
943
944 retry_journal:
945         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
946         if (IS_ERR(handle)) {
947                 page_cache_release(page);
948                 return PTR_ERR(handle);
949         }
950
951         lock_page(page);
952         if (page->mapping != mapping) {
953                 /* The page got truncated from under us */
954                 unlock_page(page);
955                 page_cache_release(page);
956                 ext4_journal_stop(handle);
957                 goto retry_grab;
958         }
959         /* In case writeback began while the page was unlocked */
960         wait_for_stable_page(page);
961
962         if (ext4_should_dioread_nolock(inode))
963                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
964         else
965                 ret = __block_write_begin(page, pos, len, ext4_get_block);
966
967         if (!ret && ext4_should_journal_data(inode)) {
968                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
969                                              from, to, NULL,
970                                              do_journal_get_write_access);
971         }
972
973         if (ret) {
974                 unlock_page(page);
975                 /*
976                  * __block_write_begin may have instantiated a few blocks
977                  * outside i_size.  Trim these off again. Don't need
978                  * i_size_read because we hold i_mutex.
979                  *
980                  * Add inode to orphan list in case we crash before
981                  * truncate finishes
982                  */
983                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
984                         ext4_orphan_add(handle, inode);
985
986                 ext4_journal_stop(handle);
987                 if (pos + len > inode->i_size) {
988                         ext4_truncate_failed_write(inode);
989                         /*
990                          * If truncate failed early the inode might
991                          * still be on the orphan list; we need to
992                          * make sure the inode is removed from the
993                          * orphan list in that case.
994                          */
995                         if (inode->i_nlink)
996                                 ext4_orphan_del(NULL, inode);
997                 }
998
999                 if (ret == -ENOSPC &&
1000                     ext4_should_retry_alloc(inode->i_sb, &retries))
1001                         goto retry_journal;
1002                 page_cache_release(page);
1003                 return ret;
1004         }
1005         *pagep = page;
1006         return ret;
1007 }
1008
1009 /* For write_end() in data=journal mode */
1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1011 {
1012         int ret;
1013         if (!buffer_mapped(bh) || buffer_freed(bh))
1014                 return 0;
1015         set_buffer_uptodate(bh);
1016         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017         clear_buffer_meta(bh);
1018         clear_buffer_prio(bh);
1019         return ret;
1020 }
1021
1022 /*
1023  * We need to pick up the new inode size which generic_commit_write gave us
1024  * `file' can be NULL - eg, when called from page_symlink().
1025  *
1026  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027  * buffers are managed internally.
1028  */
1029 static int ext4_write_end(struct file *file,
1030                           struct address_space *mapping,
1031                           loff_t pos, unsigned len, unsigned copied,
1032                           struct page *page, void *fsdata)
1033 {
1034         handle_t *handle = ext4_journal_current_handle();
1035         struct inode *inode = mapping->host;
1036         int ret = 0, ret2;
1037         int i_size_changed = 0;
1038
1039         trace_ext4_write_end(inode, pos, len, copied);
1040         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041                 ret = ext4_jbd2_file_inode(handle, inode);
1042                 if (ret) {
1043                         unlock_page(page);
1044                         page_cache_release(page);
1045                         goto errout;
1046                 }
1047         }
1048
1049         if (ext4_has_inline_data(inode)) {
1050                 ret = ext4_write_inline_data_end(inode, pos, len,
1051                                                  copied, page);
1052                 if (ret < 0)
1053                         goto errout;
1054                 copied = ret;
1055         } else
1056                 copied = block_write_end(file, mapping, pos,
1057                                          len, copied, page, fsdata);
1058
1059         /*
1060          * No need to use i_size_read() here, the i_size
1061          * cannot change under us because we hole i_mutex.
1062          *
1063          * But it's important to update i_size while still holding page lock:
1064          * page writeout could otherwise come in and zero beyond i_size.
1065          */
1066         if (pos + copied > inode->i_size) {
1067                 i_size_write(inode, pos + copied);
1068                 i_size_changed = 1;
1069         }
1070
1071         if (pos + copied > EXT4_I(inode)->i_disksize) {
1072                 /* We need to mark inode dirty even if
1073                  * new_i_size is less that inode->i_size
1074                  * but greater than i_disksize. (hint delalloc)
1075                  */
1076                 ext4_update_i_disksize(inode, (pos + copied));
1077                 i_size_changed = 1;
1078         }
1079         unlock_page(page);
1080         page_cache_release(page);
1081
1082         /*
1083          * Don't mark the inode dirty under page lock. First, it unnecessarily
1084          * makes the holding time of page lock longer. Second, it forces lock
1085          * ordering of page lock and transaction start for journaling
1086          * filesystems.
1087          */
1088         if (i_size_changed)
1089                 ext4_mark_inode_dirty(handle, inode);
1090
1091         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092                 /* if we have allocated more blocks and copied
1093                  * less. We will have blocks allocated outside
1094                  * inode->i_size. So truncate them
1095                  */
1096                 ext4_orphan_add(handle, inode);
1097 errout:
1098         ret2 = ext4_journal_stop(handle);
1099         if (!ret)
1100                 ret = ret2;
1101
1102         if (pos + len > inode->i_size) {
1103                 ext4_truncate_failed_write(inode);
1104                 /*
1105                  * If truncate failed early the inode might still be
1106                  * on the orphan list; we need to make sure the inode
1107                  * is removed from the orphan list in that case.
1108                  */
1109                 if (inode->i_nlink)
1110                         ext4_orphan_del(NULL, inode);
1111         }
1112
1113         return ret ? ret : copied;
1114 }
1115
1116 static int ext4_journalled_write_end(struct file *file,
1117                                      struct address_space *mapping,
1118                                      loff_t pos, unsigned len, unsigned copied,
1119                                      struct page *page, void *fsdata)
1120 {
1121         handle_t *handle = ext4_journal_current_handle();
1122         struct inode *inode = mapping->host;
1123         int ret = 0, ret2;
1124         int partial = 0;
1125         unsigned from, to;
1126         loff_t new_i_size;
1127
1128         trace_ext4_journalled_write_end(inode, pos, len, copied);
1129         from = pos & (PAGE_CACHE_SIZE - 1);
1130         to = from + len;
1131
1132         BUG_ON(!ext4_handle_valid(handle));
1133
1134         if (ext4_has_inline_data(inode))
1135                 copied = ext4_write_inline_data_end(inode, pos, len,
1136                                                     copied, page);
1137         else {
1138                 if (copied < len) {
1139                         if (!PageUptodate(page))
1140                                 copied = 0;
1141                         page_zero_new_buffers(page, from+copied, to);
1142                 }
1143
1144                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1145                                              to, &partial, write_end_fn);
1146                 if (!partial)
1147                         SetPageUptodate(page);
1148         }
1149         new_i_size = pos + copied;
1150         if (new_i_size > inode->i_size)
1151                 i_size_write(inode, pos+copied);
1152         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1153         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1154         if (new_i_size > EXT4_I(inode)->i_disksize) {
1155                 ext4_update_i_disksize(inode, new_i_size);
1156                 ret2 = ext4_mark_inode_dirty(handle, inode);
1157                 if (!ret)
1158                         ret = ret2;
1159         }
1160
1161         unlock_page(page);
1162         page_cache_release(page);
1163         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                 /* if we have allocated more blocks and copied
1165                  * less. We will have blocks allocated outside
1166                  * inode->i_size. So truncate them
1167                  */
1168                 ext4_orphan_add(handle, inode);
1169
1170         ret2 = ext4_journal_stop(handle);
1171         if (!ret)
1172                 ret = ret2;
1173         if (pos + len > inode->i_size) {
1174                 ext4_truncate_failed_write(inode);
1175                 /*
1176                  * If truncate failed early the inode might still be
1177                  * on the orphan list; we need to make sure the inode
1178                  * is removed from the orphan list in that case.
1179                  */
1180                 if (inode->i_nlink)
1181                         ext4_orphan_del(NULL, inode);
1182         }
1183
1184         return ret ? ret : copied;
1185 }
1186
1187 /*
1188  * Reserve a single cluster located at lblock
1189  */
1190 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1191 {
1192         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1193         struct ext4_inode_info *ei = EXT4_I(inode);
1194         unsigned int md_needed;
1195         int ret;
1196
1197         /*
1198          * We will charge metadata quota at writeout time; this saves
1199          * us from metadata over-estimation, though we may go over by
1200          * a small amount in the end.  Here we just reserve for data.
1201          */
1202         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1203         if (ret)
1204                 return ret;
1205
1206         /*
1207          * recalculate the amount of metadata blocks to reserve
1208          * in order to allocate nrblocks
1209          * worse case is one extent per block
1210          */
1211         spin_lock(&ei->i_block_reservation_lock);
1212         /*
1213          * ext4_calc_metadata_amount() has side effects, which we have
1214          * to be prepared undo if we fail to claim space.
1215          */
1216         md_needed = 0;
1217         trace_ext4_da_reserve_space(inode, 0);
1218
1219         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1220                 spin_unlock(&ei->i_block_reservation_lock);
1221                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1222                 return -ENOSPC;
1223         }
1224         ei->i_reserved_data_blocks++;
1225         spin_unlock(&ei->i_block_reservation_lock);
1226
1227         return 0;       /* success */
1228 }
1229
1230 static void ext4_da_release_space(struct inode *inode, int to_free)
1231 {
1232         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1233         struct ext4_inode_info *ei = EXT4_I(inode);
1234
1235         if (!to_free)
1236                 return;         /* Nothing to release, exit */
1237
1238         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1239
1240         trace_ext4_da_release_space(inode, to_free);
1241         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1242                 /*
1243                  * if there aren't enough reserved blocks, then the
1244                  * counter is messed up somewhere.  Since this
1245                  * function is called from invalidate page, it's
1246                  * harmless to return without any action.
1247                  */
1248                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1249                          "ino %lu, to_free %d with only %d reserved "
1250                          "data blocks", inode->i_ino, to_free,
1251                          ei->i_reserved_data_blocks);
1252                 WARN_ON(1);
1253                 to_free = ei->i_reserved_data_blocks;
1254         }
1255         ei->i_reserved_data_blocks -= to_free;
1256
1257         /* update fs dirty data blocks counter */
1258         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1259
1260         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1261
1262         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1263 }
1264
1265 static void ext4_da_page_release_reservation(struct page *page,
1266                                              unsigned int offset,
1267                                              unsigned int length)
1268 {
1269         int to_release = 0;
1270         struct buffer_head *head, *bh;
1271         unsigned int curr_off = 0;
1272         struct inode *inode = page->mapping->host;
1273         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1274         unsigned int stop = offset + length;
1275         int num_clusters;
1276         ext4_fsblk_t lblk;
1277
1278         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1279
1280         head = page_buffers(page);
1281         bh = head;
1282         do {
1283                 unsigned int next_off = curr_off + bh->b_size;
1284
1285                 if (next_off > stop)
1286                         break;
1287
1288                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1289                         to_release++;
1290                         clear_buffer_delay(bh);
1291                 }
1292                 curr_off = next_off;
1293         } while ((bh = bh->b_this_page) != head);
1294
1295         if (to_release) {
1296                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1297                 ext4_es_remove_extent(inode, lblk, to_release);
1298         }
1299
1300         /* If we have released all the blocks belonging to a cluster, then we
1301          * need to release the reserved space for that cluster. */
1302         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1303         while (num_clusters > 0) {
1304                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1305                         ((num_clusters - 1) << sbi->s_cluster_bits);
1306                 if (sbi->s_cluster_ratio == 1 ||
1307                     !ext4_find_delalloc_cluster(inode, lblk))
1308                         ext4_da_release_space(inode, 1);
1309
1310                 num_clusters--;
1311         }
1312 }
1313
1314 /*
1315  * Delayed allocation stuff
1316  */
1317
1318 struct mpage_da_data {
1319         struct inode *inode;
1320         struct writeback_control *wbc;
1321
1322         pgoff_t first_page;     /* The first page to write */
1323         pgoff_t next_page;      /* Current page to examine */
1324         pgoff_t last_page;      /* Last page to examine */
1325         /*
1326          * Extent to map - this can be after first_page because that can be
1327          * fully mapped. We somewhat abuse m_flags to store whether the extent
1328          * is delalloc or unwritten.
1329          */
1330         struct ext4_map_blocks map;
1331         struct ext4_io_submit io_submit;        /* IO submission data */
1332 };
1333
1334 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1335                                        bool invalidate)
1336 {
1337         int nr_pages, i;
1338         pgoff_t index, end;
1339         struct pagevec pvec;
1340         struct inode *inode = mpd->inode;
1341         struct address_space *mapping = inode->i_mapping;
1342
1343         /* This is necessary when next_page == 0. */
1344         if (mpd->first_page >= mpd->next_page)
1345                 return;
1346
1347         index = mpd->first_page;
1348         end   = mpd->next_page - 1;
1349         if (invalidate) {
1350                 ext4_lblk_t start, last;
1351                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1352                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353                 ext4_es_remove_extent(inode, start, last - start + 1);
1354         }
1355
1356         pagevec_init(&pvec, 0);
1357         while (index <= end) {
1358                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1359                 if (nr_pages == 0)
1360                         break;
1361                 for (i = 0; i < nr_pages; i++) {
1362                         struct page *page = pvec.pages[i];
1363                         if (page->index > end)
1364                                 break;
1365                         BUG_ON(!PageLocked(page));
1366                         BUG_ON(PageWriteback(page));
1367                         if (invalidate) {
1368                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1369                                 ClearPageUptodate(page);
1370                         }
1371                         unlock_page(page);
1372                 }
1373                 index = pvec.pages[nr_pages - 1]->index + 1;
1374                 pagevec_release(&pvec);
1375         }
1376 }
1377
1378 static void ext4_print_free_blocks(struct inode *inode)
1379 {
1380         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1381         struct super_block *sb = inode->i_sb;
1382         struct ext4_inode_info *ei = EXT4_I(inode);
1383
1384         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1385                EXT4_C2B(EXT4_SB(inode->i_sb),
1386                         ext4_count_free_clusters(sb)));
1387         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1388         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1389                (long long) EXT4_C2B(EXT4_SB(sb),
1390                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1391         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1392                (long long) EXT4_C2B(EXT4_SB(sb),
1393                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1394         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1395         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1396                  ei->i_reserved_data_blocks);
1397         return;
1398 }
1399
1400 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1401 {
1402         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1403 }
1404
1405 /*
1406  * This function is grabs code from the very beginning of
1407  * ext4_map_blocks, but assumes that the caller is from delayed write
1408  * time. This function looks up the requested blocks and sets the
1409  * buffer delay bit under the protection of i_data_sem.
1410  */
1411 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1412                               struct ext4_map_blocks *map,
1413                               struct buffer_head *bh)
1414 {
1415         struct extent_status es;
1416         int retval;
1417         sector_t invalid_block = ~((sector_t) 0xffff);
1418 #ifdef ES_AGGRESSIVE_TEST
1419         struct ext4_map_blocks orig_map;
1420
1421         memcpy(&orig_map, map, sizeof(*map));
1422 #endif
1423
1424         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1425                 invalid_block = ~0;
1426
1427         map->m_flags = 0;
1428         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1429                   "logical block %lu\n", inode->i_ino, map->m_len,
1430                   (unsigned long) map->m_lblk);
1431
1432         /* Lookup extent status tree firstly */
1433         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1434                 ext4_es_lru_add(inode);
1435                 if (ext4_es_is_hole(&es)) {
1436                         retval = 0;
1437                         down_read(&EXT4_I(inode)->i_data_sem);
1438                         goto add_delayed;
1439                 }
1440
1441                 /*
1442                  * Delayed extent could be allocated by fallocate.
1443                  * So we need to check it.
1444                  */
1445                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1446                         map_bh(bh, inode->i_sb, invalid_block);
1447                         set_buffer_new(bh);
1448                         set_buffer_delay(bh);
1449                         return 0;
1450                 }
1451
1452                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1453                 retval = es.es_len - (iblock - es.es_lblk);
1454                 if (retval > map->m_len)
1455                         retval = map->m_len;
1456                 map->m_len = retval;
1457                 if (ext4_es_is_written(&es))
1458                         map->m_flags |= EXT4_MAP_MAPPED;
1459                 else if (ext4_es_is_unwritten(&es))
1460                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1461                 else
1462                         BUG_ON(1);
1463
1464 #ifdef ES_AGGRESSIVE_TEST
1465                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1466 #endif
1467                 return retval;
1468         }
1469
1470         /*
1471          * Try to see if we can get the block without requesting a new
1472          * file system block.
1473          */
1474         down_read(&EXT4_I(inode)->i_data_sem);
1475         if (ext4_has_inline_data(inode)) {
1476                 /*
1477                  * We will soon create blocks for this page, and let
1478                  * us pretend as if the blocks aren't allocated yet.
1479                  * In case of clusters, we have to handle the work
1480                  * of mapping from cluster so that the reserved space
1481                  * is calculated properly.
1482                  */
1483                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1484                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1485                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1486                 retval = 0;
1487         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1488                 retval = ext4_ext_map_blocks(NULL, inode, map,
1489                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1490         else
1491                 retval = ext4_ind_map_blocks(NULL, inode, map,
1492                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1493
1494 add_delayed:
1495         if (retval == 0) {
1496                 int ret;
1497                 /*
1498                  * XXX: __block_prepare_write() unmaps passed block,
1499                  * is it OK?
1500                  */
1501                 /*
1502                  * If the block was allocated from previously allocated cluster,
1503                  * then we don't need to reserve it again. However we still need
1504                  * to reserve metadata for every block we're going to write.
1505                  */
1506                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1507                         ret = ext4_da_reserve_space(inode, iblock);
1508                         if (ret) {
1509                                 /* not enough space to reserve */
1510                                 retval = ret;
1511                                 goto out_unlock;
1512                         }
1513                 }
1514
1515                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1516                                             ~0, EXTENT_STATUS_DELAYED);
1517                 if (ret) {
1518                         retval = ret;
1519                         goto out_unlock;
1520                 }
1521
1522                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1523                  * and it should not appear on the bh->b_state.
1524                  */
1525                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1526
1527                 map_bh(bh, inode->i_sb, invalid_block);
1528                 set_buffer_new(bh);
1529                 set_buffer_delay(bh);
1530         } else if (retval > 0) {
1531                 int ret;
1532                 unsigned int status;
1533
1534                 if (unlikely(retval != map->m_len)) {
1535                         ext4_warning(inode->i_sb,
1536                                      "ES len assertion failed for inode "
1537                                      "%lu: retval %d != map->m_len %d",
1538                                      inode->i_ino, retval, map->m_len);
1539                         WARN_ON(1);
1540                 }
1541
1542                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1543                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1544                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1545                                             map->m_pblk, status);
1546                 if (ret != 0)
1547                         retval = ret;
1548         }
1549
1550 out_unlock:
1551         up_read((&EXT4_I(inode)->i_data_sem));
1552
1553         return retval;
1554 }
1555
1556 /*
1557  * This is a special get_blocks_t callback which is used by
1558  * ext4_da_write_begin().  It will either return mapped block or
1559  * reserve space for a single block.
1560  *
1561  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1562  * We also have b_blocknr = -1 and b_bdev initialized properly
1563  *
1564  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1565  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1566  * initialized properly.
1567  */
1568 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1569                            struct buffer_head *bh, int create)
1570 {
1571         struct ext4_map_blocks map;
1572         int ret = 0;
1573
1574         BUG_ON(create == 0);
1575         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1576
1577         map.m_lblk = iblock;
1578         map.m_len = 1;
1579
1580         /*
1581          * first, we need to know whether the block is allocated already
1582          * preallocated blocks are unmapped but should treated
1583          * the same as allocated blocks.
1584          */
1585         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1586         if (ret <= 0)
1587                 return ret;
1588
1589         map_bh(bh, inode->i_sb, map.m_pblk);
1590         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1591
1592         if (buffer_unwritten(bh)) {
1593                 /* A delayed write to unwritten bh should be marked
1594                  * new and mapped.  Mapped ensures that we don't do
1595                  * get_block multiple times when we write to the same
1596                  * offset and new ensures that we do proper zero out
1597                  * for partial write.
1598                  */
1599                 set_buffer_new(bh);
1600                 set_buffer_mapped(bh);
1601         }
1602         return 0;
1603 }
1604
1605 static int bget_one(handle_t *handle, struct buffer_head *bh)
1606 {
1607         get_bh(bh);
1608         return 0;
1609 }
1610
1611 static int bput_one(handle_t *handle, struct buffer_head *bh)
1612 {
1613         put_bh(bh);
1614         return 0;
1615 }
1616
1617 static int __ext4_journalled_writepage(struct page *page,
1618                                        unsigned int len)
1619 {
1620         struct address_space *mapping = page->mapping;
1621         struct inode *inode = mapping->host;
1622         struct buffer_head *page_bufs = NULL;
1623         handle_t *handle = NULL;
1624         int ret = 0, err = 0;
1625         int inline_data = ext4_has_inline_data(inode);
1626         struct buffer_head *inode_bh = NULL;
1627
1628         ClearPageChecked(page);
1629
1630         if (inline_data) {
1631                 BUG_ON(page->index != 0);
1632                 BUG_ON(len > ext4_get_max_inline_size(inode));
1633                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1634                 if (inode_bh == NULL)
1635                         goto out;
1636         } else {
1637                 page_bufs = page_buffers(page);
1638                 if (!page_bufs) {
1639                         BUG();
1640                         goto out;
1641                 }
1642                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1643                                        NULL, bget_one);
1644         }
1645         /* As soon as we unlock the page, it can go away, but we have
1646          * references to buffers so we are safe */
1647         unlock_page(page);
1648
1649         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1650                                     ext4_writepage_trans_blocks(inode));
1651         if (IS_ERR(handle)) {
1652                 ret = PTR_ERR(handle);
1653                 goto out;
1654         }
1655
1656         BUG_ON(!ext4_handle_valid(handle));
1657
1658         if (inline_data) {
1659                 BUFFER_TRACE(inode_bh, "get write access");
1660                 ret = ext4_journal_get_write_access(handle, inode_bh);
1661
1662                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1663
1664         } else {
1665                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1666                                              do_journal_get_write_access);
1667
1668                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1669                                              write_end_fn);
1670         }
1671         if (ret == 0)
1672                 ret = err;
1673         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1674         err = ext4_journal_stop(handle);
1675         if (!ret)
1676                 ret = err;
1677
1678         if (!ext4_has_inline_data(inode))
1679                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1680                                        NULL, bput_one);
1681         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1682 out:
1683         brelse(inode_bh);
1684         return ret;
1685 }
1686
1687 /*
1688  * Note that we don't need to start a transaction unless we're journaling data
1689  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1690  * need to file the inode to the transaction's list in ordered mode because if
1691  * we are writing back data added by write(), the inode is already there and if
1692  * we are writing back data modified via mmap(), no one guarantees in which
1693  * transaction the data will hit the disk. In case we are journaling data, we
1694  * cannot start transaction directly because transaction start ranks above page
1695  * lock so we have to do some magic.
1696  *
1697  * This function can get called via...
1698  *   - ext4_writepages after taking page lock (have journal handle)
1699  *   - journal_submit_inode_data_buffers (no journal handle)
1700  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1701  *   - grab_page_cache when doing write_begin (have journal handle)
1702  *
1703  * We don't do any block allocation in this function. If we have page with
1704  * multiple blocks we need to write those buffer_heads that are mapped. This
1705  * is important for mmaped based write. So if we do with blocksize 1K
1706  * truncate(f, 1024);
1707  * a = mmap(f, 0, 4096);
1708  * a[0] = 'a';
1709  * truncate(f, 4096);
1710  * we have in the page first buffer_head mapped via page_mkwrite call back
1711  * but other buffer_heads would be unmapped but dirty (dirty done via the
1712  * do_wp_page). So writepage should write the first block. If we modify
1713  * the mmap area beyond 1024 we will again get a page_fault and the
1714  * page_mkwrite callback will do the block allocation and mark the
1715  * buffer_heads mapped.
1716  *
1717  * We redirty the page if we have any buffer_heads that is either delay or
1718  * unwritten in the page.
1719  *
1720  * We can get recursively called as show below.
1721  *
1722  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1723  *              ext4_writepage()
1724  *
1725  * But since we don't do any block allocation we should not deadlock.
1726  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1727  */
1728 static int ext4_writepage(struct page *page,
1729                           struct writeback_control *wbc)
1730 {
1731         int ret = 0;
1732         loff_t size;
1733         unsigned int len;
1734         struct buffer_head *page_bufs = NULL;
1735         struct inode *inode = page->mapping->host;
1736         struct ext4_io_submit io_submit;
1737         bool keep_towrite = false;
1738
1739         trace_ext4_writepage(page);
1740         size = i_size_read(inode);
1741         if (page->index == size >> PAGE_CACHE_SHIFT)
1742                 len = size & ~PAGE_CACHE_MASK;
1743         else
1744                 len = PAGE_CACHE_SIZE;
1745
1746         page_bufs = page_buffers(page);
1747         /*
1748          * We cannot do block allocation or other extent handling in this
1749          * function. If there are buffers needing that, we have to redirty
1750          * the page. But we may reach here when we do a journal commit via
1751          * journal_submit_inode_data_buffers() and in that case we must write
1752          * allocated buffers to achieve data=ordered mode guarantees.
1753          */
1754         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1755                                    ext4_bh_delay_or_unwritten)) {
1756                 redirty_page_for_writepage(wbc, page);
1757                 if (current->flags & PF_MEMALLOC) {
1758                         /*
1759                          * For memory cleaning there's no point in writing only
1760                          * some buffers. So just bail out. Warn if we came here
1761                          * from direct reclaim.
1762                          */
1763                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1764                                                         == PF_MEMALLOC);
1765                         unlock_page(page);
1766                         return 0;
1767                 }
1768                 keep_towrite = true;
1769         }
1770
1771         if (PageChecked(page) && ext4_should_journal_data(inode))
1772                 /*
1773                  * It's mmapped pagecache.  Add buffers and journal it.  There
1774                  * doesn't seem much point in redirtying the page here.
1775                  */
1776                 return __ext4_journalled_writepage(page, len);
1777
1778         ext4_io_submit_init(&io_submit, wbc);
1779         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1780         if (!io_submit.io_end) {
1781                 redirty_page_for_writepage(wbc, page);
1782                 unlock_page(page);
1783                 return -ENOMEM;
1784         }
1785         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1786         ext4_io_submit(&io_submit);
1787         /* Drop io_end reference we got from init */
1788         ext4_put_io_end_defer(io_submit.io_end);
1789         return ret;
1790 }
1791
1792 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1793 {
1794         int len;
1795         loff_t size = i_size_read(mpd->inode);
1796         int err;
1797
1798         BUG_ON(page->index != mpd->first_page);
1799         if (page->index == size >> PAGE_CACHE_SHIFT)
1800                 len = size & ~PAGE_CACHE_MASK;
1801         else
1802                 len = PAGE_CACHE_SIZE;
1803         clear_page_dirty_for_io(page);
1804         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1805         if (!err)
1806                 mpd->wbc->nr_to_write--;
1807         mpd->first_page++;
1808
1809         return err;
1810 }
1811
1812 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1813
1814 /*
1815  * mballoc gives us at most this number of blocks...
1816  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1817  * The rest of mballoc seems to handle chunks up to full group size.
1818  */
1819 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1820
1821 /*
1822  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1823  *
1824  * @mpd - extent of blocks
1825  * @lblk - logical number of the block in the file
1826  * @bh - buffer head we want to add to the extent
1827  *
1828  * The function is used to collect contig. blocks in the same state. If the
1829  * buffer doesn't require mapping for writeback and we haven't started the
1830  * extent of buffers to map yet, the function returns 'true' immediately - the
1831  * caller can write the buffer right away. Otherwise the function returns true
1832  * if the block has been added to the extent, false if the block couldn't be
1833  * added.
1834  */
1835 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1836                                    struct buffer_head *bh)
1837 {
1838         struct ext4_map_blocks *map = &mpd->map;
1839
1840         /* Buffer that doesn't need mapping for writeback? */
1841         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1842             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1843                 /* So far no extent to map => we write the buffer right away */
1844                 if (map->m_len == 0)
1845                         return true;
1846                 return false;
1847         }
1848
1849         /* First block in the extent? */
1850         if (map->m_len == 0) {
1851                 map->m_lblk = lblk;
1852                 map->m_len = 1;
1853                 map->m_flags = bh->b_state & BH_FLAGS;
1854                 return true;
1855         }
1856
1857         /* Don't go larger than mballoc is willing to allocate */
1858         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1859                 return false;
1860
1861         /* Can we merge the block to our big extent? */
1862         if (lblk == map->m_lblk + map->m_len &&
1863             (bh->b_state & BH_FLAGS) == map->m_flags) {
1864                 map->m_len++;
1865                 return true;
1866         }
1867         return false;
1868 }
1869
1870 /*
1871  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1872  *
1873  * @mpd - extent of blocks for mapping
1874  * @head - the first buffer in the page
1875  * @bh - buffer we should start processing from
1876  * @lblk - logical number of the block in the file corresponding to @bh
1877  *
1878  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1879  * the page for IO if all buffers in this page were mapped and there's no
1880  * accumulated extent of buffers to map or add buffers in the page to the
1881  * extent of buffers to map. The function returns 1 if the caller can continue
1882  * by processing the next page, 0 if it should stop adding buffers to the
1883  * extent to map because we cannot extend it anymore. It can also return value
1884  * < 0 in case of error during IO submission.
1885  */
1886 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1887                                    struct buffer_head *head,
1888                                    struct buffer_head *bh,
1889                                    ext4_lblk_t lblk)
1890 {
1891         struct inode *inode = mpd->inode;
1892         int err;
1893         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1894                                                         >> inode->i_blkbits;
1895
1896         do {
1897                 BUG_ON(buffer_locked(bh));
1898
1899                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1900                         /* Found extent to map? */
1901                         if (mpd->map.m_len)
1902                                 return 0;
1903                         /* Everything mapped so far and we hit EOF */
1904                         break;
1905                 }
1906         } while (lblk++, (bh = bh->b_this_page) != head);
1907         /* So far everything mapped? Submit the page for IO. */
1908         if (mpd->map.m_len == 0) {
1909                 err = mpage_submit_page(mpd, head->b_page);
1910                 if (err < 0)
1911                         return err;
1912         }
1913         return lblk < blocks;
1914 }
1915
1916 /*
1917  * mpage_map_buffers - update buffers corresponding to changed extent and
1918  *                     submit fully mapped pages for IO
1919  *
1920  * @mpd - description of extent to map, on return next extent to map
1921  *
1922  * Scan buffers corresponding to changed extent (we expect corresponding pages
1923  * to be already locked) and update buffer state according to new extent state.
1924  * We map delalloc buffers to their physical location, clear unwritten bits,
1925  * and mark buffers as uninit when we perform writes to unwritten extents
1926  * and do extent conversion after IO is finished. If the last page is not fully
1927  * mapped, we update @map to the next extent in the last page that needs
1928  * mapping. Otherwise we submit the page for IO.
1929  */
1930 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1931 {
1932         struct pagevec pvec;
1933         int nr_pages, i;
1934         struct inode *inode = mpd->inode;
1935         struct buffer_head *head, *bh;
1936         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1937         pgoff_t start, end;
1938         ext4_lblk_t lblk;
1939         sector_t pblock;
1940         int err;
1941
1942         start = mpd->map.m_lblk >> bpp_bits;
1943         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1944         lblk = start << bpp_bits;
1945         pblock = mpd->map.m_pblk;
1946
1947         pagevec_init(&pvec, 0);
1948         while (start <= end) {
1949                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1950                                           PAGEVEC_SIZE);
1951                 if (nr_pages == 0)
1952                         break;
1953                 for (i = 0; i < nr_pages; i++) {
1954                         struct page *page = pvec.pages[i];
1955
1956                         if (page->index > end)
1957                                 break;
1958                         /* Up to 'end' pages must be contiguous */
1959                         BUG_ON(page->index != start);
1960                         bh = head = page_buffers(page);
1961                         do {
1962                                 if (lblk < mpd->map.m_lblk)
1963                                         continue;
1964                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1965                                         /*
1966                                          * Buffer after end of mapped extent.
1967                                          * Find next buffer in the page to map.
1968                                          */
1969                                         mpd->map.m_len = 0;
1970                                         mpd->map.m_flags = 0;
1971                                         /*
1972                                          * FIXME: If dioread_nolock supports
1973                                          * blocksize < pagesize, we need to make
1974                                          * sure we add size mapped so far to
1975                                          * io_end->size as the following call
1976                                          * can submit the page for IO.
1977                                          */
1978                                         err = mpage_process_page_bufs(mpd, head,
1979                                                                       bh, lblk);
1980                                         pagevec_release(&pvec);
1981                                         if (err > 0)
1982                                                 err = 0;
1983                                         return err;
1984                                 }
1985                                 if (buffer_delay(bh)) {
1986                                         clear_buffer_delay(bh);
1987                                         bh->b_blocknr = pblock++;
1988                                 }
1989                                 clear_buffer_unwritten(bh);
1990                         } while (lblk++, (bh = bh->b_this_page) != head);
1991
1992                         /*
1993                          * FIXME: This is going to break if dioread_nolock
1994                          * supports blocksize < pagesize as we will try to
1995                          * convert potentially unmapped parts of inode.
1996                          */
1997                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1998                         /* Page fully mapped - let IO run! */
1999                         err = mpage_submit_page(mpd, page);
2000                         if (err < 0) {
2001                                 pagevec_release(&pvec);
2002                                 return err;
2003                         }
2004                         start++;
2005                 }
2006                 pagevec_release(&pvec);
2007         }
2008         /* Extent fully mapped and matches with page boundary. We are done. */
2009         mpd->map.m_len = 0;
2010         mpd->map.m_flags = 0;
2011         return 0;
2012 }
2013
2014 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2015 {
2016         struct inode *inode = mpd->inode;
2017         struct ext4_map_blocks *map = &mpd->map;
2018         int get_blocks_flags;
2019         int err, dioread_nolock;
2020
2021         trace_ext4_da_write_pages_extent(inode, map);
2022         /*
2023          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2024          * to convert an unwritten extent to be initialized (in the case
2025          * where we have written into one or more preallocated blocks).  It is
2026          * possible that we're going to need more metadata blocks than
2027          * previously reserved. However we must not fail because we're in
2028          * writeback and there is nothing we can do about it so it might result
2029          * in data loss.  So use reserved blocks to allocate metadata if
2030          * possible.
2031          *
2032          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2033          * in question are delalloc blocks.  This affects functions in many
2034          * different parts of the allocation call path.  This flag exists
2035          * primarily because we don't want to change *many* call functions, so
2036          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2037          * once the inode's allocation semaphore is taken.
2038          */
2039         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2040                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2041         dioread_nolock = ext4_should_dioread_nolock(inode);
2042         if (dioread_nolock)
2043                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2044         if (map->m_flags & (1 << BH_Delay))
2045                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2046
2047         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2048         if (err < 0)
2049                 return err;
2050         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2051                 if (!mpd->io_submit.io_end->handle &&
2052                     ext4_handle_valid(handle)) {
2053                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2054                         handle->h_rsv_handle = NULL;
2055                 }
2056                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2057         }
2058
2059         BUG_ON(map->m_len == 0);
2060         if (map->m_flags & EXT4_MAP_NEW) {
2061                 struct block_device *bdev = inode->i_sb->s_bdev;
2062                 int i;
2063
2064                 for (i = 0; i < map->m_len; i++)
2065                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2066         }
2067         return 0;
2068 }
2069
2070 /*
2071  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2072  *                               mpd->len and submit pages underlying it for IO
2073  *
2074  * @handle - handle for journal operations
2075  * @mpd - extent to map
2076  * @give_up_on_write - we set this to true iff there is a fatal error and there
2077  *                     is no hope of writing the data. The caller should discard
2078  *                     dirty pages to avoid infinite loops.
2079  *
2080  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2081  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2082  * them to initialized or split the described range from larger unwritten
2083  * extent. Note that we need not map all the described range since allocation
2084  * can return less blocks or the range is covered by more unwritten extents. We
2085  * cannot map more because we are limited by reserved transaction credits. On
2086  * the other hand we always make sure that the last touched page is fully
2087  * mapped so that it can be written out (and thus forward progress is
2088  * guaranteed). After mapping we submit all mapped pages for IO.
2089  */
2090 static int mpage_map_and_submit_extent(handle_t *handle,
2091                                        struct mpage_da_data *mpd,
2092                                        bool *give_up_on_write)
2093 {
2094         struct inode *inode = mpd->inode;
2095         struct ext4_map_blocks *map = &mpd->map;
2096         int err;
2097         loff_t disksize;
2098
2099         mpd->io_submit.io_end->offset =
2100                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2101         do {
2102                 err = mpage_map_one_extent(handle, mpd);
2103                 if (err < 0) {
2104                         struct super_block *sb = inode->i_sb;
2105
2106                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2107                                 goto invalidate_dirty_pages;
2108                         /*
2109                          * Let the uper layers retry transient errors.
2110                          * In the case of ENOSPC, if ext4_count_free_blocks()
2111                          * is non-zero, a commit should free up blocks.
2112                          */
2113                         if ((err == -ENOMEM) ||
2114                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2115                                 return err;
2116                         ext4_msg(sb, KERN_CRIT,
2117                                  "Delayed block allocation failed for "
2118                                  "inode %lu at logical offset %llu with"
2119                                  " max blocks %u with error %d",
2120                                  inode->i_ino,
2121                                  (unsigned long long)map->m_lblk,
2122                                  (unsigned)map->m_len, -err);
2123                         ext4_msg(sb, KERN_CRIT,
2124                                  "This should not happen!! Data will "
2125                                  "be lost\n");
2126                         if (err == -ENOSPC)
2127                                 ext4_print_free_blocks(inode);
2128                 invalidate_dirty_pages:
2129                         *give_up_on_write = true;
2130                         return err;
2131                 }
2132                 /*
2133                  * Update buffer state, submit mapped pages, and get us new
2134                  * extent to map
2135                  */
2136                 err = mpage_map_and_submit_buffers(mpd);
2137                 if (err < 0)
2138                         return err;
2139         } while (map->m_len);
2140
2141         /*
2142          * Update on-disk size after IO is submitted.  Races with
2143          * truncate are avoided by checking i_size under i_data_sem.
2144          */
2145         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2146         if (disksize > EXT4_I(inode)->i_disksize) {
2147                 int err2;
2148                 loff_t i_size;
2149
2150                 down_write(&EXT4_I(inode)->i_data_sem);
2151                 i_size = i_size_read(inode);
2152                 if (disksize > i_size)
2153                         disksize = i_size;
2154                 if (disksize > EXT4_I(inode)->i_disksize)
2155                         EXT4_I(inode)->i_disksize = disksize;
2156                 err2 = ext4_mark_inode_dirty(handle, inode);
2157                 up_write(&EXT4_I(inode)->i_data_sem);
2158                 if (err2)
2159                         ext4_error(inode->i_sb,
2160                                    "Failed to mark inode %lu dirty",
2161                                    inode->i_ino);
2162                 if (!err)
2163                         err = err2;
2164         }
2165         return err;
2166 }
2167
2168 /*
2169  * Calculate the total number of credits to reserve for one writepages
2170  * iteration. This is called from ext4_writepages(). We map an extent of
2171  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2172  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2173  * bpp - 1 blocks in bpp different extents.
2174  */
2175 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2176 {
2177         int bpp = ext4_journal_blocks_per_page(inode);
2178
2179         return ext4_meta_trans_blocks(inode,
2180                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2181 }
2182
2183 /*
2184  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2185  *                               and underlying extent to map
2186  *
2187  * @mpd - where to look for pages
2188  *
2189  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2190  * IO immediately. When we find a page which isn't mapped we start accumulating
2191  * extent of buffers underlying these pages that needs mapping (formed by
2192  * either delayed or unwritten buffers). We also lock the pages containing
2193  * these buffers. The extent found is returned in @mpd structure (starting at
2194  * mpd->lblk with length mpd->len blocks).
2195  *
2196  * Note that this function can attach bios to one io_end structure which are
2197  * neither logically nor physically contiguous. Although it may seem as an
2198  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2199  * case as we need to track IO to all buffers underlying a page in one io_end.
2200  */
2201 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2202 {
2203         struct address_space *mapping = mpd->inode->i_mapping;
2204         struct pagevec pvec;
2205         unsigned int nr_pages;
2206         long left = mpd->wbc->nr_to_write;
2207         pgoff_t index = mpd->first_page;
2208         pgoff_t end = mpd->last_page;
2209         int tag;
2210         int i, err = 0;
2211         int blkbits = mpd->inode->i_blkbits;
2212         ext4_lblk_t lblk;
2213         struct buffer_head *head;
2214
2215         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2216                 tag = PAGECACHE_TAG_TOWRITE;
2217         else
2218                 tag = PAGECACHE_TAG_DIRTY;
2219
2220         pagevec_init(&pvec, 0);
2221         mpd->map.m_len = 0;
2222         mpd->next_page = index;
2223         while (index <= end) {
2224                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2225                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2226                 if (nr_pages == 0)
2227                         goto out;
2228
2229                 for (i = 0; i < nr_pages; i++) {
2230                         struct page *page = pvec.pages[i];
2231
2232                         /*
2233                          * At this point, the page may be truncated or
2234                          * invalidated (changing page->mapping to NULL), or
2235                          * even swizzled back from swapper_space to tmpfs file
2236                          * mapping. However, page->index will not change
2237                          * because we have a reference on the page.
2238                          */
2239                         if (page->index > end)
2240                                 goto out;
2241
2242                         /*
2243                          * Accumulated enough dirty pages? This doesn't apply
2244                          * to WB_SYNC_ALL mode. For integrity sync we have to
2245                          * keep going because someone may be concurrently
2246                          * dirtying pages, and we might have synced a lot of
2247                          * newly appeared dirty pages, but have not synced all
2248                          * of the old dirty pages.
2249                          */
2250                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2251                                 goto out;
2252
2253                         /* If we can't merge this page, we are done. */
2254                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2255                                 goto out;
2256
2257                         lock_page(page);
2258                         /*
2259                          * If the page is no longer dirty, or its mapping no
2260                          * longer corresponds to inode we are writing (which
2261                          * means it has been truncated or invalidated), or the
2262                          * page is already under writeback and we are not doing
2263                          * a data integrity writeback, skip the page
2264                          */
2265                         if (!PageDirty(page) ||
2266                             (PageWriteback(page) &&
2267                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2268                             unlikely(page->mapping != mapping)) {
2269                                 unlock_page(page);
2270                                 continue;
2271                         }
2272
2273                         wait_on_page_writeback(page);
2274                         BUG_ON(PageWriteback(page));
2275
2276                         if (mpd->map.m_len == 0)
2277                                 mpd->first_page = page->index;
2278                         mpd->next_page = page->index + 1;
2279                         /* Add all dirty buffers to mpd */
2280                         lblk = ((ext4_lblk_t)page->index) <<
2281                                 (PAGE_CACHE_SHIFT - blkbits);
2282                         head = page_buffers(page);
2283                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2284                         if (err <= 0)
2285                                 goto out;
2286                         err = 0;
2287                         left--;
2288                 }
2289                 pagevec_release(&pvec);
2290                 cond_resched();
2291         }
2292         return 0;
2293 out:
2294         pagevec_release(&pvec);
2295         return err;
2296 }
2297
2298 static int __writepage(struct page *page, struct writeback_control *wbc,
2299                        void *data)
2300 {
2301         struct address_space *mapping = data;
2302         int ret = ext4_writepage(page, wbc);
2303         mapping_set_error(mapping, ret);
2304         return ret;
2305 }
2306
2307 static int ext4_writepages(struct address_space *mapping,
2308                            struct writeback_control *wbc)
2309 {
2310         pgoff_t writeback_index = 0;
2311         long nr_to_write = wbc->nr_to_write;
2312         int range_whole = 0;
2313         int cycled = 1;
2314         handle_t *handle = NULL;
2315         struct mpage_da_data mpd;
2316         struct inode *inode = mapping->host;
2317         int needed_blocks, rsv_blocks = 0, ret = 0;
2318         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2319         bool done;
2320         struct blk_plug plug;
2321         bool give_up_on_write = false;
2322
2323         trace_ext4_writepages(inode, wbc);
2324
2325         /*
2326          * No pages to write? This is mainly a kludge to avoid starting
2327          * a transaction for special inodes like journal inode on last iput()
2328          * because that could violate lock ordering on umount
2329          */
2330         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2331                 goto out_writepages;
2332
2333         if (ext4_should_journal_data(inode)) {
2334                 struct blk_plug plug;
2335
2336                 blk_start_plug(&plug);
2337                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338                 blk_finish_plug(&plug);
2339                 goto out_writepages;
2340         }
2341
2342         /*
2343          * If the filesystem has aborted, it is read-only, so return
2344          * right away instead of dumping stack traces later on that
2345          * will obscure the real source of the problem.  We test
2346          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2347          * the latter could be true if the filesystem is mounted
2348          * read-only, and in that case, ext4_writepages should
2349          * *never* be called, so if that ever happens, we would want
2350          * the stack trace.
2351          */
2352         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2353                 ret = -EROFS;
2354                 goto out_writepages;
2355         }
2356
2357         if (ext4_should_dioread_nolock(inode)) {
2358                 /*
2359                  * We may need to convert up to one extent per block in
2360                  * the page and we may dirty the inode.
2361                  */
2362                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2363         }
2364
2365         /*
2366          * If we have inline data and arrive here, it means that
2367          * we will soon create the block for the 1st page, so
2368          * we'd better clear the inline data here.
2369          */
2370         if (ext4_has_inline_data(inode)) {
2371                 /* Just inode will be modified... */
2372                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2373                 if (IS_ERR(handle)) {
2374                         ret = PTR_ERR(handle);
2375                         goto out_writepages;
2376                 }
2377                 BUG_ON(ext4_test_inode_state(inode,
2378                                 EXT4_STATE_MAY_INLINE_DATA));
2379                 ext4_destroy_inline_data(handle, inode);
2380                 ext4_journal_stop(handle);
2381         }
2382
2383         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2384                 range_whole = 1;
2385
2386         if (wbc->range_cyclic) {
2387                 writeback_index = mapping->writeback_index;
2388                 if (writeback_index)
2389                         cycled = 0;
2390                 mpd.first_page = writeback_index;
2391                 mpd.last_page = -1;
2392         } else {
2393                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2394                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2395         }
2396
2397         mpd.inode = inode;
2398         mpd.wbc = wbc;
2399         ext4_io_submit_init(&mpd.io_submit, wbc);
2400 retry:
2401         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2402                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2403         done = false;
2404         blk_start_plug(&plug);
2405         while (!done && mpd.first_page <= mpd.last_page) {
2406                 /* For each extent of pages we use new io_end */
2407                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2408                 if (!mpd.io_submit.io_end) {
2409                         ret = -ENOMEM;
2410                         break;
2411                 }
2412
2413                 /*
2414                  * We have two constraints: We find one extent to map and we
2415                  * must always write out whole page (makes a difference when
2416                  * blocksize < pagesize) so that we don't block on IO when we
2417                  * try to write out the rest of the page. Journalled mode is
2418                  * not supported by delalloc.
2419                  */
2420                 BUG_ON(ext4_should_journal_data(inode));
2421                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2422
2423                 /* start a new transaction */
2424                 handle = ext4_journal_start_with_reserve(inode,
2425                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2426                 if (IS_ERR(handle)) {
2427                         ret = PTR_ERR(handle);
2428                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2429                                "%ld pages, ino %lu; err %d", __func__,
2430                                 wbc->nr_to_write, inode->i_ino, ret);
2431                         /* Release allocated io_end */
2432                         ext4_put_io_end(mpd.io_submit.io_end);
2433                         break;
2434                 }
2435
2436                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2437                 ret = mpage_prepare_extent_to_map(&mpd);
2438                 if (!ret) {
2439                         if (mpd.map.m_len)
2440                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2441                                         &give_up_on_write);
2442                         else {
2443                                 /*
2444                                  * We scanned the whole range (or exhausted
2445                                  * nr_to_write), submitted what was mapped and
2446                                  * didn't find anything needing mapping. We are
2447                                  * done.
2448                                  */
2449                                 done = true;
2450                         }
2451                 }
2452                 ext4_journal_stop(handle);
2453                 /* Submit prepared bio */
2454                 ext4_io_submit(&mpd.io_submit);
2455                 /* Unlock pages we didn't use */
2456                 mpage_release_unused_pages(&mpd, give_up_on_write);
2457                 /* Drop our io_end reference we got from init */
2458                 ext4_put_io_end(mpd.io_submit.io_end);
2459
2460                 if (ret == -ENOSPC && sbi->s_journal) {
2461                         /*
2462                          * Commit the transaction which would
2463                          * free blocks released in the transaction
2464                          * and try again
2465                          */
2466                         jbd2_journal_force_commit_nested(sbi->s_journal);
2467                         ret = 0;
2468                         continue;
2469                 }
2470                 /* Fatal error - ENOMEM, EIO... */
2471                 if (ret)
2472                         break;
2473         }
2474         blk_finish_plug(&plug);
2475         if (!ret && !cycled && wbc->nr_to_write > 0) {
2476                 cycled = 1;
2477                 mpd.last_page = writeback_index - 1;
2478                 mpd.first_page = 0;
2479                 goto retry;
2480         }
2481
2482         /* Update index */
2483         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2484                 /*
2485                  * Set the writeback_index so that range_cyclic
2486                  * mode will write it back later
2487                  */
2488                 mapping->writeback_index = mpd.first_page;
2489
2490 out_writepages:
2491         trace_ext4_writepages_result(inode, wbc, ret,
2492                                      nr_to_write - wbc->nr_to_write);
2493         return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_clusters, dirty_clusters;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with percpu_counter_batch getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_clusters =
2510                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2511         dirty_clusters =
2512                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2513         /*
2514          * Start pushing delalloc when 1/2 of free blocks are dirty.
2515          */
2516         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2517                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2518
2519         if (2 * free_clusters < 3 * dirty_clusters ||
2520             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2521                 /*
2522                  * free block count is less than 150% of dirty blocks
2523                  * or free blocks is less than watermark
2524                  */
2525                 return 1;
2526         }
2527         return 0;
2528 }
2529
2530 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2531                                loff_t pos, unsigned len, unsigned flags,
2532                                struct page **pagep, void **fsdata)
2533 {
2534         int ret, retries = 0;
2535         struct page *page;
2536         pgoff_t index;
2537         struct inode *inode = mapping->host;
2538         handle_t *handle;
2539
2540         index = pos >> PAGE_CACHE_SHIFT;
2541
2542         if (ext4_nonda_switch(inode->i_sb)) {
2543                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2544                 return ext4_write_begin(file, mapping, pos,
2545                                         len, flags, pagep, fsdata);
2546         }
2547         *fsdata = (void *)0;
2548         trace_ext4_da_write_begin(inode, pos, len, flags);
2549
2550         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2551                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2552                                                       pos, len, flags,
2553                                                       pagep, fsdata);
2554                 if (ret < 0)
2555                         return ret;
2556                 if (ret == 1)
2557                         return 0;
2558         }
2559
2560         /*
2561          * grab_cache_page_write_begin() can take a long time if the
2562          * system is thrashing due to memory pressure, or if the page
2563          * is being written back.  So grab it first before we start
2564          * the transaction handle.  This also allows us to allocate
2565          * the page (if needed) without using GFP_NOFS.
2566          */
2567 retry_grab:
2568         page = grab_cache_page_write_begin(mapping, index, flags);
2569         if (!page)
2570                 return -ENOMEM;
2571         unlock_page(page);
2572
2573         /*
2574          * With delayed allocation, we don't log the i_disksize update
2575          * if there is delayed block allocation. But we still need
2576          * to journalling the i_disksize update if writes to the end
2577          * of file which has an already mapped buffer.
2578          */
2579 retry_journal:
2580         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2581         if (IS_ERR(handle)) {
2582                 page_cache_release(page);
2583                 return PTR_ERR(handle);
2584         }
2585
2586         lock_page(page);
2587         if (page->mapping != mapping) {
2588                 /* The page got truncated from under us */
2589                 unlock_page(page);
2590                 page_cache_release(page);
2591                 ext4_journal_stop(handle);
2592                 goto retry_grab;
2593         }
2594         /* In case writeback began while the page was unlocked */
2595         wait_for_stable_page(page);
2596
2597         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2598         if (ret < 0) {
2599                 unlock_page(page);
2600                 ext4_journal_stop(handle);
2601                 /*
2602                  * block_write_begin may have instantiated a few blocks
2603                  * outside i_size.  Trim these off again. Don't need
2604                  * i_size_read because we hold i_mutex.
2605                  */
2606                 if (pos + len > inode->i_size)
2607                         ext4_truncate_failed_write(inode);
2608
2609                 if (ret == -ENOSPC &&
2610                     ext4_should_retry_alloc(inode->i_sb, &retries))
2611                         goto retry_journal;
2612
2613                 page_cache_release(page);
2614                 return ret;
2615         }
2616
2617         *pagep = page;
2618         return ret;
2619 }
2620
2621 /*
2622  * Check if we should update i_disksize
2623  * when write to the end of file but not require block allocation
2624  */
2625 static int ext4_da_should_update_i_disksize(struct page *page,
2626                                             unsigned long offset)
2627 {
2628         struct buffer_head *bh;
2629         struct inode *inode = page->mapping->host;
2630         unsigned int idx;
2631         int i;
2632
2633         bh = page_buffers(page);
2634         idx = offset >> inode->i_blkbits;
2635
2636         for (i = 0; i < idx; i++)
2637                 bh = bh->b_this_page;
2638
2639         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2640                 return 0;
2641         return 1;
2642 }
2643
2644 static int ext4_da_write_end(struct file *file,
2645                              struct address_space *mapping,
2646                              loff_t pos, unsigned len, unsigned copied,
2647                              struct page *page, void *fsdata)
2648 {
2649         struct inode *inode = mapping->host;
2650         int ret = 0, ret2;
2651         handle_t *handle = ext4_journal_current_handle();
2652         loff_t new_i_size;
2653         unsigned long start, end;
2654         int write_mode = (int)(unsigned long)fsdata;
2655
2656         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2657                 return ext4_write_end(file, mapping, pos,
2658                                       len, copied, page, fsdata);
2659
2660         trace_ext4_da_write_end(inode, pos, len, copied);
2661         start = pos & (PAGE_CACHE_SIZE - 1);
2662         end = start + copied - 1;
2663
2664         /*
2665          * generic_write_end() will run mark_inode_dirty() if i_size
2666          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2667          * into that.
2668          */
2669         new_i_size = pos + copied;
2670         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2671                 if (ext4_has_inline_data(inode) ||
2672                     ext4_da_should_update_i_disksize(page, end)) {
2673                         down_write(&EXT4_I(inode)->i_data_sem);
2674                         if (new_i_size > EXT4_I(inode)->i_disksize)
2675                                 EXT4_I(inode)->i_disksize = new_i_size;
2676                         up_write(&EXT4_I(inode)->i_data_sem);
2677                         /* We need to mark inode dirty even if
2678                          * new_i_size is less that inode->i_size
2679                          * bu greater than i_disksize.(hint delalloc)
2680                          */
2681                         ext4_mark_inode_dirty(handle, inode);
2682                 }
2683         }
2684
2685         if (write_mode != CONVERT_INLINE_DATA &&
2686             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2687             ext4_has_inline_data(inode))
2688                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2689                                                      page);
2690         else
2691                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2692                                                         page, fsdata);
2693
2694         copied = ret2;
2695         if (ret2 < 0)
2696                 ret = ret2;
2697         ret2 = ext4_journal_stop(handle);
2698         if (!ret)
2699                 ret = ret2;
2700
2701         return ret ? ret : copied;
2702 }
2703
2704 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2705                                    unsigned int length)
2706 {
2707         /*
2708          * Drop reserved blocks
2709          */
2710         BUG_ON(!PageLocked(page));
2711         if (!page_has_buffers(page))
2712                 goto out;
2713
2714         ext4_da_page_release_reservation(page, offset, length);
2715
2716 out:
2717         ext4_invalidatepage(page, offset, length);
2718
2719         return;
2720 }
2721
2722 /*
2723  * Force all delayed allocation blocks to be allocated for a given inode.
2724  */
2725 int ext4_alloc_da_blocks(struct inode *inode)
2726 {
2727         trace_ext4_alloc_da_blocks(inode);
2728
2729         if (!EXT4_I(inode)->i_reserved_data_blocks)
2730                 return 0;
2731
2732         /*
2733          * We do something simple for now.  The filemap_flush() will
2734          * also start triggering a write of the data blocks, which is
2735          * not strictly speaking necessary (and for users of
2736          * laptop_mode, not even desirable).  However, to do otherwise
2737          * would require replicating code paths in:
2738          *
2739          * ext4_writepages() ->
2740          *    write_cache_pages() ---> (via passed in callback function)
2741          *        __mpage_da_writepage() -->
2742          *           mpage_add_bh_to_extent()
2743          *           mpage_da_map_blocks()
2744          *
2745          * The problem is that write_cache_pages(), located in
2746          * mm/page-writeback.c, marks pages clean in preparation for
2747          * doing I/O, which is not desirable if we're not planning on
2748          * doing I/O at all.
2749          *
2750          * We could call write_cache_pages(), and then redirty all of
2751          * the pages by calling redirty_page_for_writepage() but that
2752          * would be ugly in the extreme.  So instead we would need to
2753          * replicate parts of the code in the above functions,
2754          * simplifying them because we wouldn't actually intend to
2755          * write out the pages, but rather only collect contiguous
2756          * logical block extents, call the multi-block allocator, and
2757          * then update the buffer heads with the block allocations.
2758          *
2759          * For now, though, we'll cheat by calling filemap_flush(),
2760          * which will map the blocks, and start the I/O, but not
2761          * actually wait for the I/O to complete.
2762          */
2763         return filemap_flush(inode->i_mapping);
2764 }
2765
2766 /*
2767  * bmap() is special.  It gets used by applications such as lilo and by
2768  * the swapper to find the on-disk block of a specific piece of data.
2769  *
2770  * Naturally, this is dangerous if the block concerned is still in the
2771  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2772  * filesystem and enables swap, then they may get a nasty shock when the
2773  * data getting swapped to that swapfile suddenly gets overwritten by
2774  * the original zero's written out previously to the journal and
2775  * awaiting writeback in the kernel's buffer cache.
2776  *
2777  * So, if we see any bmap calls here on a modified, data-journaled file,
2778  * take extra steps to flush any blocks which might be in the cache.
2779  */
2780 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2781 {
2782         struct inode *inode = mapping->host;
2783         journal_t *journal;
2784         int err;
2785
2786         /*
2787          * We can get here for an inline file via the FIBMAP ioctl
2788          */
2789         if (ext4_has_inline_data(inode))
2790                 return 0;
2791
2792         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2793                         test_opt(inode->i_sb, DELALLOC)) {
2794                 /*
2795                  * With delalloc we want to sync the file
2796                  * so that we can make sure we allocate
2797                  * blocks for file
2798                  */
2799                 filemap_write_and_wait(mapping);
2800         }
2801
2802         if (EXT4_JOURNAL(inode) &&
2803             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2804                 /*
2805                  * This is a REALLY heavyweight approach, but the use of
2806                  * bmap on dirty files is expected to be extremely rare:
2807                  * only if we run lilo or swapon on a freshly made file
2808                  * do we expect this to happen.
2809                  *
2810                  * (bmap requires CAP_SYS_RAWIO so this does not
2811                  * represent an unprivileged user DOS attack --- we'd be
2812                  * in trouble if mortal users could trigger this path at
2813                  * will.)
2814                  *
2815                  * NB. EXT4_STATE_JDATA is not set on files other than
2816                  * regular files.  If somebody wants to bmap a directory
2817                  * or symlink and gets confused because the buffer
2818                  * hasn't yet been flushed to disk, they deserve
2819                  * everything they get.
2820                  */
2821
2822                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2823                 journal = EXT4_JOURNAL(inode);
2824                 jbd2_journal_lock_updates(journal);
2825                 err = jbd2_journal_flush(journal);
2826                 jbd2_journal_unlock_updates(journal);
2827
2828                 if (err)
2829                         return 0;
2830         }
2831
2832         return generic_block_bmap(mapping, block, ext4_get_block);
2833 }
2834
2835 static int ext4_readpage(struct file *file, struct page *page)
2836 {
2837         int ret = -EAGAIN;
2838         struct inode *inode = page->mapping->host;
2839
2840         trace_ext4_readpage(page);
2841
2842         if (ext4_has_inline_data(inode))
2843                 ret = ext4_readpage_inline(inode, page);
2844
2845         if (ret == -EAGAIN)
2846                 return mpage_readpage(page, ext4_get_block);
2847
2848         return ret;
2849 }
2850
2851 static int
2852 ext4_readpages(struct file *file, struct address_space *mapping,
2853                 struct list_head *pages, unsigned nr_pages)
2854 {
2855         struct inode *inode = mapping->host;
2856
2857         /* If the file has inline data, no need to do readpages. */
2858         if (ext4_has_inline_data(inode))
2859                 return 0;
2860
2861         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2862 }
2863
2864 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2865                                 unsigned int length)
2866 {
2867         trace_ext4_invalidatepage(page, offset, length);
2868
2869         /* No journalling happens on data buffers when this function is used */
2870         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2871
2872         block_invalidatepage(page, offset, length);
2873 }
2874
2875 static int __ext4_journalled_invalidatepage(struct page *page,
2876                                             unsigned int offset,
2877                                             unsigned int length)
2878 {
2879         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2880
2881         trace_ext4_journalled_invalidatepage(page, offset, length);
2882
2883         /*
2884          * If it's a full truncate we just forget about the pending dirtying
2885          */
2886         if (offset == 0 && length == PAGE_CACHE_SIZE)
2887                 ClearPageChecked(page);
2888
2889         return jbd2_journal_invalidatepage(journal, page, offset, length);
2890 }
2891
2892 /* Wrapper for aops... */
2893 static void ext4_journalled_invalidatepage(struct page *page,
2894                                            unsigned int offset,
2895                                            unsigned int length)
2896 {
2897         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2898 }
2899
2900 static int ext4_releasepage(struct page *page, gfp_t wait)
2901 {
2902         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2903
2904         trace_ext4_releasepage(page);
2905
2906         /* Page has dirty journalled data -> cannot release */
2907         if (PageChecked(page))
2908                 return 0;
2909         if (journal)
2910                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2911         else
2912                 return try_to_free_buffers(page);
2913 }
2914
2915 /*
2916  * ext4_get_block used when preparing for a DIO write or buffer write.
2917  * We allocate an uinitialized extent if blocks haven't been allocated.
2918  * The extent will be converted to initialized after the IO is complete.
2919  */
2920 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2921                    struct buffer_head *bh_result, int create)
2922 {
2923         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2924                    inode->i_ino, create);
2925         return _ext4_get_block(inode, iblock, bh_result,
2926                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2927 }
2928
2929 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2930                    struct buffer_head *bh_result, int create)
2931 {
2932         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2933                    inode->i_ino, create);
2934         return _ext4_get_block(inode, iblock, bh_result,
2935                                EXT4_GET_BLOCKS_NO_LOCK);
2936 }
2937
2938 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2939                             ssize_t size, void *private)
2940 {
2941         ext4_io_end_t *io_end = iocb->private;
2942
2943         /* if not async direct IO just return */
2944         if (!io_end)
2945                 return;
2946
2947         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2948                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2949                   iocb->private, io_end->inode->i_ino, iocb, offset,
2950                   size);
2951
2952         iocb->private = NULL;
2953         io_end->offset = offset;
2954         io_end->size = size;
2955         ext4_put_io_end(io_end);
2956 }
2957
2958 /*
2959  * For ext4 extent files, ext4 will do direct-io write to holes,
2960  * preallocated extents, and those write extend the file, no need to
2961  * fall back to buffered IO.
2962  *
2963  * For holes, we fallocate those blocks, mark them as unwritten
2964  * If those blocks were preallocated, we mark sure they are split, but
2965  * still keep the range to write as unwritten.
2966  *
2967  * The unwritten extents will be converted to written when DIO is completed.
2968  * For async direct IO, since the IO may still pending when return, we
2969  * set up an end_io call back function, which will do the conversion
2970  * when async direct IO completed.
2971  *
2972  * If the O_DIRECT write will extend the file then add this inode to the
2973  * orphan list.  So recovery will truncate it back to the original size
2974  * if the machine crashes during the write.
2975  *
2976  */
2977 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978                               struct iov_iter *iter, loff_t offset)
2979 {
2980         struct file *file = iocb->ki_filp;
2981         struct inode *inode = file->f_mapping->host;
2982         ssize_t ret;
2983         size_t count = iov_iter_count(iter);
2984         int overwrite = 0;
2985         get_block_t *get_block_func = NULL;
2986         int dio_flags = 0;
2987         loff_t final_size = offset + count;
2988         ext4_io_end_t *io_end = NULL;
2989
2990         /* Use the old path for reads and writes beyond i_size. */
2991         if (rw != WRITE || final_size > inode->i_size)
2992                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2993
2994         BUG_ON(iocb->private == NULL);
2995
2996         /*
2997          * Make all waiters for direct IO properly wait also for extent
2998          * conversion. This also disallows race between truncate() and
2999          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3000          */
3001         if (rw == WRITE)
3002                 atomic_inc(&inode->i_dio_count);
3003
3004         /* If we do a overwrite dio, i_mutex locking can be released */
3005         overwrite = *((int *)iocb->private);
3006
3007         if (overwrite) {
3008                 down_read(&EXT4_I(inode)->i_data_sem);
3009                 mutex_unlock(&inode->i_mutex);
3010         }
3011
3012         /*
3013          * We could direct write to holes and fallocate.
3014          *
3015          * Allocated blocks to fill the hole are marked as
3016          * unwritten to prevent parallel buffered read to expose
3017          * the stale data before DIO complete the data IO.
3018          *
3019          * As to previously fallocated extents, ext4 get_block will
3020          * just simply mark the buffer mapped but still keep the
3021          * extents unwritten.
3022          *
3023          * For non AIO case, we will convert those unwritten extents
3024          * to written after return back from blockdev_direct_IO.
3025          *
3026          * For async DIO, the conversion needs to be deferred when the
3027          * IO is completed. The ext4 end_io callback function will be
3028          * called to take care of the conversion work.  Here for async
3029          * case, we allocate an io_end structure to hook to the iocb.
3030          */
3031         iocb->private = NULL;
3032         ext4_inode_aio_set(inode, NULL);
3033         if (!is_sync_kiocb(iocb)) {
3034                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3035                 if (!io_end) {
3036                         ret = -ENOMEM;
3037                         goto retake_lock;
3038                 }
3039                 /*
3040                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3041                  */
3042                 iocb->private = ext4_get_io_end(io_end);
3043                 /*
3044                  * we save the io structure for current async direct
3045                  * IO, so that later ext4_map_blocks() could flag the
3046                  * io structure whether there is a unwritten extents
3047                  * needs to be converted when IO is completed.
3048                  */
3049                 ext4_inode_aio_set(inode, io_end);
3050         }
3051
3052         if (overwrite) {
3053                 get_block_func = ext4_get_block_write_nolock;
3054         } else {
3055                 get_block_func = ext4_get_block_write;
3056                 dio_flags = DIO_LOCKING;
3057         }
3058         ret = __blockdev_direct_IO(rw, iocb, inode,
3059                                    inode->i_sb->s_bdev, iter,
3060                                    offset,
3061                                    get_block_func,
3062                                    ext4_end_io_dio,
3063                                    NULL,
3064                                    dio_flags);
3065
3066         /*
3067          * Put our reference to io_end. This can free the io_end structure e.g.
3068          * in sync IO case or in case of error. It can even perform extent
3069          * conversion if all bios we submitted finished before we got here.
3070          * Note that in that case iocb->private can be already set to NULL
3071          * here.
3072          */
3073         if (io_end) {
3074                 ext4_inode_aio_set(inode, NULL);
3075                 ext4_put_io_end(io_end);
3076                 /*
3077                  * When no IO was submitted ext4_end_io_dio() was not
3078                  * called so we have to put iocb's reference.
3079                  */
3080                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3081                         WARN_ON(iocb->private != io_end);
3082                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3083                         ext4_put_io_end(io_end);
3084                         iocb->private = NULL;
3085                 }
3086         }
3087         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3088                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3089                 int err;
3090                 /*
3091                  * for non AIO case, since the IO is already
3092                  * completed, we could do the conversion right here
3093                  */
3094                 err = ext4_convert_unwritten_extents(NULL, inode,
3095                                                      offset, ret);
3096                 if (err < 0)
3097                         ret = err;
3098                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3099         }
3100
3101 retake_lock:
3102         if (rw == WRITE)
3103                 inode_dio_done(inode);
3104         /* take i_mutex locking again if we do a ovewrite dio */
3105         if (overwrite) {
3106                 up_read(&EXT4_I(inode)->i_data_sem);
3107                 mutex_lock(&inode->i_mutex);
3108         }
3109
3110         return ret;
3111 }
3112
3113 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3114                               struct iov_iter *iter, loff_t offset)
3115 {
3116         struct file *file = iocb->ki_filp;
3117         struct inode *inode = file->f_mapping->host;
3118         size_t count = iov_iter_count(iter);
3119         ssize_t ret;
3120
3121         /*
3122          * If we are doing data journalling we don't support O_DIRECT
3123          */
3124         if (ext4_should_journal_data(inode))
3125                 return 0;
3126
3127         /* Let buffer I/O handle the inline data case. */
3128         if (ext4_has_inline_data(inode))
3129                 return 0;
3130
3131         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3132         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3133                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3134         else
3135                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3136         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3137         return ret;
3138 }
3139
3140 /*
3141  * Pages can be marked dirty completely asynchronously from ext4's journalling
3142  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3143  * much here because ->set_page_dirty is called under VFS locks.  The page is
3144  * not necessarily locked.
3145  *
3146  * We cannot just dirty the page and leave attached buffers clean, because the
3147  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3148  * or jbddirty because all the journalling code will explode.
3149  *
3150  * So what we do is to mark the page "pending dirty" and next time writepage
3151  * is called, propagate that into the buffers appropriately.
3152  */
3153 static int ext4_journalled_set_page_dirty(struct page *page)
3154 {
3155         SetPageChecked(page);
3156         return __set_page_dirty_nobuffers(page);
3157 }
3158
3159 static const struct address_space_operations ext4_aops = {
3160         .readpage               = ext4_readpage,
3161         .readpages              = ext4_readpages,
3162         .writepage              = ext4_writepage,
3163         .writepages             = ext4_writepages,
3164         .write_begin            = ext4_write_begin,
3165         .write_end              = ext4_write_end,
3166         .bmap                   = ext4_bmap,
3167         .invalidatepage         = ext4_invalidatepage,
3168         .releasepage            = ext4_releasepage,
3169         .direct_IO              = ext4_direct_IO,
3170         .migratepage            = buffer_migrate_page,
3171         .is_partially_uptodate  = block_is_partially_uptodate,
3172         .error_remove_page      = generic_error_remove_page,
3173 };
3174
3175 static const struct address_space_operations ext4_journalled_aops = {
3176         .readpage               = ext4_readpage,
3177         .readpages              = ext4_readpages,
3178         .writepage              = ext4_writepage,
3179         .writepages             = ext4_writepages,
3180         .write_begin            = ext4_write_begin,
3181         .write_end              = ext4_journalled_write_end,
3182         .set_page_dirty         = ext4_journalled_set_page_dirty,
3183         .bmap                   = ext4_bmap,
3184         .invalidatepage         = ext4_journalled_invalidatepage,
3185         .releasepage            = ext4_releasepage,
3186         .direct_IO              = ext4_direct_IO,
3187         .is_partially_uptodate  = block_is_partially_uptodate,
3188         .error_remove_page      = generic_error_remove_page,
3189 };
3190
3191 static const struct address_space_operations ext4_da_aops = {
3192         .readpage               = ext4_readpage,
3193         .readpages              = ext4_readpages,
3194         .writepage              = ext4_writepage,
3195         .writepages             = ext4_writepages,
3196         .write_begin            = ext4_da_write_begin,
3197         .write_end              = ext4_da_write_end,
3198         .bmap                   = ext4_bmap,
3199         .invalidatepage         = ext4_da_invalidatepage,
3200         .releasepage            = ext4_releasepage,
3201         .direct_IO              = ext4_direct_IO,
3202         .migratepage            = buffer_migrate_page,
3203         .is_partially_uptodate  = block_is_partially_uptodate,
3204         .error_remove_page      = generic_error_remove_page,
3205 };
3206
3207 void ext4_set_aops(struct inode *inode)
3208 {
3209         switch (ext4_inode_journal_mode(inode)) {
3210         case EXT4_INODE_ORDERED_DATA_MODE:
3211                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3212                 break;
3213         case EXT4_INODE_WRITEBACK_DATA_MODE:
3214                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3215                 break;
3216         case EXT4_INODE_JOURNAL_DATA_MODE:
3217                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3218                 return;
3219         default:
3220                 BUG();
3221         }
3222         if (test_opt(inode->i_sb, DELALLOC))
3223                 inode->i_mapping->a_ops = &ext4_da_aops;
3224         else
3225                 inode->i_mapping->a_ops = &ext4_aops;
3226 }
3227
3228 /*
3229  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3230  * starting from file offset 'from'.  The range to be zero'd must
3231  * be contained with in one block.  If the specified range exceeds
3232  * the end of the block it will be shortened to end of the block
3233  * that cooresponds to 'from'
3234  */
3235 static int ext4_block_zero_page_range(handle_t *handle,
3236                 struct address_space *mapping, loff_t from, loff_t length)
3237 {
3238         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3239         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3240         unsigned blocksize, max, pos;
3241         ext4_lblk_t iblock;
3242         struct inode *inode = mapping->host;
3243         struct buffer_head *bh;
3244         struct page *page;
3245         int err = 0;
3246
3247         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3248                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3249         if (!page)
3250                 return -ENOMEM;
3251
3252         blocksize = inode->i_sb->s_blocksize;
3253         max = blocksize - (offset & (blocksize - 1));
3254
3255         /*
3256          * correct length if it does not fall between
3257          * 'from' and the end of the block
3258          */
3259         if (length > max || length < 0)
3260                 length = max;
3261
3262         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3263
3264         if (!page_has_buffers(page))
3265                 create_empty_buffers(page, blocksize, 0);
3266
3267         /* Find the buffer that contains "offset" */
3268         bh = page_buffers(page);
3269         pos = blocksize;
3270         while (offset >= pos) {
3271                 bh = bh->b_this_page;
3272                 iblock++;
3273                 pos += blocksize;
3274         }
3275         if (buffer_freed(bh)) {
3276                 BUFFER_TRACE(bh, "freed: skip");
3277                 goto unlock;
3278         }
3279         if (!buffer_mapped(bh)) {
3280                 BUFFER_TRACE(bh, "unmapped");
3281                 ext4_get_block(inode, iblock, bh, 0);
3282                 /* unmapped? It's a hole - nothing to do */
3283                 if (!buffer_mapped(bh)) {
3284                         BUFFER_TRACE(bh, "still unmapped");
3285                         goto unlock;
3286                 }
3287         }
3288
3289         /* Ok, it's mapped. Make sure it's up-to-date */
3290         if (PageUptodate(page))
3291                 set_buffer_uptodate(bh);
3292
3293         if (!buffer_uptodate(bh)) {
3294                 err = -EIO;
3295                 ll_rw_block(READ, 1, &bh);
3296                 wait_on_buffer(bh);
3297                 /* Uhhuh. Read error. Complain and punt. */
3298                 if (!buffer_uptodate(bh))
3299                         goto unlock;
3300         }
3301         if (ext4_should_journal_data(inode)) {
3302                 BUFFER_TRACE(bh, "get write access");
3303                 err = ext4_journal_get_write_access(handle, bh);
3304                 if (err)
3305                         goto unlock;
3306         }
3307         zero_user(page, offset, length);
3308         BUFFER_TRACE(bh, "zeroed end of block");
3309
3310         if (ext4_should_journal_data(inode)) {
3311                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3312         } else {
3313                 err = 0;
3314                 mark_buffer_dirty(bh);
3315                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3316                         err = ext4_jbd2_file_inode(handle, inode);
3317         }
3318
3319 unlock:
3320         unlock_page(page);
3321         page_cache_release(page);
3322         return err;
3323 }
3324
3325 /*
3326  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3327  * up to the end of the block which corresponds to `from'.
3328  * This required during truncate. We need to physically zero the tail end
3329  * of that block so it doesn't yield old data if the file is later grown.
3330  */
3331 static int ext4_block_truncate_page(handle_t *handle,
3332                 struct address_space *mapping, loff_t from)
3333 {
3334         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335         unsigned length;
3336         unsigned blocksize;
3337         struct inode *inode = mapping->host;
3338
3339         blocksize = inode->i_sb->s_blocksize;
3340         length = blocksize - (offset & (blocksize - 1));
3341
3342         return ext4_block_zero_page_range(handle, mapping, from, length);
3343 }
3344
3345 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3346                              loff_t lstart, loff_t length)
3347 {
3348         struct super_block *sb = inode->i_sb;
3349         struct address_space *mapping = inode->i_mapping;
3350         unsigned partial_start, partial_end;
3351         ext4_fsblk_t start, end;
3352         loff_t byte_end = (lstart + length - 1);
3353         int err = 0;
3354
3355         partial_start = lstart & (sb->s_blocksize - 1);
3356         partial_end = byte_end & (sb->s_blocksize - 1);
3357
3358         start = lstart >> sb->s_blocksize_bits;
3359         end = byte_end >> sb->s_blocksize_bits;
3360
3361         /* Handle partial zero within the single block */
3362         if (start == end &&
3363             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3364                 err = ext4_block_zero_page_range(handle, mapping,
3365                                                  lstart, length);
3366                 return err;
3367         }
3368         /* Handle partial zero out on the start of the range */
3369         if (partial_start) {
3370                 err = ext4_block_zero_page_range(handle, mapping,
3371                                                  lstart, sb->s_blocksize);
3372                 if (err)
3373                         return err;
3374         }
3375         /* Handle partial zero out on the end of the range */
3376         if (partial_end != sb->s_blocksize - 1)
3377                 err = ext4_block_zero_page_range(handle, mapping,
3378                                                  byte_end - partial_end,
3379                                                  partial_end + 1);
3380         return err;
3381 }
3382
3383 int ext4_can_truncate(struct inode *inode)
3384 {
3385         if (S_ISREG(inode->i_mode))
3386                 return 1;
3387         if (S_ISDIR(inode->i_mode))
3388                 return 1;
3389         if (S_ISLNK(inode->i_mode))
3390                 return !ext4_inode_is_fast_symlink(inode);
3391         return 0;
3392 }
3393
3394 /*
3395  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3396  * associated with the given offset and length
3397  *
3398  * @inode:  File inode
3399  * @offset: The offset where the hole will begin
3400  * @len:    The length of the hole
3401  *
3402  * Returns: 0 on success or negative on failure
3403  */
3404
3405 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3406 {
3407         struct super_block *sb = inode->i_sb;
3408         ext4_lblk_t first_block, stop_block;
3409         struct address_space *mapping = inode->i_mapping;
3410         loff_t first_block_offset, last_block_offset;
3411         handle_t *handle;
3412         unsigned int credits;
3413         int ret = 0;
3414
3415         if (!S_ISREG(inode->i_mode))
3416                 return -EOPNOTSUPP;
3417
3418         trace_ext4_punch_hole(inode, offset, length, 0);
3419
3420         /*
3421          * Write out all dirty pages to avoid race conditions
3422          * Then release them.
3423          */
3424         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3425                 ret = filemap_write_and_wait_range(mapping, offset,
3426                                                    offset + length - 1);
3427                 if (ret)
3428                         return ret;
3429         }
3430
3431         mutex_lock(&inode->i_mutex);
3432
3433         /* No need to punch hole beyond i_size */
3434         if (offset >= inode->i_size)
3435                 goto out_mutex;
3436
3437         /*
3438          * If the hole extends beyond i_size, set the hole
3439          * to end after the page that contains i_size
3440          */
3441         if (offset + length > inode->i_size) {
3442                 length = inode->i_size +
3443                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3444                    offset;
3445         }
3446
3447         if (offset & (sb->s_blocksize - 1) ||
3448             (offset + length) & (sb->s_blocksize - 1)) {
3449                 /*
3450                  * Attach jinode to inode for jbd2 if we do any zeroing of
3451                  * partial block
3452                  */
3453                 ret = ext4_inode_attach_jinode(inode);
3454                 if (ret < 0)
3455                         goto out_mutex;
3456
3457         }
3458
3459         first_block_offset = round_up(offset, sb->s_blocksize);
3460         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3461
3462         /* Now release the pages and zero block aligned part of pages*/
3463         if (last_block_offset > first_block_offset)
3464                 truncate_pagecache_range(inode, first_block_offset,
3465                                          last_block_offset);
3466
3467         /* Wait all existing dio workers, newcomers will block on i_mutex */
3468         ext4_inode_block_unlocked_dio(inode);
3469         inode_dio_wait(inode);
3470
3471         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3472                 credits = ext4_writepage_trans_blocks(inode);
3473         else
3474                 credits = ext4_blocks_for_truncate(inode);
3475         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3476         if (IS_ERR(handle)) {
3477                 ret = PTR_ERR(handle);
3478                 ext4_std_error(sb, ret);
3479                 goto out_dio;
3480         }
3481
3482         ret = ext4_zero_partial_blocks(handle, inode, offset,
3483                                        length);
3484         if (ret)
3485                 goto out_stop;
3486
3487         first_block = (offset + sb->s_blocksize - 1) >>
3488                 EXT4_BLOCK_SIZE_BITS(sb);
3489         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3490
3491         /* If there are no blocks to remove, return now */
3492         if (first_block >= stop_block)
3493                 goto out_stop;
3494
3495         down_write(&EXT4_I(inode)->i_data_sem);
3496         ext4_discard_preallocations(inode);
3497
3498         ret = ext4_es_remove_extent(inode, first_block,
3499                                     stop_block - first_block);
3500         if (ret) {
3501                 up_write(&EXT4_I(inode)->i_data_sem);
3502                 goto out_stop;
3503         }
3504
3505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3506                 ret = ext4_ext_remove_space(inode, first_block,
3507                                             stop_block - 1);
3508         else
3509                 ret = ext4_ind_remove_space(handle, inode, first_block,
3510                                             stop_block);
3511
3512         up_write(&EXT4_I(inode)->i_data_sem);
3513         if (IS_SYNC(inode))
3514                 ext4_handle_sync(handle);
3515
3516         /* Now release the pages again to reduce race window */
3517         if (last_block_offset > first_block_offset)
3518                 truncate_pagecache_range(inode, first_block_offset,
3519                                          last_block_offset);
3520
3521         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3522         ext4_mark_inode_dirty(handle, inode);
3523 out_stop:
3524         ext4_journal_stop(handle);
3525 out_dio:
3526         ext4_inode_resume_unlocked_dio(inode);
3527 out_mutex:
3528         mutex_unlock(&inode->i_mutex);
3529         return ret;
3530 }
3531
3532 int ext4_inode_attach_jinode(struct inode *inode)
3533 {
3534         struct ext4_inode_info *ei = EXT4_I(inode);
3535         struct jbd2_inode *jinode;
3536
3537         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3538                 return 0;
3539
3540         jinode = jbd2_alloc_inode(GFP_KERNEL);
3541         spin_lock(&inode->i_lock);
3542         if (!ei->jinode) {
3543                 if (!jinode) {
3544                         spin_unlock(&inode->i_lock);
3545                         return -ENOMEM;
3546                 }
3547                 ei->jinode = jinode;
3548                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3549                 jinode = NULL;
3550         }
3551         spin_unlock(&inode->i_lock);
3552         if (unlikely(jinode != NULL))
3553                 jbd2_free_inode(jinode);
3554         return 0;
3555 }
3556
3557 /*
3558  * ext4_truncate()
3559  *
3560  * We block out ext4_get_block() block instantiations across the entire
3561  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3562  * simultaneously on behalf of the same inode.
3563  *
3564  * As we work through the truncate and commit bits of it to the journal there
3565  * is one core, guiding principle: the file's tree must always be consistent on
3566  * disk.  We must be able to restart the truncate after a crash.
3567  *
3568  * The file's tree may be transiently inconsistent in memory (although it
3569  * probably isn't), but whenever we close off and commit a journal transaction,
3570  * the contents of (the filesystem + the journal) must be consistent and
3571  * restartable.  It's pretty simple, really: bottom up, right to left (although
3572  * left-to-right works OK too).
3573  *
3574  * Note that at recovery time, journal replay occurs *before* the restart of
3575  * truncate against the orphan inode list.
3576  *
3577  * The committed inode has the new, desired i_size (which is the same as
3578  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3579  * that this inode's truncate did not complete and it will again call
3580  * ext4_truncate() to have another go.  So there will be instantiated blocks
3581  * to the right of the truncation point in a crashed ext4 filesystem.  But
3582  * that's fine - as long as they are linked from the inode, the post-crash
3583  * ext4_truncate() run will find them and release them.
3584  */
3585 void ext4_truncate(struct inode *inode)
3586 {
3587         struct ext4_inode_info *ei = EXT4_I(inode);
3588         unsigned int credits;
3589         handle_t *handle;
3590         struct address_space *mapping = inode->i_mapping;
3591
3592         /*
3593          * There is a possibility that we're either freeing the inode
3594          * or it's a completely new inode. In those cases we might not
3595          * have i_mutex locked because it's not necessary.
3596          */
3597         if (!(inode->i_state & (I_NEW|I_FREEING)))
3598                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3599         trace_ext4_truncate_enter(inode);
3600
3601         if (!ext4_can_truncate(inode))
3602                 return;
3603
3604         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3605
3606         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3607                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3608
3609         if (ext4_has_inline_data(inode)) {
3610                 int has_inline = 1;
3611
3612                 ext4_inline_data_truncate(inode, &has_inline);
3613                 if (has_inline)
3614                         return;
3615         }
3616
3617         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3618         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3619                 if (ext4_inode_attach_jinode(inode) < 0)
3620                         return;
3621         }
3622
3623         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3624                 credits = ext4_writepage_trans_blocks(inode);
3625         else
3626                 credits = ext4_blocks_for_truncate(inode);
3627
3628         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3629         if (IS_ERR(handle)) {
3630                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3631                 return;
3632         }
3633
3634         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3635                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3636
3637         /*
3638          * We add the inode to the orphan list, so that if this
3639          * truncate spans multiple transactions, and we crash, we will
3640          * resume the truncate when the filesystem recovers.  It also
3641          * marks the inode dirty, to catch the new size.
3642          *
3643          * Implication: the file must always be in a sane, consistent
3644          * truncatable state while each transaction commits.
3645          */
3646         if (ext4_orphan_add(handle, inode))
3647                 goto out_stop;
3648
3649         down_write(&EXT4_I(inode)->i_data_sem);
3650
3651         ext4_discard_preallocations(inode);
3652
3653         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3654                 ext4_ext_truncate(handle, inode);
3655         else
3656                 ext4_ind_truncate(handle, inode);
3657
3658         up_write(&ei->i_data_sem);
3659
3660         if (IS_SYNC(inode))
3661                 ext4_handle_sync(handle);
3662
3663 out_stop:
3664         /*
3665          * If this was a simple ftruncate() and the file will remain alive,
3666          * then we need to clear up the orphan record which we created above.
3667          * However, if this was a real unlink then we were called by
3668          * ext4_delete_inode(), and we allow that function to clean up the
3669          * orphan info for us.
3670          */
3671         if (inode->i_nlink)
3672                 ext4_orphan_del(handle, inode);
3673
3674         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3675         ext4_mark_inode_dirty(handle, inode);
3676         ext4_journal_stop(handle);
3677
3678         trace_ext4_truncate_exit(inode);
3679 }
3680
3681 /*
3682  * ext4_get_inode_loc returns with an extra refcount against the inode's
3683  * underlying buffer_head on success. If 'in_mem' is true, we have all
3684  * data in memory that is needed to recreate the on-disk version of this
3685  * inode.
3686  */
3687 static int __ext4_get_inode_loc(struct inode *inode,
3688                                 struct ext4_iloc *iloc, int in_mem)
3689 {
3690         struct ext4_group_desc  *gdp;
3691         struct buffer_head      *bh;
3692         struct super_block      *sb = inode->i_sb;
3693         ext4_fsblk_t            block;
3694         int                     inodes_per_block, inode_offset;
3695
3696         iloc->bh = NULL;
3697         if (!ext4_valid_inum(sb, inode->i_ino))
3698                 return -EIO;
3699
3700         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3701         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3702         if (!gdp)
3703                 return -EIO;
3704
3705         /*
3706          * Figure out the offset within the block group inode table
3707          */
3708         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3709         inode_offset = ((inode->i_ino - 1) %
3710                         EXT4_INODES_PER_GROUP(sb));
3711         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3712         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3713
3714         bh = sb_getblk(sb, block);
3715         if (unlikely(!bh))
3716                 return -ENOMEM;
3717         if (!buffer_uptodate(bh)) {
3718                 lock_buffer(bh);
3719
3720                 /*
3721                  * If the buffer has the write error flag, we have failed
3722                  * to write out another inode in the same block.  In this
3723                  * case, we don't have to read the block because we may
3724                  * read the old inode data successfully.
3725                  */
3726                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3727                         set_buffer_uptodate(bh);
3728
3729                 if (buffer_uptodate(bh)) {
3730                         /* someone brought it uptodate while we waited */
3731                         unlock_buffer(bh);
3732                         goto has_buffer;
3733                 }
3734
3735                 /*
3736                  * If we have all information of the inode in memory and this
3737                  * is the only valid inode in the block, we need not read the
3738                  * block.
3739                  */
3740                 if (in_mem) {
3741                         struct buffer_head *bitmap_bh;
3742                         int i, start;
3743
3744                         start = inode_offset & ~(inodes_per_block - 1);
3745
3746                         /* Is the inode bitmap in cache? */
3747                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3748                         if (unlikely(!bitmap_bh))
3749                                 goto make_io;
3750
3751                         /*
3752                          * If the inode bitmap isn't in cache then the
3753                          * optimisation may end up performing two reads instead
3754                          * of one, so skip it.
3755                          */
3756                         if (!buffer_uptodate(bitmap_bh)) {
3757                                 brelse(bitmap_bh);
3758                                 goto make_io;
3759                         }
3760                         for (i = start; i < start + inodes_per_block; i++) {
3761                                 if (i == inode_offset)
3762                                         continue;
3763                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3764                                         break;
3765                         }
3766                         brelse(bitmap_bh);
3767                         if (i == start + inodes_per_block) {
3768                                 /* all other inodes are free, so skip I/O */
3769                                 memset(bh->b_data, 0, bh->b_size);
3770                                 set_buffer_uptodate(bh);
3771                                 unlock_buffer(bh);
3772                                 goto has_buffer;
3773                         }
3774                 }
3775
3776 make_io:
3777                 /*
3778                  * If we need to do any I/O, try to pre-readahead extra
3779                  * blocks from the inode table.
3780                  */
3781                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3782                         ext4_fsblk_t b, end, table;
3783                         unsigned num;
3784                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3785
3786                         table = ext4_inode_table(sb, gdp);
3787                         /* s_inode_readahead_blks is always a power of 2 */
3788                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3789                         if (table > b)
3790                                 b = table;
3791                         end = b + ra_blks;
3792                         num = EXT4_INODES_PER_GROUP(sb);
3793                         if (ext4_has_group_desc_csum(sb))
3794                                 num -= ext4_itable_unused_count(sb, gdp);
3795                         table += num / inodes_per_block;
3796                         if (end > table)
3797                                 end = table;
3798                         while (b <= end)
3799                                 sb_breadahead(sb, b++);
3800                 }
3801
3802                 /*
3803                  * There are other valid inodes in the buffer, this inode
3804                  * has in-inode xattrs, or we don't have this inode in memory.
3805                  * Read the block from disk.
3806                  */
3807                 trace_ext4_load_inode(inode);
3808                 get_bh(bh);
3809                 bh->b_end_io = end_buffer_read_sync;
3810                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3811                 wait_on_buffer(bh);
3812                 if (!buffer_uptodate(bh)) {
3813                         EXT4_ERROR_INODE_BLOCK(inode, block,
3814                                                "unable to read itable block");
3815                         brelse(bh);
3816                         return -EIO;
3817                 }
3818         }
3819 has_buffer:
3820         iloc->bh = bh;
3821         return 0;
3822 }
3823
3824 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3825 {
3826         /* We have all inode data except xattrs in memory here. */
3827         return __ext4_get_inode_loc(inode, iloc,
3828                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3829 }
3830
3831 void ext4_set_inode_flags(struct inode *inode)
3832 {
3833         unsigned int flags = EXT4_I(inode)->i_flags;
3834         unsigned int new_fl = 0;
3835
3836         if (flags & EXT4_SYNC_FL)
3837                 new_fl |= S_SYNC;
3838         if (flags & EXT4_APPEND_FL)
3839                 new_fl |= S_APPEND;
3840         if (flags & EXT4_IMMUTABLE_FL)
3841                 new_fl |= S_IMMUTABLE;
3842         if (flags & EXT4_NOATIME_FL)
3843                 new_fl |= S_NOATIME;
3844         if (flags & EXT4_DIRSYNC_FL)
3845                 new_fl |= S_DIRSYNC;
3846         inode_set_flags(inode, new_fl,
3847                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3848 }
3849
3850 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3851 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3852 {
3853         unsigned int vfs_fl;
3854         unsigned long old_fl, new_fl;
3855
3856         do {
3857                 vfs_fl = ei->vfs_inode.i_flags;
3858                 old_fl = ei->i_flags;
3859                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3860                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3861                                 EXT4_DIRSYNC_FL);
3862                 if (vfs_fl & S_SYNC)
3863                         new_fl |= EXT4_SYNC_FL;
3864                 if (vfs_fl & S_APPEND)
3865                         new_fl |= EXT4_APPEND_FL;
3866                 if (vfs_fl & S_IMMUTABLE)
3867                         new_fl |= EXT4_IMMUTABLE_FL;
3868                 if (vfs_fl & S_NOATIME)
3869                         new_fl |= EXT4_NOATIME_FL;
3870                 if (vfs_fl & S_DIRSYNC)
3871                         new_fl |= EXT4_DIRSYNC_FL;
3872         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3873 }
3874
3875 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3876                                   struct ext4_inode_info *ei)
3877 {
3878         blkcnt_t i_blocks ;
3879         struct inode *inode = &(ei->vfs_inode);
3880         struct super_block *sb = inode->i_sb;
3881
3882         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3883                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3884                 /* we are using combined 48 bit field */
3885                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3886                                         le32_to_cpu(raw_inode->i_blocks_lo);
3887                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3888                         /* i_blocks represent file system block size */
3889                         return i_blocks  << (inode->i_blkbits - 9);
3890                 } else {
3891                         return i_blocks;
3892                 }
3893         } else {
3894                 return le32_to_cpu(raw_inode->i_blocks_lo);
3895         }
3896 }
3897
3898 static inline void ext4_iget_extra_inode(struct inode *inode,
3899                                          struct ext4_inode *raw_inode,
3900                                          struct ext4_inode_info *ei)
3901 {
3902         __le32 *magic = (void *)raw_inode +
3903                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3904         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3905                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3906                 ext4_find_inline_data_nolock(inode);
3907         } else
3908                 EXT4_I(inode)->i_inline_off = 0;
3909 }
3910
3911 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3912 {
3913         struct ext4_iloc iloc;
3914         struct ext4_inode *raw_inode;
3915         struct ext4_inode_info *ei;
3916         struct inode *inode;
3917         journal_t *journal = EXT4_SB(sb)->s_journal;
3918         long ret;
3919         int block;
3920         uid_t i_uid;
3921         gid_t i_gid;
3922
3923         inode = iget_locked(sb, ino);
3924         if (!inode)
3925                 return ERR_PTR(-ENOMEM);
3926         if (!(inode->i_state & I_NEW))
3927                 return inode;
3928
3929         ei = EXT4_I(inode);
3930         iloc.bh = NULL;
3931
3932         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3933         if (ret < 0)
3934                 goto bad_inode;
3935         raw_inode = ext4_raw_inode(&iloc);
3936
3937         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3938                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3939                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3940                     EXT4_INODE_SIZE(inode->i_sb)) {
3941                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3942                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3943                                 EXT4_INODE_SIZE(inode->i_sb));
3944                         ret = -EIO;
3945                         goto bad_inode;
3946                 }
3947         } else
3948                 ei->i_extra_isize = 0;
3949
3950         /* Precompute checksum seed for inode metadata */
3951         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3952                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3953                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3954                 __u32 csum;
3955                 __le32 inum = cpu_to_le32(inode->i_ino);
3956                 __le32 gen = raw_inode->i_generation;
3957                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3958                                    sizeof(inum));
3959                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3960                                               sizeof(gen));
3961         }
3962
3963         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3964                 EXT4_ERROR_INODE(inode, "checksum invalid");
3965                 ret = -EIO;
3966                 goto bad_inode;
3967         }
3968
3969         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3970         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3971         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3972         if (!(test_opt(inode->i_sb, NO_UID32))) {
3973                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3974                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3975         }
3976         i_uid_write(inode, i_uid);
3977         i_gid_write(inode, i_gid);
3978         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3979
3980         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3981         ei->i_inline_off = 0;
3982         ei->i_dir_start_lookup = 0;
3983         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3984         /* We now have enough fields to check if the inode was active or not.
3985          * This is needed because nfsd might try to access dead inodes
3986          * the test is that same one that e2fsck uses
3987          * NeilBrown 1999oct15
3988          */
3989         if (inode->i_nlink == 0) {
3990                 if ((inode->i_mode == 0 ||
3991                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3992                     ino != EXT4_BOOT_LOADER_INO) {
3993                         /* this inode is deleted */
3994                         ret = -ESTALE;
3995                         goto bad_inode;
3996                 }
3997                 /* The only unlinked inodes we let through here have
3998                  * valid i_mode and are being read by the orphan
3999                  * recovery code: that's fine, we're about to complete
4000                  * the process of deleting those.
4001                  * OR it is the EXT4_BOOT_LOADER_INO which is
4002                  * not initialized on a new filesystem. */
4003         }
4004         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4005         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4006         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4007         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4008                 ei->i_file_acl |=
4009                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4010         inode->i_size = ext4_isize(raw_inode);
4011         ei->i_disksize = inode->i_size;
4012 #ifdef CONFIG_QUOTA
4013         ei->i_reserved_quota = 0;
4014 #endif
4015         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4016         ei->i_block_group = iloc.block_group;
4017         ei->i_last_alloc_group = ~0;
4018         /*
4019          * NOTE! The in-memory inode i_data array is in little-endian order
4020          * even on big-endian machines: we do NOT byteswap the block numbers!
4021          */
4022         for (block = 0; block < EXT4_N_BLOCKS; block++)
4023                 ei->i_data[block] = raw_inode->i_block[block];
4024         INIT_LIST_HEAD(&ei->i_orphan);
4025
4026         /*
4027          * Set transaction id's of transactions that have to be committed
4028          * to finish f[data]sync. We set them to currently running transaction
4029          * as we cannot be sure that the inode or some of its metadata isn't
4030          * part of the transaction - the inode could have been reclaimed and
4031          * now it is reread from disk.
4032          */
4033         if (journal) {
4034                 transaction_t *transaction;
4035                 tid_t tid;
4036
4037                 read_lock(&journal->j_state_lock);
4038                 if (journal->j_running_transaction)
4039                         transaction = journal->j_running_transaction;
4040                 else
4041                         transaction = journal->j_committing_transaction;
4042                 if (transaction)
4043                         tid = transaction->t_tid;
4044                 else
4045                         tid = journal->j_commit_sequence;
4046                 read_unlock(&journal->j_state_lock);
4047                 ei->i_sync_tid = tid;
4048                 ei->i_datasync_tid = tid;
4049         }
4050
4051         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4052                 if (ei->i_extra_isize == 0) {
4053                         /* The extra space is currently unused. Use it. */
4054                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4055                                             EXT4_GOOD_OLD_INODE_SIZE;
4056                 } else {
4057                         ext4_iget_extra_inode(inode, raw_inode, ei);
4058                 }
4059         }
4060
4061         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4062         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4063         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4064         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4065
4066         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4067                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4068                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4069                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4070                                 inode->i_version |=
4071                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4072                 }
4073         }
4074
4075         ret = 0;
4076         if (ei->i_file_acl &&
4077             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4078                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4079                                  ei->i_file_acl);
4080                 ret = -EIO;
4081                 goto bad_inode;
4082         } else if (!ext4_has_inline_data(inode)) {
4083                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4084                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4085                             (S_ISLNK(inode->i_mode) &&
4086                              !ext4_inode_is_fast_symlink(inode))))
4087                                 /* Validate extent which is part of inode */
4088                                 ret = ext4_ext_check_inode(inode);
4089                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4090                            (S_ISLNK(inode->i_mode) &&
4091                             !ext4_inode_is_fast_symlink(inode))) {
4092                         /* Validate block references which are part of inode */
4093                         ret = ext4_ind_check_inode(inode);
4094                 }
4095         }
4096         if (ret)
4097                 goto bad_inode;
4098
4099         if (S_ISREG(inode->i_mode)) {
4100                 inode->i_op = &ext4_file_inode_operations;
4101                 inode->i_fop = &ext4_file_operations;
4102                 ext4_set_aops(inode);
4103         } else if (S_ISDIR(inode->i_mode)) {
4104                 inode->i_op = &ext4_dir_inode_operations;
4105                 inode->i_fop = &ext4_dir_operations;
4106         } else if (S_ISLNK(inode->i_mode)) {
4107                 if (ext4_inode_is_fast_symlink(inode)) {
4108                         inode->i_op = &ext4_fast_symlink_inode_operations;
4109                         nd_terminate_link(ei->i_data, inode->i_size,
4110                                 sizeof(ei->i_data) - 1);
4111                 } else {
4112                         inode->i_op = &ext4_symlink_inode_operations;
4113                         ext4_set_aops(inode);
4114                 }
4115         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4116               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4117                 inode->i_op = &ext4_special_inode_operations;
4118                 if (raw_inode->i_block[0])
4119                         init_special_inode(inode, inode->i_mode,
4120                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4121                 else
4122                         init_special_inode(inode, inode->i_mode,
4123                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4124         } else if (ino == EXT4_BOOT_LOADER_INO) {
4125                 make_bad_inode(inode);
4126         } else {
4127                 ret = -EIO;
4128                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4129                 goto bad_inode;
4130         }
4131         brelse(iloc.bh);
4132         ext4_set_inode_flags(inode);
4133         unlock_new_inode(inode);
4134         return inode;
4135
4136 bad_inode:
4137         brelse(iloc.bh);
4138         iget_failed(inode);
4139         return ERR_PTR(ret);
4140 }
4141
4142 static int ext4_inode_blocks_set(handle_t *handle,
4143                                 struct ext4_inode *raw_inode,
4144                                 struct ext4_inode_info *ei)
4145 {
4146         struct inode *inode = &(ei->vfs_inode);
4147         u64 i_blocks = inode->i_blocks;
4148         struct super_block *sb = inode->i_sb;
4149
4150         if (i_blocks <= ~0U) {
4151                 /*
4152                  * i_blocks can be represented in a 32 bit variable
4153                  * as multiple of 512 bytes
4154                  */
4155                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4156                 raw_inode->i_blocks_high = 0;
4157                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4158                 return 0;
4159         }
4160         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4161                 return -EFBIG;
4162
4163         if (i_blocks <= 0xffffffffffffULL) {
4164                 /*
4165                  * i_blocks can be represented in a 48 bit variable
4166                  * as multiple of 512 bytes
4167                  */
4168                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4169                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4170                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4171         } else {
4172                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4173                 /* i_block is stored in file system block size */
4174                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4175                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4176                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4177         }
4178         return 0;
4179 }
4180
4181 /*
4182  * Post the struct inode info into an on-disk inode location in the
4183  * buffer-cache.  This gobbles the caller's reference to the
4184  * buffer_head in the inode location struct.
4185  *
4186  * The caller must have write access to iloc->bh.
4187  */
4188 static int ext4_do_update_inode(handle_t *handle,
4189                                 struct inode *inode,
4190                                 struct ext4_iloc *iloc)
4191 {
4192         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4193         struct ext4_inode_info *ei = EXT4_I(inode);
4194         struct buffer_head *bh = iloc->bh;
4195         struct super_block *sb = inode->i_sb;
4196         int err = 0, rc, block;
4197         int need_datasync = 0, set_large_file = 0;
4198         uid_t i_uid;
4199         gid_t i_gid;
4200
4201         spin_lock(&ei->i_raw_lock);
4202
4203         /* For fields not tracked in the in-memory inode,
4204          * initialise them to zero for new inodes. */
4205         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4206                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4207
4208         ext4_get_inode_flags(ei);
4209         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4210         i_uid = i_uid_read(inode);
4211         i_gid = i_gid_read(inode);
4212         if (!(test_opt(inode->i_sb, NO_UID32))) {
4213                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4214                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4215 /*
4216  * Fix up interoperability with old kernels. Otherwise, old inodes get
4217  * re-used with the upper 16 bits of the uid/gid intact
4218  */
4219                 if (!ei->i_dtime) {
4220                         raw_inode->i_uid_high =
4221                                 cpu_to_le16(high_16_bits(i_uid));
4222                         raw_inode->i_gid_high =
4223                                 cpu_to_le16(high_16_bits(i_gid));
4224                 } else {
4225                         raw_inode->i_uid_high = 0;
4226                         raw_inode->i_gid_high = 0;
4227                 }
4228         } else {
4229                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4230                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4231                 raw_inode->i_uid_high = 0;
4232                 raw_inode->i_gid_high = 0;
4233         }
4234         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4235
4236         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4237         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4238         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4239         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4240
4241         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4242                 spin_unlock(&ei->i_raw_lock);
4243                 goto out_brelse;
4244         }
4245         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4246         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4247         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4248                 raw_inode->i_file_acl_high =
4249                         cpu_to_le16(ei->i_file_acl >> 32);
4250         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4251         if (ei->i_disksize != ext4_isize(raw_inode)) {
4252                 ext4_isize_set(raw_inode, ei->i_disksize);
4253                 need_datasync = 1;
4254         }
4255         if (ei->i_disksize > 0x7fffffffULL) {
4256                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4257                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4258                                 EXT4_SB(sb)->s_es->s_rev_level ==
4259                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4260                         set_large_file = 1;
4261         }
4262         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4263         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4264                 if (old_valid_dev(inode->i_rdev)) {
4265                         raw_inode->i_block[0] =
4266                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4267                         raw_inode->i_block[1] = 0;
4268                 } else {
4269                         raw_inode->i_block[0] = 0;
4270                         raw_inode->i_block[1] =
4271                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4272                         raw_inode->i_block[2] = 0;
4273                 }
4274         } else if (!ext4_has_inline_data(inode)) {
4275                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4276                         raw_inode->i_block[block] = ei->i_data[block];
4277         }
4278
4279         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4280                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4281                 if (ei->i_extra_isize) {
4282                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4283                                 raw_inode->i_version_hi =
4284                                         cpu_to_le32(inode->i_version >> 32);
4285                         raw_inode->i_extra_isize =
4286                                 cpu_to_le16(ei->i_extra_isize);
4287                 }
4288         }
4289
4290         ext4_inode_csum_set(inode, raw_inode, ei);
4291
4292         spin_unlock(&ei->i_raw_lock);
4293
4294         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4295         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4296         if (!err)
4297                 err = rc;
4298         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4299         if (set_large_file) {
4300                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4301                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4302                 if (err)
4303                         goto out_brelse;
4304                 ext4_update_dynamic_rev(sb);
4305                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4306                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307                 ext4_handle_sync(handle);
4308                 err = ext4_handle_dirty_super(handle, sb);
4309         }
4310         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4311 out_brelse:
4312         brelse(bh);
4313         ext4_std_error(inode->i_sb, err);
4314         return err;
4315 }
4316
4317 /*
4318  * ext4_write_inode()
4319  *
4320  * We are called from a few places:
4321  *
4322  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4323  *   Here, there will be no transaction running. We wait for any running
4324  *   transaction to commit.
4325  *
4326  * - Within flush work (sys_sync(), kupdate and such).
4327  *   We wait on commit, if told to.
4328  *
4329  * - Within iput_final() -> write_inode_now()
4330  *   We wait on commit, if told to.
4331  *
4332  * In all cases it is actually safe for us to return without doing anything,
4333  * because the inode has been copied into a raw inode buffer in
4334  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4335  * writeback.
4336  *
4337  * Note that we are absolutely dependent upon all inode dirtiers doing the
4338  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4339  * which we are interested.
4340  *
4341  * It would be a bug for them to not do this.  The code:
4342  *
4343  *      mark_inode_dirty(inode)
4344  *      stuff();
4345  *      inode->i_size = expr;
4346  *
4347  * is in error because write_inode() could occur while `stuff()' is running,
4348  * and the new i_size will be lost.  Plus the inode will no longer be on the
4349  * superblock's dirty inode list.
4350  */
4351 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4352 {
4353         int err;
4354
4355         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4356                 return 0;
4357
4358         if (EXT4_SB(inode->i_sb)->s_journal) {
4359                 if (ext4_journal_current_handle()) {
4360                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4361                         dump_stack();
4362                         return -EIO;
4363                 }
4364
4365                 /*
4366                  * No need to force transaction in WB_SYNC_NONE mode. Also
4367                  * ext4_sync_fs() will force the commit after everything is
4368                  * written.
4369                  */
4370                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4371                         return 0;
4372
4373                 err = ext4_force_commit(inode->i_sb);
4374         } else {
4375                 struct ext4_iloc iloc;
4376
4377                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4378                 if (err)
4379                         return err;
4380                 /*
4381                  * sync(2) will flush the whole buffer cache. No need to do
4382                  * it here separately for each inode.
4383                  */
4384                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4385                         sync_dirty_buffer(iloc.bh);
4386                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4387                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4388                                          "IO error syncing inode");
4389                         err = -EIO;
4390                 }
4391                 brelse(iloc.bh);
4392         }
4393         return err;
4394 }
4395
4396 /*
4397  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4398  * buffers that are attached to a page stradding i_size and are undergoing
4399  * commit. In that case we have to wait for commit to finish and try again.
4400  */
4401 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4402 {
4403         struct page *page;
4404         unsigned offset;
4405         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4406         tid_t commit_tid = 0;
4407         int ret;
4408
4409         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4410         /*
4411          * All buffers in the last page remain valid? Then there's nothing to
4412          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4413          * blocksize case
4414          */
4415         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4416                 return;
4417         while (1) {
4418                 page = find_lock_page(inode->i_mapping,
4419                                       inode->i_size >> PAGE_CACHE_SHIFT);
4420                 if (!page)
4421                         return;
4422                 ret = __ext4_journalled_invalidatepage(page, offset,
4423                                                 PAGE_CACHE_SIZE - offset);
4424                 unlock_page(page);
4425                 page_cache_release(page);
4426                 if (ret != -EBUSY)
4427                         return;
4428                 commit_tid = 0;
4429                 read_lock(&journal->j_state_lock);
4430                 if (journal->j_committing_transaction)
4431                         commit_tid = journal->j_committing_transaction->t_tid;
4432                 read_unlock(&journal->j_state_lock);
4433                 if (commit_tid)
4434                         jbd2_log_wait_commit(journal, commit_tid);
4435         }
4436 }
4437
4438 /*
4439  * ext4_setattr()
4440  *
4441  * Called from notify_change.
4442  *
4443  * We want to trap VFS attempts to truncate the file as soon as
4444  * possible.  In particular, we want to make sure that when the VFS
4445  * shrinks i_size, we put the inode on the orphan list and modify
4446  * i_disksize immediately, so that during the subsequent flushing of
4447  * dirty pages and freeing of disk blocks, we can guarantee that any
4448  * commit will leave the blocks being flushed in an unused state on
4449  * disk.  (On recovery, the inode will get truncated and the blocks will
4450  * be freed, so we have a strong guarantee that no future commit will
4451  * leave these blocks visible to the user.)
4452  *
4453  * Another thing we have to assure is that if we are in ordered mode
4454  * and inode is still attached to the committing transaction, we must
4455  * we start writeout of all the dirty pages which are being truncated.
4456  * This way we are sure that all the data written in the previous
4457  * transaction are already on disk (truncate waits for pages under
4458  * writeback).
4459  *
4460  * Called with inode->i_mutex down.
4461  */
4462 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4463 {
4464         struct inode *inode = dentry->d_inode;
4465         int error, rc = 0;
4466         int orphan = 0;
4467         const unsigned int ia_valid = attr->ia_valid;
4468
4469         error = inode_change_ok(inode, attr);
4470         if (error)
4471                 return error;
4472
4473         if (is_quota_modification(inode, attr))
4474                 dquot_initialize(inode);
4475         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4476             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4477                 handle_t *handle;
4478
4479                 /* (user+group)*(old+new) structure, inode write (sb,
4480                  * inode block, ? - but truncate inode update has it) */
4481                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4482                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4483                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4484                 if (IS_ERR(handle)) {
4485                         error = PTR_ERR(handle);
4486                         goto err_out;
4487                 }
4488                 error = dquot_transfer(inode, attr);
4489                 if (error) {
4490                         ext4_journal_stop(handle);
4491                         return error;
4492                 }
4493                 /* Update corresponding info in inode so that everything is in
4494                  * one transaction */
4495                 if (attr->ia_valid & ATTR_UID)
4496                         inode->i_uid = attr->ia_uid;
4497                 if (attr->ia_valid & ATTR_GID)
4498                         inode->i_gid = attr->ia_gid;
4499                 error = ext4_mark_inode_dirty(handle, inode);
4500                 ext4_journal_stop(handle);
4501         }
4502
4503         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4504                 handle_t *handle;
4505
4506                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4507                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4508
4509                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4510                                 return -EFBIG;
4511                 }
4512
4513                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4514                         inode_inc_iversion(inode);
4515
4516                 if (S_ISREG(inode->i_mode) &&
4517                     (attr->ia_size < inode->i_size)) {
4518                         if (ext4_should_order_data(inode)) {
4519                                 error = ext4_begin_ordered_truncate(inode,
4520                                                             attr->ia_size);
4521                                 if (error)
4522                                         goto err_out;
4523                         }
4524                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4525                         if (IS_ERR(handle)) {
4526                                 error = PTR_ERR(handle);
4527                                 goto err_out;
4528                         }
4529                         if (ext4_handle_valid(handle)) {
4530                                 error = ext4_orphan_add(handle, inode);
4531                                 orphan = 1;
4532                         }
4533                         down_write(&EXT4_I(inode)->i_data_sem);
4534                         EXT4_I(inode)->i_disksize = attr->ia_size;
4535                         rc = ext4_mark_inode_dirty(handle, inode);
4536                         if (!error)
4537                                 error = rc;
4538                         /*
4539                          * We have to update i_size under i_data_sem together
4540                          * with i_disksize to avoid races with writeback code
4541                          * running ext4_wb_update_i_disksize().
4542                          */
4543                         if (!error)
4544                                 i_size_write(inode, attr->ia_size);
4545                         up_write(&EXT4_I(inode)->i_data_sem);
4546                         ext4_journal_stop(handle);
4547                         if (error) {
4548                                 ext4_orphan_del(NULL, inode);
4549                                 goto err_out;
4550                         }
4551                 } else
4552                         i_size_write(inode, attr->ia_size);
4553
4554                 /*
4555                  * Blocks are going to be removed from the inode. Wait
4556                  * for dio in flight.  Temporarily disable
4557                  * dioread_nolock to prevent livelock.
4558                  */
4559                 if (orphan) {
4560                         if (!ext4_should_journal_data(inode)) {
4561                                 ext4_inode_block_unlocked_dio(inode);
4562                                 inode_dio_wait(inode);
4563                                 ext4_inode_resume_unlocked_dio(inode);
4564                         } else
4565                                 ext4_wait_for_tail_page_commit(inode);
4566                 }
4567                 /*
4568                  * Truncate pagecache after we've waited for commit
4569                  * in data=journal mode to make pages freeable.
4570                  */
4571                         truncate_pagecache(inode, inode->i_size);
4572         }
4573         /*
4574          * We want to call ext4_truncate() even if attr->ia_size ==
4575          * inode->i_size for cases like truncation of fallocated space
4576          */
4577         if (attr->ia_valid & ATTR_SIZE)
4578                 ext4_truncate(inode);
4579
4580         if (!rc) {
4581                 setattr_copy(inode, attr);
4582                 mark_inode_dirty(inode);
4583         }
4584
4585         /*
4586          * If the call to ext4_truncate failed to get a transaction handle at
4587          * all, we need to clean up the in-core orphan list manually.
4588          */
4589         if (orphan && inode->i_nlink)
4590                 ext4_orphan_del(NULL, inode);
4591
4592         if (!rc && (ia_valid & ATTR_MODE))
4593                 rc = posix_acl_chmod(inode, inode->i_mode);
4594
4595 err_out:
4596         ext4_std_error(inode->i_sb, error);
4597         if (!error)
4598                 error = rc;
4599         return error;
4600 }
4601
4602 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4603                  struct kstat *stat)
4604 {
4605         struct inode *inode;
4606         unsigned long long delalloc_blocks;
4607
4608         inode = dentry->d_inode;
4609         generic_fillattr(inode, stat);
4610
4611         /*
4612          * If there is inline data in the inode, the inode will normally not
4613          * have data blocks allocated (it may have an external xattr block).
4614          * Report at least one sector for such files, so tools like tar, rsync,
4615          * others doen't incorrectly think the file is completely sparse.
4616          */
4617         if (unlikely(ext4_has_inline_data(inode)))
4618                 stat->blocks += (stat->size + 511) >> 9;
4619
4620         /*
4621          * We can't update i_blocks if the block allocation is delayed
4622          * otherwise in the case of system crash before the real block
4623          * allocation is done, we will have i_blocks inconsistent with
4624          * on-disk file blocks.
4625          * We always keep i_blocks updated together with real
4626          * allocation. But to not confuse with user, stat
4627          * will return the blocks that include the delayed allocation
4628          * blocks for this file.
4629          */
4630         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4631                                    EXT4_I(inode)->i_reserved_data_blocks);
4632         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4633         return 0;
4634 }
4635
4636 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4637                                    int pextents)
4638 {
4639         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4640                 return ext4_ind_trans_blocks(inode, lblocks);
4641         return ext4_ext_index_trans_blocks(inode, pextents);
4642 }
4643
4644 /*
4645  * Account for index blocks, block groups bitmaps and block group
4646  * descriptor blocks if modify datablocks and index blocks
4647  * worse case, the indexs blocks spread over different block groups
4648  *
4649  * If datablocks are discontiguous, they are possible to spread over
4650  * different block groups too. If they are contiguous, with flexbg,
4651  * they could still across block group boundary.
4652  *
4653  * Also account for superblock, inode, quota and xattr blocks
4654  */
4655 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4656                                   int pextents)
4657 {
4658         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4659         int gdpblocks;
4660         int idxblocks;
4661         int ret = 0;
4662
4663         /*
4664          * How many index blocks need to touch to map @lblocks logical blocks
4665          * to @pextents physical extents?
4666          */
4667         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4668
4669         ret = idxblocks;
4670
4671         /*
4672          * Now let's see how many group bitmaps and group descriptors need
4673          * to account
4674          */
4675         groups = idxblocks + pextents;
4676         gdpblocks = groups;
4677         if (groups > ngroups)
4678                 groups = ngroups;
4679         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4680                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4681
4682         /* bitmaps and block group descriptor blocks */
4683         ret += groups + gdpblocks;
4684
4685         /* Blocks for super block, inode, quota and xattr blocks */
4686         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4687
4688         return ret;
4689 }
4690
4691 /*
4692  * Calculate the total number of credits to reserve to fit
4693  * the modification of a single pages into a single transaction,
4694  * which may include multiple chunks of block allocations.
4695  *
4696  * This could be called via ext4_write_begin()
4697  *
4698  * We need to consider the worse case, when
4699  * one new block per extent.
4700  */
4701 int ext4_writepage_trans_blocks(struct inode *inode)
4702 {
4703         int bpp = ext4_journal_blocks_per_page(inode);
4704         int ret;
4705
4706         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4707
4708         /* Account for data blocks for journalled mode */
4709         if (ext4_should_journal_data(inode))
4710                 ret += bpp;
4711         return ret;
4712 }
4713
4714 /*
4715  * Calculate the journal credits for a chunk of data modification.
4716  *
4717  * This is called from DIO, fallocate or whoever calling
4718  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4719  *
4720  * journal buffers for data blocks are not included here, as DIO
4721  * and fallocate do no need to journal data buffers.
4722  */
4723 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4724 {
4725         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4726 }
4727
4728 /*
4729  * The caller must have previously called ext4_reserve_inode_write().
4730  * Give this, we know that the caller already has write access to iloc->bh.
4731  */
4732 int ext4_mark_iloc_dirty(handle_t *handle,
4733                          struct inode *inode, struct ext4_iloc *iloc)
4734 {
4735         int err = 0;
4736
4737         if (IS_I_VERSION(inode))
4738                 inode_inc_iversion(inode);
4739
4740         /* the do_update_inode consumes one bh->b_count */
4741         get_bh(iloc->bh);
4742
4743         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4744         err = ext4_do_update_inode(handle, inode, iloc);
4745         put_bh(iloc->bh);
4746         return err;
4747 }
4748
4749 /*
4750  * On success, We end up with an outstanding reference count against
4751  * iloc->bh.  This _must_ be cleaned up later.
4752  */
4753
4754 int
4755 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4756                          struct ext4_iloc *iloc)
4757 {
4758         int err;
4759
4760         err = ext4_get_inode_loc(inode, iloc);
4761         if (!err) {
4762                 BUFFER_TRACE(iloc->bh, "get_write_access");
4763                 err = ext4_journal_get_write_access(handle, iloc->bh);
4764                 if (err) {
4765                         brelse(iloc->bh);
4766                         iloc->bh = NULL;
4767                 }
4768         }
4769         ext4_std_error(inode->i_sb, err);
4770         return err;
4771 }
4772
4773 /*
4774  * Expand an inode by new_extra_isize bytes.
4775  * Returns 0 on success or negative error number on failure.
4776  */
4777 static int ext4_expand_extra_isize(struct inode *inode,
4778                                    unsigned int new_extra_isize,
4779                                    struct ext4_iloc iloc,
4780                                    handle_t *handle)
4781 {
4782         struct ext4_inode *raw_inode;
4783         struct ext4_xattr_ibody_header *header;
4784
4785         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4786                 return 0;
4787
4788         raw_inode = ext4_raw_inode(&iloc);
4789
4790         header = IHDR(inode, raw_inode);
4791
4792         /* No extended attributes present */
4793         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4794             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4795                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4796                         new_extra_isize);
4797                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4798                 return 0;
4799         }
4800
4801         /* try to expand with EAs present */
4802         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4803                                           raw_inode, handle);
4804 }
4805
4806 /*
4807  * What we do here is to mark the in-core inode as clean with respect to inode
4808  * dirtiness (it may still be data-dirty).
4809  * This means that the in-core inode may be reaped by prune_icache
4810  * without having to perform any I/O.  This is a very good thing,
4811  * because *any* task may call prune_icache - even ones which
4812  * have a transaction open against a different journal.
4813  *
4814  * Is this cheating?  Not really.  Sure, we haven't written the
4815  * inode out, but prune_icache isn't a user-visible syncing function.
4816  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4817  * we start and wait on commits.
4818  */
4819 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4820 {
4821         struct ext4_iloc iloc;
4822         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4823         static unsigned int mnt_count;
4824         int err, ret;
4825
4826         might_sleep();
4827         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4828         err = ext4_reserve_inode_write(handle, inode, &iloc);
4829         if (ext4_handle_valid(handle) &&
4830             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4831             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4832                 /*
4833                  * We need extra buffer credits since we may write into EA block
4834                  * with this same handle. If journal_extend fails, then it will
4835                  * only result in a minor loss of functionality for that inode.
4836                  * If this is felt to be critical, then e2fsck should be run to
4837                  * force a large enough s_min_extra_isize.
4838                  */
4839                 if ((jbd2_journal_extend(handle,
4840                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4841                         ret = ext4_expand_extra_isize(inode,
4842                                                       sbi->s_want_extra_isize,
4843                                                       iloc, handle);
4844                         if (ret) {
4845                                 ext4_set_inode_state(inode,
4846                                                      EXT4_STATE_NO_EXPAND);
4847                                 if (mnt_count !=
4848                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4849                                         ext4_warning(inode->i_sb,
4850                                         "Unable to expand inode %lu. Delete"
4851                                         " some EAs or run e2fsck.",
4852                                         inode->i_ino);
4853                                         mnt_count =
4854                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4855                                 }
4856                         }
4857                 }
4858         }
4859         if (!err)
4860                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4861         return err;
4862 }
4863
4864 /*
4865  * ext4_dirty_inode() is called from __mark_inode_dirty()
4866  *
4867  * We're really interested in the case where a file is being extended.
4868  * i_size has been changed by generic_commit_write() and we thus need
4869  * to include the updated inode in the current transaction.
4870  *
4871  * Also, dquot_alloc_block() will always dirty the inode when blocks
4872  * are allocated to the file.
4873  *
4874  * If the inode is marked synchronous, we don't honour that here - doing
4875  * so would cause a commit on atime updates, which we don't bother doing.
4876  * We handle synchronous inodes at the highest possible level.
4877  */
4878 void ext4_dirty_inode(struct inode *inode, int flags)
4879 {
4880         handle_t *handle;
4881
4882         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4883         if (IS_ERR(handle))
4884                 goto out;
4885
4886         ext4_mark_inode_dirty(handle, inode);
4887
4888         ext4_journal_stop(handle);
4889 out:
4890         return;
4891 }
4892
4893 #if 0
4894 /*
4895  * Bind an inode's backing buffer_head into this transaction, to prevent
4896  * it from being flushed to disk early.  Unlike
4897  * ext4_reserve_inode_write, this leaves behind no bh reference and
4898  * returns no iloc structure, so the caller needs to repeat the iloc
4899  * lookup to mark the inode dirty later.
4900  */
4901 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4902 {
4903         struct ext4_iloc iloc;
4904
4905         int err = 0;
4906         if (handle) {
4907                 err = ext4_get_inode_loc(inode, &iloc);
4908                 if (!err) {
4909                         BUFFER_TRACE(iloc.bh, "get_write_access");
4910                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4911                         if (!err)
4912                                 err = ext4_handle_dirty_metadata(handle,
4913                                                                  NULL,
4914                                                                  iloc.bh);
4915                         brelse(iloc.bh);
4916                 }
4917         }
4918         ext4_std_error(inode->i_sb, err);
4919         return err;
4920 }
4921 #endif
4922
4923 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4924 {
4925         journal_t *journal;
4926         handle_t *handle;
4927         int err;
4928
4929         /*
4930          * We have to be very careful here: changing a data block's
4931          * journaling status dynamically is dangerous.  If we write a
4932          * data block to the journal, change the status and then delete
4933          * that block, we risk forgetting to revoke the old log record
4934          * from the journal and so a subsequent replay can corrupt data.
4935          * So, first we make sure that the journal is empty and that
4936          * nobody is changing anything.
4937          */
4938
4939         journal = EXT4_JOURNAL(inode);
4940         if (!journal)
4941                 return 0;
4942         if (is_journal_aborted(journal))
4943                 return -EROFS;
4944         /* We have to allocate physical blocks for delalloc blocks
4945          * before flushing journal. otherwise delalloc blocks can not
4946          * be allocated any more. even more truncate on delalloc blocks
4947          * could trigger BUG by flushing delalloc blocks in journal.
4948          * There is no delalloc block in non-journal data mode.
4949          */
4950         if (val && test_opt(inode->i_sb, DELALLOC)) {
4951                 err = ext4_alloc_da_blocks(inode);
4952                 if (err < 0)
4953                         return err;
4954         }
4955
4956         /* Wait for all existing dio workers */
4957         ext4_inode_block_unlocked_dio(inode);
4958         inode_dio_wait(inode);
4959
4960         jbd2_journal_lock_updates(journal);
4961
4962         /*
4963          * OK, there are no updates running now, and all cached data is
4964          * synced to disk.  We are now in a completely consistent state
4965          * which doesn't have anything in the journal, and we know that
4966          * no filesystem updates are running, so it is safe to modify
4967          * the inode's in-core data-journaling state flag now.
4968          */
4969
4970         if (val)
4971                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4972         else {
4973                 jbd2_journal_flush(journal);
4974                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4975         }
4976         ext4_set_aops(inode);
4977
4978         jbd2_journal_unlock_updates(journal);
4979         ext4_inode_resume_unlocked_dio(inode);
4980
4981         /* Finally we can mark the inode as dirty. */
4982
4983         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4984         if (IS_ERR(handle))
4985                 return PTR_ERR(handle);
4986
4987         err = ext4_mark_inode_dirty(handle, inode);
4988         ext4_handle_sync(handle);
4989         ext4_journal_stop(handle);
4990         ext4_std_error(inode->i_sb, err);
4991
4992         return err;
4993 }
4994
4995 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4996 {
4997         return !buffer_mapped(bh);
4998 }
4999
5000 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5001 {
5002         struct page *page = vmf->page;
5003         loff_t size;
5004         unsigned long len;
5005         int ret;
5006         struct file *file = vma->vm_file;
5007         struct inode *inode = file_inode(file);
5008         struct address_space *mapping = inode->i_mapping;
5009         handle_t *handle;
5010         get_block_t *get_block;
5011         int retries = 0;
5012
5013         sb_start_pagefault(inode->i_sb);
5014         file_update_time(vma->vm_file);
5015         /* Delalloc case is easy... */
5016         if (test_opt(inode->i_sb, DELALLOC) &&
5017             !ext4_should_journal_data(inode) &&
5018             !ext4_nonda_switch(inode->i_sb)) {
5019                 do {
5020                         ret = __block_page_mkwrite(vma, vmf,
5021                                                    ext4_da_get_block_prep);
5022                 } while (ret == -ENOSPC &&
5023                        ext4_should_retry_alloc(inode->i_sb, &retries));
5024                 goto out_ret;
5025         }
5026
5027         lock_page(page);
5028         size = i_size_read(inode);
5029         /* Page got truncated from under us? */
5030         if (page->mapping != mapping || page_offset(page) > size) {
5031                 unlock_page(page);
5032                 ret = VM_FAULT_NOPAGE;
5033                 goto out;
5034         }
5035
5036         if (page->index == size >> PAGE_CACHE_SHIFT)
5037                 len = size & ~PAGE_CACHE_MASK;
5038         else
5039                 len = PAGE_CACHE_SIZE;
5040         /*
5041          * Return if we have all the buffers mapped. This avoids the need to do
5042          * journal_start/journal_stop which can block and take a long time
5043          */
5044         if (page_has_buffers(page)) {
5045                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5046                                             0, len, NULL,
5047                                             ext4_bh_unmapped)) {
5048                         /* Wait so that we don't change page under IO */
5049                         wait_for_stable_page(page);
5050                         ret = VM_FAULT_LOCKED;
5051                         goto out;
5052                 }
5053         }
5054         unlock_page(page);
5055         /* OK, we need to fill the hole... */
5056         if (ext4_should_dioread_nolock(inode))
5057                 get_block = ext4_get_block_write;
5058         else
5059                 get_block = ext4_get_block;
5060 retry_alloc:
5061         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5062                                     ext4_writepage_trans_blocks(inode));
5063         if (IS_ERR(handle)) {
5064                 ret = VM_FAULT_SIGBUS;
5065                 goto out;
5066         }
5067         ret = __block_page_mkwrite(vma, vmf, get_block);
5068         if (!ret && ext4_should_journal_data(inode)) {
5069                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5070                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5071                         unlock_page(page);
5072                         ret = VM_FAULT_SIGBUS;
5073                         ext4_journal_stop(handle);
5074                         goto out;
5075                 }
5076                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5077         }
5078         ext4_journal_stop(handle);
5079         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5080                 goto retry_alloc;
5081 out_ret:
5082         ret = block_page_mkwrite_return(ret);
5083 out:
5084         sb_end_pagefault(inode->i_sb);
5085         return ret;
5086 }